Image reconstruction by domain-transform manifold le

Nature 555, 487-492 DOI: 10.1038/nature25988

Citation Report

#	Article	IF	CITATIONS
1	Deep learning enables reduced gadolinium dose for contrastâ€enhanced brain MRI. Journal of Magnetic Resonance Imaging, 2018, 48, 330-340.	1.9	220
2	Deep Learning in Neuroradiology. American Journal of Neuroradiology, 2018, 39, 1776-1784.	1.2	222
3	The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning. Expert Review of Medical Devices, 2018, 15, 349-356.	1.4	30
5	Opening the black box of neural networks: methods for interpreting neural network models in clinical applications. Annals of Translational Medicine, 2018, 6, 216-216.	0.7	185
6	Material Decomposition of Energy Spectral CT by AUTOMAP. , 2018, , .		1
7	Artificial Intelligence in Radiology: Current Technology and Future Directions. Seminars in Musculoskeletal Radiology, 2018, 22, 540-545.	0.4	77
8	Real-time coherent diffraction inversion using deep generative networks. Scientific Reports, 2018, 8, 16520.	1.6	61
9	Rapid compositional mapping of knee cartilage with compressed sensing MRI. Journal of Magnetic Resonance Imaging, 2018, 48, 1185-1198.	1.9	21
10	Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113.	4.8	136
11	Complex Fully Convolutional Neural Networks for MR Image Reconstruction. Lecture Notes in Computer Science, 2018, , 30-38.	1.0	23
12	Deep Learning Based Image Reconstruction for Diffuse Optical Tomography. Lecture Notes in Computer Science, 2018, , 112-119.	1.0	15
13	Translation of 1D Inverse Fourier Transform of K-space to an Image Based on Deep Learning for Accelerating Magnetic Resonance Imaging. Lecture Notes in Computer Science, 2018, , 241-249.	1.0	3
14	ETER-net: End to End MR Image Reconstruction Using Recurrent Neural Network. Lecture Notes in Computer Science, 2018, , 12-20.	1.0	8
15	Cardiac MR Motion Artefact Correction from K-space Using Deep Learning-Based Reconstruction. Lecture Notes in Computer Science, 2018, , 21-29.	1.0	18
16	Artificial intelligence in radiology. Nature Reviews Cancer, 2018, 18, 500-510.	12.8	1,953
17	Magnetic Resonance Imaging technology — bridging the gap between noninvasive human imaging and optical microscopy. Current Opinion in Neurobiology, 2018, 50, 250-260.	2.0	18
18	Referenceless distortion correction of gradient-echo echo-planar imaging under inhomogeneous magnetic fields based on a deep convolutional neural network. Computers in Biology and Medicine, 2018, 100, 230-238.	3.9	10
19	Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI. Scientific Reports, 2018, 8, 11863.	1.6	43

#	Article	IF	CITATIONS
20	Traditional machine learning for limited angle tomography. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 11-19.	1.7	8
21	Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning. IEEE Transactions on Medical Imaging, 2019, 38, 325-336.	5.4	94
22	Technical Note: PYROâ€NN: Python reconstruction operators in neural networks. Medical Physics, 2019, 46, 5110-5115.	1.6	42
23	Next-generation imaging of the skeletal system and its blood supply. Nature Reviews Rheumatology, 2019, 15, 533-549.	3.5	46
24	Learning-based single-step quantitative susceptibility mapping reconstruction without brain extraction. NeuroImage, 2019, 202, 116064.	2.1	44
25	Applications of Deep Learning to Neuro-Imaging Techniques. Frontiers in Neurology, 2019, 10, 869.	1.1	97
26	Deep-Learning-Based Molecular Imaging Biomarkers: Toward Data-Driven Theranostics. Progress in Medical Physics, 2019, 30, 39.	0.5	0
27	Predicting lung nodule malignancies by combining deep convolutional neural network and handcrafted features. Physics in Medicine and Biology, 2019, 64, 175012.	1.6	51
28	Accelerated Correction of Reflection Artifacts by Deep Neural Networks in Photo-Acoustic Tomography. Applied Sciences (Switzerland), 2019, 9, 2615.	1.3	23
29	Undersampled MR image reconstruction using an enhanced recursive residual network. Journal of Magnetic Resonance, 2019, 305, 232-246.	1.2	27
30	A Very Deep Densely Connected Network for Compressed Sensing MRI. IEEE Access, 2019, 7, 85430-85439.	2.6	22
31	An investigation of quantitative accuracy for deep learning based denoising in oncological PET. Physics in Medicine and Biology, 2019, 64, 165019.	1.6	90
32	Deep-learning-powered photonic analog-to-digital conversion. Light: Science and Applications, 2019, 8, 66.	7.7	46
33	Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nature Methods, 2019, 16, 1215-1225.	9.0	327
34	Ultimate MRI. Journal of Magnetic Resonance, 2019, 306, 139-144.	1.2	19
35	In vivo magnetic resonance imaging and spectroscopy. Technological advances and opportunities for applications continue to abound. Journal of Magnetic Resonance, 2019, 306, 55-65.	1.2	10
36	A Novel Stacked Denoising Autoencoder-Based Reconstruction Framework for Cerenkov Luminescence Tomography. IEEE Access, 2019, 7, 85178-85189.	2.6	15
37	Next generation research applications for hybrid PET/MR and PET/CT imaging using deep learning. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2700-2707.	3.3	44

#	Article	IF	CITATIONS
38	Artificial intelligence applications for pediatric oncology imaging. Pediatric Radiology, 2019, 49, 1384-1390.	1.1	30
39	Deep Learning–based CT Image Reconstruction: Initial Evaluation Targeting Hypovascular Hepatic Metastases. Radiology: Artificial Intelligence, 2019, 1, e180011.	3.0	52
40	Machine Friendly Machine Learning: Interpretation of Computed Tomography Without Image Reconstruction. Scientific Reports, 2019, 9, 15540.	1.6	27
41	Artificial Intelligence in medical imaging practice: looking to the future. Journal of Medical Radiation Sciences, 2019, 66, 292-295.	0.8	50
42	MR image reconstruction using deep learning: evaluation of network structure and loss functions. Quantitative Imaging in Medicine and Surgery, 2019, 9, 1516-1527.	1.1	68
43	Holistic Monte-Carlo optical modelling of biological imaging. Scientific Reports, 2019, 9, 15832.	1.6	11
44	Fast fit-free analysis of fluorescence lifetime imaging via deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24019-24030.	3.3	100
45	Fast modelâ€based T ₂ mapping using SARâ€reduced simultaneous multislice excitation. Magnetic Resonance in Medicine, 2019, 82, 2090-2103.	1.9	11
46	Accelerating CS-MRI Reconstruction With Fine-Tuning Wasserstein Generative Adversarial Network. IEEE Access, 2019, 7, 152347-152357.	2.6	20
47	Microwave SAIR Imaging Approach Based on Deep Convolutional Neural Network. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57, 10376-10389.	2.7	14
48	DIMENSION: Dynamic MR imaging with both kâ€space and spatial prior knowledge obtained via multiâ€supervised network training. NMR in Biomedicine, 2022, 35, e4131.	1.6	53
49	Learning with known operators reduces maximum error bounds. Nature Machine Intelligence, 2019, 1, 373-380.	8.3	111
50	Artificial Intelligence in Nuclear Medicine. Journal of Nuclear Medicine, 2019, 60, 29S-37S.	2.8	95
51	Deep learning optoacoustic tomography with sparse data. Nature Machine Intelligence, 2019, 1, 453-460.	8.3	148
52	Computational cytometer based on magnetically modulated coherent imaging and deep learning. Light: Science and Applications, 2019, 8, 91.	7.7	21
53	Maximum-Linear-Patch based Outlier Detection for Robust Manifold Learning. , 2019, , .		0
54	Reconstruction techniques for cardiac cine MRI. Insights Into Imaging, 2019, 10, 100.	1.6	25
55	A gentle introduction to deep learning in medical image processing. Zeitschrift Fur Medizinische Physik, 2019, 29, 86-101.	0.6	344

#	Article	IF	CITATIONS
56	Artificial Intelligence in Medical Imaging. , 2019, , .		83
57	Applications of Al Beyond Image Interpretation. , 2019, , 129-143.		2
58	Neurological Diseases. , 2019, , 217-230.		1
59	Robust Single-Shot T ₂ Mapping via Multiple Overlapping-Echo Acquisition and Deep Neural Network. IEEE Transactions on Medical Imaging, 2019, 38, 1801-1811.	5.4	23
60	Recurrent inference machines for reconstructing heterogeneous MRI data. Medical Image Analysis, 2019, 53, 64-78.	7.0	51
61	Opening a new window on MR-based Electrical Properties Tomography with deep learning. Scientific Reports, 2019, 9, 8895.	1.6	40
62	Overview of image-to-image translation by use of deep neural networks: denoising, super-resolution, modality conversion, and reconstruction in medical imaging. Radiological Physics and Technology, 2019, 12, 235-248.	1.0	88
63	Radiomics in nuclear medicine: robustness, reproducibility, standardization, and how to avoid data analysis traps and replication crisis. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46, 2638-2655.	3.3	198
64	Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nature Machine Intelligence, 2019, 1, 269-276.	8.3	256
65	Parallel imaging and convolutional neural network combined fast MR image reconstruction: Applications in lowâ€latency accelerated realâ€time imaging. Medical Physics, 2019, 46, 3399-3413.	1.6	25
66	SANTIS: Samplingâ€Augmented Neural neTwork with Incoherent Structure for MR image reconstruction. Magnetic Resonance in Medicine, 2019, 82, 1890-1904.	1.9	70
67	Solving inverse problems using data-driven models. Acta Numerica, 2019, 28, 1-174.	6.3	359
68	Deep residual network for offâ€resonance artifact correction with application to pediatric body MRA with 3D cones. Magnetic Resonance in Medicine, 2019, 82, 1398-1411.	1.9	16
69	Investigation of Fully Connected Neural Networks for Reconstruction of MR Images. IFMBE Proceedings, 2019, , 293-298.	0.2	0
70	Separation of water and fat signal in wholeâ€body gradient echo scans using convolutional neural networks. Magnetic Resonance in Medicine, 2019, 82, 1177-1186.	1.9	29
71	Testing a deep convolutional neural network for automated hippocampus segmentation in a longitudinal sample of healthy participants. NeuroImage, 2019, 197, 589-597.	2.1	24
72	Fully Automated Diagnosis of Anterior Cruciate Ligament Tears on Knee MR Images by Using Deep Learning. Radiology: Artificial Intelligence, 2019, 1, 180091.	3.0	94
73	Effectiveness of Deep Learning Algorithms to Determine Laterality in Radiographs. Journal of Digital Imaging, 2019, 32, 656-664.	1.6	11

ARTICLE IF CITATIONS # Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance 1.2 46 74 tomography (a-EIT). Physiological Measurement, 2019, 40, 074002. Discriminative Sparsity Graph Embedding for Unconstrained Face Recognition. Electronics (Switzerland), 2019, 8, 503. 1.8 Fast learning of fiber orientation distribution function for <scp>MR</scp> tractography using 76 1.6 51 convolutional neural network. Medical Physics, 2019, 46, 3101-3116. A Roadmap for Foundational Research on Artificial Intelligence in Medical Imaging: From the 2018 241 NIH/RSNA/ACR/The Academy Workshop. Radiology, 2019, 291, 781-791. Conditional generative adversarial network for 3D rigidâ€body motion correction in MRI. Magnetic 78 1.9 56 Resonance in Medicine, 2019, 82, 901-910. Convolutional Sparse Coding for Compressed Sensing CT Reconstruction. IEEE Transactions on Medical Imaging, 2019, 38, 2607-2619. 79 5.4 Dataâ€driven synthetic MRI FLAIR artifact correction via deep neural network. Journal of Magnetic 80 1.9 16 Resonance Imaging, 2019, 50, 1413-1423. Artificial Intelligence in Nuclear Cardiology: Adding Value to Prognostication. Current Cardiovascular Imaging Reports, 2019, 12, 1. 0.4 Convolutional neural network-based method for real-time orientation indexing of measured electron 82 3.8 37 backscatter diffraction patterns. Acta Materialia, 2019, 170, 118-131. Detection and characterization of MRI breast lesions using deep learning. Diagnostic and 1.8 Interventional Imaging, 2019, 100, 219-225. Diagnosis of focal liver lesions from ultrasound using deep learning. Diagnostic and Interventional 100 84 1.8 Imaging, 2019, 100, 227-233. Millimeter-Wave InSAR Target Recognition with Deep Convolutional Neural Network. IEICE 0.4 Transactions on Information and Systems, 2019, E102.D, 655-658. DeepQSM - using deep learning to solve the dipole inversion for quantitative susceptibility mapping. 86 2.1 84 Neurolmage, 2019, 195, 373-383. MANTIS: Modelâ€Augmented Neural neTwork with Incoherent <i>k</i>â€space Sampling for efficient MR 87 parameter mapping. Magnetic Resonance in Medicine, 2019, 82, 174-188. Compressed sensing MRI: a review from signal processing perspective. BMC Biomedical Engineering, 88 1.7 106 2019, 1, 8. Learning to Reconstruct Computed Tomography Images Directly From Sinogram Data Under A Variety 109 of Data Acquisition Conditions. IEEE Transactions on Medical Imaging, 2019, 38, 2469-2481. Ultrafast (milliseconds), multidimensional RF pulse design with deep learning. Magnetic Resonance in 90 1.9 15 Medicine, 2019, 82, 586-599. DeepPET: A deep encoder–decoder network for directly solving the PET image reconstruction inverse 204 problem. Medical Image Analysis, 2019, 54, 253-262.

#	Article	IF	CITATIONS
92	Self-attention convolutional neural network for improved MR image reconstruction. Information Sciences, 2019, 490, 317-328.	4.0	65
93	Human motion data editing based on a convolutional automatic encoder and manifold learning. Entertainment Computing, 2019, 30, 100300.	1.8	1
94	Robust water–fat separation for multiâ€echo gradientâ€recalled echo sequence using convolutional neural network. Magnetic Resonance in Medicine, 2019, 82, 476-484.	1.9	16
95	DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3ÂT data – a proof of concept study. Magnetic Resonance in Medicine, 2019, 81, 3901-3914.	1.9	30
96	Artificial intelligence in cancer imaging: Clinical challenges and applications. Ca-A Cancer Journal for Clinicians, 2019, 69, 127-157.	157.7	965
97	Hyperspectral Data to Relative Lidar Depth: An Inverse Problem for Remote Sensing. , 2019, , .		1
98	Simultaneous reconstruction and segmentation of MRI image by manifold learning. , 2019, , .		1
99	On the use of deep learning for computational imaging. Optica, 2019, 6, 921.	4.8	495
100	VMB-Net: A deep learning network for velocty model building in a cross-well acquisition geometry. , 2019, , .		1
101	Efficient Neural Network Image Reconstruction from Raw Data Using a Radon Inversion Layer. , 2019, , .		3
102	Deep Neural Network Approach in Electrical Impedance Tomography-based Real-time Soft Tactile Sensor. , 2019, , .		16
103	A Deep Learning Framework for Transforming Image Reconstruction Into Pixel Classification. IEEE Access, 2019, 7, 177690-177702.	2.6	13
104	Artificial intelligence in radiology. Rad Hrvatske Akademije Znanosti I Umjetnosti Medicinske Znanosti, 2019, 537, 55-59.	0.1	3
105	X2CT-GAN: Reconstructing CT From Biplanar X-Rays With Generative Adversarial Networks. , 2019, , .		92
106	A Hybrid Frequency-Domain/Image-Domain Deep Network for Magnetic Resonance Image Reconstruction. , 2019, , .		28
107	Integrating Data and Image Domain Deep Learning for Limited Angle Tomography using Consensus Equilibrium. , 2019, , .		10
108	SUPER Learning: A Supervised-Unsupervised Framework for Low-Dose CT Image Reconstruction. , 2019, ,		5
109	Minimal Linear Networks for Magnetic Resonance Image Reconstruction. Scientific Reports, 2019, 9, 19527.	1.6	8

	CHATION	LEPORT	
# 110	ARTICLE Deep Learning in MR Image Processing. Investigative Magnetic Resonance Imaging, 2019, 23, 81.	IF 0.2	Citations 36
111	Multi-Module Deep Learning for Enhanced and Accelerated PET Image Reconstruction. , 2019, , .		0
112	Artificial intelligence in pediatric and adult congenital cardiac MRI: an unmet clinical need. Cardiovascular Diagnosis and Therapy, 2019, 9, S310-S325.	0.7	31
113	Suppressing motion artefacts in MRI using an Inceptionâ€ResNet network with motion simulation augmentation. NMR in Biomedicine, 2022, 35, e4225.	1.6	21
114	PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data. BMC Bioinformatics, 2019, 20, 716.	1.2	7
115	Advances in clinical MRI technology. Science Translational Medicine, 2019, 11, .	5.8	34
116	Advances in MRI Applications to Diagnose and Manage Cardiomyopathies. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 74.	0.4	1
117	Accelerating MR Imaging via Deep Chambolle-Pock Network. , 2019, 2019, 6818-6821.		7
118	Biomedical Image Reconstruction: From the Foundations to Deep Neural Networks. Foundations and Trends in Signal Processing, 2019, 13, 283-357.	12.0	13
119	A novel Cerenkov luminescence tomography approach using multilayer fully connected neural network. Physics in Medicine and Biology, 2019, 64, 245010.	1.6	19
120	Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system. NPG Asia Materials, 2019, 11, .	3.8	81
121	Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning. Nature Biomedical Engineering, 2019, 3, 880-888.	11.6	163
122	How will "democratization of artificial intelligence―change the future of radiologists?. Japanese Journal of Radiology, 2019, 37, 9-14.	1.0	28
123	Noncontrast MR angiography: An update. Journal of Magnetic Resonance Imaging, 2019, 49, 355-373.	1.9	81
124	An overview of deep learning in medical imaging focusing on MRI. Zeitschrift Fur Medizinische Physik, 2019, 29, 102-127.	0.6	1,266
125	MR Image Reconstruction Using Deep Density Priors. IEEE Transactions on Medical Imaging, 2019, 38, 1633-1642.	5.4	114
126	Improvement of image quality at CT and MRI using deep learning. Japanese Journal of Radiology, 2019, 37, 73-80.	1.0	134
127	Enhanced Pointâ€ofâ€Care Ultrasound Applications by Integrating Automated Featureâ€Learning Systems Using Deep Learning. Journal of Ultrasound in Medicine, 2019, 38, 1887-1897.	0.8	49

