Moving magnetoencephalography towards real-world a

Nature 555, 657-661

DOI: 10.1038/nature26147

Citation Report

#	Article	IF	CITATIONS
1	IFCN-endorsed practical guidelines for clinical magnetoencephalography (MEG). Clinical Neurophysiology, 2018, 129, 1720-1747.	0.7	111
2	MEG in motion. Nature Reviews Neuroscience, 2018, 19, 254-254.	4.9	1
3	Neuroimaging of learning and development: improving ecological validity. Frontline Learning Research, 2018, 6, 186-203.	0.4	27
4	Optical rotation detection for atomic spin precession using a superluminescent diode. , 2018, , .		O
5	Electronic skins with a global attraction. Nature Electronics, 2018, 1, 578-579.	13.1	18
6	Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Scientific Reports, 2018, 8, 16218.	1.6	53
7	Distributed Feedback Lasers Operating at 780 nm Wavelength Integrated on Si Substrates for Chip-scale Atomic Systems. , 2018, , .		1
8	Invited Article: Scalable high-sensitivity optomechanical magnetometers on a chip. APL Photonics, 2018, 3, 120806.	3.0	19
9	Endurance Exercise Enhances Emotional Valence and Emotion Regulation. Frontiers in Human Neuroscience, 2018, 12, 398.	1.0	22
10	Precision gaming for health: Computer games as digital medicine. Methods, 2018, 151, 28-33.	1.9	9
11	Brain leaks and consumer neurotechnology. Nature Biotechnology, 2018, 36, 805-810.	9.4	104
12	Device Modeling of MgO-Barrier Tunneling Magnetoresistors for Hybrid Spintronic-CMOS. IEEE Electron Device Letters, 2018, 39, 1784-1787.	2.2	22
13	High-gamma activity in the human hippocampus and parahippocampus during inter-trial rest periods of a virtual navigation task. Neurolmage, 2018, 178, 92-103.	2.1	11
14	Mapping the topological organisation of beta oscillations in motor cortex using MEG. Neurolmage, 2018, 181, 831-844.	2.1	27
15	Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. Neurolmage, 2018, 181, 513-520.	2.1	56
16	Non-invasive Investigation of Human Hippocampal Rhythms Using Magnetoencephalography: A Review. Frontiers in Neuroscience, 2018, 12, 273.	1.4	45
17	Neurotech. Neurology Today: an Official Publication of the American Academy of Neurology, 2018, 18, 26-27.	0.0	0
19	Studying brain activity in sports performance: Contributions and issues. Progress in Brain Research, 2018, 240, 247-267.	0.9	33

#	ARTICLE	IF	CITATIONS
20	A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage, 2018, 181, 760-774.	2.1	143
21	Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Scientific Reports, 2018, 8, 11863.	1.6	43
22	MEG-guided analysis of 7T-MRI in patients with epilepsy. Seizure: the Journal of the British Epilepsy Association, 2018, 60, 29-38.	0.9	23
23	Focus on SQUIDs in Biomagnetism. Superconductor Science and Technology, 2018, 31, 080201.	1.8	20
24	Magnetic Source Imaging Using a Pulsed Optically Pumped Magnetometer Array. IEEE Transactions on Instrumentation and Measurement, 2019, 68, 493-501.	2.4	27
25	Brain-Machine Interfaces: Powerful Tools for Clinical Treatment and Neuroscientific Investigations. Neuroscientist, 2019, 25, 139-154.	2.6	51
26	Wearable neuroimaging: Combining and contrasting magnetoencephalography and electroencephalography. NeuroImage, 2019, 201, 116099.	2.1	82
27	Developing Next-Generation Brain Sensing Technologies—A Review. IEEE Sensors Journal, 2019, 19, 10163-10175.	2.4	26
28	Detection of body noise with an ultra-sensitive SQUID system. Measurement Science and Technology, 2019, 30, 125103.	1.4	9
29	Measurement of Triaxial Magnetocardiography Using High Sensitivity Tunnel Magnetoresistance Sensor. IEEE Sensors Journal, 2019, 19, 9610-9615.	2.4	30
30	Changing concepts in presurgical assessment for epilepsy surgery. Nature Reviews Neurology, 2019, 15, 594-606.	4.9	125
31	Tackling Epilepsy With High-definition Precision Medicine. JAMA Neurology, 2019, 76, 1109.	4.5	53
32	Study of Shielding Ratio of Cylindrical Ferrite Enclosure With Gaps and Holes. IEEE Sensors Journal, 2019, 19, 6085-6092.	2.4	19
33	Protecting Privacy of Users in Brain-Computer Interface Applications. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019, 27, 1546-1555.	2.7	31
34	Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer. Applied Physics Letters, 2019, 114, .	1.5	73
35	Dataâ€driven model optimization for optically pumped magnetometer sensor arrays. Human Brain Mapping, 2019, 40, 4357-4369.	1.9	16
36	Faraday-Rotation Atomic Magnetometer Using Triple-Chromatic Laser Beam. Physical Review Applied, 2019, 12, .	1.5	8
37	Magnetic Source Imaging and Infant MEG: Current Trends and Technical Advances. Brain Sciences, 2019, 9, 181.	1.1	8

#	Article	IF	Citations
38	Using optically pumped magnetometers to measure magnetoencephalographic signals in the human cerebellum. Journal of Physiology, 2019, 597, 4309-4324.	1.3	31
39	Increased segregation of functional networks in developing brains. Neurolmage, 2019, 200, 607-620.	2.1	19
40	Magnetoencephalography for localizing and characterizing the epileptic focus. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2019, 160, 203-214.	1.0	11
41	Zero-field nuclear magnetic resonance of chemically exchanging systems. Nature Communications, 2019, 10, 3002.	5.8	36
42	Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific Reports, 2019, 9, 14196.	1.6	72
43	Walking enhances peripheral visual processing in humans. PLoS Biology, 2019, 17, e3000511.	2.6	63
44	A Novel Asymmetrical Heating Method for Improving the Temperature Spatial Homogeneity of Vapor Cell in Atomic Magnetometer. IEEE Access, 2019, 7, 71245-71251.	2.6	4
45	Understanding sustainability of soil and water resources in a critical zone perspective. Science China Earth Sciences, 2019, 62, 1716-1718.	2.3	21
46	A tool for functional brain imaging with lifespan compliance. Nature Communications, 2019, 10, 4785.	5.8	96
47	3D-Printed Sensor for Unshielded Scalar Magnetometry Based on Nonlinear Magneto-Optical Rotation with Amplitude Modulated Light. , 2019, , .		2
48	The Effect of the Polarization Characteristics of Probe Light on the Signal of Optically Detected Magnetic Resonance in Magnetometric and Gyroscopic Quantum Sensors. Technical Physics Letters, 2019, 45, 1012-1015.	0.2	0
49	The Design of the Biomagnetic Field Sensor without Magnetic Shielding. International Journal of Humanoid Robotics, 2019, 16, 1950019.	0.6	2
50	A Grapheneâ€Based Coaxial Fibrous Photofuel Cell Powered by Mine Gas. Advanced Functional Materials, 2019, 29, 1906813.	7.8	18
51	Magnetoencephalography in Cognitive Neuroscience: A Primer. Neuron, 2019, 104, 189-204.	3.8	81
52	Dry Phantoms With Deep Signal Sources for Magnetoencephalography. IEEE Magnetics Letters, 2019, 10, 1-5.	0.6	0
53	Reducing crosstalk in optically-pumped magnetometer arrays. Physics in Medicine and Biology, 2019, 64, 21NTO3.	1.6	38
54	Static weak magnetic field measurements based on low-field nuclear magnetic resonance. Journal of Magnetic Resonance, 2019, 307, 106580.	1.2	5
55	Separating neuroethics from neurohype. Nature Biotechnology, 2019, 37, 988-990.	9.4	22

#	Article	IF	CITATIONS
56	Magnetometric Sensitivity and Spin Relaxation of Buffered Gas Cell for Cardiomagnetometer., 2019,,.		0
57	Reply to "Separating neuroethics from neurohype― Nature Biotechnology, 2019, 37, 991-992.	9.4	1
58	Research on Photovoltaic Power Generation and Diode Clamped Three-Phase Three-Level Inverter. IOP Conference Series: Earth and Environmental Science, 2019, 252, 032040.	0.2	0
59	Automatic Speech Activity Recognition from MEG Signals Using Seq2Seq Learning., 2019,,.		8
60	Voigt-effect-based three-dimensional vector magnetometer. Physical Review A, 2019, 100, .	1.0	15
61	Anterior Cruciate Ligament Research Retreat VIII Summary Statement: An Update on Injury Risk Identification and Prevention Across the Anterior Cruciate Ligament Injury Continuum, March 14–16, 2019, Greensboro, NC. Journal of Athletic Training, 2019, 54, 970-984.	0.9	28
62	Micro-Fabricated SERF Atomic Magnetometer for Weak Gradient Magnetic Field Detection., 2019,,.		1
63	Imaging the human hippocampus with optically-pumped magnetoencephalography. NeuroImage, 2019, 203, 116192.	2.1	52
64	Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions. Journal of Neuroscience Methods, 2019, 326, 108378.	1.3	42
65	Brain Functional Connectivity Through Phase Coupling of Neuronal Oscillations: A Perspective From Magnetoencephalography. Frontiers in Neuroscience, 2019, 13, 964.	1.4	55
66	Magnetoencephalography and the infant brain. NeuroImage, 2019, 189, 445-458.	2.1	34
67	In Situ Calibration of Magnetic Coil System Using Ellipticity-Induced Bell-Bloom Magnetometer. IEEE Photonics Journal, 2019, 11, 1-9.	1.0	5
68	Imaging Cerebral Activity in Amyotrophic Lateral Sclerosis. Frontiers in Neurology, 2018, 9, 1148.	1.1	55
69	Single-Fiber Sagnac-Like Interferometer for Optical Rotation Measurement in Atomic Spin Precession Detection. Journal of Lightwave Technology, 2019, 37, 1317-1324.	2.7	8
70	Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. Neurolmage, 2019, 199, 598-608.	2.1	186
71	Direct-writing Structure Color Patterns on the Electrospun Colloidal Fibers toward Wearable Materials. Chinese Journal of Polymer Science (English Edition), 2019, 37, 729-736.	2.0	10
72	Optical Rotation Detection for Atomic Spin Precession Using a Superluminescent Diode. Photonic Sensors, 2019, 9, 135-141.	2.5	1
73	A high-performance compact magnetic shield for optically pumped magnetometer-based magnetoencephalography. Review of Scientific Instruments, 2019, 90, 064102.	0.6	35

