Electronic Properties of N-Heterocyclic Carbenes and T

Chemical Reviews 118, 9457-9492

DOI: 10.1021/acs.chemrev.8b00067

Citation Report

#	Article	IF	CITATIONS
3	Anion influences on reactivity and NMR spectroscopic features of NHC precursors. RSC Advances, 2018, 8, 34960-34966.	1.7	32
4	Iridium–NHC-based catalyst for ambient pressure storage and low temperature release of H ₂ <i>via</i> the CO ₂ /HCO ₂ H couple. Catalysis Science and Technology, 2018, 8, 6137-6142.	2.1	22
5	Access to a Cationic, Electron-Poor <i>N</i> -Heterocyclic Carbene with a Quinazolinium Core by Postsynthetic Modification of Related Neutral Derivatives. Organometallics, 2018, 37, 4276-4286.	1.1	9
6	Effect of Ancillary Ligand in Cyclometalated Ru(II)–NHC-Catalyzed Transfer Hydrogenation of Unsaturated Compounds. Inorganic Chemistry, 2018, 57, 14582-14593.	1.9	51
7	Ambient-Pressure and Base-Free Aldehyde Hydrogenation Catalyst Supported by a Bifunctional Abnormal NHC Ligand. Organometallics, 2018, 37, 4720-4725.	1,1	20
8	High-Yield Synthesis of a Long-Sought, Labile Ru-NHC Complex and Its Application to the Concise Synthesis of Second-Generation Olefin Metathesis Catalysts. Organometallics, 2018, 37, 4551-4555.	1.1	25
9	Ni-Catalyzed Cross-Coupling of Dimethyl Aryl Amines with Arylboronic Esters under Reductive Conditions. Journal of the American Chemical Society, 2018, 140, 13575-13579.	6.6	72
10	Photoactive Complexes with Earth-Abundant Metals. Journal of the American Chemical Society, 2018, 140, 13522-13533.	6.6	369
11	(Hetero)bimetallic and Tetranuclear Complexes of Pincer-Bridged N-Heterocyclic Carbene Ligands. Organometallics, 2018, 37, 4119-4127.	1.1	12
12	Selective C8-Metalation of Purine Nucleosides via Oxidative Addition. Organometallics, 2018, 37, 4181-4185.	1.1	21
13	Synthesis and Characterization of [(NHC)Ni(styrene)2] Complexes: Isolation of Monocarbene Nickel Complexes and Benchmarking of %VBur in (NHC)Ni-Ï€ Systems. Organometallics, 2018, 37, 3687-3697.	1,1	16
14	Combined Effects of Backbone and N-Substituents on Structure, Bonding, and Reactivity of Alkylated Iron(II)-NHCs. Organometallics, 2018, 37, 3093-3101.	1.1	16
15	Copper-NHC-Mediated Semihydrogenation and Hydroboration of Alkynes: Enhanced Catalytic Activity Using Ring-Expanded Carbenes. Organometallics, 2018, 37, 3102-3110.	1.1	58
16	Coinage metal complexes of selenoureas derived from N-heterocyclic carbenes. Dalton Transactions, 2018, 47, 10671-10684.	1.6	23
17	A palladacyclic N-heterocyclic carbene system used to probe the donating abilities of monoanionic chelators. Dalton Transactions, 2018, 47, 7830-7838.	1.6	15
18	NHCs in Main Group Chemistry. Chemical Reviews, 2018, 118, 9678-9842.	23.0	563
19	Stereoelectronic Flexibility of Ammonium-Functionalized Triazole-Derived Carbenes: Palladation and Catalytic Activities in Water. Organometallics, 2018, 37, 2358-2367.	1.1	27
20	N-Heterocyclic Carbene-Catalyzed $\hat{l}\pm,\hat{l}^2$ -Unsaturated Aldehydes Umpolung in Fullerene Chemistry: Construction of [60]Fullerene-Fused Cyclopentan-1-ones and Cyclohex-2-en-1-ones. Organic Letters, 2018, 20, 4801-4805.	2.4	36

#	Article	IF	CITATIONS
21	Magnetic Nanoparticle Decorated N-Heterocyclic Carbene–Nickel Complex with Pendant Ferrocenyl Group for C–H Arylation of Benzoxazole. Catalysis Letters, 2018, 148, 3178-3192.	1.4	17
22	Donor Strengths Determination of Pnictogen and Chalcogen Ligands by the Huynh Electronic Parameter and Its Correlation to Sigma Hammett Constants. Chemistry - A European Journal, 2019, 25, 13956-13963.	1.7	22
23	Spent Mango Cellulose-Supported <i>N</i> -Heterocyclic Carbene-Iron(III) Catalyst for Fructose to HMF Dehydration. ACS Sustainable Chemistry and Engineering, 2019, 7, 14899-14905.	3.2	7
24	Nâ€Heterocyclic Carbenes as Key Intermediates in the Synthesis of Fused, Mesoionic, Tricyclic Heterocycles. Chemistry - A European Journal, 2019, 25, 13030-13036.	1.7	9
25	Oligomerization of phosphaalkynes mediated by bulky N-heterocyclic carbenes: avenues to novel phosphorus frameworks. Dalton Transactions, 2019, 48, 14242-14245.	1.6	9
26	Coinage metal complexes bearing fluorinated N-Heterocyclic carbene ligands. Journal of Organometallic Chemistry, 2019, 898, 120856.	0.8	10
27	Intramolecular Oâ€arylation using nanoâ€magnetite supported <i>N</i> à€heterocyclic carbeneâ€copper complex with wingtip ferrocene. Applied Organometallic Chemistry, 2019, 33, e5066.	1.7	4
28	Imidazolium-benzimidazolates as convenient sources of donor-functionalised normal and abnormal N-heterocyclic carbenes. Chemical Communications, 2019, 55, 9705-9708.	2.2	11
29	Pd(II) Complexes with Chelating Phosphinoferrocene Diaminocarbene Ligands: Synthesis, Characterization, and Catalytic Use in Pd-Catalyzed Borylation of Aryl Bromides. Organometallics, 2019, 38, 3060-3073.	1,1	13
30	Possible Synthetic Approaches for Heterobimetallic Complexes by Using nNHC/tzNHC Heteroditopic Carbene Ligands. Molecules, 2019, 24, 2305.	1.7	8
31	Synthesis, characterization, crystal structure and antibacterial properties of Nae^{*} and Oae^{*} functionalized (benz)imidazolium salts and their Nae^{*} heterocyclic carbene silver(I) complexes. Journal of Molecular Structure, 2019, 1196, 627-636.	1.8	20
32	Preparation via a NHC Dimer Complex, Photophysical Properties, and Device Performance of Heteroleptic Bis(tridentate) Iridium(III) Emitters. Organometallics, 2019, 38, 2738-2747.	1.1	27
33	Palladate Precatalysts for the Formation of C–N and C–C Bonds. Organometallics, 2019, 38, 2812-2817.	1.1	23
34	Isocyano(triphenylphosphoranylidene)acetates: Key to the One-Pot Synthesis of Oxazolo[4,5- <i></i> quinoline Derivatives via a Sequential Ugi/Wittig/aza-Wittig Cyclization Process. Journal of Organic Chemistry, 2019, 84, 14911-14918.	1.7	20
35	Chiral Bicyclic NHC/Cu Complexes for Catalytic Asymmetric Borylation of \hat{l}_{\pm} , \hat{l}^2 -Unsaturated Esters. Journal of Organic Chemistry, 2019, 84, 14291-14296.	1.7	11
36	Employing Arylâ€Linked Bisâ€mesoionic Carbenes as a Pincerâ€Type Platform to Access Ambientâ€Stable Palladium(IV) Complexes. Angewandte Chemie - International Edition, 2019, 58, 16907-16911.	7.2	20
37	Dimerisation of Dipiperidinoacetylene: Convenient Access to Tetraaminoâ€1,3â€Cyclobutadiene and Tetraaminoâ€1,2â€Cyclobutadiene Metal Complexes. Chemistry - A European Journal, 2019, 25, 16148-16155.	1.7	7
38	Lithium Complexes with Bridging and Terminal NHC Ligands: The Decisive Influence of an Anionic Tether. European Journal of Inorganic Chemistry, 2019, 2019, 4894-4901.	1.0	17