#	Article	IF	CITATIONS
128	Lowâ€field MRI: An MR physics perspective. Journal of Magnetic Resonance Imaging, 2019, 49, 1528-1542.	1.9	191
129	High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 2019, 25, 44-56.	15.2	2,938
130	A framework for constraining image SNR loss due to MR raw data compression. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2019, 32, 213-225.	1.1	1
131	Deep neural network predicts emotional responses of the human brain from functional magnetic resonance imaging. Neurolmage, 2019, 186, 607-627.	2.1	25
132	Deep learning in medical imaging and radiation therapy. Medical Physics, 2019, 46, e1-e36.	1.6	513
133	Machine learning for nuclear cardiology: The way forward. Journal of Nuclear Cardiology, 2019, 26, 1755-1758.	1.4	33
134	Motion Artifact Reduction Using a Convolutional Neural Network for Dynamic Contrast Enhanced MR Imaging of the Liver. Magnetic Resonance in Medical Sciences, 2020, 19, 64-76.	1.1	87
135	Editorial commentary: Current reality and future evolution of virtual, augmented, and mixed realities for cardiovascular application. Trends in Cardiovascular Medicine, 2020, 30, 149-150.	2.3	1
136	Incorporating prior knowledge via volumetric deep residual network to optimize the reconstruction of sparsely sampled MRI. Magnetic Resonance Imaging, 2020, 66, 93-103.	1.0	29
137	Image Reconstruction: From Sparsity to Data-Adaptive Methods and Machine Learning. Proceedings of the IEEE, 2020, 108, 86-109.	16.4	187
138	Networks for Nonlinear Diffusion Problems in Imaging. Journal of Mathematical Imaging and Vision, 2020, 62, 471-487.	0.8	14
139	Spatio-Temporal Deep Learning-Based Undersampling Artefact Reduction for 2D Radial Cine MRI With Limited Training Data. IEEE Transactions on Medical Imaging, 2020, 39, 703-717.	5.4	61
140	Local distances preserving based manifold learning. Expert Systems With Applications, 2020, 139, 112860.	4.4	9
141	Unsupervised learning of a deep neural network for metal artifact correction using dualâ€polarity readout gradients. Magnetic Resonance in Medicine, 2020, 83, 124-138.	1.9	14
142	Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images. IEEE Transactions on Medical Imaging, 2020, 39, 366-376.	5.4	18
143	Comparison and evaluation of the efficacy of compressed SENSE (CS) and gradient―and spinâ€echo (GRASE) in breathâ€hold (BH) magnetic resonance cholangiopancreatography (MRCP). Journal of Magnetic Resonance Imaging, 2020, 51, 824-832.	1.9	25
144	{k} -Space Deep Learning for Accelerated MRI. IEEE Transactions on Medical Imaging, 2020, 39, 377-386.	5.4	193
145	Magnetic resonance fingerprinting review part 2: Technique and directions. Journal of Magnetic Resonance Imaging, 2020, 51, 993-1007.	1.9	42

#	Article	IF	CITATIONS
146	Bi-Linear Modeling of Data Manifolds for Dynamic-MRI Recovery. IEEE Transactions on Medical Imaging, 2020, 39, 688-702.	5.4	17
147	Model-Based and Data-Driven Strategies in Medical Image Computing. Proceedings of the IEEE, 2020, 108, 110-124.	16.4	30
148	Trabecular bone imaging using a 3D adiabatic inversion recovery prepared ultrashort TE Cones sequence at 3T. Magnetic Resonance in Medicine, 2020, 83, 1640-1651.	1.9	38
149	Collaborative linear manifold learning for link prediction in heterogeneous networks. Information Sciences, 2020, 511, 297-308.	4.0	8
150	Deep residual network for highly accelerated fMRI reconstruction using variable density spiral trajectory. Neurocomputing, 2020, 398, 338-346.	3.5	5
151	Machine learning for image reconstruction. , 2020, , 25-64.		20
152	A Review on Deep Learning in Medical Image Reconstruction. Journal of the Operations Research Society of China, 2020, 8, 311-340.	0.9	103
153	Restoration of Lossy JPEG-Compressed Brain MR Images Using Cross-Domain Neural Networks. IEEE Signal Processing Letters, 2020, 27, 141-145.	2.1	10
154	Compressed sensing MR image reconstruction via a deep frequency-division network. Neurocomputing, 2020, 384, 346-355.	3.5	11
155	Compressed sensing MRI based on the hybrid regularization by denoising and the epigraph projection. Signal Processing, 2020, 170, 107444.	2.1	7
156	Implementation of artificial intelligence in medicine: Status analysis and development suggestions. Artificial Intelligence in Medicine, 2020, 102, 101780.	3.8	53
157	A new deep learning method for image deblurring in optical microscopic systems. Journal of Biophotonics, 2020, 13, e201960147.	1.1	35
158	Quantitative threeâ€dimensional ultrashort echo time cones imaging of the knee joint with motion correction. NMR in Biomedicine, 2020, 33, e4214.	1.6	17
159	An Attribute-Weighted Bayes Classifier Based on Asymmetric Correlation Coefficient. International Journal of Pattern Recognition and Artificial Intelligence, 2020, 34, 2050025.	0.7	1
160	Segmented diffusion imaging with iterative motionâ€corrected reconstruction (SEDIMENT) for brain echoâ€planar imaging. NMR in Biomedicine, 2020, 33, e4185.	1.6	8
161	InversionNet: An Efficient and Accurate Data-Driven Full Waveform Inversion. IEEE Transactions on Computational Imaging, 2020, 6, 419-433.	2.6	76
162	A Two-Stage Deep Learning Method for Robust Shape Reconstruction With Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 4887-4897.	2.4	86
163	Artificial neural network for Slice Encoding for Metal Artifact Correction (SEMAC) MRI. Magnetic Resonance in Medicine, 2020, 84, 263-276.	1.9	13

#	Article	IF	CITATIONS
164	IFR-Net: Iterative Feature Refinement Network for Compressed Sensing MRI. IEEE Transactions on Computational Imaging, 2020, 6, 434-446.	2.6	48
165	Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis. Journal of Magnetic Resonance Imaging, 2020, 52, 1321-1339.	1.9	38
166	Velocity model building in a crosswell acquisition geometry with image-trained artificial neural networks. Geophysics, 2020, 85, U31-U46.	1.4	44
167	A Transferâ€Learning Approach for Accelerated MRI Using Deep Neural Networks. Magnetic Resonance in Medicine, 2020, 84, 663-685.	1.9	106
168	An Iterative Method With Enhanced Laplacian- Scaled Thresholding for Noise-Robust Compressive Sensing Magnetic Resonance Image Reconstruction. IEEE Access, 2020, 8, 177021-177040.	2.6	3
169	Dual-Encoder-Unet For Fast Mri Reconstruction. , 2020, , .		8
170	Rapid MR relaxometry using deep learning: An overview of current techniques and emerging trends. NMR in Biomedicine, 2022, 35, e4416.	1.6	29
171	Single-shot stereo-polarimetric compressed ultrafast photography for light-speed observation of high-dimensional optical transients with picosecond resolution. Nature Communications, 2020, 11, 5252.	5.8	49
172	High-performance rapid MR parameter mapping using model-based deep adversarial learning. Magnetic Resonance Imaging, 2020, 74, 152-160.	1.0	19
173	Diverse Applications of Artificial Intelligence in Neuroradiology. Neuroimaging Clinics of North America, 2020, 30, 505-516.	0.5	16
174	Gene correlation network analysis to identify regulatory factors in sepsis. Journal of Translational Medicine, 2020, 18, 381.	1.8	34
175	Accelerating quantitative MR imaging with the incorporation of B1 compensation using deep learning. Magnetic Resonance Imaging, 2020, 72, 78-86.	1.0	15
176	Neural Architecture Search for compressed sensing Magnetic Resonance image reconstruction. Computerized Medical Imaging and Graphics, 2020, 85, 101784.	3.5	17
177	Deep-Learning-Based Optimization of the Under-Sampling Pattern in MRI. IEEE Transactions on Computational Imaging, 2020, 6, 1139-1152.	2.6	74
178	Distortion correction of single-shot EPI enabled by deep-learning. NeuroImage, 2020, 221, 117170.	2.1	29
179	J-MoDL: Joint Model-Based Deep Learning for Optimized Sampling and Reconstruction. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1151-1162.	7.3	53
180	Artificial intelligence in image reconstruction: The change is here. Physica Medica, 2020, 79, 113-125.	0.4	53
181	Primer and Historical Review on Rapid Cardiac <scp>CINE MRI</scp> . Journal of Magnetic Resonance Imaging, 2022, 55, 373-388.	1.9	16

#	Article	IF	CITATIONS
182	Integrated imaging and molecular analysis to decipher tumor microenvironment in the era of immunotherapy. Seminars in Cancer Biology, 2022, 84, 310-328.	4.3	34
183	A novel three-dimensional magnetic particle imaging system based on the frequency mixing for the point-of-care diagnostics. Scientific Reports, 2020, 10, 11833.	1.6	10
184	Rapid single scan ramped hybridâ€encoding for bicomponent T2* mapping in a human knee joint: A feasibility study. NMR in Biomedicine, 2020, 33, e4391.	1.6	7
185	Volumetric imaging of myelin in vivo using 3D inversion recoveryâ€prepared ultrashort echo time cones magnetic resonance imaging. NMR in Biomedicine, 2020, 33, e4326.	1.6	15
186	3D Few-View CT Image Reconstruction with Deep Learning. , 2020, , .		3
187	Myelin Imaging in Human Brain Using a Short Repetition Time Adiabatic Inversion Recovery Prepared Ultrashort Echo Time (STAIR-UTE) MRI Sequence in Multiple Sclerosis. Radiology, 2020, 297, 392-404.	3.6	35
188	Ultrasound Imaging. Investigative Radiology, 2020, 55, 573-577.	3.5	4
189	DuDoRNet: Learning a Dual-Domain Recurrent Network for Fast MRI Reconstruction With Deep T1 Prior. , 2020, , .		65
190	CINENet: deep learning-based 3D cardiac CINE MRI reconstruction with multi-coil complex-valued 4D spatio-temporal convolutions. Scientific Reports, 2020, 10, 13710.	1.6	122
191	Al-enabled high-resolution scanning coherent diffraction imaging. Applied Physics Letters, 2020, 117, .	1.5	53
192	Free-Breathing Cardiovascular MRI Using a Plug-and-Play Method with Learned Denoiser. , 2020, 2020, 1748-1751.		3
193	Training Variational Networks With Multidomain Simulations: Speed-of-Sound Image Reconstruction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2584-2594.	1.7	18
194	Multiple Slice k-space Deep Learning for Magnetic Resonance Imaging Reconstruction. , 2020, 2020, 1564-1567.		11
195	Prior-Guided Image Reconstruction for Accelerated Multi-Contrast MRI via Generative Adversarial Networks. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1072-1087.	7.3	78
196	Deriving new soft tissue contrasts from conventional MR images using deep learning. Magnetic Resonance Imaging, 2020, 74, 121-127.	1.0	1
197	Discriminative sparsity preserving projection via global constraint for unconstrained face recognition. Journal of Engineering, 2020, 2020, 348-352.	0.6	1
198	Advanced Data Collection and Analysis in Data-Driven Manufacturing Process. Chinese Journal of Mechanical Engineering (English Edition), 2020, 33, .	1.9	54
199	Prospective Deployment of Deep Learning in <scp>MRI</scp> : A Framework for Important Considerations, Challenges, and Recommendations for Best Practices. Journal of Magnetic Resonance Imaging, 2021, 54, 357-371.	1.9	44

	CITATION	CITATION REPORT	
#	Article	IF	Citations
200	Artificial intelligence in radiation oncology. Nature Reviews Clinical Oncology, 2020, 17, 771-781.	12.5	167
201	EDITORIAL COMMENT. Urology, 2020, 143, 31-32.	0.5	0
202	Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN. IEEE Transactions on Computational Imaging, 2020, 6, 1285-1296.	2.6	52
203	Using Low-Rank Tensors for the Recovery of MPI System Matrices. IEEE Transactions on Computational Imaging, 2020, 6, 1389-1402.	2.6	14
204	Using Deep Learning to Accelerate Knee MRI at 3 T: Results of an Interchangeability Study. American Journal of Roentgenology, 2020, 215, 1421-1429.	1.0	95
205	Deep-learning-based image quality enhancement of compressed sensing magnetic resonance imaging of vessel wall: comparison of self-supervised and unsupervised approaches. Scientific Reports, 2020, 10, 13950.	1.6	30
206	Deep Efficient End-to-End Reconstruction (DEER) Network for Few-View Breast CT Image Reconstruction. IEEE Access, 2020, 8, 196633-196646.	2.6	26
207	An Adaptive Intelligence Algorithm for Undersampled Knee MRI Reconstruction. IEEE Access, 2020, 8, 204825-204838.	2.6	59
208	SARA-GAN: Self-Attention and Relative Average Discriminator Based Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. Frontiers in Neuroinformatics, 2020, 14, 611666.	1.3	47
209	Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy. European Journal of Hybrid Imaging, 2020, 4, 17.	0.6	106
210	Fast Electron Tomography for Nanomaterials. Journal of Physical Chemistry C, 2020, 124, 27276-27286.	1.5	30
211	Deep learning for tomographic image reconstruction. Nature Machine Intelligence, 2020, 2, 737-748.	8.3	233
212	A deep unrolling network inspired by total variation for compressed sensing MRI. , 2020, 107, 102856.		19
213	Generative adversarial network based regularized image reconstruction for PET. Physics in Medicine and Biology, 2020, 65, 125016.	1.6	27
214	Investigating the challenges and generalizability of deep learning brain conductivity mapping. Physics in Medicine and Biology, 2020, 65, 135001.	1.6	15
215	Domain Transform Network for Photoacoustic Tomography from Limited-view and Sparsely Sampled Data. Photoacoustics, 2020, 19, 100190.	4.4	39
216	Artifact removal using a hybrid-domain convolutional neural network for limited-angle computed tomography imaging. Physics in Medicine and Biology, 2020, 65, 155010.	1.6	40
217	Multi-Scale Learned Iterative Reconstruction. IEEE Transactions on Computational Imaging, 2020, 6, 843-856.	2.6	21

#	Article	IF	CITATIONS
218	Three-dimensional reconstruction of CT image features based on multi-threaded deep learning calculation. Pattern Recognition Letters, 2020, 136, 309-315.	2.6	13
219	Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. Virtual and Physical Prototyping, 2020, 15, 340-358.	5.3	79
220	A Completion Network for Reconstruction from Compressed Acquisition. , 2020, , .		3
221	On instabilities of deep learning in image reconstruction and the potential costs of Al. Proceedings of the United States of America, 2020, 117, 30088-30095.	3.3	384
222	A dual-domain deep learning-based reconstruction method for fully 3D sparse data helical CT. Physics in Medicine and Biology, 2020, 65, 245030.	1.6	28
223	Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy. Physics in Medicine and Biology, 2020, 65, 155015.	1.6	37
224	Deep-Learning Image Reconstruction for Real-Time Photoacoustic System. IEEE Transactions on Medical Imaging, 2020, 39, 3379-3390.	5.4	73
225	On the Interpretability of Artificial Intelligence in Radiology: Challenges and Opportunities. Radiology: Artificial Intelligence, 2020, 2, e190043.	3.0	212
226	Classification of Infrared Objects in Manifold Space Using Kullback-Leibler Divergence of Gaussian Distributions of Image Points. Symmetry, 2020, 12, 434.	1.1	13
227	What scans we will read: imaging instrumentation trends in clinical oncology. Cancer Imaging, 2020, 20, 38.	1.2	35
228	Known Operator Learning Enables Constrained Projection Geometry Conversion: Parallel to Cone-Beam for Hybrid MR/X-Ray Imaging. IEEE Transactions on Medical Imaging, 2020, 39, 3488-3498.	5.4	6
229	Deep Learning Techniques for Inverse Problems in Imaging. IEEE Journal on Selected Areas in Information Theory, 2020, 1, 39-56.	1.9	292
230	Subsampled brain MRI reconstruction by generative adversarial neural networks. Medical Image Analysis, 2020, 65, 101747.	7.0	52
231	Neural networks-based regularization for large-scale medical image reconstruction. Physics in Medicine and Biology, 2020, 65, 135003.	1.6	26
232	PET Image Reconstruction Using a Cascading Back-Projection Neural Network. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1100-1111.	7.3	16
233	A half-century of innovation in technology—preparing MRI for the 21st century. British Journal of Radiology, 2020, 93, 20200113.	1.0	15
234	Data-Driven Seismic Waveform Inversion: A Study on the Robustness and Generalization. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 6900-6913.	2.7	79
235	Appearance Learning for Image-Based Motion Estimation in Tomography. IEEE Transactions on Medical Imaging, 2020, 39, 3667-3678.	5.4	4

