Potentially toxic elements in soil of the Khyber Pakhtu Pakistan: evaluation for human and ecological risk asse

Environmental Geochemistry and Health 40, 2177-2190 DOI: 10.1007/s10653-018-0091-2

Citation Report

#	Article	IF	CITATIONS
1	Copper and other heavy metals in grapes: a pilot study tracing influential factors and evaluating potential risks in China. Scientific Reports, 2018, 8, 17407.	1.6	13
2	Associations of potentially toxic elements (PTEs) in drinking water and human biomarkers: a case study from five districts of Pakistan. Environmental Science and Pollution Research, 2018, 25, 27912-27923.	2.7	22
3	Profile Distribution and Source Identification of Potentially Toxic Elements in North Nile Delta, Egypt. Soil and Sediment Contamination, 2019, 28, 582-600.	1.1	12
4	Assessment of the concentrations and health risk of some heavy metals in cowpea (<i>Vignus) Tj ETQq1 1</i>	0.784314 rgBT 1.2	Öyerlock IC
5	Heavy metals contamination in soil and food and their evaluation for risk assessment in the Zhob and Loralai valleys, Baluchistan province, Pakistan. Microchemical Journal, 2019, 149, 103971.	2.3	48
6	Potentially harmful elements contamination in water and sediment: Evaluation for risk assessment and provenance in the northern Sulaiman fold belt, Baluchistan, Pakistan. Microchemical Journal, 2019, 147, 1155-1162.	2.3	40
7	Unraveling prevalence and public health risks of arsenic, uranium and co-occurring trace metals in groundwater along riverine ecosystem in Sindh and Punjab, Pakistan. Environmental Geochemistry and Health, 2019, 41, 2223-2238.	1.8	36
8	Evaluation of heavy metal contamination in soil using geochemical indexing approaches and chemometric techniques. International Journal of Environmental Science and Technology, 2019, 16, 7467-7486.	1.8	24
9	Contamination level and potential health risk assessment of hexavalent chromium in soils from a coal chemical industrial area in Northwest China. Human and Ecological Risk Assessment (HERA), 2020, 26, 1300-1312.	1.7	9
10	Heavy metals contamination in urban surface soils of Medak province, India, and its risk assessment and spatial distribution. Environmental Geochemistry and Health, 2020, 42, 59-75.	1.8	124
11	Ecological and health risk assessment of heavy metals in the Hattar industrial estate, Pakistan. Toxin Reviews, 2020, 39, 68-77.	1.5	23
12	Spatial distribution of potentially toxic elements in urban soils of Abbottabad city, (N Pakistan): Evaluation for potential risk. Microchemical Journal, 2020, 153, 104489.	2.3	38
13	Heavy metal contamination in agricultural soil and ecological risk assessment in the northeast area of Tadla plain, Morocco. Journal of Sedimentary Environments, 2020, 5, 307-320.	0.7	39
14	Application of pollution indices for the assessment of heavy metal hazards in soil using GIS approach. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	4
15	Concentration, likely sources, and ecological risk assessment of potentially toxic elements in urban soils of Shiraz City, SW Iran: a preliminary assessment. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	11
16	Bioaccumulation of potentially toxic elements within the soil–plant system in Central Balkan region: analysis of the forest ecosystem capacity to mediate toxic elements. Environmental Geochemistry and Health, 2020, , 1.	1.8	2
17	Heavy metals and radionuclides distribution and environmental risk assessment in soils of the Severodvinsk industrial district, NW Russia. Environmental Earth Sciences, 2020, 79, 1.	1.3	14
18	Spatial Distribution and Health Risk Assessment of Dissolved Trace Elements in Groundwater in southern China. Scientific Reports, 2020, 10, 7886.	1.6	29

