The promising future of microalgae: current status, cha sustainable and renewable industry for biofuels, feed, a

Microbial Cell Factories 17, 36 DOI: 10.1186/s12934-018-0879-x

Citation Report

#	Article	IF	CITATIONS
1	Riboregulator elements as tools to engineer gene expression in cyanobacteria. Applied Microbiology and Biotechnology, 2018, 102, 7717-7723.	1.7	7
2	Fast Profiling of Natural Pigments in Different Spirulina (Arthrospira platensis) Dietary Supplements by DI-FT-ICR and Evaluation of their Antioxidant Potential by Pre-Column DPPH-UHPLC Assay. Molecules, 2018, 23, 1152.	1.7	37
3	Defatted algal biomass as feedstock for short chain carboxylic acids and biohydrogen production in the biorefinery format. Bioresource Technology, 2018, 269, 408-416.	4.8	29
4	Microalgal Enzymes with Biotechnological Applications. Marine Drugs, 2019, 17, 459.	2.2	43
5	Comparative Thermogravimetric Assessment on the Combustion of Coal, Microalgae Biomass and Their Blend. Energies, 2019, 12, 2962.	1.6	20
6	Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines. Sustainable Energy and Fuels, 2019, 3, 2546-2560.	2.5	44
7	First Apocarotenoids Profiling of Four Microalgae Strains. Antioxidants, 2019, 8, 209.	2.2	17
8	Omics approaches for microalgal applications: Prospects and challenges. Bioresource Technology, 2019, 291, 121890.	4.8	81
9	Large-Scale Waste Bio-Remediation Using Microalgae Cultivation as a Platform. Energies, 2019, 12, 2772.	1.6	22
10	Development of thin-layer cascades for microalgae cultivation: milestones (review). Folia Microbiologica, 2019, 64, 603-614.	1.1	48
11	Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of the Total Environment, 2019, 687, 1107-1126.	3.9	131
12	Promises and Challenges of Microalgal Antioxidant Production. Antioxidants, 2019, 8, 199.	2.2	76
13	Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 2019, 42, 101600.	2.4	127
14	Residual sugar from microalgae biomass harvested from phycoremediation of swine wastewater digestate. Water Science and Technology, 2019, 79, 2203-2210.	1.2	5
15	Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga <i>Porphyridium sordidum</i> . Engineering in Life Sciences, 2019, 19, 978-985.	2.0	22
16	Elicitation of pharmaceutical alkaloids biosynthesis by salicylic acid in marine microalgae Arthrospira platensis. Algal Research, 2019, 42, 101597.	2.4	15
17	Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review. Renewable and Sustainable Energy Reviews, 2019, 115, 109361.	8.2	224
18	Optimal proteome allocation strategies for phototrophic growth in a light-limited chemostat. Microbial Cell Factories, 2019, 18, 165.	1.9	10

#	Article	IF	CITATIONS
19	Microalgae polysaccharides: the new sustainable bioactive products for the development of plant bio-stimulants?. World Journal of Microbiology and Biotechnology, 2019, 35, 177.	1.7	81
20	A new approach to finding optimal centrifugation conditions for shear-sensitive microalgae. Algal Research, 2019, 44, 101677.	2.4	10
21	Effect of microalga-based diet on oxidative stress enzymes of African catfish, Clarias gariepinus. International Aquatic Research, 2019, 11, 377-387.	1.5	10
22	Microalgal kinetics — a guideline for photobioreactor design and process development. Engineering in Life Sciences, 2019, 19, 830-843.	2.0	21
23	Techno-economic aspects of a safflower-based biorefinery plant co-producing bioethanol and biodiesel. Energy Conversion and Management, 2019, 201, 112184.	4.4	59
25	Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1882-1897.	5.9	134
26	Far-Red Light Acclimation for Improved Mass Cultivation of Cyanobacteria. Metabolites, 2019, 9, 170.	1.3	14
27	Regulation of biohydrogen production by protonophores in novel green microalgae Parachlorella kessleri. Journal of Photochemistry and Photobiology B: Biology, 2019, 199, 111597.	1.7	26
28	Structure of the thermo-sensitive TRP channel TRP1 from the alga Chlamydomonas reinhardtii. Nature Communications, 2019, 10, 4180.	5.8	29
29	Cultivation of microalgae Chlorella sp. in municipal sewage for biofuel production and utilization of biochar derived from residue for the conversion of hematite iron ore (Fe2O3) to iron (Fe) – Integrated algal biorefinery. Energy, 2019, 189, 116128.	4.5	47
30	Statistical Methods for Rapid Quantification of Proteins, Lipids, and Carbohydrates in Nordic Microalgal Species Using ATR–FTIR Spectroscopy. Molecules, 2019, 24, 3237.	1.7	36
31	High production of carotenoids by the green microalga Asterarcys quadricellulare PUMCC 5.1.1 under optimized culture conditions. PLoS ONE, 2019, 14, e0221930.	1.1	65
32	Effects of Ultrafine Bubbles on Gram-Negative Bacteria: Inhibition or Selection?. Langmuir, 2019, 35, 13761-13768.	1.6	14
33	Microalgae cultivation and harvesting: Growth performance and use of flocculants - A review. Renewable and Sustainable Energy Reviews, 2019, 115, 109364.	8.2	101
34	Effect of microalgae as iron supplements on iron-deficiency anemia in rats. Food and Function, 2019, 10, 723-732.	2.1	21
35	The lipid biochemistry of eukaryotic algae. Progress in Lipid Research, 2019, 74, 31-68.	5.3	258
36	Microalgal Biofuels Production from Industrial and Municipal Wastewaters. , 2019, , 249-279.		3
37	Deesterification of astaxanthin and intermediate esters from Haematococcus pluvialis subjected to stress. Biotechnology Reports (Amsterdam, Netherlands), 2019, 23, e00351.	2.1	18

#	Article	IF	CITATIONS
38	A novel native bioenergy green alga can stably grow on waste molasses under variable temperature conditions. Energy Conversion and Management, 2019, 196, 751-758.	4.4	6
39	Regulatory carbon metabolism underlying seawater-based promotion of triacylglycerol accumulation in Chlorella kessleri. Bioresource Technology, 2019, 289, 121686.	4.8	7
40	Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Marine Drugs, 2019, 17, 312.	2.2	230
41	Microalgal Derivatives as Potential Nutraceutical and Food Supplements for Human Health: A Focus on Cancer Prevention and Interception. Nutrients, 2019, 11, 1226.	1.7	168
42	Bioproducts From Euglena gracilis: Synthesis and Applications. Frontiers in Bioengineering and Biotechnology, 2019, 7, 108.	2.0	109
43	Recent updates on the production and upgrading of bio-crude oil from microalgae. Bioresource Technology Reports, 2019, 7, 100216.	1.5	54
44	Antioxidant Peptide Purified from Enzymatic Hydrolysates of Isochrysis Zhanjiangensis and Its Protective Effect against Ethanol Induced Oxidative Stress of HepG2 Cells. Biotechnology and Bioprocess Engineering, 2019, 24, 308-317.	1.4	42
45	Economic feasibility and long-term sustainability criteria on the path to enable a transition from fossil fuels to biofuels. Current Opinion in Biotechnology, 2019, 57, 175-182.	3.3	44
46	A Comprehensive Overview on Microalgal-Fortified/Based Food and Beverages. Food Reviews International, 2019, 35, 778-805.	4.3	45
47	The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Research, 2019, 159, 490-500.	5.3	107
48	Comparison of Diatoms and Dinoflagellates from Different Habitats as Sources of PUFAs. Marine Drugs, 2019, 17, 233.	2.2	43
49	The Challenge of Sustaining Ocean Observations. Frontiers in Marine Science, 2019, 6, .	1.2	40
50	Surfactant-assisted disruption and extraction for carotenoid production from a novel Dunaliella strain. Separation and Purification Technology, 2019, 223, 243-249.	3.9	12
51	Microalgae as source of polyhydroxyalkanoates (PHAs) — A review. International Journal of Biological Macromolecules, 2019, 131, 536-547.	3.6	127
52	Stable transformation of the green algae Acutodesmus obliquus and Neochloris oleoabundans based on E. coli conjugation. Algal Research, 2019, 39, 101453.	2.4	23
53	The Bacterial Phytoene Desaturase-Encoding Gene (CRTI) is an Efficient Selectable Marker for the Genetic Transformation of Eukaryotic Microalgae. Metabolites, 2019, 9, 49.	1.3	10
54	Membraneâ€assisted biorefinery of microalgae to obtain enriched fractions of bioderived molecules. Biofuels, Bioproducts and Biorefining, 2019, 13, 878-888.	1.9	5
55	Analytical strategies for using gas chromatography to control and optimize microalgae bioprocessing. Current Opinion in Food Science, 2019, 25, 73-81.	4.1	6

#	Article	IF	CITATIONS
56	Hydrogen production from phototrophic microorganisms: Reality and perspectives. International Journal of Hydrogen Energy, 2019, 44, 5799-5811.	3.8	176
57	Lipids in benthic diatoms: A new suitable screening procedure. Algal Research, 2019, 39, 101425.	2.4	10
58	Biosynthesis of Nutraceutical Fatty Acids by the Oleaginous Marine Microalgae Phaeodactylum tricornutum Utilizing Hydrolysates from Organosolv-Pretreated Birch and Spruce Biomass. Marine Drugs, 2019, 17, 119.	2.2	54
59	Combination of cell disruption method and pH variation as pre-treatment for lipid extraction of Nannochloropsis sp IOP Conference Series: Earth and Environmental Science, 2019, 404, 012022.	0.2	2
60	Immobilized heterocysts as microbial factories for sustainable nitrogen fixation. Journal of Biotechnology, 2019, 306, 100016.	1.9	7
61	Isolation and selection of growth medium for freshwater microalgae Asterarcys quadricellulare for maximum biomass production. Water Science and Technology, 2019, 80, 2027-2036.	1.2	16
62	Identification of auto-inhibitors in the reused culture media of the Chlorophyta Scenedesmus acuminatus. Algal Research, 2019, 44, 101665.	2.4	22
63	Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes, 2019, 9, 166.	1.4	13
64	What Is in Store for EPS Microalgae in the Next Decade?. Molecules, 2019, 24, 4296.	1.7	64
65	Continuous Cultivation as a Method to Assess the Maximum Specific Growth Rate of Photosynthetic Organisms. Frontiers in Bioengineering and Biotechnology, 2019, 7, 274.	2.0	12
66	Algal-based biofuel generation through flue gas and wastewater utilization: a sustainable prospective approach. Biomass Conversion and Biorefinery, 2021, 11, 1419-1442.	2.9	26
67	Fast media optimization for mixotrophic cultivation of Chlorella vulgaris. Scientific Reports, 2019, 9, 19262.	1.6	16
68	The growth of microalgae Chlorococcum sp. isolated from Ampenan estuary of Lombok Island in Walne's medium. AIP Conference Proceedings, 2019, , .	0.3	4
69	Bioactive food compounds from microalgae: an innovative framework on industrial biorefineries. Current Opinion in Food Science, 2019, 25, 1-7.	4.1	141
70	Microalgae to biofuels production: a review on cultivation, application and renewable energy. Reviews on Environmental Health, 2019, 34, 91-99.	1.1	46
71	Microalgal biofilms: A further step over current microalgal cultivation techniques. Science of the Total Environment, 2019, 651, 3187-3201.	3.9	160
72	High-value bioproducts from microalgae: Strategies and progress. Critical Reviews in Food Science and Nutrition, 2019, 59, 2423-2441.	5.4	84
73	Advances and challenges in genetic engineering of microalgae. Reviews in Aquaculture, 2020, 12, 365-381.	4.6	51

#	Article	IF	CITATIONS
74	Recent application of spectroscopy for the detection of microalgae life information: A review. Applied Spectroscopy Reviews, 2020, 55, 26-59.	3.4	24
75	Enhancing production of microalgal biopigments through metabolic and genetic engineering. Critical Reviews in Food Science and Nutrition, 2020, 60, 391-405.	5.4	83
76	The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics. Journal of Cleaner Production, 2020, 243, 118563.	4.6	42
77	Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere, 2020, 242, 125079.	4.2	182
78	An overview on bioethanol production from lignocellulosic feedstocks. Chemosphere, 2020, 242, 125080.	4.2	133
79	Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management. Critical Reviews in Biotechnology, 2020, 40, 46-63.	5.1	24
80	Microalgal biomass as a biorefinery platform for biobutanol and biodiesel production. Biochemical Engineering Journal, 2020, 153, 107396.	1.8	51
81	Techno-economic analysis of microalgae production with simultaneous dairy effluent treatment using a pilot-scale High Volume V-shape pond system. Renewable Energy, 2020, 145, 1620-1632.	4.3	65
82	Metabolic engineering for enhancing microbial biosynthesis of advanced biofuels. Renewable and Sustainable Energy Reviews, 2020, 119, 109562.	8.2	56
83	Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics. Bioresource Technology, 2020, 298, 122299.	4.8	44
84	Scale-up of photo-bioreactors for microalgae cultivation by π-theorem. Biochemical Engineering Journal, 2020, 153, 107398.	1.8	22
85	A critical view on social performance assessment at company level: social life cycle analysis of an algae case. International Journal of Life Cycle Assessment, 2020, 25, 363-381.	2.2	18
86	Marine Bacteria versus Microalgae: Who Is the Best for Biotechnological Production of Bioactive Compounds with Antioxidant Properties and Other Biological Applications?. Marine Drugs, 2020, 18, 28.	2.2	54
87	Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed. Bioresource Technology, 2020, 300, 122719.	4.8	105
88	A review on microalgae cultivation and harvesting, and their biomass extraction processing using ionic liquids. Bioengineered, 2020, 11, 116-129.	1.4	229
89	Multi-objective optimization of media components for improved algae biomass, fatty acid and starch biosynthesis from Scenedesmus sp. ASK22 using desirability function approach. Renewable Energy, 2020, 150, 476-486.	4.3	32
90	Reconstruction and analysis of a carbon-core metabolic network for Dunaliella salina. BMC Bioinformatics, 2020, 21, 1.	1.2	379
91	Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion. Renewable Energy, 2020, 149, 691-700.	4.3	28

#	Article	IF	CITATIONS
92	Microalgal cell disruption: Effect on the bioactivity and rheology of wheat bread. Algal Research, 2020, 45, 101749.	2.4	38
93	Microalgae Cultivation Systems. , 2020, , 11-29.		24
94	Harvesting of freshwater microalgae Scenedesmus sp. by electro–coagulation–flocculation for biofuel production: effects on spent medium recycling and lipid extraction. Environmental Science and Pollution Research, 2020, 27, 3497-3507.	2.7	20
95	Physical and biological fixation of CO2 with polymeric nanofibers in outdoor cultivations of Chlorella fusca LEB 111. International Journal of Biological Macromolecules, 2020, 151, 1332-1339.	3.6	25
96	Mammalian cell cultivation using nutrients extracted from microalgae. Biotechnology Progress, 2020, 36, e2941.	1.3	31
97	Dunaliella salina microalgae oppose thioacetamide-induced hepatic fibrosis in rats. Toxicology Reports, 2020, 7, 36-45.	1.6	25
98	Anti-Obesity Effects of Microalgae. International Journal of Molecular Sciences, 2020, 21, 41.	1.8	30
99	Protective Action of Ostreococcus Tauri and Phaeodactylum Tricornutum Extracts towards Benzo[a]Pyrene-Induced Cytotoxicity in Endothelial Cells. Marine Drugs, 2020, 18, 3.	2.2	8
100	Size matters – Microalgae production and nutrient removal in wastewater treatment high rate algal ponds of three different sizes. Algal Research, 2020, 45, 101734.	2.4	46
101	Effect of microalgae diet and culture system on the rearing of bivalve mollusks: Nutritional properties and potential cost improvements. Algal Research, 2020, 51, 102076.	2.4	34
102	A Quick Look Back at the Microalgal Biofuel Patents: Rise and Fall. Frontiers in Bioengineering and Biotechnology, 2020, 8, 1035.	2.0	4
103	Autochthonous microalgae grown in municipal wastewaters as a tool for effectively removing nitrogen and phosphorous. Journal of Water Process Engineering, 2020, 38, 101647.	2.6	36
104	Enhanced Phototrophic Biomass Productivity through Supply of Hydrogen Gas. Environmental Science and Technology Letters, 2020, 7, 861-865.	3.9	1
105	Simultaneous production of flavonoids and lipids from Chlorella vulgaris and Chlorella pyrenoidosa. Biomass Conversion and Biorefinery, 2022, 12, 683-691.	2.9	24
106	Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. IC-44. Bioresource Technology, 2020, 317, 124026.	4.8	23
107	Beyond Fish Oil Supplementation: The Effects of Alternative Plant Sources of Omega-3 Polyunsaturated Fatty Acids upon Lipid Indexes and Cardiometabolic Biomarkers—An Overview. Nutrients, 2020, 12, 3159.	1.7	66
108	Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metabolic Engineering, 2020, 62, 207-220.	3.6	60
109	Strategies for enhancing eicosapentaenoic acid production: From fermentation to metabolic engineering. Algal Research, 2020, 51, 102038.	2.4	3

#	Article	IF	CITATIONS
110	Development and Applications of Attached Growth System for Microalgae Biomass Production. Bioenergy Research, 2020, 14, 709.	2.2	12
111	The effect of microplastics pollution in microalgal biomass production: A biochemical study. Water Research, 2020, 186, 116370.	5.3	35
112	Circular zero-residue process using microalgae for efficient water decontamination, biofuel production, and carbon dioxide fixation. Chemical Engineering Journal, 2020, 388, 124278.	6.6	58
113	Enhanced biogas production of red microalgae via enzymatic pretreatment and preliminary economic assessment. Algal Research, 2020, 50, 101979.	2.4	27
114	Chlorella vulgaris FSP-E cultivation in waste molasses: Photo-to-property estimation by artificial intelligence. Chemical Engineering Journal, 2020, 402, 126230.	6.6	37
115	Anticancer Compounds Derived from Marine Diatoms. Marine Drugs, 2020, 18, 356.	2.2	43
116	Biobased fats and oils from microalgae. , 2020, , 273-298.		2
117	Epigenetic mechanisms leading to genetic flexibility during abiotic stress responses in microalgae: A review. Algal Research, 2020, 50, 101999.	2.4	13
118	Integrating gravity settler with an algal membrane photobioreactor for in situ biomass concentration and harvesting. Bioresource Technology, 2020, 315, 123822.	4.8	12
119	Classification, characterization, and properties of edible and non-edible biomass feedstocks. , 2020, , 89-120.		5
120	Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application. Bioresource Technology, 2020, 315, 123880.	4.8	24
121	Genome Editing by CRISPR-Cas: A Game Change in the Genetic Manipulation of Chlamydomonas. Life, 2020, 10, 295.	1.1	29
122	Growth properties and hydrogen yield in green microalga Parachlorella kessleri: Effects of low-intensity electromagnetic irradiation at the frequencies of 51.8ÂGHz and 53.0ÂGHz. Journal of Photochemistry and Photobiology B: Biology, 2020, 211, 112016.	1.7	2
123	Cyanobacteria and Microalgae as Sources of Functional Foods to Improve Human General and Oral Health. Molecules, 2020, 25, 5164.	1.7	24
124	The Perspective of Large-Scale Production of Algae Biodiesel. Applied Sciences (Switzerland), 2020, 10, 8181.	1.3	88
125	Comprehensive comparison of microalgae-derived biochar from different feedstocks: A prospective study for future environmental applications. Algal Research, 2020, 52, 102103.	2.4	54
126	Sterols from microalgae. , 2020, , 573-596.		7
127	Enhancing Photosynthetic Characterization and Biomass Productivity of Nannochloropsis Oceanica by Nuclear Radiation. Frontiers in Energy Research, 2020, 8, .	1.2	4