#	Article	IF	CITATIONS
74	EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit., 2019, , 1-37.		1
75	Enhancement of the Signal-to-Noise Ratio of an Atomic Magnetometer by 10 dB. Physical Review Applied, 2019, 11, .	1.5	5
76	Towards OPM-MEG in a virtual reality environment. NeuroImage, 2019, 199, 408-417.	2.1	87
77	Updating Dynamic Noise Models With Moving Magnetoencephalographic (MEG) Systems. IEEE Access, 2019, 7, 10093-10102.	2.6	5
78	Shared neural mechanisms between imagined and perceived egocentric motion – A combined GVS and fMRI study. Cortex, 2019, 119, 20-32.	1.1	10
79	Interactions between nonresonant rf fields and atoms with strong spin-exchange collisions. Physical Review A, 2019, 99, .	1.0	10
81	Observing the steady-state visual evoked potentials with a compact quad-channel spin exchange relaxation-free magnetometer. Chinese Physics B, 2019, 28, 040702.	0.7	7
82	Miniature quad-channel spin-exchange relaxation-free magnetometer for magnetoencephalography. Chinese Physics B, 2019, 28, 040703.	0.7	16
83	Wearables and the Brain. IEEE Pervasive Computing, 2019, 18, 94-100.	1.1	9
84	The Impact of Transient Ischemic Attack (TIA) on Brain and Behavior. Frontiers in Behavioral Neuroscience, 2019, 13, 44.	1.0	5
85	The physics of brain network structure, function and control. Nature Reviews Physics, 2019, 1, 318-332.	11.9	233
86	On-scalp MEG system utilizing an actively shielded array of optically-pumped magnetometers. Neurolmage, 2019, 194, 244-258.	2.1	162
87	Ultrastable Optical Magnetometry. Physical Review Applied, 2019, 11, .	1.5	17
88	Encoding of 3D head direction information in the human brain. Hippocampus, 2019, 29, 619-629.	0.9	29
89	Imaging human cortical responses to intraneural microstimulation using magnetoencephalography. Neurolmage, 2019, 189, 329-340.	2.1	5
90	Materials and Designs for Wearable Photodetectors. Advanced Materials, 2019, 31, e1808138.	11.1	279
91	Quantum sensors probe uncharted territories, from Earth's crust to the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16663-16665.	3.3	4
92	Perennial, Permuted, and Pervasive Search in Ambient Intelligence. , 2019, , .		0

#	Article	IF	CITATIONS
93	Decoding Speech from Single Trial MEG Signals Using Convolutional Neural Networks and Transfer Learning., 2019, 2019, 5531-5535.		12
94	Analytical Solutions for the Shielding Factor of Spherical Magnetic Shields Measured With External Excitation Coils. IEEE Magnetics Letters, 2019, 10, 1-4.	0.6	2
95	All-Optical Quantum Sensor of the Magnetic Field Deflection. Optics and Spectroscopy (English) Tj ETQq0 0 0 rg	BT/Qverlo	ck ₁ 10 Tf 50 6
96	A Non-Modulated Triaxial Magnetic Field Compensation Method for Spin-Exchange Relaxation-Free Magnetometer Based on Zero-Field Resonance. IEEE Access, 2019, 7, 167557-167565.	2.6	11
97	Comparing the potential of MEG and EEG to uncover brain tracking of speech temporal envelope. NeuroImage, 2019, 184, 201-213.	2.1	46
98	Neuropsychological tests of the future: How do we get there from here?. Clinical Neuropsychologist, 2019, 33, 220-245.	1.5	71
99	Tactile sensor from self-chargeable piezoelectric supercapacitor. Nano Energy, 2019, 56, 868-874.	8.2	70
100	Spatial and spectral trajectories in typical neurodevelopment from childhood to middle age. Network Neuroscience, 2019, 3, 497-520.	1.4	27
101	Sources of heading errors in optically pumped magnetometers operated in the Earth's magnetic field. Physical Review A, 2019, 99, .	1.0	24
102	Suppression of Light Shift for High-Density Alkali-Metal Atomic Magnetometer. IEEE Sensors Journal, 2019, 19, 492-496.	2.4	27
103	Characterizing hippocampal dynamics with MEG: A systematic review and evidenceâ€based guidelines. Human Brain Mapping, 2019, 40, 1353-1375.	1.9	45
104	Magnetic and Radar Sensing for Multimodal Remote Health Monitoring. IEEE Sensors Journal, 2019, 19, 8979-8989.	2.4	32
105	Determination of Spin Polarization in Spin-Exchange Relaxation-Free Atomic Magnetometer Using Transient Response. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 845-852.	2.4	41
106	Studying the impact of built environments on human mental health in everyday life: methodological developments, state-of-the-art and technological frontiers. Current Opinion in Psychology, 2020, 32, 158-164.	2.5	32
107	Incorporating methods and findings from neuroscience to better understand placebo and nocebo effects in sport. European Journal of Sport Science, 2020, 20, 313-325.	1.4	14
108	Under the Mind's Hood: What We Have Learned by Watching the Brain at Work. Journal of Neuroscience, 2020, 40, 89-100.	1.7	10
109	Seizure initiation in infantile spasms vs. focal seizures: proposed common cellular mechanisms. Reviews in the Neurosciences, 2020, 31, 181-200.	1.4	9
110	Imaging Magnetic Nanoparticle Distributions by Atomic Magnetometry-Based Susceptometry. IEEE Transactions on Medical Imaging, 2020, 39, 922-933.	5.4	13

#	Article	IF	CITATIONS
111	Potential of onâ€scalp MEG: Robust detection of human visual gammaâ€band responses. Human Brain Mapping, 2020, 41, 150-161.	1.9	64
112	The "eyes have it,―but when in development?: The importance of a developmental perspective in our understanding of behavioral memory formation and the hippocampus. Hippocampus, 2020, 30, 815-828.	0.9	1
113	14 challenges and their solutions for conducting social neuroscience and longitudinal EEG research with infants. , 2020, 58, 101393.		45
114	Deforming the metric of cognitive maps distorts memory. Nature Human Behaviour, 2020, 4, 177-188.	6.2	45
115	A 7-Channel High- ${T}_{ext}c$ SQUID-Based On-Scalp MEG System. IEEE Transactions on Biomedical Engineering, 2020, 67, 1483-1489.	2.5	24
116	Mobile steady-state evoked potential recording: Dissociable neural effects of real-world navigation and visual stimulation. Journal of Neuroscience Methods, 2020, 332, 108540.	1.3	5
117	Detection and analysis of MEG signals in occipital region with double-channel OPM sensors. Journal of Neuroscience Methods, 2020, 346, 108948.	1.3	15
118	Advances in Multimodal Emotion Recognition Based on Brain–Computer Interfaces. Brain Sciences, 2020, 10, 687.	1.1	59
119	Interference in Atomic Magnetometry. Advanced Quantum Technologies, 2020, 3, 2000078.	1.8	14
120	Parameters optimization of optical pumped Mz/Mx magnetometer based on rf-discharge lamp. Optik, 2020, 223, 165510.	1.4	4
121	Inter-Subject Variability of Skull Conductivity and Thickness in Calibrated Realistic Head Models. NeuroImage, 2020, 223, 117353.	2.1	53
122	Portable Magnetometry for Detection of Biomagnetism in Ambient Environments. Physical Review Applied, 2020, 14, .	1.5	107
123	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	2.4	53
124	Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. Frontiers in Neuroergonomics, 2020, 1 , .	0.6	42
125	Compensation System for Biomagnetic Measurements with Optically Pumped Magnetometers inside a Magnetically Shielded Room. Sensors, 2020, 20, 4563.	2.1	29
126	Optimal Inverse Design of Magnetic Field Profiles in a Magnetically Shielded Cylinder. Physical Review Applied, 2020, 14, .	1.5	24
127	Optimization of a Diamond Nitrogen Vacancy Centre Magnetometer for Sensing of Biological Signals. Frontiers in Physics, 2020, 8, .	1.0	22
129	Decoding Speech Evoked Jaw Motion from Non-invasive Neuromagnetic Oscillations. , 2020, , .		7

#	Article	IF	Citations
130	MEG Sensor Selection for Neural Speech Decoding. IEEE Access, 2020, 8, 182320-182337.	2.6	14
131	Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature Neuroscience, 2020, 23, 1473-1483.	7.1	113
132	Keep it real: rethinking the primacy of experimental control in cognitive neuroscience. NeuroImage, 2020, 222, 117254.	2.1	155
133	A conformal array of microfabricated optically-pumped first-order gradiometers for magnetoencephalography. EPJ Quantum Technology, 2020, 7, .	2.9	53
134	Active Magnetic-Field Stabilization with Atomic Magnetometer. Sensors, 2020, 20, 4241.	2.1	18
135	Alterations in resting-state network dynamics along the Alzheimer's disease continuum. Scientific Reports, 2020, 10, 21990.	1.6	29
136	Pragmatic spatial sampling for wearable MEG arrays. Scientific Reports, 2020, 10, 21609.	1.6	23
137	Sensitive magnetometry in challenging environments. AVS Quantum Science, 2020, 2, .	1.8	56
138	New perspectives on the neurobiology of PTSD: High-resolution imaging of neural circuit (dys)function with magnetoencephalography. Journal of Military, Veteran and Family Health, 2020, 6, 16-25.	0.3	7
139	Estimation of brain response to multimodal stimuli by index of spatiotemporal locality by magnetoencephalography. Electronics and Communications in Japan, 2020, 103, 63-70.	0.3	0
140	Frequency tunable resonant magnetoelectric sensors for the detection of weak magnetic field. Journal of Micromechanics and Microengineering, 2020, 30, 075009.	1.5	14
141	Miniaturized Magnetic Sensors for Implantable Magnetomyography. Advanced Materials Technologies, 2020, 5, 2000185.	3.0	53
142	Representation of probabilistic outcomes during risky decision-making. Nature Communications, 2020, 11, 2419.	5.8	12
143	Detection of interictal epileptiform discharges: A comparison of on-scalp MEG and conventional MEG measurements. Clinical Neurophysiology, 2020, 131, 1711-1720.	0.7	11
144	MEG for Greater Sensitivity and More Precise Localization in Epilepsy. Neuroimaging Clinics of North America, 2020, 30, 145-158.	0.5	12
145	Combined effect of pump-light intensity and modulation field on the performance of optically pumped magnetometers under zero-field parametric modulation. Physical Review A, 2020, 101, .	1.0	32
146	Herriott-cavity-assisted all-optical atomic vector magnetometer. Physical Review A, 2020, 101, .	1.0	11
147	MNSSp3: Medical big data privacy protection platform based on Internet of things. Neural Computing and Applications, 2022, 34, 11491-11505.	3.2	16