#	ARTICLE	IF	Citations
39	Employing Arylâ€Linked Bisâ€mesoionic Carbenes as a Pincerâ€Type Platform to Access Ambientâ€6table Palladium(IV) Complexes. Angewandte Chemie, 2019, 131, 17063-17067.	1.6	3
40	Cyclic (Aryl)(Amido)Carbenes: NHCs with Tripletâ€like Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16320-16325.	7.2	23
41	Cyclic (Aryl)(Amido)Carbenes: NHCs with Tripletâ€like Reactivity. Angewandte Chemie, 2019, 131, 16466-16471.	1.6	9
42	Basicity of N-heterocyclic carbene and its main-group analogues. Computational and Theoretical Chemistry, 2019, 1164, 112557.	1.1	7
43	DFT based engineering of N-heterocyclic carbenes to exacerbate its activity for SO2 fixation and storage. Journal of Molecular Graphics and Modelling, 2019, 93, 107437.	1.3	7
44	Cobalt-Catalyzed Cross-Coupling Reactions of Aryl Triflates and Lithium Arylborates. Journal of Organic Chemistry, 2019, 84, 12686-12691.	1.7	12
45	Structure and redox stability of [Au(III)(X^N^X)PR3] complexes ($X\hat{a} \in \hat{a} \in \mathbb{C}$ or N) in aqueous solution: The role of phosphine auxiliary ligand. Journal of Inorganic Biochemistry, 2019, 200, 110804.	1.5	9
46	Bifurcated Hydrogen-Bond-Stabilized Boron Analogues of Carboxylic Acids. Inorganic Chemistry, 2019, 58, 13370-13375.	1.9	14
47	Rational Design of Penta-Coordinated Nickel(II) Dicarbene Complexes. Organometallics, 2019, 38, 3880-3887.	1.1	4
48	Arylation of Click Triazoles with Diaryliodonium Salts. Journal of Organic Chemistry, 2019, 84, 14030-14044.	1.7	13
49	Cyclometallated 1,2,3-triazol-5-ylidene iridium(III) complexes: synthesis, structure, and photoluminescence properties. Mendeleev Communications, 2019, 29, 128-131.	0.6	14
50	Fluoro-imidazopyridinylidene Ruthenium Catalysts for Cross Metathesis with Ethylene. Organometallics, 2019, 38, 4121-4132.	1.1	17
51	Palladacycles bearing COOHâ€/esterâ€functionalized Nâ€heterocyclic carbenes: Divergent syntheses and catalytic applications. Applied Organometallic Chemistry, 2019, 33, e4703.	1.7	6
52	Interplay between Gold(I)-Ligand Bond Components and Hydrogen Bonding: A Combined Experimental/Computational Study. ACS Omega, 2019, 4, 1344-1353.	1.6	5
53	Catalytic Conversion of CO ₂ to Formate with Renewable Hydrogen Donors: An Ambient-Pressure and H ₂ -Independent Strategy. ACS Catalysis, 2019, 9, 2164-2168.	5.5	47
54	Synthesis of N-heterocyclic nitrenium (NHN) ions and related donor systems: Coordination with d10-metal ions. Inorganica Chimica Acta, 2019, 488, 269-277.	1.2	4
55	Transmetalation from Magnesium–NHCs—Convenient Synthesis of Chelating π-Acidic NHC Complexes. Inorganics, 2019, 7, 65.	1.2	6
56	Three Ways Isolable Carbenes Can Modulate Emission of NH-Containing Fluorophores. Journal of the American Chemical Society, 2019, 141, 12055-12063.	6.6	13

#	ARTICLE	IF	Citations
57	Highly active bidentate N-heterocyclic carbene/ruthenium complexes performing dehydrogenative coupling of alcohols and hydroxides in open air. Chemical Communications, 2019, 55, 8591-8594.	2.2	34
58	Cost Efficient Synthesis of Diaryl Ethers Catalysed by Cul, Imidazolium Chloride and Cs 2 CO 3. ChemistrySelect, 2019, 4, 7181-7186.	0.7	8
59	Chiral N-heterocyclic carbene ligands with additional chelating group(s) applied to homogeneous metal-mediated asymmetric catalysis. Coordination Chemistry Reviews, 2019, 394, 65-103.	9.5	43
60	Group 9 and 10 Metal Complexes of an Ylide-Substituted Phosphine: Coordination versus Cyclometalation and Oxidative Addition. Inorganic Chemistry, 2019, 58, 8151-8161.	1.9	13
61	Efficient and Practical Transfer Hydrogenation of Ketones Catalyzed by a Simple Bidentate Mnâ^'NHC Complex. ChemCatChem, 2019, 11, 5232-5235.	1.8	54
62	Synthesis of Iron(0) Complexes Bearing Protic NHC Ligands: Synthesis and Catalytic Activity. Organometallics, 2019, 38, 2417-2421.	1.1	13
63	Phosphine-substituted 1,2,3-triazoles as P,C- and P,N-ligands for photoluminescent coinage metal complexes. Dalton Transactions, 2019, 48, 15427-15434.	1.6	13
64	Stereoelectronic Profiling of Expanded-Ring N-Heterocyclic Carbenes. Inorganic Chemistry, 2019, 58, 7545-7553.	1.9	36
65	Methyl Esters as Cross-Coupling Electrophiles: Direct Synthesis of Amide Bonds. ACS Catalysis, 2019, 9, 4426-4433.	5.5	69
66	Synthesis and Application of Planar Chiral Cyclic (Amino)(ferrocenyl)carbene Ligands Bearing FeCp* Group. Organometallics, 2019, 38, 2211-2217.	1.1	13
67	Monitoring Ligand Substitution in (Catalytically Active) Metal Complexes with Bodipy-Tagged Diimines and NHC Ligands. Organometallics, 2019, 38, 2138-2149.	1.1	10
68	A Rh(I) complex with an annulated N-heterocyclic carbene ligand for E-selective alkyne hydrosilylation. Polyhedron, 2019, 172, 167-174.	1.0	16
69	Direct Access to IMes ^F and IMes ^{F₂} by Electrophilic Fluorination of Abnormal N-Heterocyclic Carbenes. Organometallics, 2019, 38, 2330-2337.	1.1	19
70	A highly efficient and selective antitumor agent based on a glucoconjugated carbene platinum(<scp>ii</scp>) complex. Dalton Transactions, 2019, 48, 7794-7800.	1.6	28
71	Synthesis of Iridium(III) and Rhodium(III) Complexes Bearing C8-Metalated Theophylline Ligands by Directed C–H Activation. Organometallics, 2019, 38, 2250-2258.	1.1	10
72	Coinage metal complexes of Nâ€heterocyclic carbene bearing nitrile functionalization: Synthesis and photophysical properties. Applied Organometallic Chemistry, 2019, 33, e4927.	1.7	8
73	Cyclic(Alkyl)(Amino)Carbene (CAAC)â€6upported Zn Alkyls: Synthesis, Structure and Reactivity in Hydrosilylation Catalysis. Chemistry - A European Journal, 2019, 25, 8061-8069.	1.7	28
74	Amido-functionalized N-Heterocyclic carbene ligands and corresponding PalladiumComplexes: Synthesis, characterization and catalytic activity. Journal of Organometallic Chemistry, 2019, 888, 44-53.	0.8	3