#	Article	IF	CITATIONS
236	Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI challenge. Magnetic Resonance in Medicine, 2020, 84, 3054-3070.	1.9	154
237	Dual-domain cascade of U-nets for multi-channel magnetic resonance image reconstruction. Magnetic Resonance Imaging, 2020, 71, 140-153.	1.0	28
238	Electromagnet design for ultra-low-field MRI. International Journal of Applied Electromagnetics and Mechanics, 2020, 63, 267-278.	0.3	0
239	Benchmarking MRI Reconstruction Neural Networks on Large Public Datasets. Applied Sciences (Switzerland), 2020, 10, 1816.	1.3	29
240	Adaptive and Compressive Beamforming Using Deep Learning for Medical Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 1558-1572.	1.7	79
241	A deep error correction network for compressed sensing MRI. BMC Biomedical Engineering, 2020, 2, 4.	1.7	11
242	Microwave Imaging by Deep Learning Network: Feasibility and Training Method. IEEE Transactions on Antennas and Propagation, 2020, 68, 5626-5635.	3.1	52
243	Stenosis Detection From Time-of-Flight Magnetic Resonance Angiography via Deep Learning 3D Squeeze and Excitation Residual Networks. IEEE Access, 2020, 8, 43325-43335.	2.6	8
244	Overview of quantitative susceptibility mapping using deep learning: Current status, challenges and opportunities. NMR in Biomedicine, 2022, 35, e4292.	1.6	41
245	Joint multiâ€contrast variational network reconstruction (jVN) with application to rapid 2D and 3D imaging. Magnetic Resonance in Medicine, 2020, 84, 1456-1469.	1.9	28
246	Selfâ€supervised learning of physicsâ€guided reconstruction neural networks without fully sampled reference data. Magnetic Resonance in Medicine, 2020, 84, 3172-3191.	1.9	133
247	Technical Improvements in Head and Neck MR Imaging. Neuroimaging Clinics of North America, 2020, 30, 295-309.	0.5	11
248	DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magnetic Resonance Imaging, 2020, 68, 136-147.	1.0	120
249	MRI Techniques to Decrease Imaging Times in Children. Radiographics, 2020, 40, 485-502.	1.4	65
250	ADAPTIVE-NET: deep computed tomography reconstruction network with analytical domain transformation knowledge. Quantitative Imaging in Medicine and Surgery, 2020, 10, 415-427.	1.1	30
251	Clinical quantitative cardiac imaging for the assessment of myocardial ischaemia. Nature Reviews Cardiology, 2020, 17, 427-450.	6.1	94
252	Deep learning for irregularly and regularly missing data reconstruction. Scientific Reports, 2020, 10, 3302.	1.6	66
253	SAR Image Restoration From Spectrum Aliasing by Deep Learning. IEEE Access, 2020, 8, 40367-40377.	2.6	1

		CITATION REPORT		
#	Article		IF	Citations
254	Noninterpretive Uses of Artificial Intelligence in Radiology. Academic Radiology, 2021,	28, 1225-1235.	1.3	53
255	Artificial Intelligence in Radiology Residency Training. Seminars in Musculoskeletal Rac 24, 74-80.	iology, 2020,	0.4	19
256	Artificial Intelligence Explained for Nonexperts. Seminars in Musculoskeletal Radiology 003-011.	, 2020, 24,	0.4	12
257	In vivo imaging of phosphocreatine with artificial neural networks. Nature Communica 1072.	tions, 2020, 11,	5.8	55
258	Morbigenous brain region and gene detection with a genetically evolved random neur- cluster approach in late mild cognitive impairment. Bioinformatics, 2020, 36, 2561-25		1.8	28
259	Prediction of bone mineral density from computed tomography: application of deep le convolutional neural network. European Radiology, 2020, 30, 3549-3557.	arning with a	2.3	68
260	Reconstruction of spectra from truncated free induction decays by deep learning in pr resonance spectroscopy. Magnetic Resonance in Medicine, 2020, 84, 559-568.	oton magnetic	1.9	14
261	Deep Magnetic Resonance Image Reconstruction: Inverse Problems Meet Neural Netw Processing Magazine, 2020, 37, 141-151.	orks. IEEE Signal	4.6	218
262	Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Su Current Approaches, Trends, and Issues. IEEE Signal Processing Magazine, 2020, 37, 1	ırvey of the 28-140.	4.6	213
263	Mathematical Models for Magnetic Resonance Imaging Reconstruction: An Overview of Approaches, Problems, and Future Research Areas. IEEE Signal Processing Magazine, 2	of the 020, 37, 24-32.	4.6	61
264	A dual-domain deep lattice network for rapid MRI reconstruction. Neurocomputing, 20)20, 397, 94-107.	3.5	17
265	An introduction to deep learning in medical physics: advantages, potential, and challer Medicine and Biology, 2020, 65, 05TR01.	nges. Physics in	1.6	123
266	Accelerated Dynamic Magnetic Resonance Imaging Using Learned Representations: A Biomedical Imaging. IEEE Signal Processing Magazine, 2020, 37, 83-93.	New Frontier in	4.6	5
267	Sparseâ€graph manifold learning method for bioluminescence tomography. Journal of 2020, 13, e201960218.	Biophotonics,	1.1	13
268	Radon Inversion via Deep Learning. IEEE Transactions on Medical Imaging, 2020, 39, 2	076-2087.	5.4	85
269	Deep learning in medical image registration: a survey. Machine Vision and Applications	s, 2020, 31, 1.	1.7	343
270	Validation of deep-learning image reconstruction for coronary computed tomography Impact on noise, image quality and diagnostic accuracy. Journal of Cardiovascular Con Tomography, 2020, 14, 444-451.	angiography: 1puted	0.7	105
271	Compressed Sensing: From Research to Clinical Practice With Deep Neural Networks: Times for Magnetic Resonance Imaging. IEEE Signal Processing Magazine, 2020, 37, 1		4.6	121

#	Article	IF	CITATIONS
272	A multi-scale variational neural network for accelerating motion-compensated whole-heart 3D coronary MR angiography. Magnetic Resonance Imaging, 2020, 70, 155-167.	1.0	32
273	Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR in Biomedicine, 2020, 33, e4312.	1.6	30
274	Standard SPECT myocardial perfusion estimation from half-time acquisitions using deep convolutional residual neural networks. Journal of Nuclear Cardiology, 2021, 28, 2761-2779.	1.4	56
275	Single-shot ultrafast imaging attaining 70 trillion frames per second. Nature Communications, 2020, 11, 2091.	5.8	80
276	Deep neural network inspired by iterative shrinkage-thresholding algorithm with data consistency (NISTAD) for fast Undersampled MRI reconstruction. Magnetic Resonance Imaging, 2020, 70, 134-144.	1.0	7
277	Geometric Approaches to Increase the Expressivity of Deep Neural Networks for MR Reconstruction. IEEE Journal on Selected Topics in Signal Processing, 2020, 14, 1292-1305.	7.3	10
278	Non-contrast coronary magnetic resonance angiography: current frontiers and future horizons. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2020, 33, 591-612.	1.1	20
279	Deep variational network for rapid 4D flow MRI reconstruction. Nature Machine Intelligence, 2020, 2, 228-235.	8.3	43
280	Synergizing medical imaging and radiotherapy with deep learning. Machine Learning: Science and Technology, 2020, 1, 021001.	2.4	24
281	Image Clustering via Deep Embedded Dimensionality Reduction and Probability-Based Triplet Loss. IEEE Transactions on Image Processing, 2020, 29, 5652-5661.	6.0	20
282	Low-field magnetic resonance imaging of roots in intact clayey and silty soils. Geoderma, 2020, 370, 114356.	2.3	19
283	Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction. Medical Image Analysis, 2020, 63, 101689.	7.0	21
284	MD-Recon-Net: A Parallel Dual-Domain Convolutional Neural Network for Compressed Sensing MRI. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 120-135.	2.7	41
285	Accelerated MR spectroscopic imaging—a review of current and emerging techniques. NMR in Biomedicine, 2021, 34, e4314.	1.6	67
286	REDAEP: Robust and Enhanced Denoising Autoencoding Prior for Sparse-View CT Reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 108-119.	2.7	23
287	Augmented deep learning model for improved quantitative accuracy of MR-based PET attenuation correction in PSMA PET-MRI prostate imaging. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48, 9-20.	3.3	29
288	DPIR-Net: Direct PET Image Reconstruction Based on the Wasserstein Generative Adversarial Network. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 35-43.	2.7	56
289	Optimization of a Close-Fitting Volume RF Coil for Brain Imaging at 6.5 mT Using Linear Programming. IEEE Transactions on Biomedical Engineering, 2021, 68, 1106-1114.	2.5	10

#	Article	IF	CITATIONS
290	Model-Based Deep Learning PET Image Reconstruction Using Forward–Backward Splitting Expectation–Maximization. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 54-64.	2.7	69
291	Seamless Virtual Whole Slide Image Synthesis and Validation Using Perceptual Embedding Consistency. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 403-411.	3.9	17
292	Deep Learning for PET Image Reconstruction. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 1-25.	2.7	128
293	A Novel Method for the Image Quality Improvement of Ultrasonic Tomography. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	12
294	Deep learning for biomedical image reconstruction: a survey. Artificial Intelligence Review, 2021, 54, 215-251.	9.7	51
295	Enhancing the X-Ray Differential Phase Contrast Image Quality With Deep Learning Technique. IEEE Transactions on Biomedical Engineering, 2021, 68, 1751-1758.	2.5	10
296	Training a neural network for Gibbs and noise removal in diffusion MRI. Magnetic Resonance in Medicine, 2021, 85, 413-428.	1.9	35
297	Compressed sensing with signal averaging for improved sensitivity and motion artifact reduction in fluorineâ€19 MRI. NMR in Biomedicine, 2021, 34, e4418.	1.6	8
298	Uncertainty modelling in deep learning for safer neuroimage enhancement: Demonstration in diffusion MRI. NeuroImage, 2021, 225, 117366.	2.1	59
299	Artificial intelligence in stroke imaging: Current and future perspectives. Clinical Imaging, 2021, 69, 246-254.	0.8	43
300	CT artifact correction for sparse and truncated projection data using generative adversarial networks. Medical Physics, 2021, 48, 615-626.	1.6	15
301	Myocardial arterial spin labeling in systole and diastole using flowâ€sensitive alternating inversion recovery with parallel imaging and compressed sensing. NMR in Biomedicine, 2021, 34, e4436.	1.6	6
302	FastPET: Near Real-Time Reconstruction of PET Histo-Image Data Using a Neural Network. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 65-77.	2.7	33
303	Rethinking medical image reconstruction via shape prior, going deeper and faster: Deep joint indirect registration and reconstruction. Medical Image Analysis, 2021, 68, 101930.	7.0	7
304	Computational Methods for Deep Learning. Texts in Computer Science, 2021, , .	0.5	33
305	Natural reconstruction coordinates for imperfect TRASE MRI. Linear Algebra and Its Applications, 2021, 611, 94-117.	0.4	2
306	Triple-D network for efficient undersampled magnetic resonance images reconstruction. Magnetic Resonance Imaging, 2021, 77, 44-56.	1.0	3
307	Outlook of the future landscape of artificial intelligence in medicine and new challenges. , 2021, , 503-526.		1

#	Article	IF	CITATIONS
308	Robust water–fat separation based on deep learning model exploring multiâ€echo nature of mGRE. Magnetic Resonance in Medicine, 2021, 85, 2828-2841.	1.9	11
309	Uncertainty Quantification in Deep MRI Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 239-250.	5.4	54
310	High dimensional data reconstruction based on L2,1 norm. Applied Mathematical Modelling, 2021, 89, 1764-1774.	2.2	1
311	Artificial Intelligence for Optimization and Interpretation of PET/CT and PET/MR Images. Seminars in Nuclear Medicine, 2021, 51, 134-142.	2.5	23
312	MRI-guided Radiation Therapy: An Emerging Paradigm in Adaptive Radiation Oncology. Radiology, 2021, 298, 248-260.	3.6	83
313	Deep learning for brain disorders: from data processing to disease treatment. Briefings in Bioinformatics, 2021, 22, 1560-1576.	3.2	14
314	Deep Learning Enables Superior Photoacoustic Imaging at Ultralow Laser Dosages. Advanced Science, 2021, 8, 2003097.	5.6	31
315	Dynamic MRI reconstruction with end-to-end motion-guided network. Medical Image Analysis, 2021, 68, 101901.	7.0	23
316	Biomedical imaging and analysis through deep learning. , 2021, , 49-74.		2
317	Potentials and caveats of AI in hybrid imaging. Methods, 2021, 188, 4-19.	1.9	12
318	A kâ€spaceâ€ŧoâ€image reconstruction network for MRI using recurrent neural network. Medical Physics, 2021, 48, 193-203.	1.6	14
319	Application and Construction of Deep Learning Networks in Medical Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 137-159.	2.7	29
320	RUNâ€UP: Accelerated multishot diffusionâ€weighted MRI reconstruction using an unrolled network with Uâ€Net as priors. Magnetic Resonance in Medicine, 2021, 85, 709-720.	1.9	29
321	Do CNNs Solve the CT Inverse Problem?. IEEE Transactions on Biomedical Engineering, 2021, 68, 1799-1810.	2.5	27
322	Rapid reconstruction of highly undersampled, nonâ€Cartesian realâ€ŧime cine <i>k</i> â€space data using a perceptual complex neural network (PCNN). NMR in Biomedicine, 2021, 34, e4405.	1.6	16
323	Photon Counting CT: Clinical Applications and Future Developments. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 441-452.	2.7	68
324	Wasserstein GANs for MR Imaging: From Paired to Unpaired Training. IEEE Transactions on Medical Imaging, 2021, 40, 105-115.	5.4	36
325	Hybrid Learning-Based Cell Aggregate Imaging With Miniature Electrical Impedance Tomography. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-10.	2.4	14

#	Article	IF	CITATIONS
326	Deep Neural Network Based Electrical Impedance Tomographic Sensing Methodology for Large-Area Robotic Tactile Sensing. IEEE Transactions on Robotics, 2021, 37, 1570-1583.	7.3	30
327	A novel roadmap connecting the 1H-MRS total choline resonance to all hallmarks of cancer following targeted therapy. European Radiology Experimental, 2021, 5, 5.	1.7	5
328	Towards Ultrafast MRI via Extreme k-Space Undersampling and Superresolution. Lecture Notes in Computer Science, 2021, , 254-264.	1.0	6
329	How Do Machines Learn? Artificial Intelligence as a New Era in Medicine. Journal of Personalized Medicine, 2021, 11, 32.	1.1	45
330	Learning Data Consistency and its Application to Dynamic MR Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3140-3153.	5.4	20
331	Review of Dimension Reduction Methods. Journal of Data Analysis and Information Processing, 2021, 09, 189-231.	0.7	17
332	CLEAR: Comprehensive Learning Enabled Adversarial Reconstruction for Subtle Structure Enhanced Low-Dose CT Imaging. IEEE Transactions on Medical Imaging, 2021, 40, 3089-3101.	5.4	52
333	DUG-RECON: A Framework for Direct Image Reconstruction Using Convolutional Generative Networks. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 44-53.	2.7	19
334	Deep Learning and Its Application to Function Approximation for MR in Medicine: An Overview. Magnetic Resonance in Medical Sciences, 2022, 21, 553-568.	1.1	2
335	Evaluation of the Robustness of Learned MR Image Reconstruction to Systematic Deviations Between Training and Test Data for the Models from the fastMRI Challenge. Lecture Notes in Computer Science, 2021, , 25-34.	1.0	3
336	Generalized t-SNE Through the Lens of Information Geometry. IEEE Access, 2021, 9, 129619-129625.	2.6	6
337	Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction. IEEE Transactions on Computational Imaging, 2021, 7, 209-223.	2.6	13
338	Deep Manifold Embedding for Hyperspectral Image Classification. IEEE Transactions on Cybernetics, 2022, 52, 10430-10443.	6.2	18
339	Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep Gradient Descent. , 2021, , .		4
340	Deep reconstruction of 1D ISOMAP representations. Multimedia Systems, 2021, 27, 503-518.	3.0	0
341	Data Extrapolation From Learned Prior Images for Truncation Correction in Computed Tomography. IEEE Transactions on Medical Imaging, 2021, 40, 3042-3053.	5.4	15
342	Downsampled Imaging Geometric Modeling for Accurate CT Reconstruction via Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 2976-2985.	5.4	7
343	Dataset Denoising Based on Manifold Assumption. Mathematical Problems in Engineering, 2021, 2021, 1-14.	0.6	2

#	Article	IF	CITATIONS
344	Medical Image Denoising in MRI Reconstruction Procedure. Lecture Notes in Computer Science, 2021, , 115-130.	1.0	0
345	MAGIC: Manifold and Graph Integrative Convolutional Network for Low-Dose CT Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 3459-3472.	5.4	53
346	CT Reconstruction With PDF: Parameter-Dependent Framework for Data From Multiple Geometries and Dose Levels. IEEE Transactions on Medical Imaging, 2021, 40, 3065-3076.	5.4	34
347	Deep learning-based denoising for improved dose efficiency in EDX tomography of nanoparticles. Nanoscale, 2021, 13, 12242-12249.	2.8	12
348	Deep MRI Reconstruction with Generative Vision Transformers. Lecture Notes in Computer Science, 2021, , 54-64.	1.0	5
349	Adversarially Learned Iterative Reconstruction for Imaging Inverse Problems. Lecture Notes in Computer Science, 2021, , 540-552.	1.0	2
350	Unpaired Stain Style Transfer Using Invertible Neural Networks Based on Channel Attention and Long-Range Residual. IEEE Access, 2021, 9, 11282-11295.	2.6	4
351	Nuclear imaging and artificial intelligence. , 2021, , 255-280.		0
352	SPECIAL: Single-Shot Projection Error Correction Integrated Adversarial Learning for Limited-Angle CT. IEEE Transactions on Computational Imaging, 2021, 7, 734-746.	2.6	23
353	A Dual-Domain CNN-Based Network for CT Reconstruction. IEEE Access, 2021, 9, 71091-71103.	2.6	16
354	Quad-Contrast Imaging: Simultaneous Acquisition of Four Contrast-Weighted Images (PD-Weighted,) Tj ETQq0 (Transactions on Medical Imaging, 2021, 40, 3617-3626.) 0 rgBT /C 5.4	Overlock 10 T 5
355	Joint Motion Correction and Super Resolution for Cardiac Segmentation viaÂLatent Optimisation. Lecture Notes in Computer Science, 2021, , 14-24.	1.0	9
356	OCT Image Segmentation Using Neural Architecture Search and SRGAN. , 2021, , .		3
357	A Learned Reconstruction Network for SPECT Imaging. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5, 26-34.	2.7	20
358	Learning to Reconstruct CT Images From the VVBP-Tensor. IEEE Transactions on Medical Imaging, 2021, 40, 3030-3041.	5.4	8
359	Investigation of the efficacy of a data-driven CT artifact correction scheme for sparse and truncated projection data for intracranial hemorrhage diagnosis. , 2021, 11595, .		0
360	Metalnv-Net: Meta Inversion Network for Sparse View CT Image Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 621-634.	5.4	39
361	Adaptive deep-learning algorithm for signal recovery of broadband microwave photonic receiving systems based on supervised training. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 834.	0.9	2