#	Article	IF	CITATIONS
148	Recording brain activities in unshielded Earth's field with optically pumped atomic magnetometers. Science Advances, 2020, 6, eaba8792.	4.7	93
149	The maturation of the P1m component in response to voice from infancy to 3 years of age: A longitudinal study in young children. Brain and Behavior, 2020, 10, e01706.	1.0	3
150	Magneto-optical spectroscopy with arbitrarily polarized intensity-modulated light in He4 atoms. Physical Review A, 2020, 101, .	1.0	5
151	Multi-channel whole-head OPM-MEG: Helmet design and a comparison with a conventional system. Neurolmage, 2020, 219, 116995.	2.1	164
152	Functional ultrasound imaging of deep visual cortex in awake nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14453-14463.	3.3	44
153	Flexible MXene-Decorated Fabric with Interwoven Conductive Networks for Integrated Joule Heating, Electromagnetic Interference Shielding, and Strain Sensing Performances. ACS Applied Materials & Lamp; Interfaces, 2020, 12, 14459-14467.	4.0	228
154	Hyperscanning: A Valid Method to Study Neural Inter-brain Underpinnings of Social Interaction. Frontiers in Human Neuroscience, 2020, 14, 39.	1.0	233
155	Scalar Magnetometry Below 100 fT/Hz ^{1/2} in a Microfabricated Cell. IEEE Sensors Journal, 2020, 20, 12684-12690.	2.4	24
156	Manipulating Relative Permittivity for High-Performance Wearable Triboelectric Nanogenerators. Nano Letters, 2020, 20, 6404-6411.	4.5	231
157	Studying parent-child interaction with hyperscanning. Progress in Brain Research, 2020, 254, 1-24.	0.9	31
158	How do we know how the brain works?—Analyzing whole brain activities with classic mathematical and machine learning methods. Japanese Journal of Applied Physics, 2020, 59, 030501.	0.8	1
159	A synthetic optically pumped gradiometer for magnetocardiography measurements*. Chinese Physics B, 2020, 29, 040702.	0.7	8
160	The role of the ventral intraparietal area (VIP/pVIP) in the perception of object-motion and self-motion. NeuroImage, 2020, 213, 116679.	2.1	14
161	On-scalp MEG sensor localization using magnetic dipole-like coils: A method for highly accurate co-registration. Neurolmage, 2020, 212, 116686.	2.1	12
162	Single-Beam Atomic Magnetometer Based on the Transverse Magnetic-Modulation or DC-Offset. IEEE Sensors Journal, 2020, 20, 5827-5833.	2.4	35
163	Postoperative oscillatory brain activity as an add-on prognostic marker in diffuse glioma. Journal of Neuro-Oncology, 2020, 147, 49-58.	1.4	19
164	Comparing MEG and high-density EEG for intrinsic functional connectivity mapping. NeuroImage, 2020, 210, 116556.	2.1	61
165	Stereotaxic endoscopy for the ocular imaging of awake, freely moving animal models. Journal of Biophotonics, 2020, 13, e201960188.	1.1	2

#	ARTICLE	IF	CITATIONS
166	New Cognitive Neurotechnology Facilitates Studies of Cortical–Subcortical Interactions. Trends in Biotechnology, 2020, 38, 952-962.	4.9	15
167	Sub-Sm–1 electromagnetic induction imaging with an unshielded atomic magnetometer. Applied Physics Letters, 2020, 116, .	1.5	21
168	NeuroVAD: Real-Time Voice Activity Detection from Non-Invasive Neuromagnetic Signals. Sensors, 2020, 20, 2248.	2.1	17
169	Selfâ€Powered Flexible TiO ₂ Fibrous Photodetectors: Heterojunction with P3HT and Boosted Responsivity and Selectivity by Au Nanoparticles. Advanced Functional Materials, 2020, 30, 2001604.	7.8	81
170	Estimates of cortical column orientation improve MEG source inversion. NeuroImage, 2020, 216, 116862.	2.1	11
171	In-Situ Measurement of Electrical-Heating-Induced Magnetic Field for an Atomic Magnetometer. Sensors, 2020, 20, 1826.	2.1	20
172	Assessing current mechanisms for the regulation of direct-to-consumer neurotechnology. Developments in Neuroethics and Bioethics, 2020, 3, 233-265.	0.6	3
173	Decoding Imagined and Spoken Phrases From Non-invasive Neural (MEG) Signals. Frontiers in Neuroscience, 2020, 14, 290.	1.4	66
174	Zero- to ultralow-field nuclear magnetic resonance J-spectroscopy with commercial atomic magnetometers. Journal of Magnetic Resonance, 2020, 314, 106723.	1.2	36
175	Digital manufacturing of functional materials for wearable electronics. Journal of Materials Chemistry C, 2020, 8, 10587-10603.	2.7	41
176	The integration of social and neural synchrony: a case for ecologically valid research using MEG neuroimaging. Social Cognitive and Affective Neuroscience, 2021, 16, 143-152.	1.5	26
177	A hybrid magnetometer towards femtotesla sensitivity under ambient conditions. Science Bulletin, 2021, 66, 127-132.	4.3	41
178	An Important Step toward Understanding the Role of Body-based Cues on Human Spatial Memory for Large-Scale Environments. Journal of Cognitive Neuroscience, 2021, 33, 167-179.	1.1	13
179	Mouth magnetoencephalography: A unique perspective on the human hippocampus. Neurolmage, 2021, 225, 117443.	2.1	56
180	Detection of human auditory evoked brain signals with a resilient nonlinear optically pumped magnetometer. Neurolmage, 2021, 226, 117497.	2.1	18
181	EEG and MEG primers for tracking DBS network effects. Neurolmage, 2021, 224, 117447.	2.1	26
182	Design of Self-Shielded Uniform Magnetic Field Coil via Modified Pigeon-Inspired Optimization in Miniature Atomic Sensors. IEEE Sensors Journal, 2021, 21, 315-324.	2.4	20
183	Restoring Activities of Daily Living Using an EEG/EOG-Controlled Semiautonomous and Mobile Whole-Arm Exoskeleton in Chronic Stroke. IEEE Systems Journal, 2021, 15, 2314-2321.	2.9	28

#	Article	IF	CITATIONS
184	Single-Beam Miniaturized Atomic Magnetometer With Square-Wave Modulation for Magnetoencephalography. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-6.	2.4	9
185	Improving sensitivity of an optically pumped rubidium atomic magnetometer with a repumping laser. Wuli Xuebao/Acta Physica Sinica, 2021 , .	0.2	2
187	Brain Imaging and the Mechanisms of Antidepressant Action. , 2021, , 248-260.		0
188	Brain Imaging of Reward Dysfunction in Unipolar and Bipolar Disorders. , 2021, , 39-48.		O
189	Molecular Imaging of Dopamine and Antipsychotics in Bipolar Disorder., 2021,, 236-247.		0
190	Superconducting quantum interference devices. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 018502.	0.2	5
191	Femtotesla Direct Magnetic Gradiometer Using a Single Multipass Cell. Physical Review Applied, 2021, 15, .	1.5	30
192	Magnetoencephalography Studies in Mood Disorders. , 2021, , 192-205.		0
194	Functional Near-Infrared Spectroscopy Studies in Mood Disorders., 2021,, 166-174.		0
196	Neuroimaging Studies of Effects of Psychotherapy in Depression. , 2021, , 261-272.		O
197	Miniature Wide-Range Three-Axis Vector Atomic Magnetometer. IEEE Sensors Journal, 2021, 21, 23943-23948.	2.4	8
198	Neuroimaging Brain Inflammation in Mood Disorders. , 2021, , 121-134.		O
199	An Overview of Machine Learning Applications in Mood Disorders. , 2021, , 206-218.		0
200	Examination of Spin-Exchange Relaxation in the Alkali Metal-Noble Gas Comagnetometer With a Large Electron Magnetic Field. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	6
201	Whole-Head Magnetoencephalogram and Its Application in Developmental Communication Disorders Research: A Review. IEEE Access, 2021, 9, 42515-42532.	2.6	7
202	Detection of biological signals from a live mammalian muscle using an early stage diamond quantum sensor. Scientific Reports, 2021, 11, 2412.	1.6	39
203	Electrophysiological Biomarkers for Mood Disorders. , 2021, , 175-191.		1
204	Investigating real-life emotions in romantic couples: a mobile EEG study. Scientific Reports, 2021, 11, 1142.	1.6	23

#	Article	IF	CITATIONS
205	A High Sensitivity Closed-Loop Spin-Exchange Relaxation-Free Atomic Magnetometer With Broad Bandwidth. IEEE Sensors Journal, 2021, 21, 21425-21431.	2.4	12
206	Time-delay structure predicts clinical scores for patients with disorders of consciousness using resting-state fMRI. Neurolmage: Clinical, 2021, 32, 102797.	1.4	5
207	Magnetoencephalography abnormalities in adult mild traumatic brain injury: A systematic review. Neurolmage: Clinical, 2021, 31, 102697.	1.4	15
208	Magnetic field sensing performance of centimeter-scale resonator with optimized structure. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 160701.	0.2	1
209	Neuroanatomical Findings in Bipolar Disorder. , 2021, , 16-27.		0
210	Imaging Glutamatergic and GABAergic Abnormalities in Mood Disorders. , 2021, , 105-120.		0
211	Magnetic Resonance Spectroscopy Investigations of Bioenergy and Mitochondrial Function in Mood Disorders., 2021,, 83-104.		0
212	Brain Imaging Methods in Mood Disorders. , 2021, , 1-6.		0
213	Effects of Lithium on Brain Structure in Bipolar Disorder. , 2021, , 219-235.		1
214	A New Recognition Method for the Auditory Evoked Magnetic Fields. Computational Intelligence and Neuroscience, 2021, 2021, 1-11.	1.1	1
216	Gradiometer Using Separated Diamond Quantum Magnetometers. Sensors, 2021, 21, 977.	2.1	8
217	Chip-Scale Ultra-Low Field Atomic Magnetometer Based on Coherent Population Trapping. Sensors, 2021, 21, 1517.	2.1	6
218	Probe noise characteristics of the spin-exchange relaxation-free (SERF) magnetometer. Optics Express, 2021, 29, 5055.	1.7	11
219	MEG-Based Detection of Voluntary Eye Fixations Used to Control a Computer. Frontiers in Neuroscience, 2021, 15, 619591.	1.4	5
220	Dual-Mode Dead-Zone-Free Double-Resonance Alignment-Based Magnetometer. Physical Review Applied, 2021, 15, .	1.5	7
221	From Gaze Perception to Social Cognition: The Shared-Attention System. Perspectives on Psychological Science, 2021, 16, 553-576.	5.2	52
222	The Cognitive-Emotional Design and Study of Architectural Space: A Scoping Review of Neuroarchitecture and Its Precursor Approaches. Sensors, 2021, 21, 2193.	2.1	46
223	Accurate Polarimetry of Hybrid K-Rb and ²¹ Ne Atoms Based on Spin-Exchange Interactions. IEEE Sensors Journal, 2021, 21, 5879-5885.	2.4	17