#	Article	IF	CITATIONS
75	Half-sandwich $Ni(II)$ complexes $[Ni(Cp)(X)(NHC)]$: From an underestimated discovery to a new chapter in organonickel chemistry. Coordination Chemistry Reviews, 2019, 389, 19-58.	9.5	25
76	Redox- and light-switchable N-heterocyclic carbenes: a "soup-to-nuts―course on contemporary structure–activity relationships. Chemical Communications, 2019, 55, 4451-4466.	2.2	53
77	A Phenol-containing \hat{l}_{\pm} -Diimine Ligand for Nickel- and Palladium-Catalyzed Ethylene Polymerization. Chinese Journal of Polymer Science (English Edition), 2019, 37, 974-980.	2.0	50
78	Synthetic Approaches to Chiral Non-C 2-symmetric N-Heterocyclic Carbene Precursors. Synthesis, 2019, 51, 1689-1714.	1.2	12
79	Dihalogen-bridged NHC–palladium(<scp>i</scp>) dimers: synthesis, characterisation and applications in cross-coupling reactions. Chemical Communications, 2019, 55, 5275-5278.	2.2	17
80	Azoâ€MICs: Redoxâ€Active Mesoionic Carbene Ligands Derived from Azoimidazolium Dyes. Angewandte Chemie, 2019, 131, 1778-1781.	1.6	8
81	N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. Chemical Reviews, 2019, 119, 6994-7112.	23.0	346
82	Direct Installation of a Silyl Linker on Ready-Made NHC Ligands: Immobilized NHC-Pd Complex for Buchwald–Hartwig Amination. Organometallics, 2019, 38, 1872-1876.	1.1	14
83	NHC-coordinated palladacycle catalyzed 1,2-addition of arylboronates to unactivated ketones. Synthetic Communications, 2019, 49, 1193-1201.	1.1	6
84	Influence of pyrido-annulation on N,N′-dineopentyl-imidazolin-2-ylidene and associated transition metal complexes; comparison with benzo-, naphtho- and quinoxalino-annulation. Journal of Organometallic Chemistry, 2019, 890, 43-57.	0.8	4
85	4-Halo-1,2,3-triazolylidenes: stable carbenes featuring halogen bonding. Dalton Transactions, 2019, 48, 6931-6941.	1.6	17
86	Characterization of Rh–Al Bond in Rh(PAIP) (PAIP = Pincer-type Diphosphino-Aluminyl Ligand) in Comparison with Rh(L)(PMe ₃) ₂ (L = AlMe ₂ ,) Tj ETQq1 1 0.784314 rgBT /	Overlock	10 Tf 50 302
87	Computational Ligand Descriptors for Catalyst Design. Chemical Reviews, 2019, 119, 6561-6594.	23.0	254
88	Cyclometalated Ruthenium(II) NHC Complexes with Imidazo[1,5â€ <i>a</i>]pyridineâ€Based (C [^] C*) Ligands – Synthesis and Characterization. European Journal of Inorganic Chemistry, 2019, 2019, 1956-1965.	1.0	9
89	Pd-Catalyzed Decarboxylative Cyclization of Trifluoromethyl Vinyl Benzoxazinanones with Sulfur Ylides: Access to Trifluoromethyl Dihydroquinolines. Organic Letters, 2019, 21, 1515-1520.	2.4	29
90	1,1-Digoldallylium Complexes: Diaurated Allylic Carbocations Indicate New Prospects of the Coordination Chemistry of Carbon. Journal of the American Chemical Society, 2019, 141, 4687-4695.	6.6	27
91	Isomeric Palladium Complexes Bearing Imidazopyridine-Based Abnormal Carbene Ligands: Synthesis, Characterization, and Catalytic Activity in Direct C–H Arylation Reaction. Organometallics, 2019, 38, 805-815.	1.1	25
92	The crystal structure of 1-(2-(2-(imidazo[1,5-a]pyridine-4-ium)ethoxy)ethyl)-imidazo[1,5-a]pyridine-4-ium bis(hexafluorophosphate) â€" acetonitrile (1/1), C ₁₈ H ₂₀ ON ₄ F ₁₂ P _{P₂. Zeitschrift Fur Kristallographie - New Crystal Structures. 2019. 235. 197-199.}	0.1	O

#	Article	IF	CITATIONS
93	Process-tracing study on the post-assembly modification of poly-NHC-based metallosupramolecular cylinders with tunable aggregation-induced emission. Chemical Communications, 2019, 55, 13689-13692.	2.2	8
94	DFT Modeling of Organocatalytic Ring-Opening Polymerization of Cyclic Esters: A Crucial Role of Proton Exchange and Hydrogen Bonding. Polymers, 2019, 11, 2078.	2.0	23
95	A simple 1H NMR method for determining the $\ddot{l}f$ -donor properties of N-heterocyclic carbenes. Tetrahedron Letters, 2019, 60, 378-381.	0.7	70
96	Azoâ€MICs: Redoxâ€Active Mesoionic Carbene Ligands Derived from Azoimidazolium Dyes. Angewandte Chemie - International Edition, 2019, 58, 1764-1767.	7.2	18
97	Spinâ€State Variations of Iron(III) Complexes with Tetracarbene Macrocycles. Chemistry - A European Journal, 2019, 25, 3918-3929.	1.7	18
98	Stable and Persistent Acyclic Diaminocarbenes with Cycloalkyl Substituents and Their Transformation to Î²â€Łactams by Uncatalysed Carbonylation with CO. Chemistry - A European Journal, 2019, 25, 1488-1497.	1.7	14
99	A Germacalicene: Synthesis, Structure, and Reactivity. Chemistry - A European Journal, 2019, 25, 1098-1105.	1.7	13
100	Recent Developments in the Chemistry of NHC-based Selones: Syntheses, Applications and Reactivity. Chemistry Letters, 2019, 48, 65-79.	0.7	26
101	Synthesis and Reactivity of IrlII Complexes Bearing C-Metalated Pyrazolato Ligands. Organometallics, 2019, 38, 567-574.	1.1	7
102	An Nâ€Heterocyclic Carbene with a Saturated Backbone and Spatiallyâ€Defined Steric Impact. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 105-112.	0.6	7
103	Azideâ€"Alkyne Cycloaddition (CuAAC) in Alkane Solvents Catalyzed by Fluorinated NHC Copper(I) Complex. European Journal of Organic Chemistry, 2019, 2019, 1016-1020.	1.2	20
104	Ligand acidity constants as calculated by density functional theory for PF3 and N-Heterocyclic carbene ligands in hydride complexes of Iron(II). Journal of Organometallic Chemistry, 2019, 880, 15-21.	0.8	8
105	Azobenzene Isomerizationâ€Induced Photomodulation of Electronic Properties of Nâ€Heterocyclic Carbenes. Chemistry - A European Journal, 2020, 26, 4214-4219.	1.7	10
106	Synthesis and characterisation of Pd(ii) and Au(i) complexes with mesoionic carbene ligands bearing phosphinoferrocene substituents and isomeric carbene moieites. Dalton Transactions, 2020, 49, 1011-1021.	1.6	12
107	Influence of N-heterocyclic carbenes (NHCs) on the hydrolysis of a diphosphene. Dalton Transactions, 2020, 49, 993-997.	1.6	7
108	Stable Mesoionic Nâ€Heterocyclic Olefins (mNHOs). Angewandte Chemie, 2020, 132, 5831-5836.	1.6	17
109	Gold(I) and Gold(III) Complexes of Expanded-Ring N-Heterocyclic Carbenes: Structure, Reactivity, and Catalytic Applications. Organometallics, 2020, 39, 172-181.	1.1	20
110	Synthesis of the Cyclic Group 13 Phosphinidenides [(NHC)PMCl 2] 2 (NHC = SIMes, SIDipp; M = Al, Ga). Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 648-652.	0.6	6