ARTICLE IF CITATIONS # Manifold reconstruction of differences: a model-based iterative statistical estimation algorithm with 362 0 a data-driven prior., 2021, 11595,. A Novel Neural Model With Lateral Interaction for Learning Tasks. Neural Computation, 2021, 33, 1.3 528-551. LCPR-Net: low-count PET image reconstruction using the domain transform and cycle-consistent 364 1.1 14 generative adversarial networks. Quantitative Imaging in Medicine and Surgery, 2021, 11, 749-762. Calibration-Less Multi-Coil Compressed Sensing Magnetic Resonance Image Reconstruction Based on OSCAR Regularization. Journal of Imaging, 2021, 7, 58. Dynamic MRI of the abdomen using parallel nonâ€Cartesian convolutional recurrent neural networks. 366 1.9 10 Magnetic Resonance in Medicine, 2021, 86, 964-973. Detection and Quantification of Myocardial Fibrosis Using Stain-Free Infrared Spectroscopic Imaging. Archives of Pathology and Laboratory Medicine, 2021, 145, 1526-1535. 1.2 Analysis of deep complexâ€valued convolutional neural networks for MRI reconstruction and 368 1.9 58 phaseâ€focused applications. Magnetic Resonance in Medicine, 2021, 86, 1093-1109. Magnetic resonance neurography of the head and neck: state of the art, anatomy, pathology and 9 future perspectives. British Journal of Radiology, 2021, 94, 20200798. Utilizing the wavelet transform's structure in compressed sensing. Signal, Image and Video 370 3 1.7 Processing, 2021, 15, 1407-1414. MRzero ―Automated discovery of MRI sequences using supervised learning. Magnetic Resonance in 371 1.9 24 Medicine, 2021, 86, 709-724. The promise of artificial intelligence and deep learning in PET and SPECT imaging. Physica Medica, 2021, 372 0.4 153 83, 122-137. Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and 24 Sparse-Angle CT Applications. Journal of Imaging, 2021, 7, 44. Efficient solution of linear inverse problems using an iterative linear neural network with a 374 0.5 0 generalization training approach. Journal of Physics Communications, 2021, 5, 035008. A Modified Convolutional Neural Networks For MRI-based Images For Detection and Stage Classification Of Alzheimer Disease., 2021, , . Emerging role of artificial intelligence in nuclear medicine. Nuclear Medicine Communications, 2021, 376 0.5 4 42, 592-601. Machine learning in Magnetic Resonance Imaging: Image reconstruction. Physica Medica, 2021, 83, 79-87. 29 UVTOMO-GAN: An Adversarial Learning Based Approach For Unknown View X-Ray Tomographic 378 3 Reconstruction., 2021,,. 379 Density Compensated Unrolled Networks For Non-Cartesian MRI Reconstruction., 2021, , .

#	Article	IF	CITATIONS
380	Boosting the signal-to-noise of low-field MRI with deep learning image reconstruction. Scientific Reports, 2021, 11, 8248.	1.6	58
381	Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions. NeuroImage, 2021, 230, 117756.	2.1	39
382	Quantitative Molecular Positron Emission Tomography Imaging Using Advanced Deep Learning Techniques. Annual Review of Biomedical Engineering, 2021, 23, 249-276.	5.7	30
383	Memory-Efficient Neural Network For Non-Linear Ultrasound Computed Tomography Reconstruction. , 2021, , .		2
384	Ct Reconstruction With Pdf: Parameter-Dependent Framework For Multiple Scanning Geometries And Dose Levels. , 2021, , .		3
385	A multi-branch deep convolutional fusion architecture for 3D microwave inverse scattering: stored grain application. Neural Computing and Applications, 2021, 33, 13467-13479.	3.2	7
386	T2 analysis using artificial neural networks. Journal of Magnetic Resonance, 2021, 325, 106930.	1.2	8
387	Safety challenges related to the use of sedation and general anesthesia in pediatric patients undergoing magnetic resonance imaging examinations. Pediatric Radiology, 2021, 51, 724-735.	1.1	34
388	Screening of cancer predisposition syndromes. Pediatric Radiology, 2022, 52, 401-417.	1.1	9
389	Image reconstruction framework for helical cone-beam CT by combining compressed sensing and deep learning. , 2021, , .		0
390	One-stop local and whole-body staging of children with cancer. Pediatric Radiology, 2022, 52, 391-400.	1.1	4
391	A guaranteed convergence analysis for the projected fast iterative soft-thresholding algorithm in parallel MRI. Medical Image Analysis, 2021, 69, 101987.	7.0	21
392	ReUINet: A fast GNL distortion correction approach on a 1.0ÂT MRIâ€Linac scanner. Medical Physics, 2021, 48, 2991-3002.	1.6	3
393	A Tomographic Reconstruction Method using Coordinate-based Neural Network with Spatial Regularization. Proceedings of the Northern Lights Deep Learning Workshop, 0, 2, .	0.0	0
394	Neural network enhanced 3D turbo spin echo for MR intracranial vessel wall imaging. Magnetic Resonance Imaging, 2021, 78, 7-17.	1.0	5
395	Generative Data Augmentation for Learning-based Electrical Impedance Tomography via Variational Autoencoder. , 2021, , .		2
396	Deep Generative Adversarial Networks: Applications in Musculoskeletal Imaging. Radiology: Artificial Intelligence, 2021, 3, e200157.	3.0	16
397	Deep model-based magnetic resonance parameter mapping network (DOPAMINE) for fast T1 mapping using variable flip angle method. Medical Image Analysis, 2021, 70, 102017.	7.0	20

	CITATION	KEPORT	
#	Article	IF	Citations
398	A survey on deep learning in medical image reconstruction. Intelligent Medicine, 2021, 1, 118-127.	1.6	47
399	Deep learningâ€based cardiac cine segmentation: Transfer learning application to 7T ultrahighâ€field MRI. Magnetic Resonance in Medicine, 2021, 86, 2179-2191.	1.9	14
400	PET image reconstruction with deep progressive learning. Physics in Medicine and Biology, 2021, 66, 105016.	1.6	13
401	Realâ€ŧime deep artifact suppression using recurrent Uâ€Nets for Iowâ€latency cardiac MRI. Magnetic Resonance in Medicine, 2021, 86, 1904-1916.	1.9	16
402	Deep Learning in Biomedical Optics. Lasers in Surgery and Medicine, 2021, 53, 748-775.	1.1	32
403	"Real-world―radiomics from multi-vendor MRI: an original retrospective study on the prediction of nodal status and disease survival in breast cancer, as an exemplar to promote discussion of the wider issues. Cancer Imaging, 2021, 21, 37.	1.2	13
404	Deep-learning-enhanced light-field microscopy. Nature Methods, 2021, 18, 459-460.	9.0	4
405	Adaptive Gradient Balancing for Undersampled MRI Reconstruction and Image-to-Image Translation. , 2021, , .		0
406	CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation. Scientific Reports, 2021, 11, 10191.	1.6	26
407	SPECTnet: a deep learning neural network for SPECT image reconstruction. Annals of Translational Medicine, 2021, 9, 819-819.	0.7	14
408	Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin revolution. GAMM Mitteilungen, 2021, 44, e202100007.	2.7	26
409	kâ€Spaceâ€based coil combination via geometric deep learning for reconstruction of nonâ€Cartesian MRSI data. Magnetic Resonance in Medicine, 2021, 86, 2353-2367.	1.9	7
410	TractLearn: A geodesic learning framework for quantitative analysis of brain bundles. NeuroImage, 2021, 233, 117927.	2.1	7
411	Recent Advances in Photoacoustic Tomography. BME Frontiers, 2021, 2021, .	2.2	34
412	Selfâ€supervised learning for accelerated 3D highâ€resolution ultrasound imaging. Medical Physics, 2021, 48, 3916-3926.	1.6	7
413	Machine Learning in Electromagnetics With Applications to Biomedical Imaging: A Review. IEEE Antennas and Propagation Magazine, 2021, 63, 39-51.	1.2	42
414	Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula. Radiotherapy and Oncology, 2021, 159, 209-217.	0.3	18
415	Applications of artificial intelligence in nuclear medicine image generation. Quantitative Imaging in Medicine and Surgery, 2021, 11, 2792-2822.	1.1	23

#	Article	IF	CITATIONS
416	Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivityâ€weighted coil combination. Magnetic Resonance in Medicine, 2021, 86, 1859-1872.	1.9	39
417	Rapid 3D nanoscale coherent imaging via physics-aware deep learning. Applied Physics Reviews, 2021, 8, .	5.5	26
418	Machine learning in materials science: From explainable predictions to autonomous design. Computational Materials Science, 2021, 193, 110360.	1.4	103
419	Quantitative magnetic resonance imaging of brain anatomy and in vivo histology. Nature Reviews Physics, 2021, 3, 570-588.	11.9	115
420	Block-based compressed sensing of MR images using multi-rate deep learning approach. Complex & Intelligent Systems, 2021, 7, 2437-2451.	4.0	3
421	Image enhancement of whole-body oncology [18F]-FDG PET scans using deep neural networks to reduce noise. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 539-549.	3.3	30
422	A deep cascade of ensemble of dual domain networks with gradient-based T1 assistance and perceptual refinement for fast MRI reconstruction. Computerized Medical Imaging and Graphics, 2021, 91, 101942.	3.5	6
423	Learning-Based Sparse Data Reconstruction for Compressed Data Aggregation in IoT Networks. IEEE Internet of Things Journal, 2021, 8, 11732-11742.	5.5	19
424	Deep learning for fast MR imaging: A review for learning reconstruction from incomplete k-space data. Biomedical Signal Processing and Control, 2021, 68, 102579.	3.5	43
425	Deepâ€learning based superâ€resolution for 3D isotropic coronary MR angiography in less than a minute. Magnetic Resonance in Medicine, 2021, 86, 2837-2852.	1.9	32
426	Temporally aware volumetric generative adversarial networkâ€based MR image reconstruction with simultaneous respiratory motion compensation: Initial feasibility in 3D dynamic cine cardiac MRI. Magnetic Resonance in Medicine, 2021, 86, 2666-2683.	1.9	9
427	A geometry-guided deep learning technique for CBCT reconstruction. Physics in Medicine and Biology, 2021, 66, 15LT01.	1.6	6
429	Deep learning in magnetic resonance image reconstruction. Journal of Medical Imaging and Radiation Oncology, 2021, 65, 564-577.	0.9	22
431	Disentangled generative adversarial network for low-dose CT. Eurasip Journal on Advances in Signal Processing, 2021, 2021, .	1.0	4
432	Deep Learning for Irregularly and Regularly Missing 3-D Data Reconstruction. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 6244-6265.	2.7	41
433	Artificial Intelligence for PET Image Reconstruction. Journal of Nuclear Medicine, 2021, 62, 1330-1333.	2.8	17
434	Anatomically aided PET image reconstruction using deep neural networks. Medical Physics, 2021, 48, 5244-5258.	1.6	15
435	Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. European Radiology, 2022, 32, 702-713.	2.3	71

#	Article	IF	CITATIONS
436	Ultraâ€Fast Labelâ€Free Serum Metabolic Diagnosis of Coronary Heart Disease via a Deep Stabilizer. Advanced Science, 2021, 8, e2101333.	5.6	30
437	Adaptive convolutional neural networks for accelerating magnetic resonance imaging via k-space data interpolation. Medical Image Analysis, 2021, 72, 102098.	7.0	18
438	Deep neural network for beam hardening artifacts removal in image reconstruction. Applied Intelligence, 2022, 52, 6037-6056.	3.3	5
439	Analysis and Evaluation of a Deep Learning Reconstruction Approach with Denoising for Orthopedic MRI. Radiology: Artificial Intelligence, 2021, 3, e200278.	3.0	17
440	Al musculoskeletal clinical applications: how can Al increase my day-to-day efficiency?. Skeletal Radiology, 2022, 51, 293-304.	1.2	19
441	MRI pulse sequence integration for deepâ€learningâ€based brain metastases segmentation. Medical Physics, 2021, 48, 6020-6035.	1.6	6
442	A surrogate model with data augmentation and deep transfer learning for temperature field prediction of heat source layout. Structural and Multidisciplinary Optimization, 2021, 64, 2287-2306.	1.7	20
443	Portable, bedside, low-field magnetic resonance imaging for evaluation of intracerebral hemorrhage. Nature Communications, 2021, 12, 5119.	5.8	76
444	Effective approximation of high-dimensional space using neural networks. Journal of Supercomputing, 2022, 78, 4377-4397.	2.4	3
445	Feasibility and Implementation of a Deep Learning MR Reconstruction for TSE Sequences in Musculoskeletal Imaging. Diagnostics, 2021, 11, 1484.	1.3	36
446	Deep Learning for Compressive Imaging. , 2021, , 458-469.		0
447	The LASSO and its Cousins. , 2021, , 129-141.		1
448	Wavelets. , 2021, , 188-221.		0
449	Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction. IEEE Transactions on Medical Imaging, 2021, 40, 2306-2317.	5.4	114
450	Deep unregistered multi-contrast MRI reconstruction. Magnetic Resonance Imaging, 2021, 81, 33-41.	1.0	8
451	A Dual Domain Network For MRI Reconstruction Using Gabor Loss. , 2021, , .		2
452	A neural network with encoded visible edge prior for limitedâ€angle computed tomography reconstruction. Medical Physics, 2021, 48, 6464-6481.	1.6	6
453	Model-data-driven image reconstruction with neural networks for ultrasound computed tomography breast imaging. Neurocomputing, 2022, 467, 10-21.	3.5	13

ARTICLE IF CITATIONS Human, All Too Human? An All-Around Appraisal of the "Artificial Intelligence Revolution―in Medical 1.1 53 454 Imaging. Frontiers in Psychology, 2021, 12, 710982. Simultaneous image reconstruction and lesion segmentation in accelerated MRI using multitasking 1.6 learning. Medical Physics, 2021, 48, 7189-7198. Synthesizing Quantitative T2 Maps in Right Lateral Knee Femoral Condyles from Multicontrast 456 Anatomic Data with a Conditional Generative Adversarial Network. Radiology: Artificial Intelligence, 3.0 7 2021, 3, e200122. Deep learning-based image reconstruction for few-view computed tomography. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1011, 165594. Analysis of Optimization Algorithms., 2021, , 166-187. 458 0 A Short Guide to Compressive Imaging., 2021, , 47-74. 461 Stable and Accurate Neural Networks for Compressive Imaging., 2021, , 501-520. 0 Neural Networks and Deep Learning., 2021, , 431-457. 463 471 Techniques for Enhancing Performance., 2021, , 75-100. 0 A Taste of Wavelet Approximation Theory., 2021, , 222-236. DeepStrain: A Deep Learning Workflow for the Automated Characterization of Cardiac Mechanics. 475 1.1 15 Frontiers in Cardiovascular Medicine, 2021, 8, 730316. Sampling Strategies for Compressive Imaging., 2021, , 353-372. Infinite-Dimensional Compressed Sensing., 2021, , 334-348. 477 0 Images, Transforms and Sampling., 2021, , 30-46. 479 Randomly generating three-dimensional realistic schistous sand particles using deep learning: 480 2.9 13 Variational autoencoder implementation. Engineering Geology, 2021, 291, 106235. A Helmholtz equation solver using unsupervised learning: Application to transcranial ultrasound. 1.9 Journal of Computational Physics, 2021, 441, 110430. Deep learning based image reconstruction for sparse-view diffuse optical tomography. Waves in 482 1.6 2 Random and Complex Media, 0, , 1-17. Demonstration of a fully neural network based synthetic aperture radar processing pipeline for image formation and analysis., 2021, , .