#	Article	IF	CITATIONS
225	Magnetoencephalography: physics, techniques, and applications in the basic and clinical neurosciences. Journal of Neurophysiology, 2021, 125, 938-956.	0.9	6
226	Functional Use of Eye Movements for an Acting System. Trends in Cognitive Sciences, 2021, 25, 252-263.	4.0	36
227	Comprehensive influence of modulated and bias magnetic fields on an atomic magnetometer. Measurement Science and Technology, 2021, 32, 055004.	1.4	4
228	Detection of low-magnetic fields by rubidium (⁸⁷ Rb) vapor cell. Journal of Physics: Conference Series, 2021, 1837, 012002.	0.3	0
229	EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain and Cognition, 2021, 148, 105677.	0.8	14
230	Floquet description of optically pumped magnetometers. Physical Review A, 2021, 103, .	1.0	1
231	Transient dynamics of atomic spin in the spin-exchange-relaxation-free regime. Optics Express, 2021, 29, 8333.	1.7	15
232	An Automatic Identification Method for the Blink Artifacts in the Magnetoencephalography with Machine Learning. Applied Sciences (Switzerland), 2021, 11, 2415.	1.3	3
233	Defining Surgical Terminology and Risk for Brain Computer Interface Technologies. Frontiers in Neuroscience, 2021, 15, 599549.	1.4	19
234	Cavity-enhanced microwave readout of a solid-state spin sensor. Nature Communications, 2021, 12, 1357.	5.8	32
235	Investigation of Magnetoelectric Sensor Requirements for Deep Brain Stimulation Electrode Localization and Rotational Orientation Detection. Sensors, 2021, 21, 2527.	2.1	5
236	Analysis of coil constant of triaxial uniform coils in Mn–Zn ferrite magnetic shields. Journal Physics D: Applied Physics, 2021, 54, 275001.	1.3	21
237	Wearable Triboelectric Nanogenerators for Therapeutics. Trends in Chemistry, 2021, 3, 279-290.	4.4	100
238	Effect of gaps on magnetic noise of cylindrical ferrite shield. Journal Physics D: Applied Physics, 2021, 54, 255002.	1.3	10
239	Helium-4 magnetometers for room-temperature biomedical imaging: toward collective operation and photon-noise limited sensitivity. Optics Express, 2021, 29, 14467.	1.7	36
241	Measuring functional connectivity with wearable MEG. Neurolmage, 2021, 230, 117815.	2.1	72
242	Affective Neurofeedback Under Naturalistic Conditions: A Mini-Review of Current Achievements and Open Challenges. Frontiers in Neuroergonomics, 2021, 2, .	0.6	5
243	Visual Decoding of Phrases from Occipital Neuromagnetic Signals. , 2021, , .		0

#	Article	IF	CITATIONS
244	Design and realization of a weak magnetic fast electric heating chip. Japanese Journal of Applied Physics, 2021, 60, 066502.	0.8	6
245	High-sensitivity operation of a single-beam atomic magnetometer for three-axis magnetic field measurement. Optics Express, 2021, 29, 15641.	1.7	63
247	Single-beam three-axis optically pumped magnetometers with sub-100 femtotesla sensitivity. Applied Physics Express, 2021, 14, 066002.	1.1	19
248	Applications of brain imaging methods in driving behaviour research. Accident Analysis and Prevention, 2021, 154, 106093.	3.0	15
249	Noninvasive visualization of electrical conductivity in tissues at the micrometer scale. Science Advances, 2021, 7, .	4.7	8
252	Deep-MEG: spatiotemporal CNN features and multiband ensemble classification for predicting the early signs of Alzheimer's disease with magnetoencephalography. Neural Computing and Applications, 2021, 33, 14651-14667.	3.2	10
253	Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Physics Reports, 2021, 918, 1-133.	10.3	88
254	Planar Coil Optimization in a Magnetically Shielded Cylinder. Physical Review Applied, 2021, 15, .	1.5	13
255	Measuring the cortical tracking of speech with optically-pumped magnetometers. NeuroImage, 2021, 233, 117969.	2.1	22
256	Promises and challenges of human computational ethology. Neuron, 2021, 109, 2224-2238.	3.8	37
257	Detection and localization of deep sources in magnetoencephalography: A review. Current Opinion in Biomedical Engineering, 2021, 18, 100285.	1.8	13
258	Sweet anticipation and positive emotions in music, groove, and dance. Current Opinion in Behavioral Sciences, 2021, 39, 79-84.	2.0	23
259	Limits of Low Magnetic Field Environments in Magnetic Shields. IEEE Transactions on Industrial Electronics, 2021, 68, 5385-5395.	5.2	29
260	The Treachery of Images: How Realism Influences Brain and Behavior. Trends in Cognitive Sciences, 2021, 25, 506-519.	4.0	49
261	Diamond Magnetometry and Gradiometry Towards Subpicotesla dc Field Measurement. Physical Review Applied, 2021, 15, .	1.5	49
262	Design of Highly Linear Gradient Field Coils Based on an Improved Target-Field Method. IEEE Sensors Journal, 2021, 21, 16256-16263.	2.4	6
263	Whole-head OPM-MEG enables noninvasive assessment of functional connectivity. Trends in Neurosciences, 2021, 44, 510-512.	4.2	11
264	Automatic coregistration of MRI and on-scalp MEG. Journal of Neuroscience Methods, 2021, 358, 109181.	1.3	13

#	Article	IF	CITATIONS
265	Optimal design of onâ€scalp electromagnetic sensor arrays for brain source localisation. Human Brain Mapping, 2021, 42, 4869-4879.	1.9	24
266	Evolution of <scp>MEG</scp> : A first <scp>MEG</scp> â€feasible fluxgate magnetometer. Human Brain Mapping, 2021, 42, 4844-4856.	1.9	17
268	Towards real-world generalizability of a circuit for action-stopping. Nature Reviews Neuroscience, 2021, 22, 538-552.	4.9	62
269	Improvement in the signal amplitude and bandwidth of an optical atomic magnetometer via alignment-to-orientation conversion. Optics Express, 2021, 29, 28680.	1.7	2
270	Dichroism and birefringence optical atomic magnetometer with or without self-generated light squeezing. Applied Physics Letters, 2021, 119, 054001.	1.5	2
271	Cavity optomechanical sensing. Nanophotonics, 2021, 10, 2799-2832.	2.9	78
272	Indium Tin Oxide Non-Magnetic Heating Film for Miniaturized SERF Gradient Magnetometer. IEEE Sensors Journal, 2021, 21, 16554-16559.	2.4	11
273	Co-registration Comparison of On-Scalp Magnetoencephalography and Magnetic Resonance Imaging. Frontiers in Neuroscience, 2021, 15, 706785.	1.4	21
274	Theoretical advantages of a triaxial optically pumped magnetometer magnetoencephalography system. Neurolmage, 2021, 236, 118025.	2.1	73
275	Practical real-time MEG-based neural interfacing with optically pumped magnetometers. BMC Biology, 2021, 19, 158.	1.7	14
276	MEG current source reconstruction using a meta-analysis fMRI prior. NeuroImage, 2021, 236, 118034.	2.1	6
277	Noninvasive vagus nerve stimulation in Parkinson's disease: current status and future prospects. Expert Review of Medical Devices, 2021, 18, 971-984.	1.4	15
278	The influence of temperature and modulated magnetic field on the transmission intensity of atomic magnetometer. Journal Physics D: Applied Physics, 2021, 54, 485001.	1.3	8
279	Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings. NeuroImage, 2021, 238, 118210.	2.1	28
281	A study of scalar optically-pumped magnetometers for use in magnetoencephalography without shielding. Physics in Medicine and Biology, 2021, 66, 175030.	1.6	16
284	Testing covariance models for MEG source reconstruction of hippocampal activity. Scientific Reports, 2021, 11, 17615.	1.6	8
285	The road towards understanding embodied decisions. Neuroscience and Biobehavioral Reviews, 2021, 131, 722-736.	2.9	27
286	An extended application †Brain Q†processing EEG and MEG data of finger stimulation extended from †Zeffiro†based on machine learning and signal processing. Cognitive Systems Research, 2021, 69, 50-66.	1.9	2

#	Article	IF	CITATIONS
287	Resting-state functional brain connectivity is related to subsequent procedural learning skills in school-aged children. NeuroImage, 2021, 240, 118368.	2.1	10
288	Biomagnetometry is warming up from liquid helium to room temperature. Clinical Neurophysiology, 2021, 132, 2666-2667.	0.7	1
289	Determining the rotational orientation of directional deep brain stimulation electrodes using magnetoencephalography. Journal of Neural Engineering, 2021, 18, .	1.8	1
290	Laminar dynamics of high amplitude beta bursts in human motor cortex. Neurolmage, 2021, 242, 118479.	2.1	45
291	Hybrid Optimal Design of Biplanar Coils With Uniform Magnetic Field or Field Gradient. IEEE Transactions on Industrial Electronics, 2021, 68, 11544-11553.	5.2	23
292	Precision magnetic field modelling and control for wearable magnetoencephalography. NeuroImage, 2021, 241, 118401.	2.1	54
293	Contactless measurements of retinal activity using optically pumped magnetometers. NeuroImage, 2021, 243, 118528.	2.1	8
294	Ambulatory assessment for precision psychiatry: Foundations, current developments and future avenues. Experimental Neurology, 2021, 345, 113807.	2.0	16
295	Using OPMs to measure neural activity in standing, mobile participants. NeuroImage, 2021, 244, 118604.	2.1	48
296	Modelling optically pumped magnetometer interference in MEG as a spatially homogeneous magnetic field. NeuroImage, 2021, 244, 118484.	2.1	36
297	Neuroimaging Biomarkers in Pediatric Mood Disorders. , 2021, , 28-38.		0
298	Neuroanatomical Findings in Unipolar Depression and the Role of the Hippocampus., 2021,, 7-15.		0
299	Design of Gradient Magnetic Field Coil Based on an Improved Particle Swarm Optimization Algorithm for Magnetocardiography Systems. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.	2.4	19
300	Parameter Modeling Analysis of a Cylindrical Ferrite Magnetic Shield to Reduce Magnetic Noise. IEEE Transactions on Industrial Electronics, 2022, 69, 991-998.	5.2	36
301	Dual-Axis Closed Loop of a Single-Beam Atomic Magnetometer: Toward High Bandwidth and High Sensitivity. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-8.	2.4	18
302	Direct-Sense Brain–Computer Interfaces and Wearable Computers. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 298-312.	5 . 9	22
303	Functional Connectome in Bipolar Disorder. , 2021, , 59-82.		0
304	Resting-State Functional Connectivity in Unipolar Depression. , 2021, , 49-58.		O

#	Article	IF	CITATIONS
305	Imaging Genetic and Epigenetic Markers in Mood Disorders. , 2021, , 135-150.		0
306	fMRI Neurofeedback as Treatment for Depression. , 2021, , 151-165.		0
308	Magnetic Field Mapping and Correction for Moving OP-MEG. IEEE Transactions on Biomedical Engineering, 2022, 69, 528-536.	2.5	26
309	Imagined, Intended, and Spoken Speech Envelope Synthesis from Neuromagnetic Signals. Lecture Notes in Computer Science, 2021, , 134-145.	1.0	3
310	The Uncertainty Quantification for Parameters Optimization in SERF Atomic Magnetomer. IEEE Sensors Journal, 2021, 21, 25687-25694.	2.4	5
311	Challenges in the Analysis of Neuroscience Data. Springer Proceedings in Mathematics and Statistics, 2018, , 131-156.	0.1	1
312	On-Scalp MEG. , 2019, , 1313-1335.		6
313	MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices. , 2019, , 3-39.		2
314	EEG/MEG Source Estimation and Spatial Filtering: The Linear Toolkit. , 2019, , 167-203.		8
315	Brain–Computer Interfaces. , 2020, , 131-183.		53
316	On-Scalp MEG. , 2019, , 1-23.		1
317	Magnetic noise calculation of mu-metal shields at extremely low frequencies for atomic devices. Journal Physics D: Applied Physics, 2021, 54, 025004.	1.3	7
318	The Wisdom and Vision From the ACMEGS Inaugural Decade. Journal of Clinical Neurophysiology, 2020, 37, 471-482.	0.9	2
319	Cross-species neuroscience: closing the explanatory gap. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20190633.	1.8	41
329	Continuous High-Sensitivity and High-Bandwidth Atomic Magnetometer. Physical Review Applied, 2020, 14, .	1.5	33
330	Detection of low-conductivity objects using eddy current measurements with an optical magnetometer. Physical Review Research, 2019, 1, .	1.3	19
331	Wide-bandwidth atomic magnetometry via instantaneous-phase retrieval. Physical Review Research, 2020, 2, .	1.3	21
332	Second-order effects in parametric-resonance magnetometers based on atomic alignment. EPJ Quantum Technology, 2020, 7, .	2.9	9