#	Article	IF	CITATIONS
111	The impact of cation structure upon the acidity of triazolium salts in dimethyl sulfoxide. Organic and Biomolecular Chemistry, 2020, 18, 66-75.	1.5	15
112	Base-Controlled Directed Synthesis of Metal–Methyleneimidazoline (MIz) and Metal–Mesoionic Carbene (MIC) Compounds. Organometallics, 2020, 39, 189-200.	1.1	5
113	The ¹³ C chemical shift and the anisotropy effect of the carbene electronâ€deficient centre: Simple means to characterize the electron distribution of carbenes. Magnetic Resonance in Chemistry, 2020, 58, 280-292.	1.1	9
114	Wellâ€defined Nâ€heterocyclic carbene/ruthenium complexes for the alcohol amidation with amines: The dual role of cesium carbonate and improved activities applying an added ligand. Applied Organometallic Chemistry, 2020, 34, e5323.	1.7	13
115	Highly Efficient N-Heterocyclic Carbene/Ruthenium Catalytic Systems for the Acceptorless Dehydrogenation of Alcohols to Carboxylic Acids: Effects of Ancillary and Additional Ligands. Catalysts, 2020, 10, 10.	1.6	20
116	Stable Mesoionic Nâ€Heterocyclic Olefins (mNHOs). Angewandte Chemie - International Edition, 2020, 59, 5782-5787.	7.2	62
117	A Proton-Responsive Annulated Mesoionic Carbene (MIC) Scaffold on Ir Complex for Proton/Hydride Shuttle: An Experimental and Computational Investigation on Reductive Amination of Aldehyde. Organometallics, 2020, 39, 3849-3863.	1.1	14
118	A cyclometalated Ir(<scp>iii</scp>)–NHC complex as a recyclable catalyst for acceptorless dehydrogenation of alcohols to carboxylic acids. Dalton Transactions, 2020, 49, 16866-16876.	1.6	19
119	Palladium complexes with an annellated mesoionic carbene (MIC) ligand: catalytic sequential Sonogashira coupling/cyclization reaction for one-pot synthesis of benzofuran, indole, isocoumarin and isoquinolone derivatives. Dalton Transactions, 2020, 49, 15238-15248.	1.6	13
120	Iminophosphoranoâ€6ubstituted Bispyridinylidenes: Redox Potentials and Substituent Constants from Tolman Electronic Parameters. Chemistry - A European Journal, 2020, 26, 17371-17375.	1.7	3
121	Cyclic (alkyl)(amino)carbenes in organic and organometallic methane C–H activation: a DFT and MCSCF study. Physical Chemistry Chemical Physics, 2020, 22, 24320-24329.	1.3	6
122	Quinoxaline-anellated N,N´-dialkylimidazolium salts and iPr2quinox-NHC-Pd halide complexes. Journal of Organometallic Chemistry, 2020, 926, 121487.	0.8	2
123	Reaction of Pyridine―N â€Oxides with Tertiary sp 2 ―N â€Nucleophiles: An Efficient Synthesis of Precursors for N â€(Pyridâ€⊋â€yl)â€Substituted N â€Heterocyclic Carbenes. Advanced Synthesis and Catalysis, 2020, 362, 5777-5782.	2.1	8
124	Well-Defined Palladium N-Heterocyclic Carbene Complexes: Direct C–H Bond Arylation of Heteroarenes. Journal of Organic Chemistry, 2020, 85, 13983-13996.	1.7	10
125	Unsaturated and Benzannulated N-Heterocyclic Carbene Complexes of Titanium and Hafnium: Impact on Catalysts Structure and Performance in Copolymerization of Cyclohexene Oxide with CO2. Molecules, 2020, 25, 4364.	1.7	8
126	Synthesis, reactivity and catalytic activity of Au-PAd ₃ complexes. Dalton Transactions, 2020, 49, 13872-13879.	1.6	9
127	A Redoxâ€Active Heterobimetallic Nâ€Heterocyclic Carbene Based on a Bis(imino)pyrazine Ligand Scaffold. Angewandte Chemie - International Edition, 2020, 59, 19320-19328.	7.2	6
128	Evaluating the electronic properties of ditopic and hetero-ditopic ligands derived from benzimidazole and pyrazole by 13C NMR spectroscopy. Journal of Organometallic Chemistry, 2020, 923, 121409.	0.8	3

#	Article	IF	CITATIONS
129	Cationic NHCâ€Phosphine Iridium Complexes: Highly Active Catalysts for Baseâ€Free Hydrogenation of Ketones. Chemistry - A European Journal, 2020, 26, 13311-13316.	1.7	10
130	Coumarin substituted 4–aryl–1,2,4–triazolium salts and their silver(I) N–heterocyclic carbene complexes: Effects of counterions on the antioxidant and antihaemolytic properties. Journal of Molecular Liquids, 2020, 316, 113809.	2.3	15
131	Ein redoxaktives, heterobimetallisches Nâ€heterocyclisches Carben auf Basis eines Bis(imino)pyrazinâ€Liganden. Angewandte Chemie, 2020, 132, 19482-19491.	1.6	0
132	Influence of Fluorine Substituents on the Electronic Properties of Selenium-N-Heterocyclic Carbene Compounds. Molecules, 2020, 25, 5161.	1.7	11
133	Synthesis of Carbophosphinocarbene and Their Donating Ability: Expansion of the Carbone Class. Organometallics, 2020, 39, 4395-4401.	1.1	17
134	Probing Electronic Properties of Triazolylidenes through Mesoionic Selones, Triazolium Salts, and Ir-Carbonyl-Triazolylidene Complexes. Organometallics, 2020, 39, 4557-4564.	1.1	19
135	Ïf∏∈ Plasticity of NHCs on the Rutheniumâ∈"Phosphine and Rutheniumâ•¥lidene Bonds in Olefin Metathesis Catalysts. Organometallics, 2020, 39, 3972-3982.	1.1	10
136	Mechanistic Study of Domino Rearrangement-Promoted Meta C–H Activation in 2-Methyl- <i>N</i> -methoxyaniline via Cu(NHC) ⁺ : Motivation and Selectivity. Organic Letters, 2020, 22, 9178-9183.	2.4	12
137	Chalcogen complexes of anionic N-heterocyclic carbenes. Dalton Transactions, 2020, 49, 13207-13217.	1.6	19
138	Straightforward access to chalcogenoureas derived from N-heterocyclic carbenes and their coordination chemistry. Dalton Transactions, 2020, 49, 12068-12081.	1.6	24
139	Cooperative NHC and Photoredox Catalysis for the Synthesis of βâ€Trifluoromethylated Alkyl Aryl Ketones. Angewandte Chemie - International Edition, 2020, 59, 19956-19960.	7.2	162
140	Synthesis of glucoside-based imidazolium salts for Pd-catalyzed cross-coupling reaction in water. Carbohydrate Research, 2020, 496, 108079.	1.1	6
141	Highly Efficient Ethenolysis and Propenolysis of Methyl Oleate Catalyzed by Abnormal N-Heterocyclic Carbene Ruthenium Complexes in Combination with a Phosphine–Copper Cocatalyst. ACS Catalysis, 2020, 10, 10592-10601.	5.5	9
142	Phosphorescent <i>Tris</i> \$\alpha\$ \text{i} \alpha\$ \text{\text{6}} \alpha\$ \text{\text{6}} \text{Edidentate Ir ^{III} Complexes with Nâ\text{\text{Heterocyclic Carbene}} \text{Scaffolds: Structural Diversity and Optical Properties. European Journal of Inorganic Chemistry, 2020, 2020, 3427-3442.}	1.0	39
143	Synthetic Routes to Late Transition Metal–NHC Complexes. Trends in Chemistry, 2020, 2, 721-736.	4.4	118
144	Photophysical Investigation of Iron(II) Complexes Bearing Bidentate Annulated Isomeric Pyridine-NHC Ligands. Journal of Physical Chemistry C, 2020, 124, 18379-18389.	1.5	16
145	C,N-chelated diaminocarbene platinum(II) complexes derived from 3,4-diaryl-1H-pyrrol-2,5-diimines and cis-dichlorobis(isonitrile)platinum(II): Synthesis, cytotoxicity, and catalytic activity in hydrosilylation reactions. Journal of Organometallic Chemistry, 2020, 923, 121435.	0.8	11
146	Donor Strength Determination of Pyridinylidene-amide Ligands using Their Palladium–NHC Complexes. Inorganic Chemistry, 2020, 59, 12486-12493.	1.9	5