#	Article	IF	CITATIONS
128	Comparison of the Photoautotrophic Growth Regimens of Chlorella sorokiniana in a Photobioreactor for Enhanced Biomass Productivity. Biology, 2020, 9, 169.	1.3	14
129	Understanding the role of the substrate and the metal triflate acidic catalyst in sugar platform biorefineries: A comprehensive systematic approach to catalytic transformations of (poly)carbohydrates in ethanol. Chemical Engineering Journal, 2020, 399, 125816.	6.6	6
130	Effect of culture conditions on biomass yield of acclimatized microalgae in ozone pre-treated tannery effluent: A simultaneous exploration of bioremediation and lipid accumulation potential. Journal of Environmental Management, 2020, 273, 111129.	3.8	21
131	Microalgae single cell oil. , 2020, , 419-444.		0
132	Bioethanol production from microalgae. , 2020, , 373-389.		7
133	Microbial communities of soda lakes and pans in the Carpathian Basin: a review. Biologia Futura, 2020, 71, 393-404.	0.6	18
134	Influence of nutrient status on the biohydrogen and lipid productivity in Parachlorella kessleri: a biorefinery approach. Applied Microbiology and Biotechnology, 2020, 104, 10293-10305.	1.7	11
135	Microalgal–Bacterial Synergistic Interactions and Their Potential Influence in Wastewater Treatment: a Review. Bioenergy Research, 2021, 14, 723-738.	2.2	37
136	Immobilization of β-1,3-xylanase on pitch-based hyper-crosslinked polymers loaded with Ni2+ for algal biomass manipulation. Enzyme and Microbial Technology, 2020, 142, 109674.	1.6	7
137	Inhibition of DNA Methylation in Picochlorum soloecismus Alters Algae Productivity. Frontiers in Genetics, 2020, 11, 560444.	1.1	9
138	Microalgae starch: A promising raw material for the bioethanol production. International Journal of Biological Macromolecules, 2020, 165, 2739-2749.	3.6	68
139	Protein hunger of the feed sector: the alternatives offered by the plant world. Italian Journal of Animal Science, 2020, 19, 1204-1225.	0.8	37
140	Improving biomass and lipid yields of Desmodesmus armatus and Chlorella vulgaris through mutagenesis and high-throughput screening. Biomass and Bioenergy, 2020, 142, 105755.	2.9	15
141	Green and Cost-Effective Synthesis of Metallic Nanoparticles by Algae: Safe Methods for Translational Medicine. Bioengineering, 2020, 7, 129.	1.6	98
142	Scaling-Up the Anaerobic Digestion of Pretreated Microalgal Biomass within a Water Resource Recovery Facility. Energies, 2020, 13, 5484.	1.6	11
143	Green ultra-high pressure extraction of bioactive compounds from Haematococcus pluvialis and Porphyridium cruentum microalgae. Innovative Food Science and Emerging Technologies, 2020, 66, 102532.	2.7	26
144	Patent depositing of algal strains. Applied Phycology, 2020, , 1-8.	0.6	1
145	Pathways to economic viability: a pilot scale and techno-economic assessment for algal bioremediation of challenging waste streams. Environmental Science: Water Research and Technology, 2020, 6, 3400-3414.	1.2	7

		CITATION F	Report	
#	ARTICLE		IF	CITATIONS
146	Marine Microalgae for Potential Lutein Production. Applied Sciences (Switzerland), 202	.0, 10, 6457.	1.3	46
147	Microalgae with artificial intelligence: A digitalized perspective on genetics, systems an Biotechnology Advances, 2020, 44, 107631.	d products.	6.0	55
148	Development of a species-specific transformation system using the novel endogenous calreticulin from oleaginous microalgae Ettlia sp Scientific Reports, 2020, 10, 13947.	promoter	1.6	6
149	Enhancing Sustainability by Improving Plant Salt Tolerance through Macro- and Micro-A Biostimulants. Biology, 2020, 9, 253.	lgal	1.3	66
150	Techniques to Control Microbial Contaminants in Nonsterile Microalgae Cultivation. Ap Biochemistry and Biotechnology, 2020, 192, 1376-1385.	plied	1.4	14
151	Microalgae based wastewater treatment: a shifting paradigm for the developing nation Journal of Phytoremediation, 2021, 23, 1-10.	s. International	1.7	13
152	Microalgal Biomass Generation via Electroflotation: A Cost-Effective Dewatering Techno Sciences (Switzerland), 2020, 10, 9053.	ology. Applied	1.3	8
153	Experimental Study of Substrate Limitation and Light Acclimation in Cultures of the Mid Scenedesmus obliquus—Parameter Identification and Model Predictive Control. Proce 1551.	croalgae esses, 2020, 8,	1.3	4
154	Nannochloropsis oceanica Cultivation in Pilot-Scale Raceway Ponds—From Design to Applied Sciences (Switzerland), 2020, 10, 1725.	Cultivation.	1.3	19
155	A Rat Study to Evaluate the Protein Quality of Three Green Microalgal Species and the I Mechanical Cell Wall Disruption. Foods, 2020, 9, 1531.	mpact of	1.9	20
156	Outdoor cultivation of Chlorella pyrenoidosa in paddy-soaked wastewater and a feasibi biodiesel production from wet algal biomass through in-situ transesterification. Biomas Bioenergy, 2020, 143, 105853.	lity study on s and	2.9	19
157	LC-MS Phytochemical Screening, In Vitro Antioxidant, Antimicrobial and Anticancer Act Microalgae Nannochloropsis oculata Extract. Separations, 2020, 7, 54.	ivity of	1.1	28
158	Pigments Production, Growth Kinetics, and Bioenergetic Patterns in Dunaliella tertiolec (Chlorophyta) in Response to Different Culture Media. Energies, 2020, 13, 5347.	ta	1.6	8
159	Potential assessment of some micro- and macroalgal species for bioethanol and biodies Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-17.	el production.	1.2	34
160	Evaluation and Transcriptome Analysis of the Novel Oleaginous Microalga Lobosphaera (Trebouxiophyceae, Chlorophyta) for Arachidonic Acid Production. Marine Drugs, 2020	bisecta , 18, 229.	2.2	9
162	Marine Algal Antioxidants as Potential Vectors for Controlling Viral Diseases. Antioxidar 392.	nts, 2020, 9,	2.2	41
163	Isothermal torrefaction kinetics for sewage sludge pretreatment. Fuel, 2020, 277, 1182	103.	3.4	18
164	Cellular Stress Conditions as a Strategy to Increase Carbohydrate Productivity in Spirul Bioenergy Research, 2020, 13, 1221-1234.	ina platensis.	2.2	17

#	Article	IF	Citations
165	Valorization of Gelidium amansii for dual production of D-galactonic acid and 5-hydroxymethyl-2-furancarboxylic acid by chemo-biological approach. Microbial Cell Factories, 2020, 19, 104.	1.9	12
166	Utilization of lipid-extracted biomass (LEB) to improve the economic feasibility of biodiesel production from green microalgae. Environmental Reviews, 2020, 28, 325-338.	2.1	11
167	Functional and sensorial properties of cookies enriched with SPIRULINA and DUNALIELLA biomass. Journal of Food Science and Technology, 2020, 57, 3639-3646.	1.4	24
168	Molecular mechanisms for Pb removal by Cyanidiales: a potential biomaterial applied in thermo-acidic conditions. Chemical Engineering Journal, 2020, 401, 125828.	6.6	14
169	Comprehensive assessment of 2G bioethanol production. Bioresource Technology, 2020, 313, 123630.	4.8	183
170	Microalgae for biotechnological applications: Cultivation, harvesting and biomass processing. Aquaculture, 2020, 528, 735562.	1.7	93
171	Anti-inflammatory Activity of Bioactive Compounds from Microalgae and Cyanobacteria by Focusing on the Mechanisms of Action. Molecular Biology Reports, 2020, 47, 6193-6205.	1.0	35
172	Experimental and Model-Based Analysis to Optimize Microalgal Biomass Productivity in a Pilot-Scale Tubular Photobioreactor. Frontiers in Bioengineering and Biotechnology, 2020, 8, 453.	2.0	16
173	Tetraselmis chuii as a Sustainable and Healthy Ingredient to Produce Gluten-Free Bread: Impact on Structure, Colour and Bioactivity. Foods, 2020, 9, 579.	1.9	31
174	Screening Suitability of Northern Hemisphere Algal Strains for Heterotrophic Cultivation and Fatty Acid Methyl Ester Production. Molecules, 2020, 25, 2107.	1.7	7
175	Algae Metabolites in Cosmeceutical: An Overview of Current Applications and Challenges. Marine Drugs, 2020, 18, 323.	2.2	76
176	Simultaneous Optimization of Biomass and Metabolite Production by a Microalgae-Yeast Co-culture Under Inorganic Micronutrients. Bioenergy Research, 2020, 13, 974-985.	2.2	11
177	Plant Growth-Promoting Methylobacteria Selectively Increase the Biomass of Biotechnologically Relevant Microalgae. Frontiers in Microbiology, 2020, 11, 427.	1.5	26
178	Artificial intelligence applied to the production of high-added-value dinoflagellates toxins. Al and Society, 2020, 35, 851-855.	3.1	1
179	Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. Biotechnology for Biofuels, 2020, 13, 38.	6.2	21
180	Biofilm cultivation of marine dinoflagellates under different temperatures and nitrogen regimes enhances DHA productivity. Journal of Applied Phycology, 2020, 32, 865-880.	1.5	5
181	A review on fucoidan antitumor strategies: From a biological active agent to a structural component of fucoidan-based systems. Carbohydrate Polymers, 2020, 239, 116131.	5.1	77
182	Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis. Energies, 2020, 13, 432.	1.6	6

#	Article	IF	CITATIONS
183	Efficient superantioxidant and biofuel production from microalga Haematococcus pluvialis via a biorefinery approach. Bioresource Technology, 2020, 306, 123100.	4.8	38
184	Algal cells harvesting using cost-effective magnetic nano-particles. Science of the Total Environment, 2020, 720, 137621.	3.9	38
185	A review of biochemical and thermochemical energy conversion routes of wastewater grown algal biomass. Science of the Total Environment, 2020, 726, 137961.	3.9	90
186	Autotrophic and Heterotrophic Growth Conditions Modify Biomolecole Production in the Microalga Galdieria sulphuraria (Cyanidiophyceae, Rhodophyta). Marine Drugs, 2020, 18, 169.	2.2	18
187	CO2 sequestration by hybrid integrative photosynthesis (CO2-SHIP): A green initiative for multi-product biorefineries. Materials Science for Energy Technologies, 2020, 3, 420-428.	1.0	6
188	Microbial production of fatty acids and derivative chemicals. Current Opinion in Biotechnology, 2020, 65, 129-141.	3.3	34
189	The case for biotech on Mars. Nature Biotechnology, 2020, 38, 401-407.	9.4	53
190	Enhancing lipid productivity by modulating lipid catabolism using the CRISPR-Cas9 system in Chlamydomonas. Journal of Applied Phycology, 2020, 32, 2829-2840.	1.5	35
191	A marine photosynthetic microbial cell factory as a platform for spider silk production. Communications Biology, 2020, 3, 357.	2.0	20
192	Sustainable bioenergy production. , 2020, , 363-391.		5
192 193	Sustainable bioenergy production. , 2020, , 363-391. Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452.	3.2	5 36
	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS	3.2	
193	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452. Alternative fertilizer-based growth media support high lipid contents without growth impairment in		36
193 194	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess and Biosystems Engineering, 2020, 43, 1123-1131. Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers. Energies, 2020, 13,	1.7	36 8
193 194 195	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BROO3. Bioprocess and Biosystems Engineering, 2020, 43, 1123-1131. Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers. Energies, 2020, 13, 975. Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: Influence of ambient temperature	1.7 1.6	36 8 19
193 194 195 196	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BRO03. Bioprocess and Biosystems Engineering, 2020, 43, 1123-1131. Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers. Energies, 2020, 13, 975. Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: Influence of ambient temperature and operational strategy. Bioresource Technology, 2020, 303, 122884. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient	1.7 1.6 4.8	36 8 19 38
193 194 195 196 197	Multistep Fractionation of Microalgal Biomolecules Using Selective Aqueous Two-Phase Systems. ACS Sustainable Chemistry and Engineering, 2020, 8, 2441-2452. Alternative fertilizer-based growth media support high lipid contents without growth impairment in Scenedesmus obliquus BR003. Bioprocess and Biosystems Engineering, 2020, 43, 1123-1131. Scientific Attention to Sustainability and SDGs: Meta-Analysis of Academic Papers. Energies, 2020, 13, 975. Magnetic field intervention on growth of the filamentous microalgae Tribonema sp. in starch wastewater for algal biomass production and nutrients removal: Influence of ambient temperature and operational strategy. Bioresource Technology, 2020, 303, 122884. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L Scientific Reports, 2020, 10, 2820.	1.7 1.6 4.8 1.6	36 8 19 38 90

#	Article	IF	CITATIONS
201	Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresource Technology, 2020, 304, 122996.	4.8	217
202	Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 2020, 304, 122997.	4.8	224
203	The N-glycans of Chlorella sorokiniana and a related strain contain arabinose but have strikingly different structures. Glycobiology, 2020, 30, 663-676.	1.3	19
204	Growth phase-dependent biochemical composition of green microalgae: Theoretical considerations for biogas production. Bioresource Technology, 2020, 303, 122875.	4.8	14
205	In silico study of the microalgaeâ ``bacteria symbiotic system in a stagnant pond. Computers and Chemical Engineering, 2020, 135, 106740.	2.0	5
206	Sustainable biohydrogen production by Chlorella sp. microalgae: A review. International Journal of Hydrogen Energy, 2020, 45, 8310-8328.	3.8	74
207	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 2020, 716, 137116.	3.9	299
208	Assessment of Halamphora coffeaeformis Growth and Biochemical Composition for Aquaculture Purposes. Journal of Marine Science and Engineering, 2020, 8, 282.	1.2	9
209	Polystyrene microplastics decrease accumulation of essential fatty acids in common freshwater algae. Environmental Pollution, 2020, 263, 114425.	3.7	46
210	Algae-Derived Bioactive Compounds with Anti-Lung Cancer Potential. Marine Drugs, 2020, 18, 197.	2.2	57
212	Effects of nitrogen and phosphorus limitations on fatty acid methyl esters and fuel properties of Dunaliella salina. Environmental Science and Pollution Research, 2020, 27, 32296-32303.	2.7	28
213	CO2 enrichment: Enhancing antioxidant, antibacterial and anticancer activities in Arthrospira platensis. Food Bioscience, 2020, 35, 100575.	2.0	12
214	Microalgal bio-refinery approach for utilization of Tetradesmus obliquus biomass for biodiesel production. Materials Today: Proceedings, 2020, 32, 760-763.	0.9	2
215	Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. Algal Research, 2020, 47, 101887.	2.4	17
216	Carbon dioxide capture from carbon dioxide–rich gases by microalgae. , 2020, , 373-396.		3
217	Nannochloropsis gaditana grown outdoors in annular photobioreactors: Operation strategies. Algal Research, 2020, 48, 101913.	2.4	13
218	Delineation of gamma irradiation (60Co) induced oxidative stress by decrypting antioxidants and biochemical responses of microalga, Chlorella sp Biocatalysis and Agricultural Biotechnology, 2020, 25, 101595.	1.5	21
219	Isolation of fungal strains for biodegradation and saccharification of microalgal biomass. Biomass and Bioenergy, 2020, 137, 105547.	2.9	6

#	Article	IF	CITATIONS
220	HPLC-PDA-MS/MS as a strategy to characterize and quantify natural pigments from microalgae. Current Research in Food Science, 2020, 3, 100-112.	2.7	26
221	Enhancing Photosynthetic Starch Production by Î ³ -Aminobutyric Acid Addition in a Marine Green Microalga <i>Tetraselmis subcordiformis</i> under Nitrogen Stress. Industrial & Engineering Chemistry Research, 2020, 59, 17103-17112.	1.8	9
222	Statistical Approach of Nutrient Optimization for Microalgae Cultivation. E3S Web of Conferences, 2020, 141, 03009.	0.2	3
223	Site-Specific Gene Knock-Out and On-Site Heterologous Gene Overexpression in Chlamydomonas reinhardtii via a CRISPR-Cas9-Mediated Knock-in Method. Frontiers in Plant Science, 2020, 11, 306.	1.7	49
224	Phytohormone supplementation significantly increases fatty acid content of Phaeodactylum tricornutum in two-phase culture. Journal of Applied Phycology, 2021, 33, 13-23.	1.5	14
225	Feeding the reactors: potentials in re-cycled organic fertilisers. Organic Agriculture, 2021, 11, 245-250.	1.2	4
226	Use of <i>Euphorbia</i> sp. (Euphorbiaceae) as biofuel feedstock for semi-arid and arid lands. Biofuels, 2021, 12, 511-521.	1.4	6
227	Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review. Renewable and Sustainable Energy Reviews, 2021, 137, 110498.	8.2	103
228	The effects of microalgae (Spirulina platensis and Chlorella vulgaris) extracts on the quality of vacuum packaged sardine during chilled storage. Journal of Food Measurement and Characterization, 2021, 15, 1327-1340.	1.6	11
229	The environmental performance of hydrogen production pathways based on renewable sources. , 2021, , 375-406.		5
230	Bioenergy technologies, uses, market and future trends with Austria as a case study. Renewable and Sustainable Energy Reviews, 2021, 135, 110237.	8.2	73
231	Marine microorganisms as an untapped source of bioactive compounds. Saudi Journal of Biological Sciences, 2021, 28, 224-231.	1.8	66
232	Two-stage cultivation of Chlorella vulgaris using light and salt stress conditions for simultaneous production of lipid, carotenoids, and antioxidants. Journal of Applied Phycology, 2021, 33, 227-239.	1.5	35
233	Factors impacting the effectiveness of biological pretreatment for the alleviation of algal growth inhibition on anaerobic digestate. Algal Research, 2021, 53, 102129.	2.4	14
234	Application of microalgae in industrial effluent treatment, contaminants removal, and biodiesel production: Opportunities, challenges, and future prospects. , 2021, , 481-517.		6
235	Cultivation of green microalgae by recovering aqueous nutrients in hydrothermal carbonization process water of biomass wastes. Journal of Water Process Engineering, 2021, 40, 101783.	2.6	22
236	Potential of reverse osmosis reject water as a growth medium for the production of algal metabolites–A state-of-the-art review. Journal of Water Process Engineering, 2021, 40, 101849.	2.6	5
237	Light spectra as triggers for sorting improved strains of Tisochrysis lutea. Bioresource Technology, 2021, 321, 124434.	4.8	9

#	Article	IF	CITATIONS
238	Life cycle assessment: Blazing a trail for bioresources management. Energy Conversion and Management: X, 2021, 10, 100063.	0.9	14
239	Effect of temperature, nitrate concentration, pH and bicarbonate addition on biomass and lipid accumulation in the sporulating green alga PW95. Algal Research, 2021, 53, 102148.	2.4	14
240	Nitric oxide production and signalling in algae. Journal of Experimental Botany, 2021, 72, 781-792.	2.4	25
241	Biotechnological valorization of algal biomass: an overview. Systems Microbiology and Biomanufacturing, 2021, 1, 131-141.	1.5	12
242	Microalgae: Cultivation, Biotechnological, Environmental, and Agricultural Applications. Environmental and Microbial Biotechnology, 2021, , 635-701.	0.4	5
243	A comprehensive review on the application of novel disruption techniques for proteins release from microalgae. Critical Reviews in Food Science and Nutrition, 2022, 62, 4309-4325.	5.4	14
244	Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Advances, 2021, 11, 26444-26462.	1.7	14
245	Analytical Modelling, CFD Simulation, and Experimental Validation of n-butanol-Diesel/Biodiesel Fuel Blends in a Microfluidic System. Arabian Journal for Science and Engineering, 2021, 46, 6457-6472.	1.7	0
246	Double-high in palmitic and oleic acids accumulation in a non-model green microalga, Messastrum gracile SE-MC4 under nitrate-repletion and -starvation cultivations. Scientific Reports, 2021, 11, 381.	1.6	18
247	Current and Future Perspective of Microalgae for Simultaneous Wastewater Treatment and Feedstock for Biofuels Production. Chemistry Africa, 2021, 4, 249.	1.2	13
248	Selection and re-acclimation of bioprospected acid-tolerant green microalgae suitable for growth at low pH. Extremophiles, 2021, 25, 129-141.	0.9	8
249	Bioeconomy as a Driver for the Upcoming Seventh K-Wave (2050–2100). , 2021, , 3-24.		0
250	Health benefits of bioactive compounds from microalgae. , 2021, , 291-319.		4
251	Carbohydrates derived from microalgae in the food industry. , 2021, , 127-146.		4
252	Future Foods for Urban Food Production. , 2021, , 1-8.		2
253	Current utilization of microalgae in the food industry beyond direct human consumption. , 2021, , 199-248.		3
254	Unconventional microalgae species and potential for their use in the food industry. , 2021, , 49-71.		2
255	Biofuel from Microalgae. Clean Energy Production Technologies, 2021, , 55-83.	0.3	1