#	Article	IF	CITATIONS
485	Total Variation Minimization. , 2021, , 403-426.		0
489	From Global to Local. , 2021, , 241-266.		Ο
490	Recovery Guarantees for Wavelet-Based Compressive Imaging. , 2021, , 373-402.		0
492	Local Structure and Nonuniform Recovery. , 2021, , 267-304.		Ο
494	Optimization for Compressed Sensing. , 2021, , 142-165.		0
497	Local Structure and Uniform Recovery. , 2021, , 305-333.		0
498	Accuracy and Stability of Deep Learning for Compressive Imaging. , 2021, , 470-500.		0
499	An Introduction to Conventional Compressed Sensing. , 2021, , 105-128.		0
500	Strategies of Deep Learning for Tomographic Reconstruction. , 2021, , .		2
501	Domain knowledge augmentation of parallel MR image reconstruction using deep learning. Computerized Medical Imaging and Graphics, 2021, 92, 101968.	3.5	10
502	Accelerating Whole-Body Diffusion-weighted MRI with Deep Learning–based Denoising Image Filters. Radiology: Artificial Intelligence, 2021, 3, e200279.	3.0	8
503	Accelerating quantitative susceptibility and R2* mapping using incoherent undersampling and deep neural network reconstruction. NeuroImage, 2021, 240, 118404.	2.1	8
504	Artificial intelligence in medical imaging: implications for patient radiation safety. British Journal of Radiology, 2021, 94, 20210406.	1.0	8
505	Fat-saturated image generation from multi-contrast MRIs using generative adversarial networks with Bloch equation-based autoencoder regularization. Medical Image Analysis, 2021, 73, 102198.	7.0	9
506	Whole-body MRI: a practical guide for imaging patients with malignant bone disease. Clinical Radiology, 2021, 76, 715-727.	0.5	11
507	Deep frequency-recurrent priors for inverse imaging reconstruction. Signal Processing, 2022, 190, 108320.	2.1	4
508	Artificial Intelligence in Radiation Therapy. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 158-181.	2.7	4
509	TransCT: Dual-Path Transformer for Low Dose Computed Tomography. Lecture Notes in Computer Science, 2021, , 55-64.	1.0	35

ARTICLE IF CITATIONS # Magnetic resonance parameter mapping using modelâ€guided selfâ€supervised deep learning. Magnetic 510 1.9 41 Resonance in Medicine, 2021, 85, 3211-3226. Reconstruction of Compressed-sensing MR Imaging Using Deep Residual Learning in the Image Domain. Magnetic Resonance in Medical Sciences, 2021, 20, 190-203. 511 1.1 512 Learned Iterative Reconstruction., 2021, , 1-22. 1 Accelerated Phase Shifting for Structured Illumination Microscopy Based on Deep Learning. IEEE Transactions on Computational Imaging, 2021, 7, 700-712. Recent Advancements in Medical Imaging: A Machine Learning Approach. Studies in Big Data, 2021, , 514 0.8 1 189-212. Helical CT Reconstruction from Sparse-view Data through Exploiting the 3D Anatomical Structure 2.6 Sparsity. IEEE Access, 2021, , 1-1. 516 A Bayesian Deep CNN Framework for Reconstructing k-t-Undersampled Resting-fMRI., 2021, , . 0 Task Transformer Network for Joint MRI Reconstruction and Super-Resolution. Lecture Notes in 1.0 57 Computer Science, 2021, , 307-317. Label-Free Physics-Informed Image Sequence Reconstruction with Disentangled Spatial-Temporal 518 1.0 3 Modeling. Lecture Notes in Computer Science, 2021, , 361-371. Robust Phase Unwrapping via Deep Image Prior for Quantitative Phase Imaging. IEEE Transactions on Image Processing, 2021, 30, 7025-7037. 6.0 DRONE: Dual-Domain Residual-based Optimization NEtwork for Sparse-View CT Reconstruction. IEEE 520 101 5.4Transactions on Medical Imaging, 2021, 40, 3002-3014. Real-Time Mapping of Tissue Properties for Magnetic Resonance Fingerprinting. Lecture Notes in 1.0 Computer Science, 2021, , 161-170. Artificial Intelligence for MR Image Reconstruction: An Overview for Clinicians. Journal of Magnetic 522 1.9 150 Resonance Imaging, 2021, 53, 1015-1028. Splitâ€slice training and hyperparameter tuning of RAKI networks for simultaneous multiâ€slice reconstruction. Magnetic Resonance in Medicine, 2021, 85, 3272-3280. Deriving Neural Network Architectures Using Precision Learning: Parallel-to-Fan Beam Conversion. 524 1.0 6 Lecture Notes in Computer Science, 2019, , 503-517. Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences. Lecture Notes in Computer Science, 2019, , 153-166. Model Learning: Primal Dual Networks for Fast MR Imaging. Lecture Notes in Computer Science, 2019, , 526 1.0 33 21-29. Deep Learning Based Framework for Direct Reconstruction of PET Images. Lecture Notes in Computer Science, 2019, , 48-56.

#	Article	IF	CITATIONS
528	Nonuniform Variational Network: Deep Learning for Accelerated Nonuniform MR Image Reconstruction. Lecture Notes in Computer Science, 2019, , 57-64.	1.0	9
529	Detection and Correction of Cardiac MRI Motion Artefacts During Reconstruction from k-space. Lecture Notes in Computer Science, 2019, , 695-703.	1.0	16
530	Accelerated MRI Reconstruction with Dual-Domain Generative Adversarial Network. Lecture Notes in Computer Science, 2019, , 47-57.	1.0	5
531	Joint Multi-anatomy Training of a Variational Network for Reconstruction of Accelerated Magnetic Resonance Image Acquisitions. Lecture Notes in Computer Science, 2019, , 71-79.	1.0	4
532	Active MR k-space Sampling with Reinforcement Learning. Lecture Notes in Computer Science, 2020, , 23-33.	1.0	19
533	MRI Image Reconstruction via Learning Optimization Using Neural ODEs. Lecture Notes in Computer Science, 2020, , 83-93.	1.0	11
534	Learning Geometry-Dependent and Physics-Based Inverse Image Reconstruction. Lecture Notes in Computer Science, 2020, , 487-496.	1.0	5
536	Emerging methods in radiology. Der Radiologe, 2020, 60, 41-53.	1.7	4
537	Correction of out-of-FOV motion artifacts using convolutional neural network. Magnetic Resonance Imaging, 2020, 71, 93-102.	1.0	11
538	Structured feature for multi-label learning. Neurocomputing, 2020, 404, 257-266.	3.5	1
539	Dense 3D surface reconstruction of large-scale streetscape from vehicle-borne imagery and LiDAR. International Journal of Digital Earth, 2021, 14, 619-639.	1.6	5
540	Computed tomography reconstruction using deep image prior and learned reconstruction methods. Inverse Problems, 2020, 36, 094004.	1.0	97
541	An unsupervised deep learning method for multi-coil cine MRI. Physics in Medicine and Biology, 2020, 65, 235041.	1.6	21
542	Deep learning for medical image analysis: a brief introduction. Neuro-Oncology Advances, 2020, 2, iv35-iv41.	0.4	15
545	Tomographic reconstruction with a generative adversarial network. Journal of Synchrotron Radiation, 2020, 27, 486-493.	1.0	31
546	Defending Water Treatment Networks: Exploiting Spatio-Temporal Effects for Cyber Attack Detection. , 2020, , .		13
547	Spectral-GANs for High-Resolution 3D Point-cloud Generation. , 2020, , .		12
548	A Framework for Offshore Load Environment Modeling1. Journal of Offshore Mechanics and Arctic Engineering, 2020, 142, .	0.6	2

#	Article	IF	CITATIONS
549	Deep learning in photoacoustic tomography: current approaches and future directions. Journal of Biomedical Optics, 2020, 25, .	1.4	80
550	High signal-to-noise ratio reconstruction of low bit-depth optical coherence tomography using deep learning. Journal of Biomedical Optics, 2020, 25, .	1.4	15
551	DirectPET: full-size neural network PET reconstruction from sinogram data. Journal of Medical Imaging, 2020, 7, 1.	0.8	33
552	Radon inversion via deep learning. , 2019, , .		6
553	Convolutional regularization methods for 4D, x-ray CT reconstruction. , 2019, , .		8
554	Towards deep iterative-reconstruction algorithms for computed tomography (CT) applications. , 2019,		2
555	Harnessing the power of deep learning for volumetric CT imaging with single or limited number of projections. , 2019, , .		5
556	Online MR image reconstruction for compressed sensing acquisition in T2* imaging. , 2019, , .		3
557	Dual network architecture for few-view CT - trained on ImageNet data and transferred for medical imaging. , 2019, , .		9
558	A hierarchical approach to deep learning and its application to tomographic reconstruction. , 2019, , .		12
559	fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images for Accelerated MR Image Reconstruction Using Machine Learning. Radiology: Artificial Intelligence, 2020, 2, e190007.	3.0	152
560	Performance assessment of the 2 γpositronium imaging with the total-body PET scanners. EJNMMI Physics, 2020, 7, 44.	1.3	44
561	High-accuracy optical convolution unit architecture for convolutional neural networks by cascaded acousto-optical modulator arrays. Optics Express, 2019, 27, 19778.	1.7	45
562	Photonic analog-to-digital converter powered by a generalized and robust convolutional recurrent autoencoder. Optics Express, 2020, 28, 39618.	1.7	4
563	Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows. Optics Letters, 2020, 45, 2447.	1.7	39
564	Fast upper airway magnetic resonance imaging for assessment of speech production and sleep apnea. Precision and Future Medicine, 2018, 2, 131-148.	0.5	3
565	Computer-Aided Diagnosis of Alzheimer's Disease through Weak Supervision Deep Learning Framework with Attention Mechanism. Sensors, 2021, 21, 220.	2.1	37
566	LANTERN: Learn analysis transform network for dynamic magnetic resonance imaging. Inverse Problems and Imaging, 2021, 15, 1363.	0.6	5

#	Article	IF	CITATIONS
567	On the randomised stability constant for inverse problems. Mathematics in Engineering, 2020, 2, 264-286.	0.5	2
568	Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2021, 7, e12212.	1.8	9
569	MAGnitude-Image-to-Complex K-space (MAGIC-K) Net: A Data Augmentation Network for Image Reconstruction. Diagnostics, 2021, 11, 1935.	1.3	1
570	Scanâ€specific artifact reduction in kâ€space (SPARK) neural networks synergize with physicsâ€based reconstruction to accelerate MRI. Magnetic Resonance in Medicine, 2022, 87, 764-780.	1.9	19
571	Partial Fourier reconstruction of complex MR images using complexâ€valued convolutional neural networks. Magnetic Resonance in Medicine, 2022, 87, 999-1014.	1.9	9
572	Clinical Artificial Intelligence Applications. Radiologic Clinics of North America, 2021, 59, 1013-1026.	0.9	5
573	Issues on evaluation of AI based medical devices. Iryou Kikigaku (the Japanese Journal of Medical) Tj ETQq0 0 0 rg	;BT /Overlc 0.0	ock 10 Tf 50
574	Applications and future perspectives of deep learning in medical image analysis. Iryou Kikigaku (the) Tj ETQq1 1 ().784314 t 0.0	rg₿T /Overl○
575	Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network. The Journal of Korea Robotics Society, 2018, 13, 230-236.	0.2	0
576	APIR-Net: Autocalibrated Parallel Imaging Reconstruction Using a Neural Network. Lecture Notes in Computer Science, 2019, , 36-46.	1.0	0
578	Spatial-Frequency Non-local Convolutional LSTM Network for pRCC Classification. Lecture Notes in Computer Science, 2019, , 22-30.	1.0	0
579	Development of a Reconstruction Method using the Non-uniform Fourier Transform and a Machine Learning Approach for Spiral Imaging [Presidential Award Proceedings]. Japanese Journal of Magnetic Resonance in Medicine, 2019, 39, 20-24.	0.0	0
580	High spatial resolution x-ray luminescence computed tomography and x-ray fluorescence computed tomography. , 2019, , .		1
581	Deep learning image reconstruction method for limited-angle ultrasound tomography in prostate cancer. , 2019, , .		9
582	Sinogram interpolation for sparse-view micro-CT with deep learning neural network. , 2019, , .		6
583	Backproject-filter (BPF) CT image reconstruction using convolutional neural network. , 2019, , .		0
584	Non-learning based deep parallel MRI reconstruction (NLDpMRI). , 2019, , .		3

585	Direct image reconstruction from raw measurement data using an encoding transform
585	refinement-and-scaling neural network. , 2019, , .

#	Article	IF	CITATIONS
586	Learning-based computational MRI reconstruction without big data: from linear interpolation and structured low-rank matrices to recurrent neural networks. , 2019, , .		1
587	Acoustic Noise Reduction of Echo Planar Imaging in Diffusion MRI. , 2019, , .		0
589	Computed Tomography and Magnetic Resonance Imaging. Recent Results in Cancer Research, 2020, 216, 31-110.	1.8	1
590	Spatial Semantic-Preserving Latent Space Learning for Accelerated DWI Diagnostic Report Generation. Lecture Notes in Computer Science, 2020, , 333-342.	1.0	2
592	Rising role of artificial intelligence in image reconstruction for biomedical imaging. Artificial Intelligence in Medical Imaging, 2020, 1, 1-5.	0.3	2
594	Perception-Aware Losses Facilitate CT Denoising and Artifact Removal. , 2021, , .		3
595	Automated Processing and Phenotype Extraction of Ovine Medical Images Using a Combined Generative Adversarial Network and Computer Vision Pipeline. Sensors, 2021, 21, 7268.	2.1	2
596	Optical coherent dot-product chip for sophisticated deep learning regression. Light: Science and Applications, 2021, 10, 221.	7.7	56
598	Deep Medical Image Reconstruction with Autoencoders using Deep Boltzmann Machine Training. EAI Endorsed Transactions on Pervasive Health and Technology, 2020, 6, 166360.	0.7	9
599	Design of optical molecular imaging protocols through predictive task-based evaluations. , 2021, , .		0
600	Deep Learning Methods for Image Guidance in Radiation Therapy. Lecture Notes in Computer Science, 2020, , 3-22.	1.0	3
601	3D Volume Reconstruction from Single Lateral X-Ray Image via Cross-Modal Discrete Embedding Transition. Lecture Notes in Computer Science, 2020, , 322-331.	1.0	2
602	Geometry Constrained Weakly Supervised Object Localization. Lecture Notes in Computer Science, 2020, , 481-496.	1.0	37
603	CDF-Net: Cross-Domain Fusion Network for Accelerated MRI Reconstruction. Lecture Notes in Computer Science, 2020, , 421-430.	1.0	4
604	Dense light field reconstruction algorithm based on dictionary learning. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 064201.	0.2	3
605	An End-to-End Deep Network for Reconstructing CT Images Directly From Sparse Sinograms. IEEE Transactions on Computational Imaging, 2020, 6, 1548-1560.	2.6	16
606	Basic Principles of Tomographic Reconstruction. , 2020, , 45-94.		0
608	Learning Image From Projection: A Full-Automatic Reconstruction (FAR) Net for Computed Tomography. IEEE Access, 2020, 8, 219400-219414.	2.6	7

#	Article	IF	CITATIONS
609	Cascaded Residual Dense Networks for Dynamic MR Imaging with Edge-Enhanced Loss Constraint. Investigative Magnetic Resonance Imaging, 2020, 24, 214.	0.2	5
610	Rapid imaging of deep-tissue motion with parallelized diffuse correlation spectroscopy. , 2021, , .		1
611	Manifold Regularized Dynamic Network Pruning. , 2021, , .		48
612	Joint Deep Model-based MR Image and Coil Sensitivity Reconstruction Network (Joint-ICNet) for Fast MRI. , 2021, , .		24
613	MR image reconstruction using densely connected residual convolutional networks. Computers in Biology and Medicine, 2021, 139, 105010.	3.9	8
614	Defeating data hiding in social networks using generative adversarial network. Eurasip Journal on Image and Video Processing, 2020, 2020, .	1.7	7
616	Is Artificial Intelligence the New Friend for Radiologists? A Review Article. Cureus, 2020, 12, e11137.	0.2	18
617	High-statistics image generation from sparse radiation images by four types of machine-learning models. Journal of Instrumentation, 2020, 15, P10026-P10026.	0.5	1
618	Investigation of Compression and Reconstruction Methods for Solar Radiation Spectra above, within, and below the Sea Ice in Polar Environments. Journal of Atmospheric and Oceanic Technology, 2020, 37, 1681-1695.	0.5	0
619	Ultrasound transmission tomography image reconstruction with a fully convolutional neural network. Physics in Medicine and Biology, 2020, 65, 235021.	1.6	12
620	Reimagining City Configuration. , 2020, , .		11
621	Early perfusion and dopamine transporter imaging using F-FP-CIT PET/CT in patients with parkinsonism. American Journal of Nuclear Medicine and Molecular Imaging, 2018, 8, 360-372.	1.0	15
622	Advanced imaging/MRI for tissue engineering. , 2022, , 281-343.		0
623	Artificial Intelligence and Cardiac PET/Computed Tomography Imaging. PET Clinics, 2022, 17, 85-94.	1.5	2
624	A General Framework for Inverse Problem Solving using Self-Supervised Deep Learning: Validations in Ultrasound and Photoacoustic Image Reconstruction. , 2021, , .		5
625	K-space refinement in deep learning MR reconstruction via regularizing scan specific SPIRiT-based self consistency. , 2021, , .		2
626	In Vitro Study of the Precision and Accuracy of Measurement of the Vascular Inner Diameter on Computed Tomography Angiography Using Deep Learning Image Reconstruction. Journal of Computer Assisted Tomography, 2021, Publish Ahead of Print, 17-22.	0.5	0
627	Generalized deep iterative reconstruction for sparse-view CT imaging. Physics in Medicine and Biology, 2022, 67, 025005.	1.6	8

#	Article	IF	Citations
628	Image Processing and Luminescent Probes for Bioimaging Techniques with High Spatial Resolution and High Sensitivity. Journal of Physics: Conference Series, 2021, 2083, 022016.	0.3	0
629	Studying osteoarthritis with artificial intelligence applied to magnetic resonance imaging. Nature Reviews Rheumatology, 2022, 18, 112-121.	3.5	23
630	Conditional Invertible Neural Networks for Medical Imaging. Journal of Imaging, 2021, 7, 243.	1.7	25
631	The Use of Dual Modality PET/MRI in Population Studies: Considerations on Exposures, Economics, Strengths, and Limitations. , 2022, , 35-44.		0
632	Deep Learning Applications in Magnetic Resonance Imaging: Has the Future Become Present?. Diagnostics, 2021, 11, 2181.	1.3	37
633	Learning a preconditioner to accelerate compressed sensing reconstructions in MRI. Magnetic Resonance in Medicine, 2021, , .	1.9	2
634	Radiation dose reduction with deep-learning image reconstruction for coronary computed tomography angiography. European Radiology, 2022, 32, 2620-2628.	2.3	21
635	Convex optimization algorithms in medical image reconstruction—in the age of Al. Physics in Medicine and Biology, 2022, 67, 07TR01.	1.6	6
636	DeepSENSE: Learning coil sensitivity functions for SENSE reconstruction using deep learning. Magnetic Resonance in Medicine, 2022, 87, 1894-1902.	1.9	10
637	Effect of data leakage in brain MRI classification using 2D convolutional neural networks. Scientific Reports, 2021, 11, 22544.	1.6	40
638	Graph Convolutional Networks for Model-Based Learning in Nonlinear Inverse Problems. IEEE Transactions on Computational Imaging, 2021, 7, 1341-1353.	2.6	22
639	Advanced reconstruction methods for fast MRI. Advances in Magnetic Resonance Technology and Applications, 2021, , 21-35.	0.0	0
640	CoIL: Coordinate-Based Internal Learning for Tomographic Imaging. IEEE Transactions on Computational Imaging, 2021, 7, 1400-1412.	2.6	31
641	Dielectric Breast Phantoms by Generative Adversarial Network. IEEE Transactions on Antennas and Propagation, 2022, 70, 6256-6264.	3.1	3
642	DeepPhaseCut: Deep Relaxation in Phase for Unsupervised Fourier Phase Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44, 9931-9943.	9.7	5
643	Stabilizing Deep Tomographic Reconstruction. SSRN Electronic Journal, 0, , .	0.4	7
644	Fourier Compatible Near-Field Multiple-Input Multiple-Output Terahertz Imaging With Sparse Non-Uniform Apertures. IEEE Access, 2021, 9, 157278-157294.	2.6	14
645	Assessing the utility of low resolution brain imaging: treatment of infant hydrocephalus. NeuroImage: Clinical, 2021, 32, 102896.	1.4	4

