Hydrogel matrices based on elastin and alginate for tiss

International Journal of Biological Macromolecules 114, 614-625 DOI: 10.1016/j.ijbiomac.2018.03.091

Citation Report

#	Article	IF	CITATIONS
1	Soy Protein-Based Composite Hydrogels: Physico-Chemical Characterization and In Vitro Cytocompatibility. Polymers, 2018, 10, 1159.	4.5	14
2	Recent Progress of Polysaccharideâ€Based Hydrogel Interfaces for Wound Healing and Tissue Engineering. Advanced Materials Interfaces, 2019, 6, 1900761.	3.7	222
3	Preparation and in vitro evaluation of Chondroitin sulfate and carbopol based mucoadhesive controlled release polymeric composites of Loxoprofen using factorial design. European Polymer Journal, 2019, 121, 109312.	5.4	17
4	Tissue Engineering: Understanding the Role of Biomaterials and Biophysical Forces on Cell Functionality Through Computational and Structural Biotechnology Analytical Methods. Computational and Structural Biotechnology Journal, 2019, 17, 591-598.	4.1	54
5	Extrusion bioprinting of soft materials: An emerging technique for biological model fabrication. Applied Physics Reviews, 2019, 6, .	11.3	163
6	Nanolayer Film on Poly(Styrene/Ethylene Glycol Dimethacrylate) High Internal Phase Emulsion Porous Polymer Surface as a Scaffold for Tissue Engineering Application. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	7
7	Hydrogels containing caffeine and based on Beetosan® – proecological chitosan – preparation, characterization, and <i>in vitro</i> cytotoxicity. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 931-935.	3.4	6
8	The physical and chemical properties of hydrogels based on natural polymers. , 2020, , 151-172.		45
9	Alginate/human elastin-like polypeptide composite films with antioxidant properties for potential wound healing application. International Journal of Biological Macromolecules, 2020, 164, 586-596.	7.5	36
10	Progress in Modern Marine Biomaterials Research. Marine Drugs, 2020, 18, 589.	4.6	64
11	Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering. Carbohydrate Polymers, 2020, 250, 116914.	10.2	86
12	RECENT ADVANCES IN ELASTIN-BASED BIOMATERIALS. Journal of Pharmacy and Pharmaceutical Sciences, 2020, 23, 314-332.	2.1	20
13	Biodegradable Polymers as the Pivotal Player in the Design of Tissue Engineering Scaffolds. Advanced Healthcare Materials, 2020, 9, e1901358.	7.6	137
14	Development of <scp>NSAID</scp> â€loaded nanoâ€composite scaffolds for skin tissue engineering applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 3064-3075.	3.4	8
15	Multifunctional alginate-based hydrogel with reversible crosslinking for controlled therapeutics delivery. International Journal of Biological Macromolecules, 2020, 150, 315-325.	7.5	27
16	Characterization of a novel bifunctional mannuronan C-5 epimerase and alginate lyase from Pseudomonas mendocina. sp. DICP-70. International Journal of Biological Macromolecules, 2020, 150, 662-670.	7.5	13
17	Fabrication of Nanofibrous/Xerogel Layer-by-Layer Biocomposite Scaffolds for Skin Tissue Regeneration: In Vitro Study. ACS Omega, 2020, 5, 2133-2147.	3.5	10
18	Proteosaccharide combinations for tissue engineering applications. Carbohydrate Polymers, 2020, 235, 115932.	10.2	25