#	Article	lF	Citations
333	Brainsourcing: Crowdsourcing Recognition Tasks via Collaborative Brain-Computer Interfacing. , 2020, , .		9
334	Recent advances in understanding object recognition in the human brain: deep neural networks, temporal dynamics, and context. F1000Research, 2020, 9, 590.	0.8	14
335	Vector magnetocardiography measurement with a compact elliptically polarized laser-pumped magnetometer. Biomedical Optics Express, 2020, 11, 649.	1.5	21
336	Integrated DFB Lasers on Si3N4 Photonic Platform for Chip-Scale Atomic Systems. , 2019, , .		5
337	Multi-channel spin exchange relaxation free magnetometer towards two-dimensional vector magnetoencephalography. Optics Express, 2019, 27, 597.	1.7	38
338	Elliptically polarized laser-pumped $\langle i \rangle M \langle i \rangle \langle sub \rangle x \langle sub \rangle$ magnetometer towards applications at room temperature. Optics Express, 2019, 27, 33027.	1.7	10
339	All-optical self-oscillating ⁴ He atomic mangnetometer with optical phase shift. Optics Express, 2020, 28, 15081.	1.7	5
340	All-optical intrinsic atomic gradiometer with sub-20 fT/cm/â^šHz sensitivity in a 22 ÂμT earth-scale magnetic field. Optics Express, 2020, 28, 36696.	1.7	29
341	Non-Invasive Functional-Brain-Imaging with an OPM-based Magnetoencephalography System. PLoS ONE, 2020, 15, e0227684.	1.1	97
342	Fast and robust optically pumped cesium magnetometer. Advanced Optical Technologies, 2020, 9, 275-286.	0.9	5
343	Optically pumped magnetometers enable a new level of biomagnetic measurements. Advanced Optical Technologies, 2020, 9, 247-251.	0.9	23
344	National Institute of Neurological Disorders and Stroke: current funding status, opportunities, challenges, emerging scientific advances, and recommendations for neurosurgery. Journal of Neurosurgery, 2020, 133, 1264-1269.	0.9	7
345	Lamina-specific cortical dynamics in human visual and sensorimotor cortices. ELife, 2018, 7, .	2.8	45
346	Cross-species anxiety tests in psychiatry: pitfalls and promises. Molecular Psychiatry, 2022, 27, 154-163.	4.1	21
347	Optimised hybrid shielding and magnetic field control for emerging quantum technologies. , 2021, , .		2
349	Optimal atomic quantum sensing using electromagnetically-induced-transparency readout. Physical Review A, 2021, 104, .	1.0	21
350	Frequency-Dependent Dynamics of Functional Connectivity Networks During Seizure Termination in Childhood Absence Epilepsy: A Magnetoencephalography Study. Frontiers in Neurology, 2021, 12, 744749.	1.1	5
351	A comprehensive study of the effects of different factors on anti-relaxation properties of octadecyltrichlorosilane-coated rubidium vapor cells. Journal Physics D: Applied Physics, 2022, 55, 055001.	1.3	3

#	Article	IF	Citations
352	Feasibility and Challenges of Performing Magnetoencephalography Experiments in Children With Arthrogryposis Multiplex Congenita. Frontiers in Pediatrics, 2021, 9, 626734.	0.9	1
353	Optically pumped magnetometer with dynamic common mode magnetic field compensation. Sensors and Actuators A: Physical, 2021, 332, 113195.	2.0	5
359	Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method. Optics Express, 2018, 26, 28682.	1.7	11
360	Optically Pumped Magnetometers for MEG. , 2019, , 1301-1312.		2
361	Ultra-Low-Field MRI and Its Combination with MEG. , 2019, , 1-33.		0
362	MEG as an Enabling Tool in Neuroscience: Transcending Boundaries with New Analysis Methods and Devices. , 2019, , 1-37.		1
363	Ultra-Low-Field MRI and Its Combination with MEG. , 2019, , 1261-1293.		0
364	Brain Dynamics in Pediatric MEG. , 2019, , 695-731.		0
365	Brain Dynamics in Pediatric MEG., 2019, , 1-37.		0
367	In-situ measurement of the density ratio of K-Rb hybrid vapor cell using spin-exchange collision mixing of the K and Rb light shifts. Optics Express, 2019, 27, 16169.	1.7	19
371	A high-bandwidth atomic magnetometer. , 2019, , .		0
372	Overview of Magnetoencephalography—Brief History of its Sensors and Hardware. Advanced Biomedical Engineering, 2020, 9, 217-224.	0.4	4
373	Robust characterization of microfabricated atomic beams on a six-month time scale. Physical Review Research, 2020, 2, .	1.3	4
375	Brain–computer interface technologies for monitoring and control of bionic systems. Journal of Physics: Conference Series, 2021, 2058, 012030.	0.3	0
376	Sensitive spatially resolved magnetometry using a Bose-condensed gas with a bright probe. Physical Review A, 2021, 104, .	1.0	6
377	Future Therapeutic Strategies for Freezing of Gait in Parkinson's Disease. Frontiers in Human Neuroscience, 2021, 15, 741918.	1.0	13
378	Improvement of spin polarization spatial uniformity in optically pumped atomic magnetometers based on counter-propagating pump beams and atomic diffusion. Measurement Science and Technology, 2021, 32, 035902.	1.4	13
379	Optically pumped non-zero field magnetometric sensor for the magnetoencephalographic systems using intra-cavity contacted VCSELs with rhomboidal oxide current aperture. Journal of Physics: Conference Series, 2020, 1697, 012175.	0.3	3

#	Article	IF	CITATIONS
380	MEG systems for young children and recent developments of pediatric MEG. Advances in Magnetic Resonance Technology and Applications, 2021, 2, 329-342.	0.0	0
381	Mentale Beanspruchung in der Montage. , 2020, , 65-87.		2
382	Electrophysiological Mapping and Source Imaging. , 2020, , 379-413.		5
383	Magnetoencephalographical Research in Schizophrenia: Current Status and Perspectives. , 2020, , 211-225.		0
384	Integrative precision-medicine approach to cognitive assessment in older adults., 2020,, 277-283.		0
385	Benefits and threats of neuromarketing: theoretical background and practical use. Scientific Papers of Silesian University of Technology Organization and Management Series, 2020, 2020, 9-25.	0.0	4
386	Improved temperature stability of a fiber Sagnac-like detection system for atomic magnetometers. Optics Express, 2020, 28, 9359.	1.7	2
388	Ferromagnetic Resonance Vector Magnetic Sensor with High Sensitivity and Ultrawide Working Range. Advanced Materials Technologies, 2022, 7, 2100919.	3.0	4
389	Squeezed-Light Enhancement and Backaction Evasion in a High Sensitivity Optically Pumped Magnetometer. Physical Review Letters, 2021, 127, 193601.	2.9	22
390	Cortical and Cerebellar Oscillatory Responses to Postural Instability in Parkinson's Disease. Frontiers in Neurology, 2021, 12, 752271.	1.1	7
392	Broadening of magnetic linewidth by spin-exchange interaction in the K-Rb- ²¹ Ne comagnetometer. Optics Express, 2020, 28, 32601.	1.7	11
394	SQUIDs Pro Quorum. Journal of Clinical Neurophysiology, 2020, 37, 469-470.	0.9	1
395	Advances in laser heating of alkali vapor cells in magnetometers: a review., 2020,,.		1
396	Quantifying time-varying sources in magnetoencephalographyâ€"A discrete approach. Annals of Applied Statistics, 2020, 14, .	0.5	0
397	Design of Uniform Magnetic Field Coil by Quasi-Elliptic Function Fitting Method With Multiple Optimizations in Miniature Atomic Sensors. IEEE Transactions on Industrial Electronics, 2022, 69, 11755-11764.	5.2	13
398	Edge Computing Based Conceptual Framework for Smart Health Care Applications Using Z-Wave and Homebased Wireless Sensor Network. , 2021, , 387-414.		3
399	In Situ Calibration of Magnetic Field Coils Using Parametric Resonance in Optically-pumped Magnetometers. , 2021, , .		2
400	Mobile Electroencephalography for Studying Neural Control of Human Locomotion. Frontiers in Human Neuroscience, 2021, 15, 749017.	1.0	4

#	Article	IF	CITATIONS
401	Magnetic field compensation coil design for magnetoencephalography. Scientific Reports, 2021, 11, 22650.	1.6	6
403	Recent advancements in flexible and wearable sensors for biomedical and healthcare applications. Journal Physics D: Applied Physics, 2022, 55, 134001.	1.3	31
406	Noisy atomic magnetometry in real time. New Journal of Physics, 2021, 23, 123030.	1.2	11
408	Magnetic fields sensing based on multi-order resonances of atomic spins. Optics Express, 2022, 30, 6618-6629.	1.7	2
409	A high performance active noise control system for magnetic fields. Review of Scientific Instruments, 2021, 92, 124702.	0.6	6
410	Ultimate parameters of the all-optical single-beam non-zero magnetic field sensor for biological applications. IEEE Magnetics Letters, 2021, , 1-1.	0.6	1
411	Spatially resolved neural slowing predicts impairment and amyloid burden in Alzheimer's disease. Brain, 2022, 145, 2177-2189.	3.7	25
412	MEG insights into brain development. Advances in Magnetic Resonance Technology and Applications, 2021, , 343-354.	0.0	0
413	Bandwidth Expansion Through Large-Amplitude Modulation and Proportional Feedback for Single-Beam Atomic Magnetometers. IEEE Sensors Journal, 2022, 22, 2016-2023.	2.4	5
414	Measurement of noise of current source by pump-probe atomic magnetometer. Wuli Xuebao/Acta Physica Sinica, 2022, 71, 024202.	0.2	3
415	Cross-Axis projection error in optically pumped magnetometers and its implication for magnetoencephalography systems. NeuroImage, 2022, 247, 118818.	2.1	53
416	Interference suppression techniques for OPM-based MEG: Opportunities and challenges. NeuroImage, 2022, 247, 118834.	2.1	35
417	High-Precision Biomagnetic Measurement System Based on Tunnel Magneto-Resistive Effect., 2020,,.		3
418	Intensity noise characteristics of intracavity contacted VCSELs with rhomboidal oxide current aperture for the magnetometric sensor with Cs ¹³³ vapor cell used in magnetoencephalography. Journal of Physics: Conference Series, 2021, 2103, 012182.	0.3	0
419	<i>In Situ</i> Measurement of Nonorthogonal Angles of a Three-Axis Vector Optically Pumped Magnetometer. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	9
420	A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Frontiers in Psychology, 2021, 12, 568921.	1.1	6
421	Analysis of effects of magnetic field gradient on atomic spin polarization and relaxation in optically pumped atomic magnetometers. Optics Express, 2022, 30, 3926.	1.7	22
422	Reflected Atomic Magnetometer With Single Beam. IEEE Sensors Journal, 2022, 22, 1238-1244.	2.4	3