#	Article	IF	CITATIONS
256	Sustainable Production of Hydrogen by Algae: Current Status and Future Perspectives. Clean Energy Production Technologies, 2021, , 183-223.	0.3	0
257	Harvesting of Microalgae Biomass Using Ceramic Microfiltration at High Cross-Flow Velocity. Applied Biochemistry and Biotechnology, 2021, 193, 1147-1169.	1.4	12
258	Cosmetics applications. , 2021, , 313-338.		2
259	Biodiesel production from microalgae Dunaliella tertiolecta: a study on economic feasibility on large-scale cultivation systems. Biomass Conversion and Biorefinery, 2023, 13, 1071-1085.	2.9	4
260	Cationic starch: an effective flocculant for separating algal biomass from wastewater RO concentrate treated by microalgae. Journal of Applied Phycology, 2021, 33, 917-928.	1.5	10
261	Algae: Biomass to Biofuel. Methods in Molecular Biology, 2021, 2290, 31-51.	0.4	8
262	Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield. Journal of Oceanology and Limnology, 2021, 39, 1131-1142.	0.6	11
263	Microalgae Oil Upgrading over Zeolite-Based Catalysts. ACS Symposium Series, 2021, , 89-124.	0.5	6
264	Characterization and hydrolysis optimization of Sargassum cinereum for the fermentative production of 3G bioethanol. Biomass Conversion and Biorefinery, 2023, 13, 1831-1841.	2.9	10
265	Bioconversion of Industrial Wastes into Biodiesel Feedstocks. Advances in Science, Technology and Innovation, 2021, , 109-120.	0.2	0
267	Astaxanthin from Chromochloris zofingiensis: Feasibility analysis. , 2021, , 37-59.		0
268	Bioenergy research under climate change: a bibliometric analysis from a country perspective. Environmental Science and Pollution Research, 2021, 28, 26427-26440.	2.7	8
269	Thermoresponsive Surfaces Grafted by Shrinkable Hydrogel Poly(<i>N</i> -isopropylacrylamide) for Controlling Microalgae Cells Adhesion during Biofilm Cultivation. Environmental Science & Technology, 2021, 55, 1178-1189.	4.6	19
270	Identification of microalgae cultured in Bold's Basal medium from freshwater samples, from a high-rise city. Scientific Reports, 2021, 11, 4474.	1.6	4
271	Bacterial diketopiperazines stimulate diatom growth and lipid accumulation. Plant Physiology, 2021, 186, 1159-1170.	2.3	11
272	Microfluidics for microalgal biotechnology. Biotechnology and Bioengineering, 2021, 118, 1716-1734.	1.7	23
273	Predictive model development and simulation of photobioreactors for algal biomass growth estimation. International Journal of Chemical Reactor Engineering, 2021, 19, 139-153.	0.6	4
274	The effect of copepod enriched-vegetable based diet on Giant Tiger Prawn (Penaeus monodon) post-larvae. IOP Conference Series: Earth and Environmental Science, 2021, 674, 012081.	0.2	0

#	Article	IF	CITATIONS
275	Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Applied Microbiology and Biotechnology, 2021, 105, 2139-2156.	1.7	2
276	Improvement of Photoautotrophic Algal Biomass Production after Interrupted CO2 Supply by Urea and KH2PO4 Injection. Energies, 2021, 14, 778.	1.6	14
277	Recent advances in the integrated biorefinery concept for the valorization of algal biomass through sustainable routes. Biofuels, Bioproducts and Biorefining, 2021, 15, 879-898.	1.9	21
278	Renewable source hydrocarbons obtaining from microalgae by catalytic deoxygenation. Biomass Conversion and Biorefinery, 2022, 12, 1575-1582.	2.9	2
279	Optimization and Comparison of Three Cell Disruption Processes on Lipid Extraction from Microalgae. Processes, 2021, 9, 369.	1.3	18
280	Potential of macroalgae-based biorefinery for lactic acid production from exergy aspect. Biomass Conversion and Biorefinery, 2023, 13, 2623-2653.	2.9	8
281	Isolation of Industrial Important Bioactive Compounds from Microalgae. Molecules, 2021, 26, 943.	1.7	64
282	Polar lipidomic profile shows Chlorococcum amblystomatis as a promising source of value-added lipids. Scientific Reports, 2021, 11, 4355.	1.6	29
283	Effect of blue and red-orange LEDs on theÂgrowth and biochemical profile of Chlamydomonas reinhardtii. Journal of Applied Phycology, 2021, 33, 1367-1377.	1.5	5
284	A Hybrid Microfluidic Differential Carbonator Approach for Enhancing Microalgae Growth: Inline Monitoring Through Optical Imaging. Arabian Journal for Science and Engineering, 2021, 46, 6765-6774.	1.7	2
285	Bioremediation Potential of Chlorella vulgaris and Nostoc paludosum on azo Dyes with Analysis of Metabolite Changes. Baghdad Science Journal, 2021, 18, 0445.	0.4	5
286	Uncovering Prospective Role and Applications of Existing and New Nutraceuticals from Bacterial, Fungal, Algal and Cyanobacterial, and Plant Sources. Sustainability, 2021, 13, 3671.	1.6	17
287	Microalgal Co-cultivation for Biofuel Production and Bioremediation: Current Status and Benefits. Bioenergy Research, 2022, 15, 1-26.	2.2	43
288	Xanthophylls from the Sea: Algae as Source of Bioactive Carotenoids. Marine Drugs, 2021, 19, 188.	2.2	94
289	Phytoremediation of ¹³⁷ Cs, ⁶⁰ Co, ²⁴¹ Am, and ²³⁹ Pu from aquatic solutions using <i>Chlamydomonas reinhardtii</i> , <i>Scenedesmus obliquus</i> , and <i>Chlorella vulgaris</i> . International Journal of Phytoremediation, 2021, 23, 1376-1381.	1.7	6
290	Compounds derived from bacteria enhance marine diatom growth. Plant Physiology, 2021, 186, 827-828.	2.3	2
291	Potential of household photobioreactor for algae cultivation. Journal of Water and Climate Change, 2021, 12, 2147-2180.	1.2	7
292	Carotenoid Extract Derived from Euglena gracilis Overcomes Lipopolysaccharide-Induced Neuroinflammation in Microglia: Role of NF-I®B and Nrf2 Signaling Pathways. Molecular Neurobiology, 2021, 58, 3515-3528	1.9	14

#	Article	IF	Citations
293	Microalgae Cultivation in Palm Oil Mill Effluent (POME) Treatment and Biofuel Production. Sustainability, 2021, 13, 3247.	1.6	83
294	Laboratory Scale Production of bio-oil from Oscillatoria algae and its Application in Production of biodiesel. International Journal of Scientific Research in Science and Technology, 2021, , 243-250.	0.1	0
295	Medicinal Prospects of Antioxidants From Algal Sources in Cancer Therapy. Frontiers in Pharmacology, 2021, 12, 593116.	1.6	42
296	Multiproduct Microalgae Biorefineries Mediated by Ionic Liquids. Trends in Biotechnology, 2021, 39, 1131-1143.	4.9	19
297	Assessment of Chlorella sorokiniana Growth in Anaerobic Digester Effluent. Plants, 2021, 10, 478.	1.6	19
298	Gene Delivery Technologies with Applications in Microalgal Genetic Engineering. Biology, 2021, 10, 265.	1.3	26
299	Nuclei isolation protocols for flow cytometry allowing nuclear DNA content estimation in problematic microalgal groups. Journal of Applied Phycology, 2021, 33, 2057-2067.	1.5	5
300	Effects of Liquid Digestate Treatment on Sustainable Microalgae Biomass Production. Bioenergy Research, 2022, 15, 357-370.	2.2	23
301	Prospects of Microalgae for Biomaterial Production and Environmental Applications at Biorefineries. Sustainability, 2021, 13, 3063.	1.6	38
304	A novel nanoemulsion-based microalgal growth medium for enhanced biomass production. Biotechnology for Biofuels, 2021, 14, 111.	6.2	14
305	Fermentation of Biodegradable Organic Waste by the Family Thermotogaceae. Resources, 2021, 10, 34.	1.6	13
306	Optimization of semi-continuous cultivation conditions for the improvement of lipid productivity from thermo-tolerant <i>Chlorella vulgaris</i> XJW. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-15.	1.2	0
307	Biochemical and phylogenetic characterization of the wastewater tolerant Chlamydomonas biconvexa Embrapa LBA40 strain cultivated in palm oil mill effluent. PLoS ONE, 2021, 16, e0249089.	1.1	8
309	Biomolecule composition and draft genome of a novel, high-lipid producing Scenedesmaceae microalga. Algal Research, 2021, 54, 102181.	2.4	4
310	Functional Diversity Facilitates Stability Under Environmental Changes in an Outdoor Microalgal Cultivation System. Frontiers in Bioengineering and Biotechnology, 2021, 9, 651895.	2.0	11
311	Contribution of Anaerobic Digestion Coupled with Algal System towards Zero Waste. , 0, , .		2
312	Enhancement of microalgae growth using magnetic artificial cilia. Biotechnology and Bioengineering, 2021, 118, 2472-2481.	1.7	7
313	Microalgae for biofuels, wastewater treatment and environmental monitoring. Environmental Chemistry Letters, 2021, 19, 2891-2904.	8.3	87

#	Article	IF	CITATIONS
314	Toward the Enhancement of Microalgal Metabolite Production through Microalgae–Bacteria Consortia. Biology, 2021, 10, 282.	1.3	39
316	Growth enhancement in marine copepod, <i>Pseudodiaptomus annandalei</i> fed with the sodium acetate containing N/P starved medium grown, <i>Tetraselmis suecica</i> . Aquaculture Research, 2021, 52, 4154-4165.	0.9	4
317	Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 2022, 19, 2173-2194.	1.8	21
319	Fatty acids of microalgae: diversity and applications. Reviews in Environmental Science and Biotechnology, 2021, 20, 515-547.	3.9	70
320	Influence of Nutrient-Stress Conditions on Chlorella vulgaris Biomass Production and Lipid Content. Catalysts, 2021, 11, 573.	1.6	30
322	Development of a new method for simultaneous extraction of chlorophylls and carotenoids from microalgal biomass. Journal of Applied Phycology, 2021, 33, 1987-1997.	1.5	11
323	Photosynthetic microalgae–based carbon sequestration and generation of biomass in biorefinery approach for renewable biofuels for a cleaner environment. Biomass Conversion and Biorefinery, 2023, 13, 7403-7421.	2.9	20
324	Improvement of real-scale raceway bioreactors for microalgae production using Computational Fluid Dynamics (CFD). Algal Research, 2021, 54, 102207.	2.4	15
325	Algae biopolymer towards sustainable circular economy. Bioresource Technology, 2021, 325, 124702.	4.8	112
327	Photoperiod influenced the growth and antioxidative responses of Chlorella vulgaris, Isochrysis galbana, and Tetraselmis chuii. Journal of Applied Pharmaceutical Science, 0, , .	0.7	5
328	The Unicellular Red Alga <i>Cyanidioschyzon merolae—</i> The Simplest Model of a Photosynthetic Eukaryote. Plant and Cell Physiology, 2021, 62, 926-941.	1.5	24
329	Nanoalgosomes: Introducing extracellular vesicles produced by microalgae. Journal of Extracellular Vesicles, 2021, 10, e12081.	5.5	45
330	Algae-Derived Anti-Inflammatory Compounds against Particulate Matters-Induced Respiratory Diseases: A Systematic Review. Marine Drugs, 2021, 19, 317.	2.2	4
331	Current perspectives on integrated approaches to enhance lipid accumulation in microalgae. 3 Biotech, 2021, 11, 303.	1.1	19
332	Messastrum gracile (Chlorophyceae) growth using sugarcane molasses-based macrophyte extract culture media. Journal of Applied Phycology, 2021, 33, 2745-2754.	1.5	3
333	Evaluation of novel 3D-printed monolithic adsorbers against conventional chromatography columns for the purification of c-phycocyanin from Spirulina. Algal Research, 2021, 55, 102253.	2.4	10
334	A life cycle assessment of energy recovery using briquette from wastewater grown microalgae biomass. Journal of Environmental Management, 2021, 285, 112171.	3.8	39
335	Nanomaterial Shape Influence on Cell Behavior. International Journal of Molecular Sciences, 2021, 22, 5266.	1.8	27

#	Article	IF	CITATIONS
336	Lipid accumulation on optimized condition through biomass production in green algae. IOP Conference Series: Earth and Environmental Science, 2021, 762, 012075.	0.2	1
337	Cultivation Method Effect on Schizochytrium sp. Biomass Growth and Docosahexaenoic Acid (DHA) Production with the Use of Waste Glycerol as a Source of Organic Carbon. Energies, 2021, 14, 2952.	1.6	17
338	Chlorophyll a and non-pigmented biomass are sufficient predictors for estimating light attenuation during cultivation of Dunaliella viridis. Algal Research, 2021, 55, 102283.	2.4	4
339	Spatial diversity of microalgae in Simeulue Island, Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 762, 012004.	0.2	1
340	Experimental investigation of microalgal harvesting with low cost bottom ash: Influence of temperature and pH with zeta potential and thermodynamic function. Environmental Technology and Innovation, 2021, 22, 101376.	3.0	15
341	Lipids from Microalgae for Cosmetic Applications. Cosmetics, 2021, 8, 52.	1.5	43
342	Comparison of various approaches to detect algal culture contamination: a case study of Chlorella sp. contamination in a Phaeodactylum tricornutum culture. Applied Microbiology and Biotechnology, 2021, 105, 5189-5200.	1.7	5
343	Investigation of the removal and recovery of nitrate by an amine-enriched composite under different fixed-bed column conditions. Chemical Engineering Research and Design, 2021, 150, 365-372.	2.7	15
344	Life Cycle Assessment of Total Fatty Acid (TFA) Production from Microalgae Nannochloropsis oceanica at Different Sites and Under Different Sustainability Scenarios. Bioenergy Research, 2022, 15, 1595-1615.	2.2	6
345	Microalgal-based feed: promising alternative feedstocks for livestock and poultry production. Journal of Animal Science and Biotechnology, 2021, 12, 76.	2.1	68
346	The Brown Seaweeds of Scotland, Their Importance and Applications. Environments - MDPI, 2021, 8, 59.	1.5	7
347	Improvements in Conventional Modeling Practices for Effective Simulation and Understanding of Microalgal Growth in Photobioreactors: an Experimental Study. Biotechnology and Bioprocess Engineering, 2021, 26, 483-500.	1.4	2
348	Effects of Chlorella vulgaris, Nannochloropsis oceanica and Tetraselmis sp. supplementation levels on in vitro rumen fermentation. Algal Research, 2021, 56, 102284.	2.4	13
349	Algae as an attractive source for cosmetics to counter environmental stress. Science of the Total Environment, 2021, 772, 144905.	3.9	37
350	Alternative and Unconventional Feeds in Dairy Diets and Their Effect on Fatty Acid Profile and Health Properties of Milk Fat. Animals, 2021, 11, 1817.	1.0	7
351	Distribution patterns and seasonal variations in phytoplankton communities of the hypersaline Pulicat lagoon, India. Environmental Science and Pollution Research, 2021, 28, 61497-61512.	2.7	6
352	Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Marine Drugs, 2021, 19, 357.	2.2	54
353	Bioprospecting wild South African microalgae as a potential third-generation biofuel feedstock, biological carbon-capture agent and for nutraceutical applications. Biomass Conversion and Biorefinery, 2023, 13, 6897-6912.	2.9	2

#	Article	IF	CITATIONS
354	Ensayos de laboratorio para la obtención de biomasa algal en un fotobiorreactor dicontinuo Revista CientÃfica Y Tecnológica UPSE, 2021, 8, 01-07.	0.1	0
355	Effect of Microalgae and Macroalgae Extracts on Non-Alcoholic Fatty Liver Disease. Nutrients, 2021, 13, 2017.	1.7	4
356	Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. Sustainability, 2021, 13, 6962.	1.6	2
357	Flocculation of Chlorella vulgaris with alum and pH adjustment. Biotechnology and Applied Biochemistry, 2021, , .	1.4	4
358	Role of dietary Schizochytrium sp. in improving disease resistance of zebrafish through metabolic and microbial analysis. Aquaculture, 2021, 539, 736631.	1.7	13
359	Comparison of growth, protein and carotenoid contents of some freshwater microalgae and the effects of urea and cultivation in a photobioreactor with reflective broth circulation guide on Desmodesmus subspicatus LC172266. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	5
360	Optimization of Microalga Chlorella vulgaris Magnetic Harvesting. Nanomaterials, 2021, 11, 1614.	1.9	24
361	Prospects for viruses infecting eukaryotic microalgae in biotechnology. Biotechnology Advances, 2022, 54, 107790.	6.0	5
362	A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 2021, 329, 124868.	4.8	112
363	Production of Gasolines and Monocyclic Aromatic Hydrocarbons: From Fossil Raw Materials to Green Processes. Energies, 2021, 14, 4061.	1.6	26
364	Prospective peat swamp water as growth medium for microalgal cultivation and kinetic study. AEJ - Alexandria Engineering Journal, 2022, 61, 2552-2562.	3.4	7
365	Carbohydrate-Binding Module and Linker Allow Cold Adaptation and Salt Tolerance of Maltopentaose-Forming Amylase From Marine Bacterium Saccharophagus degradans 2-40T. Frontiers in Microbiology, 2021, 12, 708480.	1.5	12
366	Phytoplankton dynamics and renewable energy potential induced by the environmental conditions of Lake Burullus, Egypt. Environmental Science and Pollution Research, 2021, 28, 66043-66071.	2.7	3
367	Dielectric Characterization and Multistage Separation of Various Cells via Dielectrophoresis in a Bipolar Electrode Arrayed Device. Analytical Chemistry, 2021, 93, 10220-10228.	3.2	7
368	Potential of cyanobacteria in the conversion of wastewater to biofuels. World Journal of Microbiology and Biotechnology, 2021, 37, 140.	1.7	18
369	Reuniting the Biogeochemistry of Algae for a Low-Carbon Circular Bioeconomy. Trends in Plant Science, 2021, 26, 729-740.	4.3	52
370	Algae-Based Biorefinery as a Sustainable Renewable Resource. Circular Economy and Sustainability, 2021, 1, 1349-1365.	3.3	12
371	Channeling of Carbon Flux Towards Carotenogenesis in Botryococcus braunii: A Media Engineering Perspective. Frontiers in Microbiology, 2021, 12, 693106.	1.5	9