#	Article	IF	CITATIONS
147	Comparison of Chemical and Interpretative Methods: the Carbon–Boron Ï€â€Bond as a Test Case**. Chemistry - A European Journal, 2020, 26, 17230-17241.	1.7	2
148	Analyses of the Structural and Electronic Properties of NHCs with Bicyclic Architectures. Organometallics, 2020, 39, 3839-3848.	1.1	5
149	Heteroleptic Ni(II) Complexes Bearing a Bulky Yet Flexible IBiox-6 Ligand: Improved Selectivity in Cross-Electrophile Coupling of Benzyl Chlorides with Aryl Chlorides/Fluorides. Organometallics, 2020, 39, 3540-3545.	1.1	10
150	Mixed Arylolefin/NHC Complexes of Platinum(II): Syntheses, Characterizations, and In Vitro Cytotoxicities. Organometallics, 2020, 39, 3505-3513.	1.1	14
151	Synergy between supported ionic liquid-like phases and immobilized palladium N-heterocyclic carbene–phosphine complexes for the Negishi reaction under flow conditions. Beilstein Journal of Organic Chemistry, 2020, 16, 1924-1935.	1.3	4
152	An Annelated Mesoionic Carbene (MIC) Based Ru(II) Catalyst for Chemo- and Stereoselective Semihydrogenation of Internal and Terminal Alkynes. Organometallics, 2020, 39, 3212-3223.	1.1	16
153	The Influence of C(sp 3)H–Selenium Interactions on the 77 Seâ€NMR Quantification of the Ï€â€Accepting Properties of Carbenes. Angewandte Chemie, 2020, 132, 22212-22217.	1.6	23
154	Kooperative NHC―und Photoredoxâ€Katalyse zur Synthese βâ€ŧrifluormethylierter Alkylarylketone. Angewandte Chemie, 2020, 132, 20129-20134.	1.6	28
155	Activation of C–O and C–N Bonds Using Non-Precious-Metal Catalysis. ACS Catalysis, 2020, 10, 12109-12126.	5.5	104
156	Soft Heteroleptic N-Heterocyclic Carbene Palladium(II) Species for Efficient Catalytic Routes to Alkynones via Carbonylative Sonogashira Coupling. ACS Omega, 2020, 5, 23687-23702.	1.6	11
157	The Influence of C(sp ³)H–Selenium Interactions on the ⁷⁷ Seâ€NMR Quantification of the Ï€â€Accepting Properties of Carbenes. Angewandte Chemie - International Edition, 2020, 59, 22028-22033.	7.2	51
158	Solving the challenging synthesis of highly cytotoxic silver complexes bearing sterically hindered NHC ligands with mechanochemistry. Dalton Transactions, 2020, 49, 12592-12598.	1.6	20
159	Perimidines: a unique π-amphoteric heteroaromatic system. Russian Chemical Reviews, 2020, 89, 1204-1260.	2.5	10
160	Triazole Appended Phosphines: Synthesis, Palladium Complexes, and Catalytic Studies. European Journal of Inorganic Chemistry, 2020, 2020, 2392-2402.	1.0	12
161	Synthesis and comparative study of the anticancer activity of \hat{l} -3-allyl palladium(II) complexes bearing N-heterocyclic carbenes as ancillary ligands. Polyhedron, 2020, 186, 114607.	1.0	18
162	Stereoelectronic Profiling of Acyclic Diamino Carbenes (ADCs). Inorganic Chemistry, 2020, 59, 8451-8460.	1.9	17
163	Mapping the properties of bidentate ligands with calculated descriptors (LKB-bid). Dalton Transactions, 2020, 49, 8169-8178.	1.6	18
164	(Thio)(silyl)carbene and (seleno)(silyl)carbene gold(i) complexes from the reaction of bis(methylene)-l̂»4-sulfane and bis(methylene)-l̂»4-selane with chloro(dimethylsulfide)gold(i). Dalton Transactions, 2020, 49, 7688-7691.	1.6	2

#	ARTICLE	IF	CITATIONS
165	When Donors Turn into Acceptors: Ground and Excited State Properties of Fe ^{II} Complexes with Amine-Substituted Tridentate Bis-imidazole-2-ylidene Pyridine Ligands. Inorganic Chemistry, 2020, 59, 8762-8774.	1.9	18
166	Fluorinated N-Heterocyclic carbene complexes. Applications in catalysis. Journal of Organometallic Chemistry, 2020, 921, 121364.	0.8	27
167	Synthesis of Ni(dvtms) and Ni(CO)3 Complexes Ligated by an Isolable Two-Coordinate Cyclic Alkylsilylene. European Journal of Inorganic Chemistry, 2020, 2020, 2651-2657.	1.0	4
168	Reactions of an anionic chelate phosphane/borata-alkene ligand with [Rh(nbd)Cl] ₂ , [Rh(CO) ₂ Cl] ₂ and [lr(cod)Cl] ₂ . Chemical Science, 2020, 11, 7349-7355.	3.7	18
169	The key role of Râ \in "NHC coupling (R = C, H, heteroatom) and Mâ \in "NHC bond cleavage in the evolution of M/NHC complexes and formation of catalytically active species. Chemical Science, 2020, 11, 6957-6977.	3.7	87
170	Platinum(II) 1,2,4-Triazolin-5-ylidene Complexes: Stereoelectronic Influences on Their Catalytic Activity in Hydroelementation Reactions. Organometallics, 2020, 39, 2309-2319.	1.1	18
171	Substituent Effect Parameters: Extending the Applications to Organometallic Chemistry. ChemPhysChem, 2020, 21, 1028-1035.	1.0	5
172	Cyclic (Alkyl)- and (Aryl)-(amino)carbene Coinage Metal Complexes and Their Applications. Chemical Reviews, 2020, 120, 4141-4168.	23.0	196
173	To Bind or Not to Bind: Mechanistic Insights into C–CO ₂ Bond Formation with Late Transition Metals. Organometallics, 2020, 39, 1339-1347.	1.1	21
174	Gold(I) Complexes with Eightâ€Membered NHC Ligands: Synthesis, Structures and Catalytic Activity. Advanced Synthesis and Catalysis, 2020, 362, 2523-2533.	2.1	31
175	Reaction of chloroauric acid with histidine in microdroplets yields a catalytic Auâ \in "(His) ₂ complex. Chemical Science, 2020, 11, 2558-2565.	3.7	25
176	Recent advances in annellated NHCs and their metal complexes. Coordination Chemistry Reviews, 2020, 422, 213334.	9.5	43
177	A tropylium annulated N-heterocyclic carbene. Chemical Communications, 2020, 56, 9020-9023.	2.2	4
178	Platinum(II), palladium(II) and gold(I) benzimidazolin-2-ylidene as potential probes for determination of N-heterocyclic carbene donor strengths and steric bulks by DFT calculations. Journal of Chemical Sciences, 2020, 132, 1.	0.7	3
179	Symmetrical and Nonâ€symmetrical Pd (II) Pincer Complexes Bearing Mesoionic Nâ€heterocyclic Thiones: Synthesis, Characterizations and Catalytic Properties. Applied Organometallic Chemistry, 2020, 34, e5885.	1.7	5
180	Iridium-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols: A Route to Access Branched Ketones and Alcohols. Journal of Organic Chemistry, 2020, 85, 9139-9152.	1.7	25
181	Understanding the reactivity of carbene-analogous phosphane complexes with group 13 elements as a central atom: a theoretical investigation. New Journal of Chemistry, 2020, 44, 12815-12826.	1.4	1
182	Copper-Catalyzed Modular Assembly of Polyheterocycles. Journal of Organic Chemistry, 2020, 85, 9915-9927.	1.7	11