#	Article	IF	CITATIONS
424	The Space Density Distribution of Alkali Metal Atoms in a SERF Atomic Magnetometer. IEEE Sensors Journal, 2022, 22, 6476-6481.	2.4	5
425	High-sensitive magnetometric measuring systems for biomagnetic imaging, recording and diagnostics. , 2022, , 153-176.		0
426	Ultra-sensitive all-optical comagnetometer with laser heating. Journal Physics D: Applied Physics, 2022, 55, 165103.	1.3	7
427	A Proposed Brain-, Spine-, and Mental-Health Screening Methodology (NEUROSCREEN) for Healthcare Systems: Position of the Society for Brain Mapping and Therapeutics. Journal of Alzheimer's Disease, 2022, , 1-21.	1.2	6
428	Optically Pumped Magnetometer Measuring Fatigue-Induced Damage in Steel. Applied Sciences (Switzerland), 2022, 12, 1329.	1.3	6
429	Optimal Operating Temperature of Miniaturized Optically Pumped Magnetometers. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-7.	2.4	7
430	In-Situ Relaxation Rate Measurement in Magnetic Modulated Atomic Magnetometers. IEEE Sensors Journal, 2022, 22, 248-255.	2.4	7
431	MaDoPO: Magnetic Detection of Positions and Orientations of Segmented Deep Brain Stimulation Electrodes: A Radiation-Free Method Based on Magnetoencephalography. Brain Sciences, 2022, 12, 86.	1.1	3
432	Transforming and comparing data between standard SQUID and OPM-MEG systems. PLoS ONE, 2022, 17, e0262669.	1.1	16
433	Imaging somatosensory cortex responses measured by OPM-MEG: Variational free energy-based spatial smoothing estimation approach. IScience, 2022, 25, 103752.	1.9	13
434	Detection and analysis of cortical beta bursts in developmental EEG data. Developmental Cognitive Neuroscience, 2022, 54, 101069.	1.9	15
435	Poststroke Cognitive Impairment Research Progress on Application of Brain-Computer Interface. BioMed Research International, 2022, 2022, 1-16.	0.9	4
436	Integrated Optically Pumped Magnetometer for Measurements within Earth's Magnetic Field. Physical Review Applied, 2022, 17, .	1.5	18
437	Calibration of SQUID Magnetometers in Multichannel MCG System Based on Bi-Planar Coil. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	9
438	Triaxial Vector Operation in Near-Zero Field of Atomic Magnetometer With Femtotesla Sensitivity. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	10
439	Multiple Source Detection Based on Spatial Clustering and Its Applications on Wearable OPM-MEG. IEEE Transactions on Biomedical Engineering, 2022, 69, 3131-3141.	2.5	7
441	Climate crisis and ecological emergency: Why they concern (neuro)scientists, and what we can do. Brain and Neuroscience Advances, 2022, 6, 239821282210754.	1.8	15
442	An Integrated High-Sensitivity VCSEL-Based Spin-Exchange Relaxation-Free Magnetometer With Optical Rotation Detection. IEEE Sensors Journal, 2022, 22, 7700-7708.	2.4	8

#	Article	IF	CITATIONS
443	Iterative Optimization Algorithm to Design Biplanar Coils for Dynamic Magnetoencephalography. IEEE Transactions on Industrial Electronics, 2023, 70, 2085-2094.	5.2	9
444	<i>In Situ</i> Compensation of Triaxial Magnetic Field Gradient for Atomic Magnetometers. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	9
445	Giant magneto-impedance sensor with working point selfadaptation for unshielded human bio-magnetic detection. Virtual Reality & Intelligent Hardware, 2022, 4, 38-54.	1.8	6
446	A Hybrid Titanium-Softmaterial, High-Strength, Transparent Cranial Window for Transcranial Injection and Neuroimaging. Biosensors, 2022, 12, 129.	2.3	3
447	Enhancement of bandwidth in spin-exchange relaxation-free (SERF) magnetometers with amplitude-modulated light. Applied Physics Letters, 2022, 120, .	1.5	19
448	A single-beam dual-axis atomic spin comagnetometer for rotation sensing. Applied Physics Letters, 2022, 120, .	1.5	14
449	Recent Progress on Micro-Fabricated Alkali Metal Vapor Cells. Biosensors, 2022, 12, 165.	2.3	5
450	Magnetic field design in a cylindrical high-permeability shield: The combination of simple building blocks and a genetic algorithm. Journal of Applied Physics, 2022, 131, .	1.1	13
451	Improving Localization Accuracy of Neural Sources by Pre-processing: Demonstration With Infant MEG Data. Frontiers in Neurology, 2022, 13, 827529.	1.1	3
452	Searching for exotic spin-dependent interactions using rotationally modulated source masses and an atomic magnetometer array. Physical Review D, 2022, 105 , .	1.6	4
453	Oscillatory Activity of the Hippocampus in Prodromal Alzheimer's Disease: A Source-Space Magnetoencephalography Study. Journal of Alzheimer's Disease, 2022, , 1-17.	1.2	4
454	Residual field suppression for magnetocardiography measurement inside a thin magnetically shielded room using bi-planar coil. Chinese Physics B, 2022, 31, 070701.	0.7	2
455	Towards a cross-level understanding of Bayesian inference in the brain. Neuroscience and Biobehavioral Reviews, 2022, 137, 104649.	2.9	1
456	Triaxial detection of the neuromagnetic field using optically-pumped magnetometry: feasibility and application in children. NeuroImage, 2022, 252, 119027.	2.1	76
457	FLUX: A pipeline for MEG analysis. NeuroImage, 2022, 253, 119047.	2.1	12
458	Using OPM-MEG in contrasting magnetic environments. Neurolmage, 2022, 253, 119084.	2.1	33
459	Sharing individualised template MRI data for MEG source reconstruction: A solution for open data while keeping subject confidentiality. NeuroImage, 2022, 254, 119165.	2.1	11
460	Magnetometers vs Gradiometers for Neural Speech Decoding. , 2021, 2021, 6543-6546.		1

#	Article	lF	Citations
462	Bioelectromagnetism in Human Brain Research: New Applications, New Questions. Neuroscientist, 2023, 29, 62-77.	2.6	9
464	Suppression Method of Light Shift in K-Rb Hybrid Optical Pumping SERF Atomic Comagnetometer. IEEE Sensors Journal, 2021, 21, 26665-26672.	2.4	2
465	Dynamic range and linearity improvement for zero-field single-beam atomic magnetometer. Chinese Physics B, 0 , , .	0.7	0
466	All-optical spin locking in alkali-metal-vapor magnetometers. Physical Review A, 2022, 105, .	1.0	3
467	Open magnetic shielding for static and alternating field. Review of Scientific Instruments, 2022, 93, 045103.	0.6	0
468	Scalp attached tangential magnetoencephalography using tunnel magneto-resistive sensors. Scientific Reports, 2022, 12, 6106.	1.6	15
469	Lifetime estimation model of vapor cells in atomic magnetometers. Journal Physics D: Applied Physics, 2022, 55, 285003.	1.3	2
472	Gradient Field Detection Using Interference of Stimulated Microwave Optical Sidebands. Physical Review Letters, 2022, 128, 163602.	2.9	2
473	Mobile Brain/Body Imaging: Challenges and opportunities for the implementation of research programs based on the 4E perspective to cognition. Adaptive Behavior, 2023, 31, 423-448.	1.1	3
474	Contributions of Magnetoencephalography to Understanding Mechanisms of Generalized Epilepsies: Blurring the Boundary Between Focal and Generalized Epilepsies?. Frontiers in Neurology, 2022, 13, 831546.	1.1	5
475	Single beam Cs-Ne SERF atomic magnetometer with the laser power differential method. Optics Express, 2022, 30, 16541.	1.7	17
476	Simulation Study of Different OPM-MEG Measurement Components. Sensors, 2022, 22, 3184.	2.1	9
477	Three-axis closed-loop optically pumped magnetometer operated in the SERF regime. Optics Express, 2022, 30, 18300.	1.7	38
478	Globally elevated excitation–inhibition ratio in children with autism spectrum disorder and below-average intelligence. Molecular Autism, 2022, 13, 20.	2.6	20
479	Wearable Magnetoencephalography: Reality or Science Fiction?. Radiology, 2022, 304, 435-436.	3.6	3
480	Fast extraction of the electron spin-relaxation rate in the SERF magnetometer from a transient response. Optics Express, 2022, 30, 17383.	1.7	10
481	On-Scalp Optically Pumped Magnetometers versus Cryogenic Magnetoencephalography for Diagnostic Evaluation of Epilepsy in School-aged Children. Radiology, 2022, 304, 429-434.	3.6	54
482	On-scalp magnetocorticography with optically pumped magnetometers: Simulated performance in resolving simultaneous sources. Neurolmage Reports, 2022, 2, 100093.	0.5	12