#	Article	IF	CITATIONS
19	Heavy metals bounded to particulate matter in the residential and industrial sites of Islamabad, Pakistan: Implications for non-cancer and cancer risks. Environmental Technology and Innovation, 2020, 19, 100822.	3.0	22
20	Potential ecological risk assessment of heavy metals in archaeology on an example of the Tappe Rivi (Iran). SN Applied Sciences, 2020, 2, 1.	1.5	12
21	Distribution of trace metals and an environmental risk assessment of the river sediments in the area of the Lomonosov diamond deposit (NW Russia). Environmental Science and Pollution Research, 2020, 27, 35392-35415.	2.7	5
22	Occurrence, source identification and potential risk evaluation of heavy metals in sediments of the Hunza River and its tributaries, Gilgit-Baltistan. Environmental Technology and Innovation, 2020, 18, 100700.	3.0	44
23	Potentially toxic elements' occurrence and risk assessment through water and soil of Chitral urban environment, Pakistan: a case study. Environmental Geochemistry and Health, 2020, 42, 4355-4368.	1.8	28
24	Spatial distribution and provenance of heavy metal contamination in the sediments of the Indus River and its tributaries, North Pakistan: Evaluation of pollution and potential risks. Environmental Technology and Innovation, 2021, 21, 101184.	3.0	44
25	Lead contamination in shooting range soils and its phytoremediation in Pakistan: a greenhouse experiment. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	7
26	Evaluation and risks assessment of potentially toxic elements in water and sediment of the Dor River and its tributaries, Northern Pakistan. Environmental Technology and Innovation, 2021, 21, 101333.	3.0	39
27	Contamination of roadside soils by metals linked to catalytic converters in Rio De Janeiro, Brazil. Environmental Forensics, 0, , 1-13.	1.3	1
28	THE MERGER OF FATA: BREAKING THE CLUTCHES OF BRITISH COLONIAL FRONTIER CRIMES REGULATIONS (FCR). Humanities and Social Sciences Reviews, 2021, 9, 32-42.	0.2	0
29	Assessment of physico-chemical parameters and trace heavy metal elements from different sources of water in and around institutional campus of Lumami, Nagaland University, India. Applied Water Science, 2021, 11, 1.	2.8	8
30	Multi-Scale Minero-Chemical Analysis of Biomass Ashes: A Key to Evaluating Their Dangers vs. Benefits. Sustainability, 2021, 13, 6052.	1.6	1
31	Pollution characteristics and human health risk assessments of toxic metals and particle pollutants via soil and air using geoinformation in urbanized city of Pakistan. Environmental Science and Pollution Research, 2021, 28, 58206-58220.	2.7	9
32	Heavy metal contamination in water of Indus River and its tributaries, Northern Pakistan: evaluation for potential risk and source apportionment. Toxin Reviews, 2022, 41, 380-388.	1.5	54
33	Human health hazard evaluation with reference to chromium (Cr+3 and Cr+6) in groundwater of Bengaluru Metropolitan City, South India. Arabian Journal of Geosciences, 2021, 14, 1.	0.6	6
34	Heavy metal bioavailability in the earthworm-assisted soils of different land types of Pakistan. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	4
35	New insights into the distribution and speciation of nickel in a Myanmar laterite. Chemical Geology, 2022, 604, 120943.	1.4	1
36	Heavy metal(loid)s contaminations in soils of Pakistan: a review for the evaluation of human and ecological risks assessment and spatial distribution. Environmental Geochemistry and Health, 2023, 45, 1991-2012	1.8	19

#	Article	IF	CITATIONS
37	Spatial source apportionment of pollution and health risks in the agricultural soils of Shangla, Northern Pakistan: multistatistical approach. Arabian Journal of Geosciences, 2022, 15, .	0.6	0
38	Assessment of heavy metals distribution and environmental risk parameters in bottom sediments of the Pechora River estuary (Arctic Ocean Basin). Marine Pollution Bulletin, 2022, 182, 113960.	2.3	8
39	Characterizing spatial dependence of boron, arsenic, and other trace elements for Permian groundwater in Northern Anhui plain coal mining area, China, using spatial autocorrelation index and geostatistics. Environmental Science and Pollution Research, 2023, 30, 39184-39198.	2.7	2
41	Environmental Risk Assessment, Principal Component Analysis, Tracking the Source of Toxic Heavy Metals of Solid Gold Mine Waste Tailings, South Africa. Environmental Forensics, 0, , 1-17.	1.3	1
42	Exposure risk to heavy metals through surface and groundwater used for drinking and household activities in lfite Ogwari, Southeastern Nigeria. Applied Water Science, 2023, 13, .	2.8	4
52	Preliminary Study of Potential Health Hazard Using Cyprinus Carpio as a Biological Indicator During Construction of Suki Kinari Hydropower Project in Mansehra District, Pakistan. Environmental Science and Engineering, 2024, , 35-45.	0.1	0

CITATION REPORT