#	Article	IF	CITATIONS
183	Phosphorescent Cationic Heterodinuclear Ir ^{III} /M ^I Complexes (M=Cu ^I , Au ^I) with a Hybrid Janusâ€Type Nâ€Heterocyclic Carbene Bridge. Chemistry - A European Journal, 2020, 26, 11751-11766.	1.7	4
184	Synthesis and group 9 complexes of macrocyclic PCP and POCOP pincer ligands. Dalton Transactions, 2020, 49, 2087-2101.	1.6	14
185	Nâ∈Heterocyclic Carbene (NHC)â∈Stabilized Ru O Nanoparticles: In Situ Generation of an Efficient Transfer Hydrogenation Catalyst. Chemistry - A European Journal, 2020, 26, 7622-7630.	1.7	21
186	N-Cyclopropenio-imidazol-2-ylidene: An N-heterocyclic carbene bearing an N-cationic substituent. Chemical Communications, 2020, 56, 3305-3308.	2.2	11
187	Relevance of Chemical vs. Electrochemical Oxidation of Tunable Carbene Iridium Complexes for Catalytic Water Oxidation. European Journal of Inorganic Chemistry, 2020, 2020, 801-812.	1.0	16
188	Janus bis(NHCs) tuned by heteroatom-bridge oxidation states. Chemical Communications, 2020, 56, 2646-2649.	2.2	9
189	N-Heterocyclic Carbenes as Reversible Exciton-Delocalizing Ligands for Photoluminescent Quantum Dots. Journal of the American Chemical Society, 2020, 142, 2690-2696.	6.6	29
190	Reactivity of nickel metal precursors towards amido linked N-heterocyclic carbenes and their catalytic studies for cross coupling reactions. Inorganica Chimica Acta, 2020, 504, 119446.	1.2	1
191	Threeâ€Coordinate Rhodium Complexes in Low Oxidation States. Chemistry - A European Journal, 2020, 26, 3270-3274.	1.7	6
192	Development of Planar Chiral Five-Membered Cyclic (Amino)(ferrocenylene)carbene Ligand and Its Iridium Dicarbonyl Complex. Bulletin of the Chemical Society of Japan, 2020, 93, 200-204.	2.0	6
193	N-Heterocyclic Carbene Complexes in C–H Activation Reactions. Chemical Reviews, 2020, 120, 1981-2048.	23.0	429
194	Dinitrogen Activation by Tricoordinated Boron Species: A Systematic Design. Advanced Theory and Simulations, 2020, 3, 1900205.	1.3	31
195	Immobilized Pd on a NHC functionalized metal–organic framework MILâ€101(Cr): an efficient heterogeneous catalyst in Suzukiâ⁻'Miyaura coupling reaction in water. Applied Organometallic Chemistry, 2020, 34, e5470.	1.7	34
196	Group 13 Element Trihalide Complexes of Anionic Nâ€Heterocyclic Carbenes. Chemistry - an Asian Journal, 2020, 15, 845-851.	1.7	20
197	Development of Quinoline-Derived Chiral Diaminocarbene Ligands and Their Transition Metal Complexes: Synthesis, Structural Characterization, and Catalytic Properties. Organometallics, 2020, 39, 1945-1960.	1.1	4
198	NHC-Ni catalyzed 1,3- and 1,4-diastereodivergent heterocycle synthesis from hetero-substituted enyne. Communications Chemistry, 2020, 3, .	2.0	6
199	Synthesis of Wellâ€Defined Highâ€Valent Palladium Complexes by Oxidation of Their Palladium(II) Precursors. Chemistry - A European Journal, 2020, 26, 9430-9444.	1.7	14
200	Influence of ring substituents on the electronic properties of 1,2,4-triazolylidenes. Journal of Organometallic Chemistry, 2020, 915, 121234.	0.8	1

#	Article	IF	CITATIONS
201	Chelating di(N-heterocyclic carbene) complexes of iridium(III): Structural analysis, electrochemical characterisation and catalytic oxidation of water. Journal of Organometallic Chemistry, 2020, 917, 121260.	0.8	7
202	Abnormal N-Heterocyclic Carbene–Palladium Complexes for the Copolymerization of Ethylene and Polar Monomers. ACS Catalysis, 2020, 10, 5443-5453.	5.5	22
203	NHC-Palladium(II) Mononuclear and Binuclear Complexes Containing Phenylene-Bridged Bis(thione) Ligands: Synthesis, Characterization, and Catalytic Activities. Organometallics, 2020, 39, 1790-1798.	1.1	21
204	Nickelâ€Catalyzed Intramolecular 1,2â€Aryl Migration of Mesoionic Carbenes (iMICs). Angewandte Chemie - International Edition, 2021, 60, 2969-2973.	7.2	20
205	Chiral Catalysts for Pd ⁰ â€Catalyzed Enantioselective Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 1231-1257.	1.7	72
206	Preparation of Complexes Bearing Nâ€Alkylated, Anionic or Protic CAACs Through Oxidative Addition of 2â€Halogenoindole Derivatives. Angewandte Chemie - International Edition, 2021, 60, 2599-2602.	7.2	16
207	Easily synthesizable benzothiazole based designers palladium complexes for catalysis of Suzuki coupling: Controlling effect of aryl substituent of ligand on role and composition of insitu generated binary nanomaterial (PdS or Pd16S7). Catalysis Communications, 2021, 149, 106242.	1.6	18
208	Transition Metal Complexes Supported by Nâ€Heterocyclic Carbeneâ€Based Pincer Platforms: Synthesis, Reactivity and Applications. European Journal of Inorganic Chemistry, 2021, 2021, 188-204.	1.0	17
209	The synthesis of new PEPPSI-type N-heterocyclic carbene (NHC)-Pd(II) complexes bearing long alkyl chain as precursors for the synthesis of NHC-stabilized Pd(0) nanoparticles and their catalytic applications. Journal of Organometallic Chemistry, 2021, 934, 121633.	0.8	11
210	Nickelâ€katalysierte intramolekulare 1,2â€Arylâ€Wanderung von mesoionischen Carbenen (iMICs). Angewandte Chemie, 2021, 133, 3006-3010.	1.6	8
211	Preparation of Complexes Bearing Nâ€Alkylated, Anionic or Protic CAACs Through Oxidative Addition of 2â€Halogenoindole Derivatives. Angewandte Chemie, 2021, 133, 2631-2634.	1.6	3
212	Synthesis and Reduction of a Cyclic (Alkyl)(amino)bromoborane to Generate a Thermally Labile Cyclic (Alkyl)(amino)boryl Anion. Chemistry Letters, 2021, 50, 293-296.	0.7	5
213	Theoretical research on the direct carboxylation of benzene with CO 2 catalyzed by different carbeneâ€CuOH compounds. Journal of Physical Organic Chemistry, 2021, 34, e4137.	0.9	2
214	Mechanistic insights into the insertion and addition reactions of group 13 analogues of the six-membered N-heterocyclic carbenes: interplay of electrophilicity, basicity, and aromaticity governing the reactivity. RSC Advances, 2021, 11, 20070-20080.	1.7	0
215	Accelerating the insertion reactions of (NHC)Cuâ€"H <i>via</i> remote ligand functionalization. Chemical Science, 2021, 12, 11495-11505.	3.7	16
216	Organometallic Chemistry of NHCs and Analogues. , 2021, , .		0
217	IPr# – highly hindered, broadly applicable N-heterocyclic carbenes. Chemical Science, 2021, 12, 10583-10589.	3.7	51
218	Synthesis and catalytic activity of palladium complexes bearing <i>N</i> -heterocyclic carbenes (NHCs) and 1,4,7-triaza-9-phosphatricyclo[5.3.2.1]tridecane (CAP) ligands. Dalton Transactions, 2021, 50, 9491-9499.	1.6	12