#	Article	IF	CITATIONS
372	A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. Bioresource Technology, 2021, 332, 125055.	4.8	35
373	Microalgae consortia cultivation using effluents for bioproduct manufacture. Reviews in Environmental Science and Biotechnology, 2021, 20, 865-886.	3.9	8
374	Response surface methodology–based extraction optimization with application of ZrCl4 as novel quenching agent for enhancement of bio-oil yield from Jatropha curcas and Chlorella pyrenoidosa. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
375	Recent developments in microalgal genome editing for enhancing lipid accumulation and biofuel recovery. Biomass and Bioenergy, 2021, 150, 106093.	2.9	16
376	Synthetic algal-bacteria consortia for space-efficient microalgal growth in a simple hydrogel system. Journal of Applied Phycology, 2021, 33, 2805-2815.	1.5	20
377	Effect of urea on growth and biochemical composition of <i>Porphyridium purpureum</i> (Rhodophyta) and scaling-up under non-optimal outdoor conditions. Phycologia, 2021, 60, 572-581.	0.6	4
378	Shifting from fossil-based economy to bio-based economy: Status quo, challenges, and prospects. Energy, 2021, 228, 120533.	4.5	66
379	Auxin and Cytokinin Alleviate Chromium-Induced Oxidative Stress in Nostoc muscorum and Anabaena sp. by Modulating Ascorbate–Glutathione Cycle. Journal of Plant Growth Regulation, 2022, 41, 2743-2758.	2.8	3
380	Green synthesis of microalgal biomass-silver nanoparticle composite showing antimicrobial activity and heterogenous catalysis of nitrophenol reduction. Biomass Conversion and Biorefinery, 2023, 13, 7783-7795.	2.9	4
381	Established and Emerging Producers of PHA: Redefining the Possibility. Applied Biochemistry and Biotechnology, 2021, 193, 3812-3854.	1.4	12
382	Analysis of microalgal growth kinetic model and carbohydrate biosynthesis cultivated using agro-industrial waste residuals as carbon source. Preparative Biochemistry and Biotechnology, 2021, , 1-11.	1.0	2
383	Maximizing intrinsic value of microalgae using multi-parameter study: conjoint effect of organic carbon, nitrate, and phosphate supplementation. Clean Technologies and Environmental Policy, 0, , 1.	2.1	8
384	Microalgal growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture based-open pond fed with municipal wastewater in northern Sweden. Chemosphere, 2021, 276, 130122.	4.2	49
385	Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells, 2021, 10, 2194.	1.8	8
386	Evaluation and Characterization of Microalgae from Kalaburagi Region as a Potential Source of Biomass Production. International Journal of Scientific Research in Science and Technology, 2021, , 549-555.	0.1	0
387	CO2 capture and inorganic carbon assimilation of gaseous fermentation effluents using Parachlorella kessleri microalgae. Journal of CO2 Utilization, 2021, 50, 101581.	3.3	19
388	Value added cassava waste management and environmental sustainability in Nigeria: A review. Environmental Challenges, 2021, 4, 100127.	2.0	17
389	Magnetic Field Application to Increase Yield of Microalgal Biomass in Biofuel Production. , 0, , .		0

#	Article	IF	CITATIONS
390	A critical review on different harvesting techniques for algal based biodiesel production. Science of the Total Environment, 2021, 780, 146467.	3.9	48
391	How does the Internet of Things (IoT) help in microalgae biorefinery?. Biotechnology Advances, 2022, 54, 107819.	6.0	45
392	A sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production. Biomass Conversion and Biorefinery, 2023, 13, 6859-6873.	2.9	13
393	A review on the properties and applications of chitosan, cellulose and deep eutectic solvent in green chemistry. Journal of Industrial and Engineering Chemistry, 2021, 104, 362-380.	2.9	72
394	How Do Operational and Design Parameters Effect Biomass Productivity in a Flat-Panel Photo-Bioreactor? A Computational Analysis. Processes, 2021, 9, 1387.	1.3	5
395	Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs?. Marine Drugs, 2021, 19, 484.	2.2	54
396	Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey. Biotechnology Advances, 2022, 54, 107816.	6.0	6
397	Comprehensive sequence and structure analysis of algal lipid catabolic enzyme Triacylglycerol lipase: an <i>in silico</i> study to vitalize the development of optimum engineered strains with high lipid productivity. Journal of Biomolecular Structure and Dynamics, 2022, 40, 11989-12007.	2.0	1
398	Replacement of fish meal with Methanotroph (Methylococcus capsulatus, Bath) bacteria meal in the diets of Pacific white shrimp (Litopenaeus vannamei). Aquaculture, 2021, 541, 736801.	1.7	45
399	Differential responses in <scp>EPA</scp> and fucoxanthin production by the marine diatom <i>Stauroneis</i> sp. under varying cultivation conditions. Biotechnology Progress, 2021, 37, e3197.	1.3	11
400	Harnessing solar energy using phototrophic microorganisms: A sustainable pathway to bioenergy, biomaterials, and environmental solutions. Renewable and Sustainable Energy Reviews, 2021, 146, 111181.	8.2	30
401	An integrated approach for phycoremediation of municipal wastewater and production of sustainable transportation fuel using oleaginous Chlorella sp Journal of Water Process Engineering, 2021, 42, 102183.	2.6	17
402	Insights into the influence of CO2 supplement on phycoremediation and lipid accumulation potential of microalgae: An exploration for biodiesel production. Environmental Technology and Innovation, 2021, 23, 101596.	3.0	11
403	Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. Journal of Applied Phycology, 2021, 33, 3779-3795.	1.5	52
404	Insights into the technology utilized to cultivate microalgae in dairy effluents. Biocatalysis and Agricultural Biotechnology, 2021, 35, 102106.	1.5	11
405	A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel. Sustainability, 2021, 13, 10479.	1.6	12
406	A multicriteria decision analysis for the evaluation of microalgal growth and harvesting. Chemosphere, 2021, 279, 130561.	4.2	12
407	Fighting Fat With Fat: n-3 Polyunsaturated Fatty Acids and Adipose Deposition in Broiler Chickens. Frontiers in Physiology, 2021, 12, 755317.	1.3	9

CITAT	ELONI.	DED	ODT
		K F D	ו ארו

#	Article	IF	CITATIONS
408	Microalgal nanocellulose – opportunities for a circular bioeconomy. Trends in Plant Science, 2021, 26, 924-939.	4.3	25
409	Effects of Spirulina (Arthrospira platensis) as a drinking water supplement during cyclical chronic heat stress on broiler chickens: Assessing algal composition, production, stress, health and immune-biochemical indices. Journal of Thermal Biology, 2022, 103, 103100.	1.1	6
410	Silver nanoparticles and Chlorella treatments induced glucosinolates and kaempferol key biosynthetic genes in Eruca sativa. Beni-Suef University Journal of Basic and Applied Sciences, 2021, 10, .	0.8	6
411	Therapeutic Potential of Algal Nanoparticles: A brief review. Combinatorial Chemistry and High Throughput Screening, 2021, 24, .	0.6	2
412	Biodegradable, metal-chelating compounds as alternatives to EDTA for cultivation of marine microalgae. Journal of Applied Phycology, 2021, 33, 3519-3537.	1.5	3
413	Microalgae as a feedstock for the production of biodiesel: A review. Bioresource Technology Reports, 2021, 15, 100771.	1.5	54
414	Fatty Acids Derivatives From Eukaryotic Microalgae, Pathways and Potential Applications. Frontiers in Microbiology, 2021, 12, 718933.	1.5	26
415	Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Science of the Total Environment, 2022, 806, 150585.	3.9	100
416	The Fusion of Microfluidics and Optics for On-Chip Detection and Characterization of Microalgae. Micromachines, 2021, 12, 1137.	1.4	12
417	Microalgal Lipid Extracts Have Potential to Modulate the Inflammatory Response: A Critical Review. International Journal of Molecular Sciences, 2021, 22, 9825.	1.8	18
418	Pre- and Early Post-treatment With Arthrospira platensis (Spirulina) Extract Impedes Lipopolysaccharide-triggered Neuroinflammation in Microglia. Frontiers in Pharmacology, 2021, 12, 724993.	1.6	13
419	Catalytic hydrothermal carbonization of microalgae biomass for low-carbon emission power generation: the environmental impacts of hydrochar co-firing. Fuel, 2021, 300, 120927.	3.4	43
420	Microalgae biofilm formation and antioxidant responses to stress induce by Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. Ecotoxicology and Environmental Safety, 2021, 221, 112468.	2.9	6
421	Production of Arthrospira (Spirulina) platensis Enriched in β-Glucans through Phosphorus Limitation. Applied Sciences (Switzerland), 2021, 11, 8121.	1.3	12
422	Evaluation of growth and carotenoid production by a green microalga <i>Scenedesmus quadricauda</i> PUMCC 4.1.40. under optimized culture conditions. Journal of Basic Microbiology, 2022, 62, 1156-1166.	1.8	12
423	Biodiesel from Microorganisms: A Review. Energy Technology, 2021, 9, 2001053.	1.8	10
424	Valorization of carbon dioxide (<scp>CO₂</scp>) to enhance production of biomass, biofuels, and biorenewables (<scp>B³</scp>) in <i>Chlorella saccharophila</i> <scp>UTEX247</scp> : a circular bioeconomy perspective. Biofuels, Bioproducts and Biorefining, 2022, 16, 682-697.	1.9	9
425	Acclimation of photosynthesis and lipids biosynthesis to prolonged nitrogen and phosphorus limitation in Nannochloropsis gaditana. Algal Research, 2021, 58, 102368.	2.4	18

#	Article	IF	CITATIONS
426	Synthesis, characterisation and evaluation on the performance of ferrofluid for microplastic removal from synthetic and actual wastewater. Journal of Environmental Chemical Engineering, 2021, 9, 105894.	3.3	22
427	Improved saccharification of Chlorella vulgaris biomass by fungal secreted enzymes for bioethanol production. Algal Research, 2021, 58, 102402.	2.4	9
428	Algae-mediated processes for the treatment of antiretroviral drugs in wastewater: Prospects and challenges. Chemosphere, 2021, 280, 130674.	4.2	30
429	Microalgae: Sustainable resource of carbohydrates in third-generation biofuel production. Renewable and Sustainable Energy Reviews, 2021, 150, 111464.	8.2	72
430	Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NaDES) and related pre-treatments. Journal of Environmental Chemical Engineering, 2021, 9, 105989.	3.3	59
431	Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281, 130886.	4.2	61
432	Insights into the potential impact of algae-mediated wastewater beneficiation for the circular bioeconomy: A global perspective. Journal of Environmental Management, 2021, 297, 113257.	3.8	31
433	Cultivation of microalgae for lipid production using municipal wastewater. Chemical Engineering Research and Design, 2021, 155, 155-165.	2.7	32
434	A bZIP transcription factor is involved in regulating lipid and pigment metabolisms in the green alga Chlamydomonas reinhardtii. Algal Research, 2021, 59, 102450.	2.4	11
435	Transcriptome-wide study in the green microalga Messastrum gracile SE-MC4 identifies prominent roles of photosynthetic integral membrane protein genes during exponential growth stage. Phytochemistry, 2021, 192, 112936.	1.4	4
436	Impact of pyrene (polycyclic aromatic hydrocarbons) pollutant on metabolites and lipid induction in microalgae Chlorella sorokiniana (UUIND6) to produce renewable biodiesel. Chemosphere, 2021, 285, 131482.	4.2	16
437	Effects of cultivation conditions on Chlorella vulgaris and Desmodesmus sp. grown in sugarcane agro-industry residues. Bioresource Technology, 2021, 342, 125949.	4.8	11
438	Sustainable production of polyhydroxybutyrate from autotrophs using CO2 as feedstock: Challenges and opportunities. Bioresource Technology, 2021, 341, 125751.	4.8	39
439	Long-term semi-continuous production of carbohydrate-enriched microalgae biomass cultivated in low-loaded domestic wastewater. Science of the Total Environment, 2021, 798, 149227.	3.9	19
440	How can the commercial potential of microalgae from the Dunaliella genus be improved? The importance of nucleotide metabolism with a focus on nucleoside diphosphate kinase (NDPK). Algal Research, 2021, 60, 102474.	2.4	4
441	Mixotrophic biorefinery: A promising algal platform for sustainable biofuels and high value coproducts. Renewable and Sustainable Energy Reviews, 2021, 152, 111669.	8.2	42
442	Algae as potential feedstock for various bioenergy production. Chemosphere, 2022, 287, 131944.	4.2	33
443	Carotenoid-rich microalgae promote growth and health conditions of Artemia nauplii. Aquaculture, 2022, 546, 737289.	1.7	11

#	Article	IF	CITATIONS
444	Microalgae as a multipotential role in commercial applications: Current scenario and future perspectives. Fuel, 2022, 308, 122053.	3.4	34
445	Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept. Fuel, 2022, 307, 121782.	3.4	190
446	Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere, 2022, 286, 131870.	4.2	85
447	Role of microalgae in degradation of pharmaceutical compounds from water. , 2022, , 75-102.		1
448	Materials Framing: A Case Study of Biodesign Companies' Web Communications. She Ji, 2021, 7, 403-434.	0.6	5
449	Novel Flat-Plate Photobioreactor with Inclined Baffles and Internal Structure Optimization to Improve Light Regime Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 1550-1558.	3.2	28
450	Open system for the autotrophic cultivation of Scenedesmus obliquus NCIM 5586: multiobjective optimization for the tradeoff between biomass and lipid. Biomass Conversion and Biorefinery, 2023, 13, 2113-2123.	2.9	2
451	Biofuel Production Technologies, Comparing the Biofuels and Fossil Fuels. Clean Energy Production Technologies, 2021, , 1-27.	0.3	0
452	Screening, molecular detection and hydrocarbon investigation of microalgae from paddy fields of Rasipuram area, Namakkal, Tamil Nadu. Materials Today: Proceedings, 2021, 47, 440-445.	0.9	3
453	Algal-Based Wastewater Treatment and Biorefinery. , 2021, , 413-432.		3
454	Cultivation techniques. , 2021, , 1-33.		2
456	Food and Beverages Containing Algae and Derived Ingredients Launched in the Market from 2015 to 2019: A Front-of-Pack Labeling Perspective with a Special Focus on Spain. Foods, 2021, 10, 173.	1.9	42
457	Future perspectives of microalgae in the food industry. , 2021, , 387-433.		6
458	Seaweeds Compounds: An Ecosustainable Source of Cosmetic Ingredients?. Cosmetics, 2021, 8, 8.	1.5	77
460	Microalgaeâ€microbial fuel cell (<scp>mMFC</scp>): an integrated process for electricity generation, wastewater treatment, <scp>CO₂</scp> sequestration and biomass production. International Journal of Energy Research, 2020, 44, 9254-9265.	2.2	26
461	Applications of Algal Nanoparticles in Agriculture. , 2019, , 265-280.		1
462	The Role of Phytohormones in Enhancing Metal Remediation Capacity of Algae. Bulletin of Environmental Contamination and Toxicology, 2020, 105, 671-678.	1.3	14
463	Microalgae Isolation for Nutrient Removal Assessment and Biodiesel Production. Bioenergy Research, 2020, 13, 1247-1259.	2.2	24

# 464	ARTICLE Overview of microalgal cultivation, biomass processing and application. , 2020, , 343-352.	IF	CITATIONS 2
465	Integrated biorefineries of food waste. , 2020, , 275-298.		7
466	Techno-economic case study: Bio-fixation of industrial emissions at an Indian oil and gas plant. Journal of Cleaner Production, 2020, 266, 121820.	4.6	10
467	Characterization of Particle Movement and High-Resolution Separation of Microalgal Cells via Induced-Charge Electroosmotic Advective Spiral Flow. Analytical Chemistry, 2021, 93, 1667-1676.	3.2	12
468	Freeing land from biofuel production through microalgal cultivation in the Neotropical region. Environmental Research Letters, 2020, 15, 094094.	2.2	18
469	Highly Porous Carbon from Microalga, <i>Chlorella Vulgaris</i> , as an Electrochemical Hydrogen Storage Material. Journal of the Electrochemical Society, 2020, 167, 120525.	1.3	12
470	Nutrient removal and carbohydrate production potential of indigenous Scenedesmus sp. grown in anaerobically digested brewery wastewater. Environmental Systems Research, 2020, 9, .	1.5	11
471	Classification of marine microalgae using low-resolution Mueller matrix images and convolutional neural network. Applied Optics, 2020, 59, 9698.	0.9	17
472	Synthesis and characterization of microalgae fatty acids or Aloe vera oil microcapsules. Polimeros, 2019, 29, .	0.2	7
473	Extraction, Properties, and Applications of Bioactive Compounds Obtained from Microalgae. Current Pharmaceutical Design, 2020, 26, 1929-1950.	0.9	22
474	FRESHWATER ECOSYSTEM MACROPHYTES AND MICROPHYTES: DEVELOPMENT, ENVIRONMENTAL PROBLEMS, USAGE AS RAW MATERIAL. REVIEW. Environmental Problems, 2019, 4, 115-124.	0.0	6
475	Microalgae Harvesting: A Review. Research Papers Faculty of Materials Science and Technology Slovak University of Technology in Trnava, 2019, 27, 129-143.	0.4	4
476	Enhanced Biomass and Lipid Production Capacity of <i>Chlamydomonas reinhardtii</i> under Mixotrophic Cultivation using Sewage Effluent and Waste Molasses. Japanese Journal of Water Treatment Biology, 2020, 56, 57-66.	0.2	1
477	Biotechnological Applications of Microalgal Oleaginous Compounds: Current Trends on Microalgal Bioprocessing of Products. Frontiers in Energy Research, 2020, 8, .	1.2	72
478	Analysis of Scientific Research Driving Microalgae Market Opportunities in Europe. Marine Drugs, 2020, 18, 264.	2.2	62
479	Accumulation of PHA in the Microalgae Scenedesmus sp. under Nutrient-Deficient Conditions. Polymers, 2021, 13, 131.	2.0	46
480	A Modelling Framework for the Conceptual Design of Low-Emission Eco-Industrial Parks in the Circular Economy: A Case for Algae-Centered Business Consortia. Water (Switzerland), 2021, 13, 69.	1.2	12
481	Designing a new generation of expression toolkits for engineering of green microalgae; robust production of human interleukin-2. Biolmpacts, 2020, 10, 259-268.	0.7	13

#	Article	IF	CITATIONS
482	Bioprospection of biocompounds and dietary supplements of microalgae with immunostimulating activity: a comprehensive review. PeerJ, 2019, 7, e7685.	0.9	5
483	Immobilised Chlorella vulgaris as An Alternative for The Enhancement of Microalgae Oil and Biodiesel Production. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 379-389.	0.5	3
484	Marine Biotechnology. , 2021, , 135-165.		0
485	Neoteric solvent-based blue biorefinery: for chemicals, functional materials and fuels from oceanic biomass. Green Chemistry, 2021, 23, 8821-8847.	4.6	14
486	Influence of irradiance on the growth and biochemical composition of Nitzschia aff. pellucida. Journal of Applied Phycology, 2022, 34, 19-30.	1.5	5
487	A comprehensive review on current technologies for removal of endocrine disrupting chemicals from wastewaters. Environmental Research, 2022, 207, 112196.	3.7	55
488	Comparative Response of Marine Microalgae to H2O2-Induced Oxidative Stress. Applied Biochemistry and Biotechnology, 2021, 193, 4052-4067.	1.4	10
489	Microbial lipids for foods. Trends in Food Science and Technology, 2022, 119, 593-607.	7.8	37
490	Assuaging Microalgal Harvesting Woes via Attached Growth: A Critical Review to Produce Sustainable Microalgal Feedstock. Sustainability, 2021, 13, 11159.	1.6	15
491	Deciphering role of technical bioprocess parameters for bioethanol production using microalgae. Saudi Journal of Biological Sciences, 2021, 28, 7595-7606.	1.8	16
492	An efficient oil content estimation technique using microscopic microalgae images. Ecological Informatics, 2021, 66, 101468.	2.3	4
493	Lipophilic extracts of the thermophilic cyanobacterium Leptolyngbya sp. and chlorophyte Graesiella sp. and their potential use as food and anticancer agents. Algal Research, 2021, 60, 102511.	2.4	5
494	Microalgal Consortia: From Wastewater Treatment to Bioenergy Production. Grand Challenges in Biology and Biotechnology, 2019, , 371-398.	2.4	1
495	Enhanced Microalgal Lipid Production in Internally Illuminated Airlift Photobioreactor. Marine Technology Society Journal, 2019, 53, 38-45.	0.3	4
496	Microalgae as sources of biofuel production through waste water treatment. Novel Research in Microbiology Journal, 2019, 3, 464-470.	1.2	2
497	Yerli Dunaliella salina Suşunda Büyüme ve Pigment Üretimi İçin Optimal Koşulların Merkezi Kompo Tasarım Yöntemi Kullanılarak Belirlenmesi. European Journal of Science and Technology, 0, , 874-880.	zit 0.5	0
498	Chlorophylls as Food Additives. , 2020, , 391-420.		2
499	Engineering of Riboregulators for Gene Regulation as a Tool for Synthetic Biology. , 2020, , 173-186.		1