#	Article	IF	CITATIONS
483	Design of real time magnetic field compensation system based on fuzzy PI control algorithm for comagnetometer. Journal Physics D: Applied Physics, 2022, 55, 355106.	1.3	3
484	The micro-fabrication and performance analysis of non-magnetic heating chip for miniaturized SERF atomic magnetometer. Journal of Magnetism and Magnetic Materials, 2022, 557, 169495.	1.0	7
485	What Has Been Learned from Using EEG Methods in Research of ADHD?. Current Topics in Behavioral Neurosciences, 2022, , 415-444.	0.8	3
486	Spherical harmonic based noise rejection and neuronal sampling with multi-axis OPMs. NeuroImage, 2022, 258, 119338.	2.1	20
487	Abnormal Brain Oscillations in Developmental Disorders: Application of Resting State EEG and MEG in Autism Spectrum Disorder and Fragile X Syndrome. , 2022, 1 , .		1
490	Accurate determination of alkali atom density based on zero-field magnetic resonance in a single-beam spin-exchange relaxation-free atomic magnetometer. Measurement Science and Technology, 2022, 33, 105003.	1.4	3
491	Theories and models of negative symptoms in schizophrenia and clinical implications., 2022, 1, 454-467.		9
493	Magnetic-field-dependent stimulated emission from nitrogen-vacancy centers in diamond. Science Advances, 2022, 8, .	4.7	12
494	Hybrid Optimal Design of Square Highly Uniform Magnetic Field Coils. IEEE Transactions on Industrial Electronics, 2023, 70, 4236-4244.	5.2	14
496	Analysis and Improvement of the Uniformity of Magnetic Field Coil Based on the Cylindrical Magnetic Shield in Atomic Magnetometers. SSRN Electronic Journal, 0, , .	0.4	O
497	Bandwidth Expansion of Atomic Spin Gyroscope With Transient Response. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	3
499	Nonlinear magnetoelectric effect in atomic vapor and its application to precision radio-frequency magnetometry. Physical Review A, 2022, 105, .	1.0	1
500	Triaxial precise magnetic field compensation of a zero-field optically pumped magnetometer based on a single-beam configuration. Optics Express, 2022, 30, 24579.	1.7	9
501	Research on the Design of Axial Uniform Coils for Residual Field Compensation in Magnetically Shielded Cylinder. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	16
502	Magnetoencephalography can reveal deep brain network activities linked to memory processes. Human Brain Mapping, 2022, 43, 4733-4749.	1.9	9
503	Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends in Neurosciences, 2022, 45, 621-634.	4.2	91
504	Wearable OPMâ€MEG: A changing landscape for epilepsy. Epilepsia, 2022, 63, 2745-2753.	2.6	13
505	Scanning multi-channel spin-exchange relaxation-free atomic magnetometer with high spatial and time resolution. Optics Letters, 2022, 47, 3908.	1.7	6

#	ARTICLE	IF	CITATIONS
507	Transcranial Electrical Stimulation Offers the Possibility of Improving Teamwork Among Military Pilots: A Review. Frontiers in Neuroscience, 0, 16 , .	1.4	3
508	Miniature Biplanar Coils for Alkali-Metal-Vapor Magnetometry. Physical Review Applied, 2022, 18, .	1.5	11
509	A compact and closed-loop spin-exchange relaxation-free atomic magnetometer for wearable magnetoencephalography. Chinese Physics B, 2023, 32, 040702.	0.7	2
510	Spin polarization characteristics of hybrid optically pumped comagnetometers with different density ratios. Optics Express, 2022, 30, 28067.	1.7	2
512	Brain-wide neural co-activations in resting human. NeuroImage, 2022, 260, 119461.	2.1	3
513	Multimodal neuroimaging with optically pumped magnetometers: A simultaneous MEG-EEG-fNIRS acquisition system. NeuroImage, 2022, 259, 119420.	2.1	10
514	Relayed hyperpolarization for zero-field nuclear magnetic resonance. Science Advances, 2022, 8, .	4.7	12
515	Effects of Different Head Models in Wearable OPM-MEG. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-10.	2.4	4
516	SERF-OPM Usability for MEG in Two-Layer-Shielded Rooms. , 2022, , 179-193.		2
517	Experimental Limits on Exotic Spin and Velocity Dependent Interactions Using Rotationally Modulated Source Masses and an Atomic-Magnetometer Array. Physical Review Letters, 2022, 129, .	2.9	11
518	Spatiotemporal Precision of Neuroimaging in Psychiatry. Biological Psychiatry, 2023, 93, 671-680.	0.7	1
519	The application of mobile functional near-infrared spectroscopy for marketing research – a guideline. European Journal of Marketing, 2022, 56, 236-260.	1.7	1
520	Quantum-assisted distortion-free audio signal sensing. Nature Communications, 2022, 13, .	5.8	3
521	Biomagnetic signals recorded during transcranial magnetic stimulation (TMS)-evoked peripheral muscular activity. Biomedizinische Technik, 2022, 67, 333-344.	0.9	4
522	A lightweight magnetically shielded room with active shielding. Scientific Reports, 2022, 12, .	1.6	32
523	Slow Firing Single Units Are Essential for Optimal Decoding of Silent Speech. Frontiers in Human Neuroscience, $0,16,\ldots$	1.0	2
524	From Transparent Cranial Windows to Multifunctional Smart Cranial Platforms. Electronics (Switzerland), 2022, 11, 2559.	1.8	0
525	Cross-Axis Dynamic Field Compensation of Optically Pumped Magnetometer Arrays for MEG. NeuroImage, 2022, 262, 119559.	2.1	19

#	Article	IF	CITATIONS
526	Femtotesla ⁴ He magnetometer with a multipass cell. Optics Letters, 2022, 47, 5252.	1.7	1
527	OMMR: Co-registration toolbox of OPM-MEG and MRI. Frontiers in Neuroscience, 0, $16, \ldots$	1.4	6
528	A novel low-noise Mu-metal magnetic shield with winding shape. Sensors and Actuators A: Physical, 2022, 346, 113884.	2.0	13
529	In situ calibration of triaxial coils of a vector optically pumped magnetometers based on a particle swarm optimization algorithm. Measurement: Journal of the International Measurement Confederation, 2022, 202, 111878.	2.5	12
530	Application of subject-specific helmets for the study of human visuomotor behavior using transcranial focused ultrasound: a pilot study. Computer Methods and Programs in Biomedicine, 2022, 226, 107127.	2.6	4
531	Studying Embodied Decisions in the Wild and in the Lab. , 2022, , 159-171.		2
532	Person-Sized Magnetoencephalography Systems with Optically Pumped Magnetometers., 2022, , 111-142.		0
533	Ambulatory MEG Arrays. , 2022, , 63-76.		0
534	Tri-axial Helium-4 Optically Pumped Magnetometers for MEG. , 2022, , 79-110.		0
535	Design of Highly Uniform Field Coils Based on the Magnetic Field Coupling Model and Improved PSO Algorithm in Atomic Sensors. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	11
536	Electro- and Magnetoencephalographic Measurements. , 2022, , 43-87.		0
537	Diamond Integrated Quantum Nanophotonics: Spins, Photons and Phonons. Journal of Lightwave Technology, 2022, 40, 7538-7571.	2.7	15
538	Small Animal Biomagnetism Applications. , 2022, , 33-48.		1
539	On-scalp MEG with High-T c SQUIDs. , 2022, , 143-160.		0
540	Turning OPM-MEG into a Wearable Technology. , 2022, , 195-223.		0
541	Design and Test of a Magnetic-Field Compensation Coil Without Interference With the Door of a Magnetically Shielded Room. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	2.4	1
542	Fiber-Coupled OPM in Purely Coil-Shielded Environment. , 2022, , 161-177.		0
543	Supine OPM-MEG in Multilayer Cylindrical Shield. , 2022, , 49-62.		0

#	Article	IF	Citations
544	Clinical applications of deep learning in neurology and its enhancements with future predictions. , 2023, , 209-224.		0
545	Review of noble-gas spin amplification via the spin-exchange collisions. Science China Information Sciences, 2022, 65, .	2.7	2
546	Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy, 2022, 104, 107852.	8.2	25
547	Single-beam comagnetometer using elliptically polarized light for dual-axis rotation measurement. Optics Express, 2022, 30, 38216.	1.7	3
549	Abnormal neural oscillations during gait and dual-task in Parkinson's disease. Frontiers in Systems Neuroscience, 0, 16, .	1.2	4
550	The promises and pitfalls of functional magnetic resonance imaging hyperscanning for social interaction research. Social and Personality Psychology Compass, 2022, 16, .	2.0	6
551	A 90â€channel triaxial magnetoencephalography system using optically pumped magnetometers. Annals of the New York Academy of Sciences, 2022, 1517, 107-124.	1.8	32
552	Single-beam integrated hybrid optical pumping spin exchange relaxation free magnetometer for biomedical applications. Applied Physics Letters, 2022, 121, 114001.	1.5	3
553	Optimal buffer gas pressure in dual-beam spin-exchange relaxation-free magnetometers. Sensors and Actuators A: Physical, 2022, 347, 113928.	2.0	9
554	Progress and applications of quantum precision measurement based on SERF effect. Frontiers in Physics, 0, 10 , .	1.0	1
555	Spatial accuracy evaluation of magnetic source imaging methods on OPM-based MEG. IScience, 2022, 25, 105177.	1.9	2
556	Optimal Design of Planar Coils With Reverse Current Distribution for Atomic Devices. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	4
557	Mapping Interictal activity in epilepsy using a hidden Markov model: A magnetoencephalography study. Human Brain Mapping, 2023, 44, 66-81.	1.9	4
558	Spin exchange optically pumped nuclear spin self compensation system for moving magnetoencephalography measurement. Biomedical Optics Express, 2022, 13, 5937.	1.5	3
559	Detection of the 40ÂHz auditory steady-state response with optically pumped magnetometers. Scientific Reports, 2022, 12, .	1.6	5
560	Analysis and Suppression of Thermal Magnetic Noise of Ferrite in the SERF Co-Magnetometer. Materials, 2022, 15, 6971.	1.3	2
562	Analysis and Suppression of the Cross-Axis Coupling Effect for Dual-Beam SERF Atomic Magnetometer. Photonics, 2022, 9, 792.	0.9	3
563	Single-beam triaxial spin-exchange relaxation-free atomic magnetometer utilizing transverse modulation fields. Journal Physics D: Applied Physics, 2022, 55, 505001.	1.3	6

#	ARTICLE	IF	Citations
564	Application of rapid invisible frequency tagging for brain computer interfaces. Journal of Neuroscience Methods, 2022, 382, 109726.	1.3	5
565	Co-Registration Error Analysis and Array Calibration for OPM-MEG System. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	2
566	In-situ measurement and cancellation of the light-shift in fiber-coupled atomic magnetometers. Optics Express, 2022, 30, 44309.	1.7	3
567	dc Quantum Magnetometry below the Ramsey Limit. Physical Review Applied, 2022, 18, .	1.5	3
569	A review of fiberâ€coupled atomic magnetometer. Microwave and Optical Technology Letters, 2023, 65, 1516-1524.	0.9	1
570	Demonstration of a high-density alkali-metal atomic magnetometer based on the frequency-symmetrical detuning effect of two pumping lights. Optics Express, 2022, 30, 45930.	1.7	2
571	<i>In vitro</i> recording of muscle activity induced by high intensity laser optogenetic stimulation using a diamond quantum biosensor. AVS Quantum Science, 2022, 4, .	1.8	3
572	Optimising the sensing volume of OPM sensors for MEG source reconstruction. NeuroImage, 2022, 264, 119747.	2.1	6
573	Analysis and improvement of the uniformity of magnetic field coil based on the cylindrical magnetic shield in atomic magnetometers. Sensors and Actuators A: Physical, 2023, 349, 114005.	2.0	4
574	Hybrid Method for Reducing the Residual Field in the Magnetic Shielding Room. IEEE Transactions on Industrial Electronics, 2023, 70, 11810-11818.	5.2	1
575	Simultaneous in-situ compensation method of residual magnetic fields for the dual-beam SERF atomic magnetometer. Sensors and Actuators A: Physical, 2023, 349, 114055.	2.0	3
576	Virtual Gradiometer-Based Noise Reduction Method for Wearable Magnetoencephalography. , 2022, , .		1
578	Application of VCSEL in Bio-Sensing Atomic Magnetometers. Biosensors, 2022, 12, 1098.	2.3	3
579	Brain–Computer Interface-Controlled Exoskeletons in Clinical Neurorehabilitation: Ready or Not?. Neurorehabilitation and Neural Repair, 2022, 36, 747-756.	1.4	14
580	A robust method for evaluation of vapor cell's performance for magnetometry. Chinese Physics B, O, , .	0.7	0
581	Analysis and Measurement of Differential-Mode Magnetic Noise in Mn-Zn Soft Ferrite Shield for Ultra-Sensitive Sensors. Materials, 2022, 15, 8704.	1.3	3
582	Dual-beam room-temperature atomic magnetometer with high sensitivity and large dynamic range. Applied Physics Express, 2023, 16, 012008.	1.1	1
583	Triaxial closed-loop measurement based on a single-beam zero-field optically pumped magnetometer. Frontiers in Physics, 0, 10, .	1.0	6