#	Article	IF	CITATIONS
219	α-Alkylation of arylacetonitriles with primary alcohols catalyzed by backbone modified N-heterocyclic carbene iridium(<scp>i</scp>) complexes. Dalton Transactions, 2021, 50, 1788-1796.	1.6	13
220	Amphiphilic polymeric nanoreactors containing Rh(<scp>i</scp>)â€"NHC complexes for the aqueous biphasic hydrogenation of alkenes. Catalysis Science and Technology, 2021, 11, 6811-6824.	2.1	8
221	Recent advances in the synthesis and derivatization of N-heterocyclic carbene metal complexes. Dalton Transactions, 2021, 50, 12058-12068.	1.6	30
222	Exploring the stability of the NHC–metal bond using thiones as probes. Chemical Communications, 2021, 57, 10600-10603.	2.2	10
223	BIANâ€NHC Ligands in Transitionâ€Metal atalysis: A Perfect Union of Sterically Encumbered, Electronically Tunable Nâ€Heterocyclic Carbenes?. Chemistry - A European Journal, 2021, 27, 4478-4499.	1.7	57
224	N-Heterocyclic and Abnormal/Mesoionic Carbene Complexes of the Group 3 Metals and Lanthanides. , 2021, , .		1
225	Synthesis, characterization, crystal structure, αâ€glycosidase, and acetylcholinesterase inhibitory properties of 1,3â€disubstituted benzimidazolium salts. Archiv Der Pharmazie, 2021, 354, e2000422.	2.1	16
226	N-Heterocyclic silylenes in coinage metal chemistry: an account of recent advances. Dalton Transactions, 2021, 50, 10674-10688.	1.6	20
227	Half-sandwich manganese complexes Cp(CO) ₂ Mn(NHC) as redox-active organometallic fragments. Dalton Transactions, 2021, 50, 14264-14272.	1.6	3
228	Ultrarapid Cerium(III)–NHC Catalysts for High Molar Mass Cyclic Polylactide. ACS Catalysis, 2021, 11, 1563-1569.	5.5	28
229	The transformations of a methylene-bridged bis-triazolium salt: a mesoionic carbene based metallocage and analogues of TCNE and NacNac. Chemical Science, 2021, 12, 3170-3178.	3.7	10
230	Coordination of N-heterocyclic carbene to Si–Si and P–P multiple bonded compounds. , 2021, , 393-429.		0
231	Reactivity of dicationic N-heterocyclic chalcogen carbene analogues with methane and ethene: a theoretical investigation. Physical Chemistry Chemical Physics, 2021, 23, 2419-2429.	1.3	1
232	Bright luminescent lithium and magnesium carbene complexes. Chemical Science, 2021, 12, 7401-7410.	3.7	26
233	Ugi Four-Component Reaction Based on the in situ Capture of Amines and Subsequent Modification Tandem Cyclization Reaction: "One-Pot" Synthesis of Six- and Seven-Membered Heterocycles. Chinese Journal of Organic Chemistry, 2021, 41, 2374.	0.6	8
234	Main Avenues in Gold Coordination Chemistry. Chemical Reviews, 2021, 121, 8311-8363.	23.0	99
235	Ein offenschaliges Singulettâ€Sn ^l â€Diradikal und H ₂ â€Spaltung. Angewandte Chemie, 2021, 133, 6485-6489.	1.6	12
236	Estimating Effective Steric and Electronic Impacts of a Ferrocenyl Group in Organophosphines. ACS Omega, 2021, 6, 5981-5989.	1.6	9

#	Article	IF	Citations
237	Synthetic Approaches to New Redox-Active Carbene Ligands. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2021, 47, 117-126.	0.3	2
238	Recent Developments in Dehydrogenative Organic Transformations Catalyzed by Homogeneous Phosphineâ€Free Earthâ€Abundant Metal Complexes. Asian Journal of Organic Chemistry, 2021, 10, 506-536.	1.3	2
239	An Openâ€Shell Singlet Sn ^I â€Diradical and H ₂ â€Splitting. Angewandte Chemie - International Edition, 2021, 60, 6414-6418.	7.2	34
240	Dehydrogenative amide synthesis from alcohols and amines utilizing N-heterocyclic carbene-based ruthenium complexes as efficient catalysts: The influence of catalyst loadings, ancillary and added ligands. Polyhedron, 2021, 195, 114979.	1.0	5
241	Directed Design of a Au ^I Complex with a Reduced Mesoionic Carbene Radical Ligand: Insights from 1,2,3â€Triazolylidene Selenium Adducts and Extensive Electrochemical Investigations. Chemistry - A European Journal, 2021, 27, 6557-6568.	1.7	18
242	Heavier Tetrylenes as Single Site Catalysts. Chemistry - an Asian Journal, 2021, 16, 705-719.	1.7	41
243	Ir ^{III} â^'Pyridoannelated Nâ€Heterocyclic Carbene Complexes: Potent Theranostic Agents via Mitochondria Targeting. European Journal of Inorganic Chemistry, 2021, 2021, 1551-1564.	1.0	3
244	C–C versus C–H Activation: Understanding How the Carbene π-Accepting Ability Controls the Intramolecular Reactivities of Mono(carbene)-Stabilized Borylenes. Organometallics, 2021, 40, 766-775.	1.1	8
245	Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiralâ€atâ€Cluster Photoluminescence. Angewandte Chemie, 2021, 133, 10749-10755.	1.6	6
246	Multinuclear Ag Clusters Sandwiched by Pt Complex Units: Fluxional Behavior and Chiralâ€atâ€Cluster Photoluminescence. Angewandte Chemie - International Edition, 2021, 60, 10654-10660.	7.2	35
247	Cationic rhenium(I) complexes bearing a ¨E-accepting pyridoannulated N-heterocyclic carbene ligand: Synthesis, photophysical, electrochemical and theoretical investigation. Polyhedron, 2021, 197, 115025.	1.0	3
248	Experimental and Theoretical Insights into the Electronic Properties of Anionic N-Heterocyclic Dicarbenes through the Rational Synthesis of Their Transition Metal Complexes. Inorganic Chemistry, 2021, 60, 4015-4025.	1.9	11
249	Multicomponent Synthesis of Unsymmetrical 4,5-Disubstituted Imidazolium Salts as N-Heterocyclic Carbene Precursors: Applications in Palladium-Catalyzed Cross-Coupling Reactions. Journal of Organic Chemistry, 2021, 86, 6278-6288.	1.7	5
250	The Effect of Symmetric and Asymmetric NHCs on the Structure and Catalytic Properties of Dialkylgallium Alkoxides in the Ring-Opening Polymerization of ⟨i⟩rac⟨/i⟩-Lactideâ€"Linking the Structure, Activity, and Stereoselectivity. Organometallics, 2021, 40, 1221-1234.	1.1	6
251	Spotlight on Ligand Effects in 1,2,3-Triazolylidene Gold Complexes for Hydroamination Catalysis: Synthesis and Catalytic Application of an Activated MIC Gold Triflimide Complex and Various MIC Gold Chloride Complexes. Organometallics, 2021, 40, 1077-1085.	1.1	7
252	One-pot multicomponent synthesis of N-sulfonyl amidines using magnetic separable nanoparticles-decorated N-heterocyclic carbene complex with copper. Research on Chemical Intermediates, 2021, 47, 2801-2820.	1.3	7
253	Access to Gold(I) Protic N-Heterocyclic Carbene Complexes from Trinuclear Gold(I) Imidazolate Clusters. Organometallics, 2021, 40, 1515-1522.	1.1	5
254	Modeling ligand electrochemical parameters by repulsionâ€corrected eigenvalues. Journal of Computational Chemistry, 2021, 42, 1236-1242.	1.5	1