#	Article	IF	CITATIONS
500	The Bioeconomy of Production of Microalgal Pigments. , 2020, , 325-362.		4
502	Dynamics of a photosynthetic pigments level of the <i>Chlorella vulgaris</i> strain С 111 IBCE C-19 during the growth at the nutrien medium with manganese chloride addition. Vestsi Natsyianal'nai Akademii Navuk Belarusi Seryia Biialahichnykh Navuk, 2020, 65, 299-309.	0.2	2
503	Protective effect of Nannochloropsis Oculata against mercuric-induced histopathological alterations in the kidney of Nile tilapia. Mansoura Veterinary Medical Journal, 2020, 21, 67-73.	0.2	0
504	Seaweeds as a Fermentation Substrate: A Challenge for the Food Processing Industry. Processes, 2021, 9, 1953.	1.3	13
505	The Critical Studies of Fucoxanthin Research Trends from 1928 to June 2021: A Bibliometric Review. Marine Drugs, 2021, 19, 606.	2.2	19
506	Biofuel production from Macroalgae: present scenario and future scope. Bioengineered, 2021, 12, 9216-9238.	1.4	41
507	Enhancement of Pigments Production by Nannochloropsis oculata Cells in Response to Bicarbonate Supply. Sustainability, 2021, 13, 11904.	1.6	7
508	Uncovering Research Trends of Phycobiliproteins Using Bibliometric Approach. Plants, 2021, 10, 2358.	1.6	11
509	A comprehensive review on carbon source effect of microalgae lipid accumulation for biofuel production. Science of the Total Environment, 2022, 806, 151387.	3.9	67
510	Biodiesel Feedstocks. Green Energy and Technology, 2020, , 29-43.	0.4	0
511	Recent advances biodegradation and biosorption of organic compounds from wastewater: Microalgae-bacteria consortium - A review. Bioresource Technology, 2022, 344, 126159.	4.8	185
512	Application of a statistical design to evaluate bioethanol production from Chlorella S4 biomass after acid - Thermal pretreatment. Renewable Energy, 2022, 182, 60-68.	4.3	5
513	Effect of different salinity on the growth performance and proximate composition of isolated indigenous microalgae species. Aquaculture Reports, 2022, 22, 100925.	0.7	19
514	Potentials and Challenges of Micro- and Macroalgae as Feedstock for Biogas Production. , 2020, , 167-178.		0
516	Omics Tools: Approaches for Microbiomes Analysis to Enhance Bioenergy Production. , 2020, , 207-234.		2
517	Microalgae as Nutraceutical for Achieving Sustainable Food Solution in Future. Environmental and Microbial Biotechnology, 2020, , 91-125.	0.4	4
518	Integrating Omics and Microbial Biotechnology for the Production of Biofuel. , 2020, , 221-239.		1
519	Mikrobielle Verfahren zur Umsetzung von CO2 und CO. , 2020, , 121-149.		0

#	Article	IF	CITATIONS
521	Microalgal Carbohydrates and Proteins: Synthesis, Extraction, Applications, and Challenges. , 2020, , 433-468.		8
522	A CORRELATIONAL STUDY BETWEEN LEARNING MOTIVATION AND SATISFACTION IN ONLINE COURSES. Humanities and Social Sciences Reviews, 2020, 8, 716-724.	0.2	1
523	Aggregation-induced emission luminogens for lipid droplet imaging. Progress in Molecular Biology and Translational Science, 2021, 184, 101-144.	0.9	3
524	The effect of <i>Arthrospira platensis</i> (spirulina) addition on the content of selected mineral elements, carotenes, and antioxidant potential in alginate gel beads. International Journal of Food Engineering, 2020, 16, .	0.7	0
525	Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Frontiers in Marine Science, 2021, 8, .	1.2	35
526	Identification and Quantification of Glycans in Whole Cells: Architecture of Microalgal Polysaccharides Described by Solid-State Nuclear Magnetic Resonance. Journal of the American Chemical Society, 2021, 143, 19374-19388.	6.6	36
527	Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresource Technology, 2022, 344, 126304.	4.8	76
528	Microalgae Harvesting by Self-Driven 3D Microfiltration with Rationally Designed Porous Superabsorbent Polymer (PSAP) Beads. Environmental Science & Technology, 2021, 55, 15446-15455.	4.6	5
529	Screening and Optimization of Microalgae Biomass and Plastic Material Coprocessing by Hydrothermal Liquefaction. ACS ES&T Engineering, 2022, 2, 65-77.	3.7	8
530	Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae, 2020, 35, 277-292.	0.9	7
532	Moonshot: Affordable, Simple, Flight Hardware for the Artemis-1 Mission and Beyond. Frontiers in Space Technologies, 2020, 1, .	0.8	2
533	An Insight into the Potential Application of Microalgae in Pharmaceutical and Nutraceutical Production. , 2021, , 135-179.		6
534	Biomass classification and characterization for conversion to biofuels. , 2022, , 69-87.		7
535	In-depth analysis of waste cooking oil as renewable and ecofriendly biofuel candidate. , 2022, , 87-103.		1
536	Pulsed electric fields for the extraction of proteins and carbohydrates from marine resources. , 2022, , 173-195.		1
537	Species-specific responses in pigments and fatty acids of five freshwater chlorophytes exposed to varying cultivation conditions. Process Biochemistry, 2022, 112, 35-44.	1.8	0
538	Critical parameters affecting large-scale production of microalgal biomass in outdoor open raceway ponds. , 2022, , 463-478.		0
540	Acclimation and Characterization of Marine Cyanobacterial Strains Euryhalinema and Desertifilum for C-Phycocyanin Production. Frontiers in Bioengineering and Biotechnology, 2021, 9, 752024.	2.0	8

#	Article	IF	CITATIONS
541	Strong confinement of active microalgae leads to inversion of vortex flow and enhanced mixing. ELife, 2021, 10, .	2.8	3
542	Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology and Biotechnology, 2022, 38, 8.	1.7	37
543	The Heterotrimeric Transcription Factor CCAAT-Binding Complex and Ca ²⁺ -CrzA Signaling Reversely Regulate the Transition between Fungal Hyphal Growth and Asexual Reproduction. MBio, 2021, 12, e0300721.	1.8	8
544	Microalgal transformation of food processing byproducts into functional food ingredients. Bioresource Technology, 2022, 344, 126324.	4.8	6
545	Energy Harvesting and Storing Materials. , 2022, , 507-555.		4
546	Optimization of Arthrospira maxima cultivation for biomass and protein production and biomass technological treatment to color, flavor, and aroma masking for addition to food products. Journal of Applied Phycology, 2022, 34, 65-80.	1.5	5
547	Optimization of chlorophyll extraction solvent of bulung sangu (Gracilaria sp.) seaweed. IOP Conference Series: Earth and Environmental Science, 2021, 913, 012073.	0.2	2
548	Role of Microalgae in Global CO2 Sequestration: Physiological Mechanism, Recent Development, Challenges, and Future Prospective. Sustainability, 2021, 13, 13061.	1.6	57
549	A microfluidic system for viability determination of microalgae upon disinfectant treatment under continuous flow. Science of the Total Environment, 2021, , 151615.	3.9	3
550	Green Pathway of CO2 Capture. Advances in Science, Technology and Innovation, 2022, , 271-284.	0.2	0
551	Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. Bioresource Technology, 2022, 344, 126406.	4.8	48
553	Antibacterial Activity and Amphidinol Profiling of the Marine Dinoflagellate Amphidinium carterae (Subclade III). International Journal of Molecular Sciences, 2021, 22, 12196.	1.8	9
554	Reconsidering the potential of direct microalgal biomass utilization as end-products: A review. Renewable and Sustainable Energy Reviews, 2022, 155, 111930.	8.2	10
555	Production and harvesting of microalgae and an efficient operational approach to biofuel production for a sustainable environment. Fuel, 2022, 311, 122543.	3.4	50
556	Advanced biokinetic and hydrodynamic modelling to support and optimize the design of full-scale high rate algal ponds. Computational and Structural Biotechnology Journal, 2022, 20, 386-398.	1.9	3
557	"Nature-like―Cryoimmobilization of Phototrophic Microorganisms: New Opportunities for Their Long-Term Storage and Sustainable Use. Sustainability, 2022, 14, 661.	1.6	9
558	Microalgae and Cyanobacteria: How Exploiting These Microbial Resources Can Address the Underlying Challenges Related to Food Sources and Sustainable Agriculture: A Review. Journal of Plant Growth Regulation, 2023, 42, 1-20.	2.8	14
559	Achievements in the production of bioplastics from microalgae. Phytochemistry Reviews, 2023, 22, 1147-1165.	3.1	18

ARTICLE IF CITATIONS Effects of water recirculation on microalgae assemblage and corresponding sustainability of the 560 2.9 8 photobioreactor cultivation system. Biomass and Bioenergy, 2022, 157, 106326. Biodiesel production from microalgae using lipase-based catalysts: Current challenges and prospects. 2.4 Algal Research, 2022, 62, 102616. Effect of Azolla pinnata and Nannochloropsis oculata on growth performance and immunoresponse 562 of Nile tilapia (Oreochromis niloticus) and its resistance to bacterial infection. Egyptian Journal for 0.4 6 Aquaculture, 2020, 10, 43-62. Protective effect of Nannochloropsis Oculata against mercuric-induced histopathological 0.2 alterations in the kidney of Nile tilapia.. Mansoura Veterinary Medical Journal, 2020, 21, 67-73. Assessment of optimal growth conditions for specific carotenoids production by Chlorella vulgaris. 564 0.2 5 Journal of Applied and Natural Science, 2020, 12, 550-555. Microalgae-based wastewater treatment and utilization of microalgae biomass. Advances in Bioenergy, 2021, 6, 165-198. Process Engineering Aspects for the Microbial Conversion of C1 Gases. Advances in Biochemical 566 0.6 3 Engineering/Biotechnology, 2021, , 33-56. Impact of cultivation conditions on microalgae biomass productivity and lipid content. Materials 20 Today: Proceedings, 2022, 56, 282-290. Assessment of Nutrients Recovery Capacity and Biomass Growth of Four Microalgae Species in 570 1.2 5 Anaerobic Digestion Effluent. Water (Switzerland), 2022, 14, 221. 571 Sustainable food systems., 2022, , 15-46. The Effectiveness of Soil Extracts from Selangor Peat Swamp and Pristine Forest Soils on the Growth 572 3 0.9 of Green Microalgae sp.. Forests, 2022, 13, 79. Analysis of the stability of phycocyanin when trehalose and citric acid are used as protectants in 0.8 nutraceutical gelatin candies under in vitro digestion assays'. Food Science and Technology, 0, 42, . Diatom biorefinery: From carbon mitigation to high-value products., 2022, , 401-420. 574 1 Roadmap from microalgae to biorefinery: A circular bioeconomy approach., 2022, , 339-360. Wastewater to R3 – resource recovery, recycling, and reuse efficiency in urban wastewater treatment 576 0 plants., 2022,, 3-16. Biodiesel and green diesel., 2022, , 119-133. Tumor preventive properties of selected marine pigments against colon and breast cancer. Algal 579 2.4 9 Research, 2022, 61, 102594. Role of Biogenic Capping Agents in the Synthesis of Metallic Nanoparticles and Evaluation of Their 2.4 Therapeutic Potential. Frontiers in Nanotechnology, 2022, 3, .

#	Article	IF	CITATIONS
581	Microplastic stress induce bioresource production and response in microalgae: a concise review. Environmental Pollutants and Bioavailability, 2022, 34, 51-60.	1.3	7
582	Improving of Pyrolysis Oil from Macroalgae Cladophora glomerata with HDPE Pyrolysis Oil. Journal of Marine Science and Engineering, 2022, 10, 131.	1.2	1
583	Prospects of microbes in mitigations of environmental degradation inÂtheÂriver ecosystem. , 2022, , 429-454.		2
584	A comprehensive review on bioplastic production from microalgae. Materials Today: Proceedings, 2022, 56, 171-178.	0.9	12
585	High-throughput selection of cells based on accumulated growth and division using PicoShell particles. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	12
586	Adapting microalgaeâ€based strategies for sustainable green cities. Biotechnology Journal, 2022, 17, e2100586.	1.8	4
587	Shining a Light on Wastewater Treatment with Microalgae. Arabian Journal for Science and Engineering, 2022, 47, 45-56.	1.7	12
588	Weak magnetic field intervention on outdoor production of oil-rich filamentous microalgae: Influence of seasonal changes. Bioresource Technology, 2022, 348, 126707.	4.8	6
589	Isolation of omega-3 polyunsaturated fatty acids (eicosapentaenoic acid - EPA and docosahexaenoic) Tj ETQq0 C	0 0 rgBT /O	verlock 10 Tf 12
590	Recent biotechnological developments in reshaping the microalgal genome: A signal for green recovery in biorefinery practices. Chemosphere, 2022, 293, 133513.	4.2	14
591	Integrated marine microalgae biorefineries for improved bioactive compounds: A review. Science of the Total Environment, 2022, 817, 152895.	3.9	27
592	Ca2+ participates in the regulation of microalgae triacylglycerol metabolism under heat stress. Environmental Research, 2022, 208, 112696.	3.7	9
593	Dimensioning of Synechococcus elongatus PCC 7492 cultivation photobioreactor for valorization of wastewater resources. Chemical Engineering Journal, 2022, 435, 134895.	6.6	2
594	Bio-flocculation of oleaginous microalgae integrated with municipal wastewater treatment and its hydrothermal liquefaction for biofuel production. Environmental Technology and Innovation, 2022, 26, 102340.	3.0	19
595	Enhanced biodiesel production by optimizing growth conditions of Chlorella marina in tannery wastewater. Fuel, 2022, 316, 123431.	3.4	5
597	Microalgal based biostimulants as alleviator of biotic and abiotic stresses in crop plants. , 2022, , 195-216.		3
598	Review on Various Application Bio Fuels. , 2022, 1, .		4
599	The Extraction of Î ² -Carotene from Microalgae for Testing Their Health Benefits. Foods, 2022, 11, 502.	1.9	24

#	Article	IF	CITATIONS
600	Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana. Resources, 2022, 11, 20.	1.6	5
601	Novel bioreactor with inclined baffles in cost-efficiently increasing algal biomass and carbon fixation. Energy, 2022, 247, 123453.	4.5	7
602	The Active Phytohormone in Microalgae: The Characteristics, Efficient Detection, and Their Adversity Resistance Applications. Molecules, 2022, 27, 46.	1.7	24
603	Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules, 2022, 27, 29.	1.7	9
607	Polysaccharides Produced by Microalgae. , 2022, , 341-362.		0
609	Bioethanol: Substrates, Current Status, and Challenges. Clean Energy Production Technologies, 2022, , 231-269.	0.3	1
610	Coelastrella terrestris for Adonixanthin Production: Physiological Characterization and Evaluation of Secondary Carotenoid Productivity. Marine Drugs, 2022, 20, 175.	2.2	11
611	Exploring Dose-Dependent Cytotoxicity Profile of Gracilaria edulis-Mediated Green Synthesized Silver Nanoparticles against MDA-MB-231 Breast Carcinoma. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	1.9	14
612	A Review on the Reliability and the Readiness Level of Microalgae-Based Nutrient Recovery Technologies for Secondary Treated Effluent in Municipal Wastewater Treatment Plants. Processes, 2022, 10, 399.	1.3	13
613	Chlorella minutissima as a functional food: evaluation on nutritional profile and antioxidant potential of the metabolites. Biomass Conversion and Biorefinery, 0, , 1.	2.9	2
614	Latest Expansions in Lipid Enhancement of Microalgae for Biodiesel Production: An Update. Energies, 2022, 15, 1550.	1.6	14
615	Biomolecules from Microalgae and Cyanobacteria: Applications and Market Survey. Applied Sciences (Switzerland), 2022, 12, 1924.	1.3	56
616	How do freshwater microalgae and cyanobacteria respond to antibiotics?. Critical Reviews in Biotechnology, 2023, 43, 191-211.	5.1	16
617	Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules, 2022, 27, 1248.	1.7	20
618	Isolation of Extracellular Vesicles From Microalgae: A Renewable and Scalable Bioprocess. Frontiers in Bioengineering and Biotechnology, 2022, 10, 836747.	2.0	19
619	Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer. Life, 2022, 12, 458.	1.1	0
620	Inhibition Effects of Free Ammonia (FA) on the Rates of Growth, Photosynthesis and Respiration of Chlorella vulgaris. KSCE Journal of Civil Engineering, 0, , 1.	0.9	3
621	Production of Biofertilizer from Industrial Waste Water by Microalgal Treatment. International Journal of Advanced Research in Science, Communication and Technology, 0, , 607-618.	0.0	0

#	Article	IF	CITATIONS
622	Mass Cultivation of Microalgae: I. Experiences with Vertical Column Airlift Photobioreactors, Diatoms and CO2 Sequestration. Applied Sciences (Switzerland), 2022, 12, 3082.	1.3	16
623	Algae Supplementation for Exercise Performance: Current Perspectives and Future Directions for Spirulina and Chlorella. Frontiers in Nutrition, 2022, 9, 865741.	1.6	9
624	Pioneering Role of Marine Macroalgae in Cosmeceuticals. Phycology, 2022, 2, 172-203.	1.7	11
625	Valorisation of algal biomass to value-added metabolites: emerging trends and opportunities. Phytochemistry Reviews, 2023, 22, 1015-1040.	3.1	20
626	Microfluidic Microalgae System: A Review. Molecules, 2022, 27, 1910.	1.7	3
627	Kinetic Study of Levulinic Acid from Spirulina platensis Residue. Applied Biochemistry and Biotechnology, 2022, , 1.	1.4	3
628	Synthetic, Photosynthetic, and Chemical Strategies to Enhance Carbon Dioxide Fixation. Journal of Carbon Research, 2022, 8, 18.	1.4	3
629	Exploration and characterization of chemical stimulators to maximize the wax ester production by Euglena gracilis. Journal of Bioscience and Bioengineering, 2022, 133, 243-249.	1.1	5
630	Impact of Copper Oxide Nanoparticles on the Growth and Biochemical Content of Cyanobacterium <i>Wollea Salina</i> Chatchawan, KozlÃkovÃį, KomÃįrek & KaÅįtovský. Geomicrobiology Journal, 2022, 39, 552-565.	1.0	1
631	Transcriptomic and fatty acid analyses of Neochloris aquatica grown under different nitrogen concentration. Functional and Integrative Genomics, 2022, 22, 407-421.	1.4	3
632	Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. Critical Reviews in Environmental Science and Technology, 2023, 53, 216-238.	6.6	28
633	A Review on Factors Influencing the Fermentation Process of Teff (Eragrostis teff) and Other Cereal-Based Ethiopian Injera. International Journal of Food Science, 2022, 2022, 1-10.	0.9	15
634	Microbial degradation of lignocellulosic biomass for bioenergy production: A metagenomic-based approach. Biocatalysis and Biotransformation, 2023, 41, 15-25.	1.1	4
635	Sustainable production of eicosapentaenoic acid-rich oil from microalgae: Towards an algal biorefinery. Journal of Applied Microbiology, 2022, 132, 4170-4185.	1.4	10
636	Design and use of chimeric peptides in a new nonâ€destructive ecological process applied to the extraction of all trans/9â€cis βâ€carotene isomers from <i>Dunaliella salina</i> . Food Science and Nutrition, 0, , .	1.5	0
637	Soil algae enzymes and their biotechnological applications. Systems Microbiology and Biomanufacturing, 0, , 1.	1.5	0
638	Trends and advances in sustainable bioethanol production by marine microalgae: A critical review. Journal of Cleaner Production, 2022, 345, 131153.	4.6	45
639	Biohydrogen production by novel cyanobacterial strains isolated from rice paddies in Kazakhstan. International Journal of Hydrogen Energy, 2022, 47, 16440-16453.	3.8	17