#	ARTICLE	IF	Citations
584	Three-axis isotropic-sensitivity <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mmultiscripts><mml:mi>He</mml:mi><mml:mpresc></mml:mpresc><mml:none></mml:none><mml:mn>4</mml:mn></mml:mmultiscripts></mml:math> magnetometer with alignment-based longitudinal parametric resonance. Physical Review A, 2022, 106, .	ripts 1.0	1
585	Towards a Practical Implementation of a Single-Beam All-Optical Non-Zero-Field Magnetic Sensor for Magnetoencephalographic Complexes. Sensors, 2022, 22, 9862.	2.1	3
587	Wafer-level vapor cells filled with laser-actuated hermetic seals for integrated atomic devices. Microsystems and Nanoengineering, 2022, 8 , .	3.4	5
588	Virtual Reality for Spatial Navigation. Current Topics in Behavioral Neurosciences, 2023, , 103-129.	0.8	2
589	Ultra-low noise, bi-polar, programmable current sources. Review of Scientific Instruments, 2023, 94, 014701.	0.6	4
590	In-situ determination of spin polarization in single-beam fiber-coupled spin-exchange-relaxation-free atomic magnetometer. Optics Express, 0, , .	1.7	1
591	Sandwich structure magnetometer with high sensitivity and signal-to-noise ratio based on ultrahigh-Q CaF2 resonator. Applied Optics, 0, , .	0.9	0
592	Development of Magnetocardiograph without Magnetically Shielded Room Using High-Detectivity TMR Sensors. Sensors, 2023, 23, 646.	2.1	8
593	A systematic review of the neural correlates of well-being reveals no consistent associations. Neuroscience and Biobehavioral Reviews, 2023, 145, 105036.	2.9	4
594	Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano, 2023, 17, 1764-1802.	7.3	50
595	Mapping Brain Networks Using Multimodal Data. , 2023, , 2975-3025.		0
596	Exploring Methodological Approaches of Experimental Studies in the Field of Neuroarchitecture: A Systematic Review. Herd, 2023, 16, 284-309.	0.9	3
597	High-Performance Implantable Sensors based on Anisotropic Magnetoresistive La _{0.67} Sr _{0.33} MnO ₃ for Biomedical Applications. ACS Biomaterials Science and Engineering, 2023, 9, 1020-1029.	2.6	0
598	Smart clothing and wearable technology in medical and healthcare applications. , 2023, , 573-581.		2
599	Spin Hyperpolarization in Modern Magnetic Resonance. Chemical Reviews, 2023, 123, 1417-1551.	23.0	72
600	Integrated Sensing Devices for Brain-Computer Interfaces. , 2023, , 241-258.		O
601	Electrical Signal from the Brain. , 2023, , 173-197.		0
602	Quantumâ€Based Magnetic Field Sensors for Biosensing. Advanced Quantum Technologies, 2023, 6, .	1.8	4

#	Article	IF	CITATIONS
603	A Novel Measurement Method for Spin Polarization Three Axis Spatial Distribution in Spin-Exchange Relaxation Free Atomic Magnetometer. Photonics, 2023, 10, 332.	0.9	0
604	Experimental studies on the performance of magnetic shields under different magnetization conditions. Journal Physics D: Applied Physics, 2023, 56, 215001.	1.3	3
605	Signal-enhanced spin-exchange relaxation-free atomic magnetometer. Sensors and Actuators A: Physical, 2023, 353, 114247.	2.0	4
606	Fiber-Coupled Diamond Magnetometry with an Unshielded Sensitivity of <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>30</mml:mn><mml:mspace width="0.1em"></mml:mspace> <mml:mi>T</mml:mi><mml:mo>/</mml:mo>/<mml:msqrt><mml:mi>Hz</mml:mi></mml:msqrt></mml:math> .	1.5	4
607	Exploring the limits of MEG spatial resolution with multipolar expansions. NeuroImage, 2023, 270, 119953.	2.1	6
608	Measurement of Frontal Midline Theta Oscillations using OPM-MEG. NeuroImage, 2023, 271, 120024.	2.1	14
609	Parameter optimisation of miniaturised SERF magnetometer below relaxation rate saturation region. Measurement: Journal of the International Measurement Confederation, 2023, 214, 112733.	2.5	9
610	Temperature characteristics of Rb-N2 single-beam magnetometer with different buffer gas pressures. Measurement: Journal of the International Measurement Confederation, 2023, 215, 112860.	2.5	1
611	Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer. Sensors, 2023, 23, 4007.	2.1	4
612	Quantum magnetic gradiometer with entangled twin light beams. Science Advances, 2023, 9, .	4.7	4
614	Magnetic field interference suppression for minimized SERF atomic magnetometer. Sensors and Actuators A: Physical, 2023, 351, 114188.	2.0	4
615	How to build a magnetometer with thermal atomic vapor: a tutorial. New Journal of Physics, 2023, 25, 025001.	1.2	11
616	A low-noise multilayer mu-metal thin shell magnetic shield for ultra-highly sensitive atomic sensors. Sensors and Actuators A: Physical, 2023, 352, 114207.	2.0	7
617	Quantum sensors for biomedical applications. Nature Reviews Physics, 2023, 5, 157-169.	11.9	57
619	Static Magnetic Fields on Human Bodies. , 2023, , 239-261.		0
620	Diagnostic Neuroimaging and Laboratory Tests. , 2023, , 227-258.		0
621	Markov Noise in Atomic Spin Gyroscopes: Analysis and Suppression Based on Allan Deviation. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-9.	2.4	1
622	A New Generation of OPM for High Dynamic and Large Bandwidth MEG: The 4He OPMs—First Applications in Healthy Volunteers. Sensors, 2023, 23, 2801.	2.1	14

#	Article	IF	Citations
623	Assessing Pediatric Mild Traumatic Brain Injury and Its Recovery Using Resting-State Magnetoencephalography Source Magnitude Imaging and Machine Learning. Journal of Neurotrauma, 2023, 40, 1112-1129.	1.7	2
624	Microfabricated optically-pumped magnetometers for imaging applications. , 2023, , .		1
625	Monitoring magnetic nanoparticle clustering and immobilization with thermal noise magnetometry using optically pumped magnetometers. Nanoscale Advances, 2023, 5, 2341-2351.	2.2	2
626	Non-invasive measurements of ictal and interictal epileptiform activity using optically pumped magnetometers. Scientific Reports, 2023, 13, .	1.6	13
627	Neural Activity and Oscillations as Biological Markers in Traumatic Brain Injury. Biomarkers in Disease, 2023, , 993-1012.	0.0	0
628	Brainâ€wide network analysis of restingâ€state neuromagnetic data. Human Brain Mapping, 2023, 44, 3519-3540.	1.9	1
629	Mapping and decoding cortical engagement during motor imagery, mental arithmetic, and silent word generation using <scp>MEG</scp> . Human Brain Mapping, 0, , .	1.9	2
630	Quantum enabled functional neuroimaging: the why and how of magnetoencephalography using optically pumped magnetometers. Contemporary Physics, 2022, 63, 161-179.	0.8	7
631	A movable unshielded magnetocardiography system. Science Advances, 2023, 9, .	4.7	15
632	A Spherical Coil Array for the Calibration of Whole-Head Magnetoencephalograph Systems. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	2.4	0
633	Mobile cognition: imaging the human brain in the â€~real world'. Nature Reviews Neuroscience, 2023, 24, 347-362.	4.9	29
634	Influence of Motion Artifacts on the Performance of Optically Pumped Magnetometers and Accuracy of Magnetoencephalography Source Localization. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-10.	2.4	4
635	Speedy in-situ magnetic field compensation algorithm for multiple-channel single-beam SERF atomic magnetometers. Metrologia, 2023, 60, 035006.	0.6	3
636	Nonzero-Order Resonances in Single-Beam Spin-Exchange Relaxation-Free Magnetometers. Photonics, 2023, 10, 458.	0.9	0
637	Improved Biomagnetic Signal-To-Noise Ratio and Source Localization Using Optically Pumped Magnetometers with Synthetic Gradiometers. Brain Sciences, 2023, 13, 663.	1.1	0
638	Fast In-Situ Triaxial Remanent Magnetic Field Measurement for Single-Beam SERF Atomic Magnetometer Based on Trisection Algorithm. Photonic Sensors, 2023, 13, .	2.5	2
639	Age differences in central auditory system responses to naturalistic music. Biological Psychology, 2023, , 108566.	1.1	0
640	Future Developments in Brain/Neural–Computer Interface Technology. Advances in Neuroethics, 2023, , 65-85.	0.1	2

#	Article	IF	CITATIONS
649	EEG based BCI for Autonomous Control: A Review., 2023,,.		2
664	Magnetoencephalography: Epilepsy and Brain Mapping. , 2023, , 1123-1135.		0
665	Quantum sensors will start a revolution â€" if we deploy them right. Nature, 2023, 617, 672-675.	13.7	6
667	Chapter 3: Pseudo-Differential Operators and Fourier Operators. , 2023, , 91-192.		0
682	Electroencephalography and Magnetoencephalography. Neuromethods, 2023, , 285-312.	0.2	0
685	Fundamentals of Electroencephalography and Magnetoencephalography. Neuromethods, 2023, , 163-194.	0.2	0
694	Neuroimaging and Art., 2023, , 13-20.		0
721	Two Dimensional Three-Axis Magnetic Field Distribution Measurement by SERF Atomic Magnetometer Using Spatial Light Modulation. , 2023, , .		0
724	Listening in to perceived speech with contrastive learning. Nature Machine Intelligence, $0, , .$	8.3	0
751	Magnetic Field Compensation for An Optically Pumped Magnetometer Without Iteration. , 2023, , .		0
758	Magnetenzephalographie (MEG)., 2023,, 543-551.		0
760	Detuned square-wave optical modulation zero-field atomic magnetometer. , 2023, , .		0
770	Perspective of quantum technology. , 2024, , 1-16.		0
771	Nitrogen-vacancy centers for prosthesis control. , 2024, , .		0
772	Research on GMI Probe Performance in Biomagnetic Field Range in Unshielded Environments. IFMBE Proceedings, 2024, , 70-78.	0.2	0