#	Article	IF	Citations
646	Rank-based risk target data analysis using digital twin on oil pipeline network based on manifold learning. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022, 236, 1637-1651.	1.4	5
647	High-Contrast Lumbar Spinal Bone Imaging Using a 3D Slab-Selective UTE Sequence. Frontiers in Endocrinology, 2021, 12, 800398.	1.5	8
648	Reconstruction of threeâ€dimensional tomographic patient models for radiation dose modulation in CT from two scout views using deep learning. Medical Physics, 2022, 49, 901-916.	1.6	6
649	Multi-constraint generative adversarial network for dose prediction in radiotherapy. Medical Image Analysis, 2022, 77, 102339.	7.0	43
650	MI-Net: A Deep Network for Non-linear Ultrasound Computed Tomography Reconstruction. , 2020, , .		2
651	A 3D Convolutional Neural Network for Denoising of Proton CT. , 2020, , .		0
652	Syn-Net for Synergistic Deep-Learned PET-MR Reconstruction. , 2020, , .		5
653	Real-time Reconstruction for a Scanning CMOS Intraoperative Probe by Deep Learning. , 2020, , .		1
654	Advances in Fast Vessel-Wall Magnetic Resonance Imaging Using High-Density Coil Arrays. Investigative Magnetic Resonance Imaging, 2021, 25, 229.	0.2	0
655	DEMO: Deep MR Parametric Mapping with Unsupervised Multi-Tasking Framework. Investigative Magnetic Resonance Imaging, 2021, 25, 300.	0.2	3
656	Super-resolution reconstruction for parallel-beam SPECT based on deep learning and transfer learning: a preliminary simulation study. Annals of Translational Medicine, 2022, 10, 396-396.	0.7	3
657	SS-JIRCS: Self-Supervised Joint Image Reconstruction and Coil Sensitivity Calibration in Parallel MRI without Ground Truth. , 2021, , .		2
658	A low-cost and shielding-free ultra-low-field brain MRI scanner. Nature Communications, 2021, 12, 7238.	5.8	77
659	Radiation Dose Reduction in Digital Mammography by Deep-Learning Algorithm Image Reconstruction: A Preliminary Study. Journal of the Korean Society of Radiology, 2022, 83, 344.	0.1	1
660	Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers. IEEE Transactions on Medical Imaging, 2022, 41, 1747-1763.	5.4	88
661	Chemical exchange saturation transfer imaging of creatine, phosphocreatine, and protein arginine residue in tissues. NMR in Biomedicine, 2023, 36, e4671.	1.6	18
662	NC-PDNet: A Density-Compensated Unrolled Network for 2D and 3D Non-Cartesian MRI Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 1625-1638.	5.4	24
663	Undersampled Multi-Contrast MRI Reconstruction Based on Double-Domain Generative Adversarial Network, IEEE Journal of Biomedical and Health Informatics, 2022, 26, 4371-4377,	3.9	9

#	Article	IF	CITATIONS
664	Acquisition sequences and reconstruction methods for fast chemical exchange saturation transfer imaging. NMR in Biomedicine, 2023, 36, e4699.	1.6	17
665	Novel-view X-ray projection synthesis through geometry-integrated deep learning. Medical Image Analysis, 2022, 77, 102372.	7.0	3
666	High-Fidelity Shape Reconstruction for Electrical Impedance Tomography of Multi-Phase Conductivity via Deep Discrete Representation. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-11.	2.4	4
667	A review on AI in PET imaging. Annals of Nuclear Medicine, 2022, 36, 133-143.	1.2	29
668	Edge-enhanced dual discriminator generative adversarial network for fast MRI with parallel imaging using multi-view information. Applied Intelligence, 2022, 52, 14693-14710.	3.3	6
669	DIOR: Deep Iterative Optimization-Based Residual-Learning for Limited-Angle CT Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 1778-1790.	5.4	30
670	Fundamental and Trend of Tomographic Image Reconstruction: from Analytical Reconstruction Method, through Compressed Sensing, to Deep Learning. Materia Japan, 2022, 61, 7-14.	0.1	0
671	An endâ€ŧoâ€end Alâ€based framework for automated discovery of rapid CEST/MT MRI acquisition protocols and molecular parameter quantification (AutoCEST). Magnetic Resonance in Medicine, 2022, 87, 2792-2810.	1.9	22
672	Truncated Residual Based Plug-and-Play ADMM Algorithm for MRI Reconstruction. IEEE Transactions on Computational Imaging, 2022, 8, 96-108.	2.6	13
673	Deep-fUS: A Deep Learning Platform for Functional Ultrasound Imaging of the Brain Using Sparse Data. IEEE Transactions on Medical Imaging, 2022, 41, 1813-1825.	5.4	8
674	Report on the AAPM deepâ€learning sparseâ€view CT grand challenge. Medical Physics, 2022, 49, 4935-4943.	1.6	13
675	Ultrafast water–fat separation using deep learning–based singleâ€shot MRI. Magnetic Resonance in Medicine, 2022, 87, 2811-2825.	1.9	6
676	Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice. Radiology: Artificial Intelligence, 2022, 4, e210114.	3.0	17
677	Projection-to-image transform frame: a lightweight block reconstruction network for computed tomography. Physics in Medicine and Biology, 2022, 67, 035010.	1.6	1
678	An optimal control framework for joint-channel parallel MRI reconstruction without coil sensitivities. Magnetic Resonance Imaging, 2022, , .	1.0	1
679	Employing a neural network approach for reducing the convergence speed of diffuse optical image reconstruction algorithms. , 2022, , .		1
680	Enhanced phase retrieval via deep concatenation networks for in-line X-ray phase contrast imaging. Physica Medica, 2022, 95, 41-49.	0.4	7
681	What's new and what's next in diffusion MRI preprocessing. NeuroImage, 2022, 249, 118830.	2.1	43

#	Article	IF	CITATIONS
682	Artifact- and content-specific quality assessment for MRI with image rulers. Medical Image Analysis, 2022, 77, 102344.	7.0	14
683	Solving Inverse Problems With Deep Neural Networks – Robustness Included?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 1119-1134.	9.7	33
684	Chaotic physical security strategy based on manifold learning-assisted GANs for SDM–OFDM–PONs. Optics Letters, 2022, 47, 1834.	1.7	5
685	Deep-learning-based fast TOF-PET image reconstruction using direction information. Radiological Physics and Technology, 2022, 15, 72-82.	1.0	10
686	Al-Based Reconstruction for Fast MRl—A Systematic Review and Meta-Analysis. Proceedings of the IEEE, 2022, 110, 224-245.	16.4	57
687	Posterior temperature optimized Bayesian models for inverse problems in medical imaging. Medical Image Analysis, 2022, 78, 102382.	7.0	4
688	A backâ€projectionâ€andâ€filteringâ€like (BPFâ€like) reconstruction method with the deep learning filtration from listmode data in TOFâ€PET. Medical Physics, 2022, 49, 2531-2544.	1.6	3
689	A Deep Learning Method Based on Partition Modeling Forreconstructing Temperature Field. SSRN Electronic Journal, 0, , .	0.4	0
690	Multimodal MRI Reconstruction Assisted With Spatial Alignment Network. IEEE Transactions on Medical Imaging, 2022, 41, 2499-2509.	5.4	7
691	PET Image Reconstruction Incorporating Deep Image Prior and a Forward Projection Model. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, 6, 841-846.	2.7	13
692	Accelerating MR Parameter Mapping Using Nonlinear Compressive Manifold Learning and Regularized Pre-Imaging. IEEE Transactions on Biomedical Engineering, 2022, 69, 2996-3007.	2.5	5
693	Pyramid Convolutional RNN for MRI Image Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 2033-2047.	5.4	19
694	Image Reconstruction With Deep CNN for Mirrored Aperture Synthesis. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-11.	2.7	75
695	Design and demonstration of a lowâ€field magnetic resonance imaging rhizotron for inâ€field imaging of energy sorghum roots. The Plant Phenome Journal, 2022, 5, .	1.0	5
696	Multiparametric Oncologic Hybrid Imaging: Machine Learning Challenges and Opportunities. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebenden Verfahren, 2022, 194, 605-612.	0.7	1
697	Assessment of Osteoporosis in Lumbar Spine: In Vivo Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone. Frontiers in Endocrinology, 2022, 13, 801930.	1.5	5
698	RE-SHFC: Renyi Entropy-Based Spotted Hyena Fractional Calculus Algorithm for MR Image Reconstruction. Sensing and Imaging, 2022, 23, 1.	1.0	0
699	A Review of Deep Learning Methods for Compressed Sensing Image Reconstruction and Its Medical Applications. Electronics (Switzerland), 2022, 11, 586.	1.8	13

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
700	Deep learning in macroscopic diffuse optical imaging. Journal of Biomedical Optics, 20	22, 27, .	1.4	16
701	SSRNet: A CT Reconstruction Network Based on Sparse Connection and Weight Sharin Parameters Reduction. Sensing and Imaging, 2022, 23, 1.	ng for	1.0	1
702	A novelty convolutional neural network based direct reconstruction for MRI guided dif tomography. , 2022, , .	fuse optical		0
703	Deep learning-based image reconstruction and post-processing methods in positron er tomography for low-dose imaging and resolution enhancement. European Journal of N Medicine and Molecular Imaging, 2022, 49, 3098-3118.	nission uclear	3.3	22
704	Cardiac MR: From Theory to Practice. Frontiers in Cardiovascular Medicine, 2022, 9, 82	26283.	1.1	18
705	Bone and Soft Tissue Tumors. Radiologic Clinics of North America, 2022, 60, 339-358.		0.9	2
706	Cycle-consistent learning-based hybrid iterative reconstruction for whole-body PET ima in Medicine and Biology, 2022, 67, 085016.	iging. Physics	1.6	3
707	Multiparametric Functional MRI of the Kidney: Current State and Future Trends with D Approaches. RoFo Fortschritte Auf Dem Gebiet Der Rontgenstrahlen Und Der Bildgebe 2022, 194, 983-992.	eep Learning nden Verfahren,	0.7	2
708	3D k-space reflectance fluorescence tomography via deep learning. Optics Letters, 202	22, 47, 1533.	1.7	8
710	Implicit data crimes: Machine learning bias arising from misuse of public data. Proceed National Academy of Sciences of the United States of America, 2022, 119, e21172031	ings of the 119.	3.3	37
711	Multi-level pooling encoder–decoder convolution neural network for MRI reconstruc Computer Science, 2022, 8, e934.	tion. PeerJ	2.7	1
712	Asymmetric decoder design for efficient convolutional encoder-decoder architectures i image reconstruction. , 2022, , .	n medical		1
713	Visual analysis of image features in CT reconstruction based on convolutional neural n	etwork. , 2022,		0
714	The difficulty of computing stable and accurate neural networks: On the barriers of deand Smale's 18th problem. Proceedings of the National Academy of Sciences of th America, 2022, 119, e2107151119.	ep learning e United States of	3.3	41
715	Known operator learning and hybrid machine learning in medical imaging—a review o present, and the future. Progress in Biomedical Engineering, 2022, 4, 022002.	of the past, the	2.8	16
716	Disentangled Inference for GANs With Latently Invertible Autoencoder. International Jo Computer Vision, 2022, 130, 1259-1276.	burnal of	10.9	9
717	Artificial intelligence in functional imaging of the lung. British Journal of Radiology, 202 20210527.	22,95,	1.0	8
718	Stabilizing deep tomographic reconstruction: Part A. Hybrid framework and experimen Patterns, 2022, 3, 100474.	tal results.	3.1	16

#	Article	IF	CITATIONS
719	A truth-based primal-dual learning approach to reconstruct CT images utilizing the virtual imaging trial platform. , 2022, 12031, .		0
720	Volumetric, dual-domain x-ray CT reconstruction with deep learning. , 2022, , .		0
721	Stabilizing deep tomographic reconstruction: Part B. Convergence analysis and adversarial attacks. Patterns, 2022, 3, 100475.	3.1	13
722	Magnetic resonance coronary angiography in the era of multimodality imaging. Clinical Radiology, 2022, , .	0.5	4
723	An unsupervised reconstruction method for low-dose CT using deep generative regularization prior. Biomedical Signal Processing and Control, 2022, 75, 103598.	3.5	7
724	Progressively volumetrized deep generative models for data-efficient contextual learning of MR image recovery. Medical Image Analysis, 2022, 78, 102429.	7.0	9
725	Handling missing data through deep convolutional neural network. Information Sciences, 2022, 595, 278-293.	4.0	19
726	Mapping the human connectome using diffusion MRI at 300 mT/m gradient strength: Methodological advances and scientific impact. Neurolmage, 2022, 254, 118958.	2.1	18
727	Improving Feature Discrimination for Object Tracking by Structural-similarity-based Metric Learning. ACM Transactions on Multimedia Computing, Communications and Applications, 2022, 18, 1-23.	3.0	2
728	Instabilities in Conventional Multi-Coil MRI Reconstruction with Small Adversarial Perturbations. , 2021, , .		3
729	Data Driven Learning of Constrained Measurement Matrices for Signal Reconstruction. , 2021, , .		1
730	Sparse-View CT Reconstruction using Recurrent Stacked Back Projection. , 2021, , .		0
731	Artificial intelligence with deep learning in nuclear medicine and radiology. EJNMMI Physics, 2021, 8, 81.	1.3	26
732	Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Frontiers in Radiology, 2021, 1, .	1.2	37
733	Modern approaches to the elimination of artifacts of cone-beam computed tomography of the maxillofacial region. Medical Alphabet, 2021, 1, 14-20.	0.0	0
734	Deep learning based classification of dynamic processes in time-resolved X-ray tomographic microscopy. Scientific Reports, 2021, 11, 24174.	1.6	3
735	Asymmetric electrode geometry induced photovoltaic behavior for self-powered organic artificial synapses. Flexible and Printed Electronics, 2021, 6, 044009.	1.5	2
738	Self-Training Strategy Based on Finite Element Method for Adaptive Bioluminescence Tomography Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 2629-2643.	5.4	8

#	ARTICLE	IF	CITATIONS
739	The Modulo Radon Transform: Theory, Algorithms, and Applications. SIAM Journal on Imaging Sciences, 2022, 15, 455-490.	1.3	7
740	Automated Urban Planning for Reimagining City Configuration via Adversarial Learning: Quantification, Generation, and Evaluation. ACM Transactions on Spatial Algorithms and Systems, 2023, 9, 1-24.	1.1	4
741	Portable, low-field magnetic resonance imaging enables highly accessible and dynamic bedside evaluation of ischemic stroke. Science Advances, 2022, 8, eabm3952.	4.7	43
742	Integrated MRI-guided radiotherapy — opportunities and challenges. Nature Reviews Clinical Oncology, 2022, 19, 458-470.	12.5	47
743	Swin transformer for fast MRI. Neurocomputing, 2022, 493, 281-304.	3.5	55
746	Sinogram Upsampling Using Primal-Dual UNet for Undersampled CT and Radial MRI Reconstruction. SSRN Electronic Journal, 0, , .	0.4	1
747	Artificial Intelligence for Image Enhancement and Reconstruction in Magnetic Resonance Imaging. Contemporary Medical Imaging, 2022, , 125-138.	0.3	1
748	Leveraging Multi-Visit Information for Magnetic Resonance Image Reconstruction: Pilot Study on a Cohort of Glioblastoma Subjects. , 2022, , .		0
749	Universal Generative Modeling for Calibration-Free Parallel Mr Imaging. , 2022, , .		1
750	MC-PDNet: Deep Unrolled Neural Network For Multi-Contrast Mr Image Reconstruction From Undersampled K-Space Data. , 2022, , .		0
751	Data-Consistent Non-Cartesian Deep Subspace Learning for Efficient Dynamic MR Image Reconstruction. , 2022, 2022, .		5
752	Monte Carlo-based data generation for efficient deep learning reconstruction of macroscopic diffuse optical tomography and topography applications. Journal of Biomedical Optics, 2022, 27, .	1.4	9
753	Gradient Coil Design and Optimization for an Ultra-Low-Field MRI System. Applied Magnetic Resonance, 2022, 53, 895-914.	0.6	5
754	Assessment of data consistency through cascades of independently recurrent inference machines for fast and robust accelerated MRI reconstruction. Physics in Medicine and Biology, 2022, 67, 124001.	1.6	4
755	A geometry-guided multi-beamlet deep learning technique for CT reconstruction. Biomedical Physics and Engineering Express, 2022, 8, 045004.	0.6	3
756	Bedside monitoring of hypoxic ischemic brain injury using low-field, portable brain magnetic resonance imaging after cardiac arrest. Resuscitation, 2022, 176, 150-158.	1.3	14
757	When Does Backdoor Attack Succeed in Image Reconstruction? A Study of Heuristics vs. Bi-Level Solution. , 2022, , .		1
758	Image super-resolution reconstruction algorithm based on significant network connection-collaborative migration structure. , 2022, 127, 103566.		6