ARTICLE IF CITATIONS # Effect of metallic nanoparticles on microalgal growth and lipid accumulation for biodiesel 640 0.7 2 production. Brazilian Journal of Chemical Engineering, 2023, 40, 103-114. Preparation and characterization of biodegradable polybutylene succinate/polyurethane membrane 641 2.4 for harvesting of Chlorella sorokiniana microalgae. Algal Research, 2022, 63, 102658. Growth characteristics, biohydrogen production and photochemical activity of photosystems in green microalgae Parachlorella kessleri exposed to nitrogen deprivation. International Journal of 642 3.8 12 Hydrogen Energy, 2022, 47, 16815-16823. Evaluation of methanotroph (Methylococcus capsulatus, Bath) bacteria meal as an alternative protein source for growth performance, digestive enzymes, and health status of Pacific white shrimp (Litopenaeus vannamei). Aquaculture International, 2022, 30, 1693-1710. 643 1.1 A Comprehensive Review of Feedstocks as Sustainable Substrates for Next-Generation Biofuels. 644 2.2 11 Bioenergy Research, 2023, 16, 105-122. Enhancement of protein production using synthetic brewery wastewater by Haematococcus pluvialis. Journal of Biotechnology, 2022, 350, 1-10. Research trends and market opportunities of microalgal biorefinery technologies from circular 646 4.8 27 bioeconomy perspectives. Bioresource Technology, 2022, 351, 127038. 647 Algae as an emerging source of bioactive pigments. Bioresource Technology, 2022, 351, 126910. 4.8 Simultaneous production of carotenoids and chemical building blocks precursors from chlorophyta 648 4.8 11 microalgae. Bioresource Technology, 2022, 351, 127035. Crucial carotenogenic genes elevate hyperaccumulation of both fucoxanthin and \hat{l}^2 -carotene in 649 2.4 Phaeodactylum tricornutum. Algal Research, 2022, 64, 102691. Adsorption of sulfamethoxazole via biochar: The key role of characteristic components derived from 650 3.7 11 different growth stage of microalgae. Environmental Research, 2022, 210, 112965. Natural Products as Potential Antiviral Drugs: The Specific Case of Marine Biotoxins. Russian Journal 0.3 of Bioorganic Chemistry, 2021, 47, 1127-1132. Here comes the sun: How optimization of photosynthetic light reactions can boost crop yields. 652 4.1 23 Journal of Integrative Plant Biology, 2022, 64, 564-591. Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. Sustainability, 2021, 13, 13480. 1.6 Energy analysis and feasibility studies for algal biomass and biofuels. Materials Today: Proceedings, 654 0.9 5 2022, 57, 1448-1454. Biocomposites Using Whole or Valuable Component-Extracted Microalgae Blended with Polymers: A Review. Catalysts, 2022, 12, 25. Microalgae as Sources of High-Quality Protein for Human Food and Protein Supplements. Foods, 2021, 656 1.9 97 10, 3002. Bioactive Hydrolysates from Chlorella vulgaris: Optimal Process and Bioactive Properties. Molecules, 2022, 27, 2505.

#	Article	IF	CITATIONS
659	Effects of Innovative Processing Methods on Microalgae Cell Wall: Prospects towards Digestibility of Protein-Rich Biomass. Biomass, 2022, 2, 80-102.	1.2	23
660	Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants, 2022, 11, 795.	2.2	91
661	Growth Characteristics of Chlorella sorokiniana in a Photobioreactor during the Utilization of Different Forms of Nitrogen at Various Temperatures. Plants, 2022, 11, 1086.	1.6	16
662	Potential of the microalgae Chlorella fusca (Trebouxiophyceae, Chlorophyta) for biomass production and urban wastewater phycoremediation. AMB Express, 2022, 12, 43.	1.4	13
663	Protein potential of Desmodesmus asymmetricus grown in greenhouse as an alternative food source for aquaculture. World Journal of Microbiology and Biotechnology, 2022, 38, 92.	1.7	0
664	Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 2022, 64, 102696.	2.4	29
665	A kinetic model of heterotrophic and mixotrophic cultivation of the potential biofuel organism microalgae Chlorella sorokiniana. Algal Research, 2022, 64, 102701.	2.4	14
678	Algal engineering for bioremediation, bioenergy production, and biomedical applications. , 2022, , 3-32.		1
679	Microalgae biotechnology: Emerging biomedical applications. , 2022, , 335-346.		1
680	Microalgae carotenoids: An overview of biomedical applications. , 2022, , 409-425.		0
680 681	Microalgae carotenoids: An overview of biomedical applications. , 2022, , 409-425. Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222.		0
		4.0	
681	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222.	4.0	5
681 682	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222. New Insights on Carotenoid Production by <i>Gordonia alkanivorans</i>		5
681 682 683	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222. New Insights on Carotenoid Production by <i>Gordonia alkanivorans</i> Strain 1B. Physiology, 0, , . Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods, 2022, 11, 1215. Gradient Strategy for Mixotrophic Cultivation of Chlamydomonas reinhardtii: Small Steps, a Large	1.9	5 1 13
681 682 683 684	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222. New Insights on Carotenoid Production by <i>Gordonia alkanivorans</i> Strain 1B. Physiology, 0, , . Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods, 2022, 11, 1215. Gradient Strategy for Mixotrophic Cultivation of Chlamydomonas reinhardtii: Small Steps, a Large Impact on Biofuel Potential and Lipid Droplet Morphology. Bioenergy Research, 2023, 16, 163-176. Molluscicidal, histopathological and genotoxic effects of <i>Scenedesmus obliquus</i> and <i>Spirulina platensis</i> extracts and their biosynthesized zinc oxide nanoparticles on	1.9 2.2	5 1 13 4
681 682 683 684 685	Microalgal biofuels: A sustainable pathway for renewable energy. , 2022, , 187-222. New Insights on Carotenoid Production by <i>Gordonia alkanivorans</i> Strain 1B. Physiology, 0, , . Production, Processing, and Protection of Microalgal n-3 PUFA-Rich Oil. Foods, 2022, 11, 1215. Gradient Strategy for Mixotrophic Cultivation of Chlamydomonas reinhardtii: Small Steps, a Large Impact on Biofuel Potential and Lipid Droplet Morphology. Bioenergy Research, 2023, 16, 163-176. Molluscicidal, histopathological and genotoxic effects of <i>Scenedesmus obliquus</i> and <i>Spirulina platensis//> extracts and their biosynthesized zinc oxide nanoparticles on <i>Biomphalaria alexandrina</i> snails. Aquaculture Research, 2022, 53, 3680-3695. Microalgal Biomass as Feedstock for Bacterial Production of PHA: Advances and Future Prospects.</i>	1.9 2.2 0.9	5 1 13 4 5

#	Article	IF	CITATIONS
689	Production and Characterization of Maximum Liquid Oil Products through Individual and Copyrolysis of Pressed Neem Oil Cake and Waste Thermocol Mixture. Advances in Polymer Technology, 2022, 2022, 1-11.	0.8	7
690	Microalgae-bacteria consortium for wastewater treatment and biomass production. Science of the Total Environment, 2022, 838, 155871.	3.9	70
692	Euglena gracilis can grow in the mixed culture containing Cladosporium westerdijkiae, Lysinibacillus boronitolerans and Pseudobacillus badius without the addition of vitamins B1 and B12. Journal of Biotechnology, 2022, 351, 50-59.	1.9	5
693	Resource recovery from waste streams for production of microalgae biomass: A sustainable approach towards high-value biorefineries. Bioresource Technology Reports, 2022, 18, 101070.	1.5	13
694	Residual palm kernel expeller as the support material and alimentation provider in enhancing attached microalgal growth for quality biodiesel production. Journal of Environmental Management, 2022, 316, 115225.	3.8	17
695	Influence of C/N ratios on treatment performance and biomass production during co-culture of microalgae and activated sludge. Science of the Total Environment, 2022, 837, 155832.	3.9	19
696	Clobal market and economic analysis of microalgae technology: Status and perspectives. Bioresource Technology, 2022, 357, 127329.	4.8	37
697	Selenium-binding Protein 1 (SBD1): A stress response regulator in <i>Chlamydomonas reinhardtii</i> . Plant Physiology, 2022, 189, 2368-2381.	2.3	5
699	Sustainability Challenges and Future Perspectives of Biopolymer. Springer Series on Polymer and Composite Materials, 2022, , 373-389.	0.5	2
700	Volatile organic compounds in aquatic ecosystems – Detection, origin, significance and applications. Science of the Total Environment, 2022, 838, 156155.	3.9	15
701	Selective Deoxygenation of Sludge Palm Oil into Diesel Range Fuel over Mn-Mo Supported on Activated Carbon Catalyst. Catalysts, 2022, 12, 566.	1.6	4
702	A concise review on the cultivation of microalgal biofilms for biofuel feedstock production. Biomass Conversion and Biorefinery, 2024, 14, 7219-7236.	2.9	8
703	The choice of algae strain for the biofuel production: Native, genetically modified, and microbial consortia. , 2022, , 3-32.		0
704	Biodiversity risk assessment of genetically modified <i>Chaetoceros gracilis</i> for outdoor cultivation. Journal of General and Applied Microbiology, 2022, 68, 151-162.	0.4	1
707	Phototrophic microbial fuel cells. , 2022, , 699-727.		0
708	Criteria for the development of culture media applied to microalgae-based fuel production. , 2022, , 33-45.		0
709	Modulation of soil microbiome and related alterations in response to pesticides. , 2022, , 261-283.		1
710	Elucidation of the Potential Hair Growth-Promoting Effect of Botryococcus terribilis, Its Novel Compound Methylated-Meijicoccene, and C32 Botryococcene on Cultured Hair Follicle Dermal Papilla Cells Using DNA Microarray Gene Expression Analysis. Biomedicines, 2022, 10, 1186.	1.4	5

#	Article	IF	CITATIONS
711	Recent Advances in 3D Bioprinting: A Review of Cellulose-Based Biomaterials Ink. Polymers, 2022, 14, 2260.	2.0	10
712	Health benefits of microalgae and their microbiomes. Microbial Biotechnology, 2022, 15, 1966-1983.	2.0	8
713	Optimization of Microalgal Harvesting with Inorganic and Organic Flocculants Using Factorial Design of Experiments. Processes, 2022, 10, 1124.	1.3	5
714	Sustainable processing of algal biomass for a comprehensive biorefinery. Journal of Biotechnology, 2022, 352, 47-58.	1.9	15
715	An overview of the production and prospect of polyhydroxyalkanote (PHA)-based biofuels: Opportunities and limitations. Scientific African, 2022, 16, e01233.	0.7	3
716	Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production. Fuel, 2022, 324, 124623.	3.4	24
718	Techno-economic and environmental impact analysis of biofuels produced from microalgal biomass. , 2022, , 687-712.		0
719	Utilization of solid palm kernel expeller for attached growth of Chlorella vulgaris sp AIP Conference Proceedings, 2022, , .	0.3	2
720	Treatment of Textile Waste Effluents Using Microalgae: A Suitable Approach for Wastewater Remediation and Lipid Production. Clean Energy Production Technologies, 2022, , 103-137.	0.3	1
721	Innovative and Strategic Upgrades in Large-Scale Microalgal Culture Techniques. Clean Energy Production Technologies, 2022, , 211-237.	0.3	0
722	Emerging applications of solar energy in agriculture and aquaculture systems. , 2022, , 425-469.		1
723	Applicability and limitations of high-throughput algal growth rate measurements using in vivo fluorescence in microtiter plates. Journal of Applied Phycology, 2022, 34, 2037-2049.	1.5	3
724	Hidden diversity of <i>Chlorococcum</i> (Chlorophyta) in a shallow temporary freshwater lake: description of <i>Chlorococcum szentendrense</i> sp. nov. European Journal of Phycology, 2023, 58, 110-120.	0.9	3
725	Utilization of Algae in Crop Improvement and Crop Protection for a Better Agricultural System. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 442-470.	0.4	3
726	Role of Algae in the Production of Biomaterials. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 311-331.	0.4	0
727	Methodological Optimization of Supercritical Fluid Extraction of Valuable Bioactive Compounds from the Acidophilic Microalga Coccomyxa onubensis. Antioxidants, 2022, 11, 1248.	2.2	7
728	Application of Microalgae Biomass for Biodiesel Fuel Production. Energies, 2022, 15, 4178.	1.6	13
729	Arthrospira platensis Mutagenesis for Protein and C-Phycocyanin Improvement and Proteomics Approaches. Life, 2022, 12, 911.	1.1	2

#	Article	IF	CITATIONS
730	Inertia–Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation. Sensors, 2022, 22, 4709.	2.1	12
731	Potential of microalgae cultivation using nutrient-rich wastewater and harvesting performance by biocoagulants/bioflocculants: Mechanism, multi-conversion of biomass into valuable products, and future challenges. Journal of Cleaner Production, 2022, 365, 132806.	4.6	42
732	Algal biomass valorization for biofuel production and carbon sequestration: a review. Environmental Chemistry Letters, 2022, 20, 2797-2851.	8.3	84
733	A critical review on prospects of bio-refinery products from second and third generation biomasses. Chemical Engineering Journal, 2022, 448, 137677.	6.6	42
734	Removal of organic and inorganic contaminants from the air, soil, and water by algae. Environmental Science and Pollution Research, 2023, 30, 116538-116566.	2.7	25
735	The use of marine microalgae in microbial fuel cells, photosynthetic microbial fuel cells and biophotovoltaic platforms for bioelectricity generation. 3 Biotech, 2022, 12, .	1.1	3
736	Algal Life Cycle Analysis and Its Contribution to the Circular Economy. Impact of Meat Consumption on Health and Environmental Sustainability, 2022, , 256-286.	0.4	0
737	Atlantic Salmon (Salmo salar) Performance Fed Low Trophic Ingredients in a Fish Meal and Fish Oil Free Diet. Frontiers in Physiology, 0, 13, .	1.3	8
738	Evaluation of halophilic microalgae isolated from Rabigh Red Sea coastal area for biodiesel production: Screening and biochemical studies. Saudi Journal of Biological Sciences, 2022, 29, 103339.	1.8	6
739	Metabolism of microalgae and metabolic engineering for biomaterial applications. , 2022, , 1-20.		0
740	Circular bioeconomy for resource recovery from wastewaters using algae-based technologies. , 2022, , 217-236.		2
741	Selection of Tropical Microalgae Species for Mass Production Based on Lipid and Fatty Acid Profiles. Frontiers in Energy Research, 0, 10, .	1.2	10
742	Pilot-Scale Cultivation of the Snow Alga Chloromonas typhlos in a Photobioreactor. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	3
743	Statistical optimization of phytol and polyunsaturated fatty acid production in the Antarctic microalga <italic>Micractinium variabile</italic> KSF0031. Algae, 2022, 37, 175-183.	0.9	5
744	Microalgae cross-fertilization: short-term effects of Galdieria phlegrea extract on growth, photosynthesis and enzyme activity of Chlorella sorokiniana cells. Journal of Applied Phycology, 2022, 34, 1957-1966.	1.5	7
745	Anti-Inflammatory Effect of Acetone Extracts from Microalgae Chlorella sp. WZ13 on RAW264.7 Cells and TPA-induced Ear Edema in Mice. Frontiers in Marine Science, 0, 9, .	1.2	2
746	Bacterial exudates as growthâ€promoting agents for the cultivation of commercially relevant marine microalgal strains. Journal of the World Aquaculture Society, 2022, 53, 1101-1119.	1.2	5
747	Sustainable Microalgae and Cyanobacteria Biotechnology. Applied Sciences (Switzerland), 2022, 12, 6887	1.3	5

#	Article	IF	CITATIONS
748	Life cycle assessment of microalgal biorefinery: A state-of-the-art review. Bioresource Technology, 2022, 360, 127615.	4.8	27
749	Ultraviolet B modulates gamma radiation-induced stress responses in Lemna minor at multiple levels of biological organisation. Science of the Total Environment, 2022, 846, 157457.	3.9	6
750	Cyanobacteria as a Promising Alternative for Sustainable Environment: Synthesis of Biofuel and Biodegradable Plastics. Frontiers in Microbiology, 0, 13, .	1.5	20
751	Integrated biotechnology to mitigate green tides. Environmental Pollution, 2022, 309, 119764.	3.7	5
752	Development of chloroplast engineering tools for Asterarcys sp.: A resilient scenedesmaceae microalga. Algal Research, 2022, 66, 102770.	2.4	0
753	The Potential of Marine Microalgae for the Production of Food, Feed, and Fuel (3F). Fermentation, 2022, 8, 316.	1.4	23
754	Algae in wastewater treatment, mechanism, and application of biomass for production of value-added product. Environmental Pollution, 2022, 309, 119688.	3.7	39
755	Microalgae-based Bioenergy with Carbon Capture and Storage quantified as a Negative Emissions Technology. Energy Nexus, 2022, 7, 100117.	3.3	7
756	Thalassiosira pseudonana and Skeletonema costatum biomass optimization: Cultivation, harvesting, extraction of oils and biodiesel and pelletization of the residue. Journal of Sea Research, 2022, 187, 102243.	0.6	2
757	Cold stress stimulates algae to produce value-added compounds. Bioresource Technology Reports, 2022, 19, 101145.	1.5	4
758	Coupling of wastewater treatment and microalgae products recovery: Effect of phosphorus components on the biochemical composition and phosphorus absorption of Chlorella pyrenoidosa. Journal of Water Process Engineering, 2022, 49, 102968.	2.6	10
759	Production of lipids biosynthesis from Tetradesmus nygaardii microalgae as a feedstock for biodiesel production. Fuel, 2022, 326, 124985.	3.4	13
760	Second-generation bioethanol production from phytomass after phytoremediation using recombinant bacteria-yeast co-culture. Fuel, 2022, 326, 124975.	3.4	6
761	Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere, 2022, 306, 135565.	4.2	62
762	Micro-Raman spectroscopy of the light-harvesting pigments in Chlamydomonas reinhardtii under salinity stress. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 281, 121613.	2.0	2
763	Trends on CO2 Capture with Microalgae: A Bibliometric Analysis. Molecules, 2022, 27, 4669.	1.7	15
765	Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. Biology, 2022, 11, 1146.	1.3	25
766	Green Agriculture: a Review of the Application of Micro- and Macroalgae and Their Impact on Crop Production on Soil Quality. Journal of Soil Science and Plant Nutrition, 2022, 22, 4627-4641.	1.7	13