CITATION REPORT

#	Article	IF	CITATIONS
19	Synthesis, Characterization, and Histological Evaluation of Chitosan-Ruta Graveolens Essential Oil Films. Molecules, 2020, 25, 1688.	3.8	21
20	Organ bioprinting. , 2021, , 105-136.		0
21	Mechanical and optical evaluation of alginate hydrospheres produced with different cross-linking salts for industrial application. Colloid and Polymer Science, 2021, 299, 693-703.	2.1	5
22	Mechanical properties of cell- and microgel bead-laden oxidized alginate-gelatin hydrogels. Biomaterials Science, 2021, 9, 3051-3068.	5.4	20
23	Differential Responses to Bioink-Induced Oxidative Stress in Endothelial Cells and Fibroblasts. International Journal of Molecular Sciences, 2021, 22, 2358.	4.1	12
24	Clindamycin-loaded nanofibers of polylactic acid, elastin and gelatin for use in tissue engineering. Polymer Bulletin, 2022, 79, 5495-5513.	3.3	6
25	Recent Advancement of Biopolymers and Their Potential Biomedical Applications. Journal of Polymers and the Environment, 2022, 30, 51-74.	5.0	53
26	This Review Recent Advances in Chitosan and Alginateâ€Based Hydrogels for Wound Healing Application. Frontiers in Materials, 2021, 8, .	2.4	22
27	Electrophoretic deposition of composite coatings based on alginate matrix/45S5 bioactive glass particles doped with B, Zn or Sr. Surface and Coatings Technology, 2021, 418, 127183.	4.8	13
28	Milestones and current achievements in development of multifunctional bioscaffolds for medical application. Bioactive Materials, 2021, 6, 2412-2438.	15.6	52
29	Biomedical Applications of Hemicellulose-Based Hydrogels. Current Medicinal Chemistry, 2020, 27, 4647-4659.	2.4	17
30	Highly Concentrated Nitrogenâ€Đoped Carbon Nanotubes in Alginate–Gelatin 3D Hydrogels Enable in Vitro Breast Cancer Spheroid Formation. Advanced NanoBiomed Research, 2022, 2, .	3.6	1
31	Direct Ink Writing of Carbon-Doped Polymeric Composite Ink: A Review on Its Requirements and Applications. 3D Printing and Additive Manufacturing, 2023, 10, 828-854.	2.9	9
32	Protein by-products: Composition, extraction, and biomedical applications. Critical Reviews in Food Science and Nutrition, 2023, 63, 9436-9481.	10.3	7
33	Application of Collagen-Based Scaffolds for the Treatment of Spinal Cord Injuries in Animal Models: A Literature Update. Cureus, 2022, , .	0.5	1
34	Design and Evaluation of a Bilayered Dermal/Hypodermal 3D Model Using a Biomimetic Hydrogel Formulation. SSRN Electronic Journal, 0, , .	0.4	0
35	Recent advances in protein hydrogels: From design, structural and functional regulations to healthcare applications. Chemical Engineering Journal, 2023, 451, 138494.	12.7	15
36	Development of Scaffolds from Bio-Based Natural Materials for Tissue Regeneration Applications: A Review. Gels, 2023, 9, 100.	4.5	35

IF ARTICLE CITATIONS # Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue 37 7.5 40 engineering: A review. International Journal of Biological Macromolecules, 2023, 232, 123450. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. International Journal of Molecular Sciences, 2023, 24, 4962. 4.1 Biocompatible and bioactive hydrogels of recombinant fusion elastin with low transition temperature for improved healing of UV-irradiated skin. Journal of Materials Chemistry B, 2023, 11, 39 5.8 1 6975-6982. Double network structure via ionic bond and covalent bond of carboxymethyl chitosan and poly(ethylene glycol): Factors affecting hydrogel formation. Carbohydrate Pólymers, 2023, 318, 121130.

CITATION REPORT

Synthesis and characterization of hydrogels from alginate and oraâ \in proâ \in nÃ³bis (<i>Pereskia aculeata</i>) Tj ETQ₀00 0 rgBT/Overlock

42	Directly coaxial bioprinting of 3D vascularized tissue using novel bioink based on decellularized human amniotic membrane. International Journal of Biological Macromolecules, 2023, 253, 127041.	7.5	2
43	Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules, 2023, 24, 4532-4552.	5.4	1
44	Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics, 2023, 15, 2514.	4.5	1
45	A new strategy for intervertebral disc regeneration: The synergistic potential of mesenchymal stem cells and their extracellular vesicles with hydrogel scaffolds. Biomedicine and Pharmacotherapy, 2024, 172, 116238.	5.6	0