#	Article	IF	CITATIONS
759	Residual RAKI: A hybrid linear and non-linear approach for scan-specific k-space deep learning. NeuroImage, 2022, 256, 119248.	2.1	6
760	A Deep Learning Method for Optimal Undersampling Patterns and Image Recovery for MRI Exploiting Losses and Projections. IEEE Journal on Selected Topics in Signal Processing, 2022, 16, 713-724.	7.3	1
762	Non-Uniform Synthetic Aperture Radiometer Image Reconstruction Based on Deep Convolutional Neural Network. Remote Sensing, 2022, 14, 2359.	1.8	6
763	Sam's Net: A Self-Augmented Multistage Deep-Learning Network for End-to-End Reconstruction of Limited Angle CT. IEEE Transactions on Medical Imaging, 2022, 41, 2912-2924.	5.4	10
764	Regularized label relaxation with negative technique for image classification. Multimedia Tools and Applications, 0, , .	2.6	0
765	Myelin water imaging using a shortâ€TR adiabatic inversionâ€recovery (STAIR) sequence. Magnetic Resonance in Medicine, 2022, 88, 1156-1169.	1.9	3
766	Deep Learning-based 3D Magnetic Microrobot Tracking using 2D MR Images. IEEE Robotics and Automation Letters, 2022, 7, 6982-6989.	3.3	13
767	Fourier Domain CT Reconstruction withÂComplex Valued Neural Networks. Lecture Notes in Computer Science, 2022, , 386-397.	1.0	0
768	NeRP: Implicit Neural Representation Learning With Prior Embedding for Sparsely Sampled Image Reconstruction. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 770-782.	7.2	36
769	The use of deep learning methods in low-dose computed tomography image reconstruction: a systematic review. Complex & Intelligent Systems, 2022, 8, 5545-5561.	4.0	13
770	Physics-assisted generative adversarial network for X-ray tomography. Optics Express, 2022, 30, 23238.	1.7	7
771	Feasibility of a Generative Adversarial Network for Artifact Removal in Experimental Photoacoustic Imaging. Ultrasound in Medicine and Biology, 2022, 48, 1628-1643.	0.7	1
772	AutoPhaseNN: unsupervised physics-aware deep learning of 3D nanoscale Bragg coherent diffraction imaging. Npj Computational Materials, 2022, 8, .	3.5	18
773	Evolution of AI in Medical Imaging. , 2022, , 37-56.		0
774	Multimodal Transformer for Accelerated MR Imaging. IEEE Transactions on Medical Imaging, 2023, 42, 2804-2816.	5.4	29
775	Deep Learning-Based Image Reconstruction for Different Medical Imaging Modalities. Computational and Mathematical Methods in Medicine, 2022, 2022, 1-18.	0.7	19
776	Improved <scp>TSE</scp> imaging at <scp>ultrahigh</scp> field using nonlocalized efficiency <scp>RF</scp> shimming and acquisition modes optimized for refocused echoes (<scp>AMORE</scp>). Magnetic Resonance in Medicine, 2022, 88, 1702-1719.	1.9	3
777	Imaging Dynamics Beneath Turbid Media via Parallelized Singleâ€Photon Detection. Advanced Science, 2022, 9, .	5.6	9

#	Article	IF	CITATIONS
778	A geometry-informed deep learning framework for ultra-sparse 3D tomographic image reconstruction. Computers in Biology and Medicine, 2022, 148, 105710.	3.9	13
780	PSIDP: Unsupervised deep hashing with pretrained semantic information distillation and preservation. Neurocomputing, 2022, 502, 1-14.	3.5	0
781	AAE-Dpeak-SC: A novel unsupervised clustering method for space target ISAR images based on adversarial autoencoder and density peak-spectral clustering. Advances in Space Research, 2022, 70, 1472-1495.	1.2	2
782	Real-time MRI motion estimation through an unsupervised k-space-driven deformable registration network (KS-RegNet). Physics in Medicine and Biology, 2022, 67, 135012.	1.6	6
784	Wide-field Diffuse Optical Tomography Using Deep Learning. , 2022, , .		1
785	Uncertainty quantification in medical image synthesis. , 2022, , 601-641.		1
786	A narrative review on current imaging applications of artificial intelligence and radiomics in oncology: focus on the three most common cancers. Radiologia Medica, 2022, 127, 819-836.	4.7	53
787	Beyond the <i>AJR</i> : Patrolling k-Space to Spot "Data Crimes―Using Public MRI Datasets. American Journal of Roentgenology, 0, , .	1.0	0
788	Real time volumetric MRI for 3D motion tracking via geometryâ€informed deep learning. Medical Physics, 2022, 49, 6110-6119.	1.6	6
789	Singleâ€shot T ₂ mapping via multiâ€echoâ€train multiple overlappingâ€echo detachment planar imaging and multitask deep learning. Medical Physics, 2022, 49, 7095-7107.	1.6	6
790	Artificial intelligence-based PET image acquisition and reconstruction. Clinical and Translational Imaging, 0, , .	1.1	0
791	Deep learning for fast low-field MRI acquisitions. Scientific Reports, 2022, 12, .	1.6	13
792	Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction. Medical Image Analysis, 2022, 81, 102538.	7.0	11
793	An encoder-decoder network for direct image reconstruction on sinograms of a long axial field of view PET. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 4464-4477.	3.3	11
794	An optimized quadrature RF receive coil for very-low-field (50.4 mT) magnetic resonance brain imaging. Journal of Magnetic Resonance, 2022, 342, 107269.	1.2	7
795	DR-only Carbon-ion radiotherapy treatment planning via deep learning. Physica Medica, 2022, 100, 120-128.	0.4	1
796	Dual-domain sparse-view CT reconstruction with Transformers. Physica Medica, 2022, 101, 1-7.	0.4	8
798	Data-consistent neural networks for solving nonlinear inverse problems. Inverse Problems and Imaging, 2023, 17, 203-229.	0.6	1

#	Article	IF	CITATIONS
799	Noise Characteristics Modeled Unsupervised Network for Robust CT Image Reconstruction. IEEE Transactions on Medical Imaging, 2022, 41, 3849-3861.	5.4	8
800	PRIOR: Prior-Regularized Iterative Optimization Reconstruction For 4D CBCT. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 5551-5562.	3.9	2
801	Computational Medical Image Reconstruction Techniques: A Comprehensive Review. Archives of Computational Methods in Engineering, 2022, 29, 5635-5662.	6.0	1
802	Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations. Frontiers in Neuroscience, 0, 16, .	1.4	10
803	RAD-UNet: a Residual, Attention-Based, Dense UNet for CT Sparse Reconstruction. Journal of Digital Imaging, 2022, 35, 1748-1758.	1.6	3
804	11. Deep Learning in Magnetic Resonance Imaging: An Overview and Applications. Japanese Journal of Radiological Technology, 2022, 78, 876-881.	0.0	0
806	Generation of Digital Brain Phantom for Machine Learning Application of Dopamine Transporter Radionuclide Imaging. Diagnostics, 2022, 12, 1945.	1.3	2
807	Deep-learning prediction of amyloid deposition from early-phase amyloid positron emission tomography imaging. Annals of Nuclear Medicine, 2022, 36, 913-921.	1.2	3
808	<scp>Dualâ€domain</scp> reconstruction network with <scp>Vâ€Net</scp> and <scp>Kâ€Net</scp> for fast <scp>MRI</scp> . Magnetic Resonance in Medicine, 2022, 88, 2694-2708.	1.9	12
809	Accelerated 3D T2-weighted images using compressed sensing for pediatric brain imaging. Neuroradiology, 0, , .	1.1	2
810	A Review of Enabling Technologies for Magnetic Particle Imaging. , 2022, , .		0
811	Artificial intelligence in multiparametric magnetic resonance imaging: A review. Medical Physics, 2022, 49, .	1.6	17
812	On the application of machine learning in astronomy and astrophysics: A textâ€miningâ€based scientometric analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2022, 12, .	4.6	4
813	Deep-Learning-Based Ultrasound Sound-Speed Tomography Reconstruction with Tikhonov Pseudo-Inverse Priori. Ultrasound in Medicine and Biology, 2022, 48, 2079-2094.	0.7	3
814	A deep learning method based on partition modeling for reconstructing temperature field. International Journal of Thermal Sciences, 2022, 182, 107802.	2.6	10
815	TransMorph: Transformer for unsupervised medical image registration. Medical Image Analysis, 2022, 82, 102615.	7.0	122
816	Riemannian Manifold-Based Feature Space and Corresponding Image Clustering Algorithms. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35, 2680-2693.	7.2	0
817	TRANS-Net: Transformer-Enhanced Residual-Error AlterNative Suppression Network for MRI Reconstruction. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-13.	2.4	5

#	Article	IF	CITATIONS
818	Rethinking theÂOptimization Process forÂSelf-supervised Model-Driven MRI Reconstruction. Lecture Notes in Computer Science, 2022, , 3-13.	1.0	2
819	MRI Reconstruction byÂCompleting Under-sampled K-space Data withÂLearnable Fourier Interpolation. Lecture Notes in Computer Science, 2022, , 676-685.	1.0	2
820	An Adversarial Learning Based Approach for 2D Unknown View Tomography. IEEE Transactions on Computational Imaging, 2022, 8, 705-720.	2.6	3
821	MRI Reconstruction withÂConditional Adversarial Transformers. Lecture Notes in Computer Science, 2022, , 62-71.	1.0	0
822	Real-Time Deep-Learned Reconstruction for a Scanning Intraoperative Probe. IEEE Transactions on Radiation and Plasma Medical Sciences, 2022, , 1-1.	2.7	0
823	Adversarial Robustness ofÂMR Image Reconstruction Under Realistic Perturbations. Lecture Notes in Computer Science, 2022, , 24-33.	1.0	3
824	Opportunities andÂChallenges forÂDeep Learning inÂBrain Lesions. Lecture Notes in Computer Science, 2022, , 25-36.	1.0	0
825	Learning Optimal K-space Acquisition and Reconstruction using Physics-Informed Neural Networks. , 2022, , .		4
826	Deep Learning Approaches for Microwave Interferometry Image Reconstruction: An Alias-Free Method. , 2022, , .		0
827	Anterior Cruciate Ligament Tear Detection Based on Deep Convolutional Neural Network. Diagnostics, 2022, 12, 2314.	1.3	5
828	Artificial Intelligence Based Strategies forÂData-Driven Radial MRI. Intelligent Systems Reference Library, 2023, , 31-59.	1.0	0
829	Deep learning reconstruction in pediatric brain MRI: comparison of image quality with conventional T2-weighted MRI. Neuroradiology, 0, , .	1.1	4
830	SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling. Magnetic Resonance in Medicine, 2023, 89, 64-76.	1.9	9
831	Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields. Nature Machine Intelligence, 2022, 4, 781-791.	8.3	27
832	Lowâ€field MRI: Clinical promise and challenges. Journal of Magnetic Resonance Imaging, 2023, 57, 25-44.	1.9	53
833	An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction. Sensors, 2022, 22, 7277.	2.1	4
834	Collaborative Music Creation Method Based on Image Collection of Lattice Code. International Transactions on Electrical Energy Systems, 2022, 2022, 1-9.	1.2	1
835	Al in Health Science: A Perspective. Current Pharmaceutical Biotechnology, 2023, 24, 1149-1163.	0.9	4

#	Article	IF	CITATIONS
836	A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction. Computer Methods and Programs in Biomedicine, 2022, 226, 107168.	2.6	3
837	A deep learning approach to real-time volumetric measurements without image reconstruction for cardiovascular magnetic resonance. Physiological Measurement, 2022, 43, 105003.	1.2	1
838	SPARSE-VIEW AND LIMITED-ANGLE CT RECONSTRUCTION WITH UNTRAINED NETWORK AND DEEP IMAGE PRIOR Computer Methods and Programs in Biomedicine, 2022, , 107167.	2.6	2
839	Online Learning in Variable Feature Spaces under Incomplete Supervision. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35, 4106-4114.	3.6	12
840	Diversified Training Manifolds and Augmented Testing for Improved Deep Learned Radionuclide Reconstruction. , 2021, , .		1
841	A Data-Driven Reconstruction Technique based on Newton's Method for Emission Tomography. , 2021, ,		0
842	Towards Sparsified Federated Neuroimaging Models viaÂWeight Pruning. Lecture Notes in Computer Science, 2022, , 141-151.	1.0	0
843	Study on Deep Learning-Based MR Medical Image Reconstruction Method. Software Engineering and Applications, 2022, 11, 1047-1057.	0.0	0
844	One-Dimensional Deep Low-Rank and Sparse Network for Accelerated MRI. IEEE Transactions on Medical Imaging, 2023, 42, 79-90.	5.4	11
845	PET Image Reconstruction Using aÂGRU-Convolutional Network. IFMBE Proceedings, 2023, , 371-381.	0.2	0
846	GRASPNET: Fast spatiotemporal deep learning reconstruction of goldenâ€angle radial data for freeâ€breathing dynamic contrastâ€enhanced magnetic resonance imaging. NMR in Biomedicine, 2023, 36, .	1.6	5
847	Deep, deep learning with BART. Magnetic Resonance in Medicine, 0, , .	1.9	3
848	Dual domain closed-loop learning for sparse-view CT reconstruction. , 2022, , .		0
849	Deep learning-based image reconstruction for photonic integrated interferometric imaging. Optics Express, 2022, 30, 41359.	1.7	5
850	Susceptibility-weighted imaging at high-performance 0.5T magnetic resonance imaging system: Protocol considerations and experimental results. Frontiers in Neuroscience, 0, 16, .	1.4	2
851	Pediatric magnetic resonance imaging: faster is better. Pediatric Radiology, 2023, 53, 1270-1284.	1.1	7
852	Exploring the Acceleration Limits of Deep Learning Variational Network–based Two-dimensional Brain MRI. Radiology: Artificial Intelligence, 2022, 4, .	3.0	11
853	Transfer learning framework for lowâ€dose CT reconstruction based on marginal distribution adaptation in multiâ€scale. Medical Physics, 0, , .	1.6	0

\mathbf{C}	TAT		DEDC	NDT.
	IAI	ION.	REPC	лкт

#	Article	IF	CITATIONS
854	High-quality PET image synthesis from ultra-low-dose PET/MRI using bi-task deep learning. Quantitative Imaging in Medicine and Surgery, 2022, 12, 5326-5342.	1.1	5
855	TIME-Net: Transformer-Integrated Multi-Encoder Network for limited-angle artifact removal in dual-energy CBCT. Medical Image Analysis, 2023, 83, 102650.	7.0	7
856	Artificial Intelligence and Radiology in Singapore: Championing a New Age of Augmented Imaging for Unsurpassed Patient Care. Annals of the Academy of Medicine, Singapore, 2019, 48, 16-24.	0.2	12
857	Deep Embedding-Attention-Refinement for Sparse-View CT Reconstruction. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-11.	2.4	24
858	Sparse Reconstruction. Advances in Magnetic Resonance Technology and Applications, 2022, , 189-221.	0.0	0
859	Machine Learning for MRI Reconstruction. Advances in Magnetic Resonance Technology and Applications, 2022, , 281-323.	0.0	0
860	Seeing Through aÂBlack Box: Toward High-Quality Terahertz Imaging viaÂSubspace-and-Attention Guided Restoration. Lecture Notes in Computer Science, 2022, , 453-469.	1.0	2
861	Craniofacial Volumetric Image Estimation From a Lateral Cephalogram Using Cross-Dimensional Discrete Embedding Mapping. IEEE Transactions on Computational Imaging, 2022, 8, 972-985.	2.6	0
862	Federated Learning of Generative Image Priors for MRI Reconstruction. IEEE Transactions on Medical Imaging, 2023, 42, 1996-2009.	5.4	35
863	Improving Generalization by Learning Geometry-Dependent and Physics-Based Reconstruction of Image Sequences. IEEE Transactions on Medical Imaging, 2022, , 1-1.	5.4	0
864	Unsupervised Detection of Sub-Territories of the Subthalamic Nucleus During DBS Surgery With Manifold Learning. IEEE Transactions on Biomedical Engineering, 2023, 70, 1286-1297.	2.5	0
865	PIE-ARNet: Prior Image Enhanced Artifact Removal Network for Limited-Angle DECT. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	4
866	Multi-Resolution Medical Image Registration with Dynamic Convolution. , 2022, , .		0
867	Feasibility of ultrashort echo time quantitative susceptibility mapping with a 3D cones trajectory in the human brain. Frontiers in Neuroscience, 0, 16, .	1.4	5
868	Optimal Design of Experiments on Riemannian Manifolds. Journal of the American Statistical Association, 0, , 1-12.	1.8	1
869	Deep neural networks can stably solve high-dimensional, noisy, non-linear inverse problems. Analysis and Applications, 2023, 21, 49-91.	1.2	2
871	SPIE-DIR: Self-Prior Information Enhanced Deep Iterative Reconstruction Using Two Complementary Limited-Angle Scans for DECT. IEEE Transactions on Instrumentation and Measurement, 2023, 72, 1-12.	2.4	1
872	Efficient Fusion and Reconstruction for Communication and Sensing Signals in Green IoT Networks. IEEE Internet of Things Journal, 2023, 10, 9319-9328.	5.5	2