#	Article	IF	CITATIONS
767	Effects of Green Light Supplementation with Red and Blue Combinations of LED Light Spectrums On The Growth of Chlamydomonas Reinhardtii (Chlorophyta). Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 2022, 10, 1603-1614.	0.2	0
768	Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Marine Drugs, 2022, 20, 493.	2.2	6
769	Nutrient management and medium reuse for cultivation of a cyanobacterial consortium at high pH and alkalinity. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
770	Freshwater Microalgae as Promising Food Sources: Nutritional and Functional Properties. Open Microbiology Journal, 2022, 16, .	0.2	5
771	Cultivation of microalgae on food waste: Recent advances and way forward. Bioresource Technology, 2022, 363, 127834.	4.8	16
772	Integrated microalgae culture with food processing waste for wastewater remediation and enhanced biomass productivity. Chinese Chemical Letters, 2023, 34, 107721.	4.8	9
773	Evaluating the effect of various environmental factors on the growth of the marine microalgae,ÂChlorella vulgaris. Frontiers in Marine Science, 0, 9, .	1.2	5
774	Alternative dietary protein sources to support healthy and active skeletal muscle aging. Nutrition Reviews, 2023, 81, 206-230.	2.6	7
775	Life cycle assessment of auto-tropically cultivated economic microalgae for final products such as food, total fatty acids, and bio-oil. Frontiers in Marine Science, 0, 9, .	1.2	3
776	Sustainable Approaches to Microalgal Pre-Treatment Techniques for Biodiesel Production: A Review. Sustainability, 2022, 14, 9953.	1.6	11
777	Biofixation of CO2 and biomass production from model natural gas using microalgae: An attractive concept for natural gas sweetening. Journal of CO2 Utilization, 2022, 64, 102153.	3.3	8
778	High-efficiency production of biomass and biofuel under two-stage cultivation of a stable microalga Botryococcus braunii mutant generated by ethyl methanesulfonate-induced mutation. Renewable Energy, 2022, 198, 176-188.	4.3	6
779	Current trends in biodiesel production technologies and future progressions: A possible displacement of the petro-diesel. Journal of Cleaner Production, 2022, 370, 133479.	4.6	53
780	Microalgae biodiesel: A sustainable source of energy, unit operations, technological challenges, and solutions. Journal of Hazardous Materials Advances, 2022, 8, 100145.	1.2	11
781	Effective valorization of precision output of algaquaculture towards eco-sustainability and bioeconomy concomitant with biotechnological advances: An innovative concept. , 2022, 3, 100026.		2
782	The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules, 2022, 27, 5823.	1.7	11
783	Update on the application of magnetic fields to microalgal cultures. World Journal of Microbiology and Biotechnology, 2022, 38, .	1.7	10
784	Microalgae conversion to alternative energy, operating environment and economic footprint: An influential approach towards energy conversion, and management. Energy Conversion and Management, 2022, 269, 116118.	4.4	31

#	Article	IF	CITATIONS
785	Drop-in biofuels production from microalgae to hydrocarbons: Microalgal cultivation and harvesting, conversion pathways, economics and prospects for aviation. Biomass and Bioenergy, 2022, 165, 106555.	2.9	16
786	Algae biofilm as a renewable resource for production of biofuel and value-added products: A review. Sustainable Energy Technologies and Assessments, 2022, 53, 102749.	1.7	5
787	Low doses of toxicants can enhance algae potential as biodiesel and biomass feedstocks. Renewable and Sustainable Energy Reviews, 2022, 168, 112858.	8.2	12
788	Microalgae bioreactor for nutrient removal and resource recovery from wastewater in the paradigm of circular economy. Bioresource Technology, 2022, 363, 127968.	4.8	20
789	Microalgae as a potential therapeutic drug candidate for neurodegenerative diseases. Journal of Biotechnology, 2022, 358, 128-139.	1.9	9
790	Nano magnetite assisted flocculation for efficient harvesting of lutein and lipid producing microalgae biomass. Bioresource Technology, 2022, 363, 128009.	4.8	32
791	Impact of microalgal cell wall biology on downstream processing and nutrient removal for fuels and value-added products. Biochemical Engineering Journal, 2022, 187, 108642.	1.8	13
792	A review of the biological treatment of leachate: Available technologies and future requirements for the circular economy implementation. Biochemical Engineering Journal, 2022, 187, 108605.	1.8	28
793	Advances in enzyme biocatalysis for the preparation of functional lipids. Biotechnology Advances, 2022, 61, 108036.	6.0	10
794	Whole genome analysis and elucidation of docosahexaenoic acid (DHA) biosynthetic pathway in Aurantiochytrium sp. SW1. Gene, 2022, 846, 146850.	1.0	4
795	Data-driven analysis on immobilized microalgae system: New upgrading trends for microalgal wastewater treatment. Science of the Total Environment, 2022, 852, 158514.	3.9	10
796	Bubble functionalization in flotation process improve microalgae harvesting. Chemical Engineering Journal, 2023, 452, 139349.	6.6	13
797	Overview on Advanced Microalgae-Based Sustainable Biofuel Generation and Its Life Cycle Assessment. Clean Energy Production Technologies, 2022, , 53-71.	0.3	1
798	Algal biomass pretreatment and developments for better biofuel production. , 2022, , 149-186.		0
800	Microalgae and Cyanobacteria: A Potential Source for Drug Discovery Using Genome Mining Approach. Clean Energy Production Technologies, 2022, , 177-204.	0.3	1
801	Panoramic View about Microalgae Biomass as Waste-to-Energy: A Biorefinery Concept. , 2022, , 417-462.		0
802	Scientometric analysis of microalgae wastewater treatment. , 2023, , 1-20.		0
803	Scientometric analysis of consortium-based wastewater treatment. , 2023, , 21-32.		0

#	Article	IF	CITATIONS
804	Integration of Arthrospira platensis (spirulina) into the brewing process to develop new beers with unique sensory properties. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	5
805	Microorganisms as New Sources of Energy. Energies, 2022, 15, 6365.	1.6	2
806	Implications of CRISPR-Cas9 in Developing Next Generation Biofuel: A Mini-review. Current Protein and Peptide Science, 2022, 23, 574-584.	0.7	9
809	Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). Fermentation, 2022, 8, 466.	1.4	11
810	The potential of animal manure management pathways toward a circular economy: a bibliometric analysis. Environmental Science and Pollution Research, 2022, 29, 73599-73621.	2.7	8
811	Supercritical CO2 Extraction of High-Added Value Compounds from Chlorella vulgaris: Experimental Design, Modelling and Optimization. Molecules, 2022, 27, 5884.	1.7	8
812	In Vitro Antiproliferative Activity and Phytochemicals Screening of Extracts of the Freshwater Microalgae, Chlorochromonas danica. Applied Biochemistry and Biotechnology, 2023, 195, 534-555.	1.4	1
813	Characterisation and selection of freshwater cyanobacteria for phycobiliprotein contents. Aquaculture International, 0, , .	1.1	4
814	Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends in Biotechnology, 2022, 40, 1439-1453.	4.9	47
815	Current perspectives, future challenges and key technologies of biohydrogen production for building a carbon–neutral future: A review. Bioresource Technology, 2022, 364, 128088.	4.8	20
816	Sustainable fish feeds: optimization of levels of inorganic fertilizers for mass production of Oocystis sp. for climate smart aquaculture. Aquaculture International, 2023, 31, 435-445.	1.1	0
817	Screening of microalgae species and evaluation of algal-lipid stimulation strategies for biodiesel production. Science of the Total Environment, 2023, 857, 159281.	3.9	11
818	Emerging technologies and potential applications of algae in dentistry – A critical review. Journal of Biotechnology, 2022, 360, 1-10.	1.9	4
819	Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. Microbiological Research, 2022, 265, 127187.	2.5	10
820	Food Wastes for Biofuel Production. Clean Energy Production Technologies, 2022, , 309-333.	0.3	0
821	Sustainable production of biodiesel through bioconversion of microalgal biomass grown in anaerobic liquid digestates (ALDs). , 2022, , 107-118.		0
822	Third-Generation Bioethanol Production Technologies. Biofuel and Biorefinery Technologies, 2022, , 267-280.	0.1	0
823	Recovery of bacterioruberin and proteins using aqueous solutions of surface-active compounds. RSC Advances, 2022, 12, 30278-30286.	1.7	3

		CITATION RE	PORT	
#	Article		IF	CITATIONS
826	Fermentation of Microalgal Biomass for Innovative Food Production. Microorganisms,	2022, 10, 2069.	1.6	11
827	Nutritional Composition and Untargeted Metabolomics Reveal the Potential of Tetrade Chlorella vulgaris and Nannochloropsis oceanica as Valuable Nutrient Sources for Dog 2022, 12, 2643.		1.0	14
828	New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules, 2022, 27,	, 6472.	1.7	28
829	Fungal Contamination in Microalgal Cultivation: Biological and Biotechnological Aspec Fungi-Microalgae Interaction. Journal of Fungi (Basel, Switzerland), 2022, 8, 1099.	ts of	1.5	12
830	Chlorellaceae Feedstock Selection under Balanced Nutrient Limitation. Fermentation, 2	2022, 8, 554.	1.4	8
831	Synthesis of silver nanoparticles from microalgae for potential photocatalytic dye remo Conference Series: Materials Science and Engineering, 2022, 1257, 012025.	oval. IOP	0.3	0
832	Design of a low-cost pH-Stat to study effects of ocean acidification on growth and nut consumption of diatoms. Aquacultural Engineering, 2022, 99, 102300.	crient	1.4	0
833	Microalgae biorefinery: An integrated route for the sustainable production of high-valu products. Energy Conversion and Management: X, 2022, 16, 100323.	ie-added	0.9	17
834	Dissecting the molecular mechanisms of producing biofuel and value-added products l tolerant microalgae as sustainable biorefinery approach. Chemical Engineering Journal, 140068.		6.6	12
835	Recent advances in photobioreactor systems for sustainable and enhanced microalgal production. Sustainable Energy and Fuels, 2022, 6, 5459-5473.	biofuel	2.5	2
836	Pigments, Dyes, and Colourants. RSC Green Chemistry, 2022, , 701-774.		0.0	0
837	Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery a biochemicals and bioenergy conversion. Bioresource Technology, 2023, 367, 128281.	approaches for	4.8	22
838	C1-based biomanufacturing: Advances, challenges and perspectives. Bioresource Tech 128259.	nology, 2023, 367,	4.8	8
839	Mixotrophic culture of bait microalgae for biomass and nutrients accumulation and the carbon metabolism. Bioresource Technology, 2023, 367, 128301.	eir synergistic	4.8	14
840	Biofuels From Macroalgae. Advances in Environmental Engineering and Green Technolo Series, 2022, , 148-169.	ogies Book	0.3	0
841	Shockwave pre-treatment enhances the physicochemical availability and anaerobic mc co-digestion of highly concentrated algae. Journal of Environmental Chemical Engineer 108993.	no- and ring, 2022, 10,	3.3	4
842	Life and death of Pseudokirchneriella subcapitata: physiological changes during chrono Applied Microbiology and Biotechnology, 2022, 106, 8245-8258.	ological aging.	1.7	3
843	Reliable reference genes and abiotic stress marker genes in Klebsormidium nitens. Scie 2022, 12, .	entific Reports,	1.6	2

#	Article	IF	CITATIONS
844	Uses and benefits of algae as a nutritional supplement for honey bees. Frontiers in Sustainable Food Systems, 0, 6, .	1.8	2
845	Algae-Based Bioplastic for Packaging: A Decade of Development and Challenges (2010–2020). Journal of Polymers and the Environment, 2023, 31, 833-851.	2.4	6
846	Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. Algal Research, 2023, 69, 102898.	2.4	9
847	Estimating production cost for large-scale seaweed farms. Applied Phycology, 2022, 3, 435-445.	0.6	13
848	EFFECT OF Cr2(SO4)3 ON A STATUS OF CHLORELLA VULGARIS CULRURE CELLS UNDER THE DIFFERENT CONTENT OF NITROGEN SOURSE – KNO3 IN THE NUTRIENT MEDIUM. , 2022, 7, 343-352.		0
849	Potentially Beneficial Effects on Healthy Aging by Supplementation of the EPA-Rich Microalgae Phaeodactylum tricornutum or Its Supernatant—A Randomized Controlled Pilot Trial in Elderly Individuals. Marine Drugs, 2022, 20, 716.	2.2	9
850	Emerging Technologies for Enhancing Microalgae Biofuel Production: Recent Progress, Barriers, and Limitations. Fermentation, 2022, 8, 649.	1.4	6
851	Sustainable production of biofuels from the algae-derived biomass. Bioprocess and Biosystems Engineering, 2023, 46, 1077-1097.	1.7	10
852	Nutrient enrichment of dairy curd by incorporation of whole and ruptured microalgal cells (Nannochloropsis salina). Innovative Food Science and Emerging Technologies, 2022, 82, 103211.	2.7	2
853	Overview of CO2 Bioconversion into Third-Generation (3G) Bioethanol—a Patent-Based Scenario. Bioenergy Research, 0, , .	2.2	3
854	Using the design of dynamic experiments to optimize photosynthetic cyanophycin production by Synechocystis sp Journal of Industrial and Engineering Chemistry, 2023, 117, 386-393.	2.9	1
855	Impact assessment of global biofuel regulations and policies on biodiversity. , 2023, , 137-161.		1
856	Light and carbon limited photosynthesis of Chlorella sorokiniana. Algal Research, 2023, 69, 102934.	2.4	0
857	Exploring the evolution, trends and scope of microalgal biochar through scientometrics. Algal Research, 2023, 69, 102944.	2.4	8
858	Innovations in algal biorefineries for production of sustainable value chain biochemicals from the photosynthetic cell factories. Algal Research, 2023, 69, 102949.	2.4	3
859	Isolation, identification, and chemical composition analysis of nine microalgal and cyanobacterial species isolated in lagoons of Western Greece. Algal Research, 2023, 69, 102935.	2.4	9
860	Multifarious applications of nanoparticles in microalgae for bioenergy generation: State-of-the-art review. Journal of Environmental Chemical Engineering, 2023, 11, 109145.	3.3	4
861	Anaerobic digestion as a tool to manage eutrophication and associated greenhouse gas emission. Science of the Total Environment, 2023, 861, 160722.	3.9	5

#	Article	IF	CITATIONS
862	Microalgae biomass deconstruction using green solvents: Challenges and future opportunities. Bioresource Technology, 2023, 369, 128429.	4.8	9
863	Latest advances and status analysis of nanomaterials for microalgae photosystem, lipids and biodiesel: A state of art. Journal of Environmental Chemical Engineering, 2023, 11, 109111.	3.3	6
864	Microalgae liquefaction in ethanol to produce high-quality fuels: Effect of magnetic nanoparticles on nitrogen transformation. Fuel Processing Technology, 2023, 241, 107587.	3.7	4
865	Isolation, Identification, and Evaluation of the Lipid Content of Desmodesmus communis from the Ecuadorian Amazon. Bioenergy Research, 0, , .	2.2	0
866	Sustained power output from an algal biophotovoltaic (BPV) platform using selected marine and freshwater microalgae. Journal of Applied Phycology, 2023, 35, 131-143.	1.5	3
867	Extraction of Microalgal Bioactive Compounds Towards Functional Ingredients: A Biorefinery Approach with Prospects And Challenges. , 2022, , 131-183.		0
868	Effect of co-culture with Halomonas mongoliensis on Dunaliella salina growth and phenol degradation. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	2
869	Biotechnological Approaches to Enhance Algae Biofuel Production. Clean Energy Production Technologies, 2023, , 1-41.	0.3	0
870	Microalgae Diversity in Interim Wet Storage of Spent Nuclear Fuel in Serpong, Indonesia. International Journal of Environmental Research and Public Health, 2022, 19, 15377.	1.2	2
871	Challenges Assessment in Economic Algal Biofuel Production. Clean Energy Production Technologies, 2023, , 129-147.	0.3	0
872	The potential use of natural coagulants for microalgae harvesting: a review. Water Quality Research Journal of Canada, 2023, 58, 54-74.	1.2	3
873	Development of Chlorella pyrenoidosa EMS mutants with enhanced biomass and lipid content for biofuel production. Systems Microbiology and Biomanufacturing, 2023, 3, 693-701.	1.5	2
874	Symbiotic association of microalgae and plants in a deep water culture system. PeerJ, 0, 10, e14536.	0.9	10
875	Growth and hydrogen production by Chlorella vulgaris Pa-023 under sulfur and nitrogen deprivation. , 2022, 74, 6-11.		0
876	Agro-Industrial Wastewaters for Algal Biomass Production, Bio-Based Products, and Biofuels in a Circular Bioeconomy. Fermentation, 2022, 8, 728.	1.4	9
877	Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules, 2022, 12, 1806.	1.8	4
878	Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations. Energies, 2023, 16, 81.	1.6	6
879	Microalgae as a Source of Valuable Phenolic Compounds and Carotenoids. Molecules, 2022, 27, 8852.	1.7	17

ARTICLE IF CITATIONS # Effect of Various Binders on the Properties of Microalgae-Enriched Urea Granules. Plants, 2022, 11, 880 1.6 0 3362. Can microbiology help to make aviation more sustainable?. Microbial Biotechnology, 0, , . 883 Marine Bioactive Components: A Sustainable System for Good Health and Well-Being., 2023, 53-73. 1 Development of Microalgae Biodiesel: Current Status and Perspectives. Microorganisms, 2023, 11, 34. 884 Enhancement of cyanobacterial PHB production using random chemical mutagenesis with detection 885 1.7 1 through FACS. Bioprocess and Biosystems Engineering, 2023, 46, 297-306. Microalgal-Based Bioenergy: Strategies, Prospects, and Sustainability. Energy & amp; Fuels, 2022, 36, 886 2.5 14584-14612. 887 Algae Bioenergy., 2023, , 1-7. 0 Application of fluorescent transients to indicate nutrient deficiencies in a microalga 888 2.4 Nannochloropsis oceanica. Algal Research, 2023, 69, 102947. Integrating biological and chemical CO2 sequestration using green microalgae for bioproducts 889 2 1.3 generation. Frontiers in Climate, 0, 4, . Draft genome sequence of Joostella atrarenae M1-2T with cellulolytic and hemicellulolytic ability. 3 1.1 Biotech, 2023, 13, Future Foods for Urban Food Production., 2022, , 586-593. 891 0 Algal-derived macromolecules and their composites: From synthetic biology to biomedical 0.8 applications in bone and cardiovascular tissue engineering. F1000Research, 0, 12, 65. Pyrolysis of macroalgae and its residue for bio-oil. AIP Conference Proceedings, 2023, , . 894 0.3 0 Extracts from Chlorella vulgaris Protect Mesenchymal Stromal Cells from Oxidative Stress Induced 1.6 by Hydrogen Peroxide. Plants, 2023, 12, 361. Hydrogen sulfide (H2S) conversion to hydrogen (H2) and value-added chemicals: Progress, challenges 896 20 6.6 and outlook. Chemical Engineering Journal, 2023, 458, 141398. Jatropha's Rapid Developments and Future Opportunities as a Renewable Source of Biofuel—A Review. 1.6 Energies, 2023, 16, 828. 898 Biocomposites from Microalgae. Composites Science and Technology, 2023, , 99-138. 0.4 0 Sodium Bicarbonate (NaHCO3) Increases Growth, Protein and Photosynthetic Pigments Production 899 and Alters Carbohydrate Production of Spirulina platensis. Current Microbiology, 2023, 80, .

Сп	ION	REPO	דאר
<u> </u>		TYPE I V	

#	Article	IF	CITATIONS
900	CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gracilis. Science of the Total Environment, 2023, 868, 161629.	3.9	5
901	Alkyl carbamate ionic liquids for permeabilization of microalgae biomass to enhance lipid recovery for biodiesel production. Heliyon, 2023, 9, e12754.	1.4	2
902	Carotenoid metabolism: New insights and synthetic approaches. Frontiers in Plant Science, 0, 13, .	1.7	6
903	Promising Sources of Plant-Derived Polyunsaturated Fatty Acids: A Narrative Review. International Journal of Environmental Research and Public Health, 2023, 20, 1683.	1.2	17
904	Neural-Network-Inspired Correlation (N2IC) Model for Estimating Biodiesel Conversion in Algal Biodiesel Units. Fermentation, 2023, 9, 47.	1.4	4
905	Microalgae as Raw Materials for Aquafeeds: Growth Kinetics and Improvement Strategies of Polyunsaturated Fatty Acids Production. Aquaculture Nutrition, 2023, 2023, 1-19.	1.1	8
906	Iron oxide nanoparticle-based pretreatment for simultaneous elevated hydrolysis efficiency and methanization augmentation of Chlorella vulgaris biomass. Algal Research, 2023, 70, 102972.	2.4	4
907	Microalgae on distillery wastewater treatment for improved biodiesel production and cellulose nanofiber synthesis: A sustainable biorefinery approach. Chemosphere, 2023, 315, 137666.	4.2	22
908	Ecosystem services and climate action from a circular bioeconomy perspective. Renewable and Sustainable Energy Reviews, 2023, 175, 113164.	8.2	34
909	A review on optimistic biorefinery products: Biofuel and bioproducts from algae biomass. Fuel, 2023, 338, 127378.	3.4	18
910	Alternative vehicular fuels for environmental decarbonization: A critical review of challenges in using electricity, hydrogen, and biofuels as a sustainable vehicular fuel. Chemical Engineering Journal Advances, 2023, 14, 100442.	2.4	33
911	Robust Control Based on Modeling Error Compensation of Microalgae Anaerobic Digestion. Fermentation, 2023, 9, 34.	1.4	0
912	CO2 Levels Modulate Carbon Utilization, Energy Levels and Inositol Polyphosphate Profile in Chlorella. Plants, 2023, 12, 129.	1.6	1
913	Utilisation of Fermented Wheat Bran Extract Medium as A Potential Low-cost Culture Medium for Chlorella ellipsoidea. Borneo Journal of Resource Science and Technology, 2022, 12, 63-73.	0.3	0
914	Polysaccharides Produced by Microalgae. , 2021, , 1-22.		0
915	Photobioreactors: An introduction. , 2023, , 3-10.		1
916	Renewable biofuels from microalgae: technical advances, limitations and economics. Environmental Technology Reviews, 2023, 12, 18-36.	2.1	3
917	Chlamydomonas reinhardtii: A Factory of Nutraceutical and Food Supplements for Human Health. Molecules, 2023, 28, 1185.	1.7	19

#	Article	IF	CITATIONS
918	Developing algae as a sustainable food source. Frontiers in Nutrition, 0, 9, .	1.6	19
919	Quantifying Microalgae Growth by the Optical Detection of Glucose in the NIR Waveband. Molecules, 2023, 28, 1318.	1.7	3
920	Algal cell factories as a source of marine antioxidants. , 2023, , 161-184.		0
921	Extraction of natural dyes from agro-industrial waste. , 2023, , 197-216.		2
922	Bioactive Compounds from Brown Algae Alleviate Nonalcoholic Fatty Liver Disease: An Extensive Review. Journal of Agricultural and Food Chemistry, 2023, 71, 1771-1787.	2.4	5
923	Factors affecting the microalgal biomass productivity in photobioreactors. , 2023, , 59-88.		0
924	The growth of local microalgae in synthetic and agricultural wastewater for aquaculture feed application. AIP Conference Proceedings, 2023, , .	0.3	0
925	Introduction: An overview of biofuels and production technologies. , 2023, , 3-24.		2
926	Bioprospection of marine microalgae for novel antioxidants in human health and medicine. , 2023, , 295-310.		0
927	Biofertilizer from Industrial Waste Water by Microalgal Treatment. , 2023, , 197-215.		0
928	Robust control designs for microalgae cultivation in continuous photobioreactors. International Journal of Chemical Reactor Engineering, 2023, .	0.6	0
929	Circular bioeconomy in palm oil industry: Current practices and future perspectives. Environmental Technology and Innovation, 2023, 30, 103050.	3.0	11
930	Algae materials for drugs and drug delivery. , 2023, , 263-278.		0
931	Microalgae-based bioremediation of pharmaceuticals wastewater. , 2023, , 277-309.		1
932	Prospecting the biofuel potential of new microalgae isolates. International Journal of Hydrogen Energy, 2023, 48, 19060-19073.	3.8	7
933	Algal lipids, lipidomics, and biosurfactants. , 2023, , 313-342.		1
934	An introduction to algae materials. , 2023, , 1-28.		0
935	A SWOT-AHP analysis on biodiesel as an alternative future marine fuel. Clean Technologies and Environmental Policy, 2023, 25, 2233-2248.	2.1	3

#	Article	IF	CITATIONS
936	Microalgae as a Nutraceutical Tool to Antagonize the Impairment of Redox Status Induced by SNPs: Implications on Insulin Resistance. Biology, 2023, 12, 449.	1.3	1
937	Dose response assessment of silica exposure and poisoning of construction workers. Environmental Pollutants and Bioavailability, 2023, 35, .	1.3	1
938	The proteome of Chlamydomonas reinhardtii during phosphorus depletion and repletion. Algal Research, 2023, 71, 103037.	2.4	4
939	Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses. Renewable Energy, 2023, 208, 693-701.	4.3	4
940	Enhanced microalgal lipid production for biofuel using different strategies including genetic modification of microalgae: A review. Progress in Energy and Combustion Science, 2023, 96, 101071.	15.8	59
941	Enhanced growth and auto-flocculation of Scenedesmus quadricauda in anaerobic digestate using high light intensity and nanosilica: A biomineralization-inspired strategy. Water Research, 2023, 235, 119893.	5.3	5
942	Thermal response analysis and compilation of cardinal temperatures for 424 strains of microalgae, cyanobacteria, diatoms and other species. Science of the Total Environment, 2023, 873, 162275.	3.9	2
943	Catalyst in algal refinery: A way towards production of high-quality biofuel. Sustainable Chemistry and Pharmacy, 2023, 33, 101092.	1.6	2
944	Reviewing biohydrogen production from microalgal cells through fundamental mechanisms, enzymes and factors that engendering new challenges and prospects. Fuel, 2023, 346, 128312.	3.4	6
945	New report of Halamphora subtropica (Bacillariophyta) from the Strait of Malacca and its growth and biochemical characterisation under nutrient deprivation. Regional Studies in Marine Science, 2023, 62, 102947.	0.4	1
946	Combined application of exogenous phytohormones and blue light illumination to the marine diatom Phaeodactylum tricornutum. Algal Research, 2023, 71, 103052.	2.4	2
948	The optimization of culture conditions for the enhancement of biomass and lipids in Chlamydomonas hedleyi using a two-phase culture system. Bioresource Technology Reports, 2023, 21, 101342.	1.5	1
949	Carbon dioxide fixation and lipid storage of Scenedesmus sp. ASK22: A sustainable approach for biofuel production and waste remediation. Journal of Environmental Management, 2023, 332, 117350.	3.8	3
950	Recent advances in CO2 fixation by microalgae and its potential contribution to carbon neutrality. Chemosphere, 2023, 319, 137987.	4.2	27
951	Plant Growth Promotion, Phytohormone Production and Genomics of the Rhizosphere-Associated Microalga, Micractinium rhizosphaerae sp. nov Plants, 2023, 12, 651.	1.6	4
952	Anaerobic fermentation of seaweed for enhanced biohydrogen production through combined sonic surfactant disintegration: process optimization and energy assessment. Biomass Conversion and Biorefinery, 0, , .	2.9	1
953	Simultaneous extraction of chlorophylls, proteins, and carbohydrates from isolated <scp><i>Chlorella thermophila</i></scp> using a triphasic separation technique: A biorefinery approach. Biofuels, Bioproducts and Biorefining, 2023, 17, 904-920.	1.9	2
954	Cyanobacteria as cell factories for the photosynthetic production of sucrose. Frontiers in Microbiology, 0, 14, .	1.5	9

#	Article	IF	CITATIONS
955	Review and Perspectives of Emerging Green Technology for the Sequestration of Carbon Dioxide into Value-Added Products: An Intensifying Development. Energy & amp; Fuels, 2023, 37, 3570-3589.	2.5	12
956	Culture depth effect on Scenedesmus sp. growth, photo-physiology and nutrient removal rate in anaerobically digested abattoir effluent. Journal of Applied Phycology, 2023, 35, 567-580.	1.5	1
957	Biotechnological response curve of the cyanobacterium Spirulina subsalsa to light energy gradient. , 2023, 16, .		0
958	Nanotechnology: An outstanding tool for increasing and better exploitation of microalgae valuable compounds. Algal Research, 2023, 71, 103019.	2.4	3
959	Algal-fungal interactions and biomass production in wastewater treatment: Current status and future perspectives. Algal Research, 2023, 70, 103021.	2.4	4
960	Production of biocoke from microalgae powder. IOP Conference Series: Earth and Environmental Science, 2023, 1144, 012002.	0.2	0
961	Algae materials for advanced biofuel production through the cost-effective process and integration of nanocatalysts. , 2023, , 29-62.		0
962	Algae materials for cosmetics and cosmeceuticals. , 2023, , 285-312.		0
963	<i>Mychonastes</i> sp. 246 Suppresses Human Pancreatic Cancer Cell Growth via IGFBP3-PI3K-mTOR Signaling. Journal of Microbiology and Biotechnology, 2023, 33, 449-462.	0.9	2
964	Optimization of Microalgal Biomass Production in Vertical Tubular Photobioreactors. Energies, 2023, 16, 2429.	1.6	4
965	Scaleâ€down of oxygen and glucose fluctuations in a tubular photobioreactor operated under oxygenâ€balanced mixotrophy. Biotechnology and Bioengineering, 0, , .	1.7	0
966	Microalgal Feedstock for Biofuel Production: Recent Advances, Challenges, and Future Perspective. Fermentation, 2023, 9, 281.	1.4	10
967	Optoelectronic technologies to boost photobioreactors for algae production: from pulsed light sources to PV integrated net zero system. , 2023, , .		0
968	The "comfort timing―strategy: a potential pathway for the cultivation of uncultured microorganisms and a possible adaptation for environmental colonisation. FEMS Microbiology Ecology, 2023, 99, .	1.3	1
969	Storage and Algal Association of Bacteria That Protect Microchloropsis salina from Grazing by Brachionus plicatilis. Microorganisms, 2023, 11, 786.	1.6	0
970	The Role of Biotechnology in the Production of Pigmented Cereals. , 2023, , 355-374.		0
971	Algae Biomass for Biofuel Production; Yield Analysis of Chlorella Vulgaris and Scenedesmus Meyen in Different Culture Media. Environmental Science and Engineering, 2023, , 144-150.	0.1	0
972	<i>Chlamydomonas</i> mutants lacking chloroplast TRIOSE PHOSPHATE TRANSPORTER3 are metabolically compromised and light sensitive. Plant Cell, 2023, 35, 2592-2614.	3.1	8

#	Article	IF	CITATIONS
973	Study on bioactive compounds of microalgae as antioxidants in a bibliometric analysis and visualization perspective. Frontiers in Plant Science, 0, 14, .	1.7	4
974	Use microfluidics to create microdroplets for culturing and investigating algal cells in a high-throughput manner. Microfluidics and Nanofluidics, 2023, 27, .	1.0	0
975	Al and Intermittency Management of Renewable Energy. Power Systems, 2023, , 1-17.	0.3	0
976	Effect of light spectrum on the performance of SMFC with microalgae improved cathode. , 2023, , .		0
977	Occurrence and potential harms of organochlorine pesticides (OCPs) in environment and their removal by periphyton. Critical Reviews in Environmental Science and Technology, 2023, 53, 1957-1981.	6.6	11
978	Algae biofuel: A futuristic, sustainable, renewable and green fuel for I.C. engines. Materials Today: Proceedings, 2023, , .	0.9	5
979	Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 2585-2632.	2.0	2
980	Recent Advances in using Lipomyces starkeyi for the Production of Single-Cell Oil. Journal of Pure and Applied Microbiology, 2023, 17, 693-704.	0.3	1
981	Biotechnological Approaches to Generate Biogenic Solvents and Energy Carriers from Renewable Resources. The EuroBiotech Journal, 2023, 7, 96-120.	0.5	2
982	Microalgal diversity enhances water purification efficiency in experimental microcosms. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0
983	Nutrient consumption of green microalgae, Chlorella sp. during the bioremediation of shrimp aquaculture wastewater. Algal Research, 2023, 72, 103110.	2.4	2
984	Microbial Waste Biomass as a Resource of Renewable Energy. Clean Energy Production Technologies, 2023, , 63-78.	0.3	0
985	Anti-Steatotic Effects of Chlorella vulgaris, Nannochloropsis gaditana and Gracilaria vermiculophylla Algae Extracts in AML-12 Hepatocytes. Nutrients, 2023, 15, 1960.	1.7	1
986	Kinetic modelling for prediction of biomass concentration of Chlorella minutissima in open raceway pond cultivation: A pilot-scale study. Biomass and Bioenergy, 2023, 173, 106797.	2.9	0
987	The conventional microalgal biofuel production process and the alternative milking pathway: A review. Energy, 2023, 277, 127547.	4.5	2
988	Prospects of microalgae in nutraceuticals production with nanotechnology applications. Food Research International, 2023, 169, 112870.	2.9	6
993	Bioprospecting microalgae for biofuel synthesis. , 2023, , 453-462.		1
994	Transesterification process of biomass. , 2023, , .		0

#	Article	IF	CITATIONS
1000	Microalgae biomass. , 2023, , 369-379.		0
1009	A way from biofuels to biorefinery: nanotechnological perspectives. , 2023, , 163-203.		1
1012	Biological conversion technologies. , 2023, , 171-200.		0
1013	Strategy and design of innovation policy road mapping for microalgae-based foods. , 2023, , 625-642.		0
1014	High-value–added products from microalgae production integrated with bioethanol process. , 2023, , 315-332.		0
1015	Microalgae application in feeds for monogastrics. , 2023, , 411-420.		0
1016	Application of microalgae in baked goods and pasta. , 2023, , 317-334.		0
1018	Commercial facilities of microalgae-based products around the world. , 2023, , 33-40.		0
1021	Edible microalgae: potential candidate for developing edible vaccines. Vegetos, 0, , .	0.8	0
1023	Bioinoculants development for sustainable agriculture by innovative optimization processes: a future roadmap to commercialization. , 2023, , 107-119.		0
1024	Design of experiment (DoE) in reducing sugar optimization to produce third-generation bioethanol from Chlorella pyrenoidosa: Central composite design vs Box-Behnken design. AIP Conference Proceedings, 2023, , .	0.3	0
1027	Upstream and downstream processing of microalgae-based processes for simultaneous wastewater treatment and pigment production. , 2023, , 529-554.		0
1028	Microalgae in Bioplastic Production: A Comprehensive Review. Arabian Journal for Science and Engineering, 2023, 48, 7225-7241.	1.7	4
1031	Carbon capture, storage, and usage with microalgae: a review. Environmental Chemistry Letters, 2023, 21, 2085-2128.	8.3	5
1043	A Critical Review on Chlorella vulgaris Deconstruction by Green Sequential Extractions: The Potential of (Bio)Surfactant Modifiers. Waste and Biomass Valorization, 2024, 15, 525-542.	1.8	0
1049	Short Perspective on Membrane Integration in Microalgae Bioreactor for CO2 Capture. , 2023, , 335-350.		1
1050	Development in health-promoting essential polyunsaturated fatty acids production by microalgae: a review. Journal of Food Science and Technology, 0, , .	1.4	3
1054	Conversion of Food Waste into Valuable Products. Clean Energy Production Technologies, 2023, , 181-201.	0.3	1

#	Article	IF	CITATIONS
1055	Cosmeceuticals from algae. , 2023, , 667-709.		0
1057	Algae cultivation in industrial effluents for carbon dioxide sequestration and biofuel production. , 2023, , 273-308.		0
1059	Bioethanol Production from Microalgae: Potentials and Challenges. Green Energy and Technology, 2023, , 161-192.	0.4	0
1060	Novel and Cost-Effective Feedstock for Sustainable Bioethanol Production. Green Energy and Technology, 2023, , 21-45.	0.4	0
1071	Nanotechnology and the renewable energy–water–environment nexus. , 2024, , 315-359.		0
1073	Microalgal farming for biofuel production: Extraction, conversion, and characterization. , 2024, , 43-80.		0
1078	Biomass (Algae) Valorization as an Energy Perspective: Review of Process Options and Utilization. Clean Energy Production Technologies, 2023, , 123-150.	0.3	0
1080	The efficacy of microalgae supplementation for exercise performance. , 2023, , 565-592.		0
1091	Microalgal Biomass: Introduction and Production Methods. , 2023, , 1-28.		0
1092	Biomass: Potential Sources, Abundance, and Distribution. , 2023, , 1-29.		0
1094	In Silico Study of Enzymatic Degradation of Bioplastic by Microalgae: An Outlook on Microplastic Environmental Impact Assessment, Challenges, and Opportunities. Molecular Biotechnology, 0, , .	1.3	0
1095	Microalgal liquid, solid, and gaseous biofuels: Cultivation and production strategies for biofuel accumulation. , 2024, , 113-144.		0
1096	Biofuels from microalgae: Growing conditions, cultivation strategies, and techno-commercial challenges. , 2024, , 305-340.		0
1097	Cutting-edge approaches for overcoming challenges in microalgal biodiesel production. , 2024, , 355-394.		0
1098	Bioproducts from Microalgal Biomass. , 2023, , 1-29.		0
1104	Definition of bioenergy. , 2024, , 215-243.		0
1117	Algae as a Functional Food: A Case Study on Spirulina. , 2024, , 563-594.		0
1120	Biotreatment of Industrial Wastewater using Microalgae: A Tool for a Sustainable Bioeconomy. Molecular Biotechnology, 0, , .	1.3	0

#	Article	IF	CITATIONS
1121	Current Status and Future Prospectus of Bioenergy Crops. , 2023, , 271-288.		0
1123	The Use of Wastewater for Algal Growth. , 2024, , 231-271.		Ο
1127	A critical review on phycoremediation of pollutants from wastewater—a novel algae-based secondary treatment with the opportunities of production of value-added products. Environmental Science and Pollution Research, 2023, 30, 114844-114872.	2.7	2
1130	Algae Bioenergy. , 2023, , 103-109.		Ο
1133	Literature Analysis on Pollutant Removal Using Microalgae (Chlorella vulgaris) in Different Wastewater Treatment. Lecture Notes in Civil Engineering, 2024, , 307-319.	0.3	0
1139	Industrial Importance of Marine Algae. , 2023, , 367-380.		Ο
1141	Liquid Bio-Fuels From Algal Materials. , 2023, , .		0
1144	Recent progress in biotechnological approaches for diverse applications of algae: an overview. International Journal of Environmental Science and Technology, 0, , .	1.8	0
1154	Green Chemicals From Microalgae. , 2023, , .		0
1155	Using Photovoltaics in Methanol Production (Efficiency, Enviromental Impact, and Economical) Tj ETQq1 1 0.784	1314 rgBT	/Oyerlock 10
1161	The hidden superfood: Microalgae from Indonesia and its potency as functional food ingredients. AIP Conference Proceedings, 2023, , .	0.3	0
1162	The effect of nitrogen concentration and light intensity on growth of Coelastrella sp. (LIPI11-2-AL018) for carotene production. AIP Conference Proceedings, 2023, , .	0.3	0
1167	Therapeutic potential of microalgae and their prospects in targeted delivery in cancer management. , 2024, , 485-498.		0
1175	Phycoremediation and water reuse in bioenergy production from algae and cyanobacteria in relevance to sustainable development goals. , 2024, , 375-406.		0
1176	Microbial Processes for the Conversion of CO2 und CO. , 2023, , 131-149.		0
1177	Marine Phytoplankton: Bioactive Compounds and Their Applications in Medicine. , 2023, , 251-282.		0
1178	Precision biotechnology using beneficial microbes as a fundamental approach to the circular economy. , 2024, , 73-103.		0
1191	Microalgae-factories as potential antimicrobial agents: a comprehensive review. , 0, , .		Ο

#	ARTICLE	IF	CITATIONS
1193	Development of bioplastics from a microalgae consortium from wastewater. , 2024, , 23-46.		0