#	Article	IF	CITATIONS
873	Location-Dependent Spatiotemporal Antialiasing in Photoacoustic Computed Tomography. IEEE Transactions on Medical Imaging, 2023, 42, 1210-1224.	5.4	5
874	Applications of Artificial Intelligence in MR Image Acquisition and Reconstruction. Journal of the Korean Society of Radiology, 2022, 83, 1229.	0.1	0
875	DREAM-Net: Deep Residual Error Iterative Minimization Network for Sparse-View CT Reconstruction. IEEE Journal of Biomedical and Health Informatics, 2023, 27, 480-491.	3.9	5
876	Acoustic Temperature Tomography using a UNet based Deep Learning Approach. , 2022, , .		0
877	Accelerating multi-echo MRI in k-space with complex-valued diffusion probabilistic model. , 2022, , .		2
878	Sensor-to-Image Based Neural Networks: A Reliable Reconstruction Method for Diffuse Optical Imaging of High-Scattering Media. Sensors, 2022, 22, 9096.	2.1	4
879	MR image reconstruction from undersampled data for image-guided radiation therapy using a patient-specific deep manifold image prior. Frontiers in Oncology, 0, 12, .	1.3	0
880	Nurses and Climate Change: Ten Strategies for Reducing Carbon Emissions in the Radiology Department. Journal of Radiology Nursing, 2023, 42, 39-42.	0.2	1
881	EPRI sparse reconstruction method based on deep learning. Magnetic Resonance Imaging, 2022, , .	1.0	0
882	Deep MR parametric imaging with the learned <i>L</i> + <i>S</i> model and attention mechanism. IET Image Processing, 2023, 17, 969-978.	1.4	2
883	Intelligent imaging: Applications of machine learning and deep learning in radiology. Veterinary Radiology and Ultrasound, 2022, 63, 880-888.	0.4	4
884			
	Artificial Intelligence in Congenital Heart Disease. , 2022, 1, 100153.		12
885	Artificial Intelligence in Congenital Heart Disease. , 2022, 1, 100153. Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	12 4
885 886	Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Frontiers	1.1	
	Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Frontiers in Cardiovascular Medicine, 0, 9, . Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and		4
886	 Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Frontiers in Cardiovascular Medicine, 0, 9, . Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer's disease. Briefings in Bioinformatics, 2023, 24, . Deep learning tomographic reconstruction through hierarchical decomposition of domain 	3.2	4
886 887	 Emerging MRI techniques for molecular and functional phenotyping of the diseased heart. Frontiers in Cardiovascular Medicine, 0, 9, . Multimodal data fusion based on IGERNNC algorithm for detecting pathogenic brain regions and genes in Alzheimer's disease. Briefings in Bioinformatics, 2023, 24, . Deep learning tomographic reconstruction through hierarchical decomposition of domain transforms. Visual Computing for Industry, Biomedicine, and Art, 2022, 5, . SWFT-Net: a deep learning framework for efficient fine-tuning spot weights towards adaptive proton 	3.2 2.2	4 3 2

#	Article	IF	CITATIONS
892	Fast and Calibrationless Low-Rank Parallel Imaging Reconstruction Through Unrolled Deep Learning Estimation of Multi-Channel Spatial Support Maps. IEEE Transactions on Medical Imaging, 2023, 42, 1644-1655.	5.4	3
893	Deep Learning Reconstruction Enables Prospectively Accelerated Clinical Knee MRI. Radiology, 2023, 307, .	3.6	21
895	Quantitative comparison of planar coded aperture imaging reconstruction methods. Journal of Instrumentation, 2023, 18, P01006.	0.5	2
896	Electron Microscopy Studies of Soft Nanomaterials. Chemical Reviews, 2023, 123, 4051-4145.	23.0	16
897	Resting state network mapping in individuals using deep learning. Frontiers in Neurology, 0, 13, .	1.1	3
898	Detection of iron oxide nanoparticle (IONP)-labeled stem cells using quantitative ultrashort echo time imaging: a feasibility study. Quantitative Imaging in Medicine and Surgery, 2023, 13, 585-597.	1.1	2
899	SwinGAN: A dual-domain Swin Transformer-based generative adversarial network for MRI reconstruction. Computers in Biology and Medicine, 2023, 153, 106513.	3.9	18
900	A Complex-Valued Dual-Domain Dilated Convolution Neural Network for Brain MRI Reconstruction. , 2022, , .		1
902	Deep-Learning-Enabled Microwave-Induced Thermoacoustic Tomography Based on ResAttU-Net for Transcranial Brain Hemorrhage Detection. IEEE Transactions on Biomedical Engineering, 2023, 70, 2350-2361.	2.5	6
903	DeepEIT: Deep Image Prior Enabled Electrical Impedance Tomography. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45, 9627-9638.	9.7	13
904	Machine learning in nanomaterial electron microscopy data analysis. , 2023, , 279-305.		1
905	DSFormer: A Dual-domain Self-supervised Transformer for Accelerated Multi-contrast MRI Reconstruction. , 2023, , .		14
906	RNLFNet: Residual non-local Fourier network for undersampled MRI reconstruction. Biomedical Signal Processing and Control, 2023, 83, 104632.	3.5	5
907	Deep Learning Methods for Limited Data Problems in X-Ray Tomography. , 2023, , 1183-1202.		0
908	A Robust Complex-Valued Deep Neural Network for Target Recognition of UAV SAR Imagery. IEEE Journal on Miniaturization for Air and Space Systems, 2023, 4, 175-185.	1.9	2
909	Imaging Artificial Intelligence: A Framework for Radiologists to Address Health Equity, From the <i>AJR</i> Special Series on DEI. American Journal of Roentgenology, 2023, 221, 302-308.	1.0	3
910	Recent advances in highly accelerated 3D MRI. Physics in Medicine and Biology, 0, , .	1.6	0
911	Noise Reduction Using Singular Value Decomposition with Jensen–Shannon Divergence for Coronary Computed Tomography Angiography. Diagnostics, 2023, 13, 1111.	1.3	0

#	Article	IF	CITATIONS
912	An attention-based deep convolutional neural network for ultra-sparse-view CT reconstruction. Computers in Biology and Medicine, 2023, 161, 106888.	3.9	4
913	Efficient complex-valued image reconstruction for compressed sensing MRI using single real-valued convolutional neural network. Magnetic Resonance Imaging, 2023, 101, 13-24.	1.0	1
914	Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling. Computerized Medical Imaging and Graphics, 2023, 106, 102206.	3.5	5
915	List-Mode PET Image Reconstruction Using Deep Image Prior. IEEE Transactions on Medical Imaging, 2023, 42, 1822-1834.	5.4	4
916	Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions. Biomedical Optics Express, 2023, 14, 1041.	1.5	4
917	A system for in vivo on-demand ultra-low field Overhauser-enhanced 3D-Magnetic resonance imaging. Journal of Magnetic Resonance, 2023, 348, 107383.	1.2	3
918	Deep Learning Image Reconstruction for CT: Technical Principles and Clinical Prospects. Radiology, 2023, 306, .	3.6	41
919	Molecular MRI-Based Monitoring of Cancer Immunotherapy Treatment Response. International Journal of Molecular Sciences, 2023, 24, 3151.	1.8	5
920	Periodic-net: an end-to-end data driven framework for diffuse optical imaging of breast cancer from noisy boundary data. Journal of Biomedical Optics, 2023, 28, .	1.4	1
921	PINER: Prior-informed Implicit Neural Representation Learning for Test-time Adaptation in Sparse-view CT Reconstruction. , 2023, , .		2
922	Deep image and feature prior algorithm based on U-ConformerNet structure. Physica Medica, 2023, 107, 102535.	0.4	1
923	Cartography of Genomic Interactions Enables Deep Analysis of Single-Cell Expression Data. Nature Communications, 2023, 14, .	5.8	8
924	Attention-based dual-branch deep network for sparse-view computed tomography image reconstruction. Quantitative Imaging in Medicine and Surgery, 2023, 13, 1360-1374.	1.1	2
925	Fast MRI reconstruction using StrainNet with dual-domain loss on spatial and frequency spaces. Intelligent Systems With Applications, 2023, 18, 200203.	1.9	0
926	A total variation prior unrolling approach for computed tomography reconstruction. Medical Physics, 0, , .	1.6	2
927	X-ray Cherenkov-luminescence tomography reconstruction with a three-component deep learning algorithm: Swin transformer, convolutional neural network, and locality module. Journal of Biomedical Optics, 2023, 28, .	1.4	1
928	New Hemodynamic Parameters in Peri-Operative and Critical Care—Challenges in Translation. Sensors, 2023, 23, 2226.	2.1	2
929	Learned Iterative Reconstruction. , 2023, , 751-771.		Ο

#	Article	IF	CITATIONS
930	Deep Learning Imaging for 1-D Aperture Synthesis Radiometers. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61, 1-16.	2.7	1
931	Calibrationless reconstruction of <scp>uniformlyâ€undersampled multiâ€channel MR</scp> data with deep learning estimated <scp>ESPIRiT</scp> maps. Magnetic Resonance in Medicine, O, , .	1.9	0
932	Physics-Driven Deep Learning Methods for Fast Quantitative Magnetic Resonance Imaging: Performance improvements through integration with deep neural networks. IEEE Signal Processing Magazine, 2023, 40, 116-128.	4.6	2
933	Physics-/Model-Based and Data-Driven Methods for Low-Dose Computed Tomography: A survey. IEEE Signal Processing Magazine, 2023, 40, 89-100.	4.6	13
934	Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN. , 2022, ,		4
935	FDU-Net: Deep Learning-Based Three-Dimensional Diffuse Optical Image Reconstruction. IEEE Transactions on Medical Imaging, 2023, 42, 2439-2450.	5.4	4
936	Intelligent Structural Defect Reconstruction Using the Fusion of Multi-Frequency and Multi-Mode Acoustic Data. IEEE Access, 2023, 11, 23935-23945.	2.6	0
937	Robustness Analysis for Deep Learning-Based Image Reconstruction Models. , 2022, , .		0
938	Deep Learning-Based Reconstruction for Cardiac MRI: A Review. Bioengineering, 2023, 10, 334.	1.6	9
939	Unrolled-DOT: an interpretable deep network for diffuse optical tomography. Journal of Biomedical Optics, 2023, 28, .	1.4	0
940	MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer. Physics in Medicine and Biology, 2023, 68, 095019.	1.6	4
941	An Efficient Lightweight Generative Adversarial Network for Compressed Sensing Magnetic Resonance Imaging Reconstruction. IEEE Access, 2023, 11, 24604-24614.	2.6	5
944	Synthesizing Complex-Valued Multicoil MRI Data from Magnitude-Only Images. Bioengineering, 2023, 10, 358.	1.6	2
945	Technology and Tool Development for BACPAC: Qualitative and Quantitative Analysis of Accelerated Lumbar Spine MRI with Deep-Learning Based Image Reconstruction at 3T. Pain Medicine, 2023, 24, S149-S159.	0.9	1
947	Data-Driven full waveform inversion for ultrasonic bone quantitative imaging. Neural Computing and Applications, 0, , .	3.2	0
948	Applications of Artificial Intelligence in the Radiology Roundtrip: Process Streamlining, Workflow Optimization, and Beyond. Seminars in Roentgenology, 2023, 58, 158-169.	0.2	9
950	Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging. Mathematical Biosciences and Engineering, 2023, 20, 9728-9758.	1.0	3
951	Sparse-View Cone-Beam CT Reconstruction by Bar-by-Bar Neural FDK Algorithm. Nondestructive Testing and Evaluation, 0, , 1-23.	1.1	4

#	Article	IF	CITATIONS
952	Pushing the limits of lowâ€cost ultraâ€lowâ€field <scp>MRI</scp> byÂdualâ€acquisition deep learning <scp>3D</scp> superresolution. Magnetic Resonance in Medicine, 2023, 90, 400-416.	1.9	8
953	Tomographic reconstruction from sparse-view and limited-angle data using a generative adversarial network. , 2022, , .		0
954	Automated Triage of Screening Breast MRI Examinations in High-Risk Women Using an Ensemble Deep Learning Model. Investigative Radiology, 2023, 58, 710-719.	3.5	0
955	Artificial Intelligence: An Emerging Intellectual Sword for Battling Carcinomas. Current Pharmaceutical Biotechnology, 2023, 24, .	0.9	0
956	The Past, Present, and Future Role of Artificial Intelligence in Ventilation/Perfusion Scintigraphy: A Systematic Review. Seminars in Nuclear Medicine, 2023, 53, 752-765.	2.5	3
957	Al in MRI: Computational Frameworks for a Faster, Optimized, and Automated Imaging Workflow. Bioengineering, 2023, 10, 492.	1.6	2
958	From Signal to Knowledge: The Diagnostic Value of Raw Data in the Artificial Intelligence Prediction of Human Data for the First Time. Engineering, 2023, , .	3.2	3
961	Introduction to Machine Learning: Definitions and Hybrid Imaging Applications. , 2022, , 13-27.		1
962	Integration of Artificial Intelligence, Machine Learning, and Deep Learning into Clinically Routine Molecular Imaging. , 2022, , 87-108.		0
968	Novel Complex AUTOMAP for Accelerated MRI. , 2022, , .		0
979	An evolution of low-field strength MRI. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2023, 36, 335-346.	1.1	5
1004	Micro/Nanorobotic Swarms: From Fundamentals to Functionalities. ACS Nano, 2023, 17, 12971-12999.	7.3	13
1005	MRI-guided robot intervention $\hat{a} \in$ "current state-of-the-art and new challenges. , 2023, 1, .		2
1006	Brain imaging with portable low-field MRI. , 2023, 1, 617-630.		9
1011	Data-Driven Investigation on Anisotropic Electrical Impedance Tomography for Robotic Shear Tactile Sensing. , 2023, , .		0
1023	Artificial Intelligence Approaches to the Imaging of Neurodegenerative Diseases. , 2023, , 207-219.		0
1024	Super-Resolution Diffusion Model for Accelerated MRI Reconstruction. , 2023, , .		0
1028	Applications of Deep Learning to Magnetic Resonance Imaging (MRI). , 2023, , .		1

-			_	
C^{1}	TAT.	ON	Drr	ODT
	IAL		KEP	ORT

#	Article	IF	CITATIONS
1037	Artificial intelligence: The next frontier of perfusion imaging?. Advances in Magnetic Resonance Technology and Applications, 2023, , 291-311.	0.0	0
1040	Physics-informed Deep Diffusion MRI Reconstruction: Break the Bottleneck of Training Data in Artificial Intelligence. , 2023, , .		1
1043	A Scan-Specific Unsupervised Method for Parallel MRI Reconstruction Via Implicit Neural Representation. , 2023, , .		0
1045	Artificial intelligence and extended reality in cardiology. , 2024, , 363-366.		0
1051	Manifold Learning and Graph Neural Network. Texts in Computer Science, 2023, , 163-190.	0.5	0
1052	Transfer Learning andÂEnsemble Learning. Texts in Computer Science, 2023, , 191-203.	0.5	0
1057	Self-supervised MRI Reconstruction withÂUnrolled Diffusion Models. Lecture Notes in Computer Science, 2023, , 491-501.	1.0	2
1058	Histopathology Image Classification Using Deep Manifold Contrastive Learning. Lecture Notes in Computer Science, 2023, , 683-692.	1.0	0
1059	DULDA: Dual-Domain Unsupervised Learned Descent Algorithm forÂPET Image Reconstruction. Lecture Notes in Computer Science, 2023, , 153-162.	1.0	1
1060	Computationally Efficient 3D MRI Reconstruction withÂAdaptive MLP. Lecture Notes in Computer Science, 2023, , 195-205.	1.0	1
1061	Transformer-Based Dual-Domain Network forÂFew-View Dedicated Cardiac SPECT Image Reconstructions. Lecture Notes in Computer Science, 2023, , 163-172.	1.0	0
1064	A Multi-branch Deep Learning Architecture for Microwave-Ultrasound Breast Imaging. , 2023, , .		0
1065	Limited angle x-ray tomography with machine learning. , 2023, , .		0
1068	Unsupervised Heteromodal Physics-Informed Representation ofÂMRI Data: Tackling Data Harmonisation, Imputation andÂDomain Shift. Lecture Notes in Computer Science, 2023, , 53-63.	1.0	0
1070	Short Communication: Localized Adversarial Artifacts for Compressed Sensing MRI. SIAM Journal on Imaging Sciences, 2023, 16, SC14-SC26.	1.3	1
1084	A deep-learning based algorithm for image reconstruction in Compton tomography. , 2023, , .		0
1088	Speed-of-Sound Mapping forÂPulse-Echo Ultrasound Raw Data Using Linked-Autoencoders. Lecture Notes in Computer Science, 2024, , 103-114.	1.0	0
1096	Large-Scale Deep Learning Medical Image Methodology and Applications Using Multiple GPUs. , 2023, , .		0

#	Article	IF	CITATIONS
1098	passFormer: heterogeneous feature-aware CNN-transformer coupling network for sparse sampling photoacoustic tomography. , 2023, , .		0
1101	Magnetic Resonance Image Reconstruction Based on Multi-Scale and Attention Mechanisms. , 2023, , .		0
1103	FedAutoMRI: Federated Neural Architecture Search forÂMR Image Reconstruction. Lecture Notes in Computer Science, 2023, , 347-356.	1.0	1
1104	Deep Fusion Network Based Sparse View CT Reconstructions for Clinical Diagnostic Scanners. , 2023, , .		0
1109	Enhancing Precision and Interpretability of CT Image Reconstruction via Self-supervised Adaptive Domain Transformation. , 2023, , .		0
1110	AVS-Net: Attention-based Variable Splitting Network for P-MRI Acceleration. , 2023, , .		0
1111	Deep learning for medical image reconstruction. , 2024, , 247-278.		0
1113	Ultra-Low Field Magnetic Resonance Image Enhancement based on Deep-Learning Method. , 2023, , .		0
1116	Artificial Intelligence in Radiology. , 0, , 149-177.		0
1119	T1/T2 Relaxation Temporal Modelling fromÂAccelerated Acquisitions Using aÂLatent Transformer. Lecture Notes in Computer Science, 2024, , 293-302.	1.0	0
1120	Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction. Lecture Notes in Computer Science, 2024, , 349-358.	1.0	0
1125	Deep learning-based PET image denoising and reconstruction: a review. Radiological Physics and Technology, 2024, 17, 24-46.	1.0	0
1128	Deep Learning for Automated Segmentation and Quantitative Mapping with UTE MRI. , 2023, , 357-372.		0
1137	Novel denoising technique for optical coherence tomography images. , 2024, , .		0
1138	Self-supervised and supervised deep learning for PET image reconstruction. AIP Conference Proceedings, 2024, , .	0.3	0