#	ARTICLE	IF	CITATIONS
255	Tuning the Magic Sizes and Optical Properties of Atomically Precise Bidentate Nâ€Heterocyclic Carbeneâ€Protected Gold Nanoclusters via Subtle Change of Nâ€Substituents. Advanced Optical Materials, 2021, 9, 2001936.	3.6	27
256	Tuning the Gold(I)â€Carbon Ïf Bond in Goldâ€Alkynyl Complexes through Structural Modifications of the NHC Ancillary Ligand: Effect on Spectroscopic Observables and Reactivity. European Journal of Inorganic Chemistry, 2021, 2021, 2401-2416.	1.0	5
257	Determination of the π-Accepting Properties of Borate-, Aluminate-, and Gallate-Functionalized N-Heterocyclic Carbenes by ⁷⁷ Se NMR Spectroscopy. Inorganic Chemistry, 2021, 60, 9019-9028.	1.9	5
258	Reactivity Studies and Electronic Properties of an N-Arylated Acyclic Amino Carbene. Organometallics, 2021, 40, 1699-1705.	1.1	1
259	Diastereodivergent Hydrosilylative Enyne Cyclization Catalyzed by <scp><i>N</i>â€Heterocyclic Carbeneâ€Ni</scp> (0) ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1587-1592.	2.6	7
260	Synthesis of functionalized iron N-heterocyclic carbene complexes and their potential application as flame behavior modifier in cross linked epoxy resins. Inorganica Chimica Acta, 2021, 519, 120273.	1.2	5
261	Stereoelectronic Characterization and Catalytic Potential of a 1,3â€Bis(2,6â€terphenyl)â€Substituted Nâ€Heterocyclic Carbene. European Journal of Inorganic Chemistry, 2021, 2021, 2133-2140.	1.0	1
262	Synthesis, Characterization, and Antimicrobial Activity of Rh ^{III} and Ir ^{III} N-Heterocyclic Carbene Piano-Stool Complexes. Organometallics, 2021, 40, 1670-1681.	1.1	14
263	Stabilization of the Elusive 9â€Carbeneâ€9â€Borafluorene Monoanion. Angewandte Chemie, 2021, 133, 13175-13182.	1.6	11
264	Charge frustration in ligand design and functional group transfer. Nature Reviews Chemistry, 2021, 5, 422-439.	13.8	25
265	Metallodrugs for the Treatment of Trypanosomatid Diseases: Recent Advances and New Insights. Current Pharmaceutical Design, 2021, 27, 1763-1789.	0.9	16
266	Stabilization of the Elusive 9â€Carbeneâ€9â€Borafluorene Monoanion. Angewandte Chemie - International Edition, 2021, 60, 13065-13072.	7.2	26
267	Catalytic Gold Chemistry: From Simple Salts to Complexes for Regioselective Câ ⁻ 'H Bond Functionalization. Chemistry - A European Journal, 2021, 27, 10495-10532.	1.7	19
268	Reductive Hydrogenation under Single-Site Control: Generation and Reactivity of a Transient NHC-Stabilized Tantalum(III) Alkoxide. Inorganic Chemistry, 2021, 60, 9785-9795.	1.9	6
269	Das 1,3â€Bis(tricyanoboran)imidazolinâ€2â€ylidenatâ€Anion – Ein ditopischer dianionischer Nâ€heterocyclisch Carbenâ€Ligand. Angewandte Chemie, 2021, 133, 18118-18125.	er 1.6	6
270	Synthesis and Isolation of an Anionic Bis(dipyrido-annulated) N-Heterocyclic Carbene CCC-Pincer Iridium(III) Complex by Facile C–H Bond Activation. Inorganic Chemistry, 2021, 60, 9970-9976.	1.9	4
271	A Dual NMR Probe Approach to Understanding the Electronic Properties of N â∈Heterocyclic Carbenes. Chemistry Methods, 2021, 1, 374-381.	1.8	4
272	Gold complexes of bis-indazole-derived N-Heterocyclic carbene: Synthesis, structural characterizations, and catalysis. Journal of Molecular Structure, 2021, 1233, 130043.	1.8	4

#	Article	IF	CITATIONS
273	Synthesis of Palladium complexes derived from Amido linked Nâ€Heterocyclic Carbenes and their use in Suzuki cross coupling reactions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 1334-1341.	0.6	1
274	1,3â€Bis(tricyanoborane)imidazolineâ€2â€ylidenate Anion—A Ditopic Dianionic Nâ€Heterocyclic Carbene Ligano Angewandte Chemie - International Edition, 2021, 60, 17974-17980.	d _{7.2}	18
275	Highly Soluble Imidazolium Ferrocene Bis(sulfonate) Salts for Redox Flow Battery Applications. Inorganic Chemistry, 2021, 60, 10764-10771.	1.9	16
276	Complexes LNi(Cp)X with alkylamino-substituted N-heterocyclic carbene ligands (L) and their catalytic activity in the Suzuki—Miyaura reaction. Russian Chemical Bulletin, 2021, 70, 1281-1289.	0.4	10
277	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie, 2021, 133, 20032-20041.	1.6	0
278	Tuning the Ï€â€Accepting Properties of Mesoionic Carbenes: A Combined Computational and Experimental Study. Chemistry - A European Journal, 2021, 27, 11983-11988.	1.7	10
279	Optimizing Catalyst and Reaction Conditions in Gold(I) Catalysis–Ligand Development. Chemical Reviews, 2021, 121, 8559-8612.	23.0	85
280	Cyclic (Alkyl)(amino)carbene Ligands Enable Cuâ€Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angewandte Chemie - International Edition, 2021, 60, 19871-19878.	7.2	35
281	Requirements for Late-Stage Hydroboration of Pyridine N-Heterocyclic Carbene Iron(0) Complexes: The Role of Ancillary Ligands. Organometallics, 2021, 40, 2658-2665.	1.1	5
282	Sydnone Methides—A Forgotten Class of Mesoionic Compounds for the Generation of Anionic Nâ€Heterocyclic Carbenes. Angewandte Chemie - International Edition, 2021, 60, 18882-18887.	7.2	18
283	Sydnonmethide – fast vergessene Mesoionen als VorläfermolekÃ⅓le von anionischen Nâ€heterocyclischen Carbenen. Angewandte Chemie, 2021, 133, 19032-19037.	1.6	5
284	Indolizy Carbene Ligand. Evaluation of Electronic Properties and Applications in Asymmetric Gold(I) Catalysis. Angewandte Chemie - International Edition, 2021, 60, 19879-19888.	7.2	11
285	Cyclic (Alkyl)(amino)carbene Ligands Enable Cuâ€Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**. Angewandte Chemie, 2021, 133, 20024-20031.	1.6	1
286	Variation on the Ï€â€Acceptor Ligand within a Rh ^I â^'Nâ€Heterocyclic Carbene Framework: Divergent Catalytic Outcomes for Phenylacetyleneâ€Methanol Transformations. European Journal of Inorganic Chemistry, 2021, 2021, 2947-2957.	1.0	6
287	Recent Advances in Theoretical Studies on Transition-Metal-Catalyzed Carbene Transformations. Accounts of Chemical Research, 2021, 54, 2905-2915.	7.6	60
288	Acenaphthene-Based N-Heterocyclic Carbene Metal Complexes: Synthesis and Application in Catalysis. Catalysts, 2021, 11, 972.	1.6	10
289	A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. European Journal of Inorganic Chemistry, 2021, 2021, 3506-3511.	1.0	5
290	p <i>K</i> _a Scale for Cyclopropenium Ions with Applications in CO ₂ Capture. Journal of Organic Chemistry, 2021, 86, 11835-11844.	1.7	2

#	Article	IF	CITATIONS
291	Insights into the Factors Controlling the Origin of Activation Barriers in Group 13 Analogues of the Four-Membered N-Heterocyclic Carbenes. ACS Omega, 2021, 6, 22272-22283.	1.6	0
292	$\langle i\rangle N\langle i\rangle$ -heterocyclic carbene metal complexes as therapeutic agents: a patent review. Expert Opinion on Therapeutic Patents, 2022, 32, 47-61.	2.4	12
293	Recent Applications of the Huynh Electronic Parameter (HEP). Chemistry Letters, 2021, 50, 1831-1841.	0.7	13
294	Comparison of RNC Coupling and CO Coupling Mediated by Cr–Cr Quintuple Bond and B–B Multiple Bonds: Main Group Metallomimetics. Journal of Physical Chemistry A, 2021, 125, 7207-7216.	1.1	1
295	Supported NHC-Benzimi@Cu Complex as a Magnetically Separable and Reusable Catalyst for the Multicomponent and Click Synthesis of 1,4-Disubstituted 1,2,3-Triazoles via Huisgen 1,3-Dipolar Cycloaddition. Catalysis Letters, 2022, 152, 1854-1868.	1.4	19
296	Metalâ€Metal Interactions in Biâ€, Tri†and Multinuclear Fe, Ru and Os Nâ€Heterocyclic Carbene Complexes and their Catalytic Applications. European Journal of Inorganic Chemistry, 2021, 2021, 4349-4369.	1.0	5
297	Helically Chiral NHCâ€Gold(I) Complexes: Synthesis, Chiroptical Properties and Electronic Features of the [5]Heliceneâ€Imidazolylidene Ligand. European Journal of Organic Chemistry, 2021, 2021, 4769-4776.	1.2	9
298	Determination of Stereoelectronic Properties of NHC Ligands <i>via</i> lon Pairing and Fluorescence Spectroscopy. European Journal of Inorganic Chemistry, 2021, 2021, 3708-3718.	1.0	5
299	Frontispiz: Das 1,3â€Bis(tricyanoboran)imidazolinâ€2â€ylidenatâ€Anion – Ein ditopischer dianionischer Nâ€heterocyclischer Carbenâ€Ligand. Angewandte Chemie, 2021, 133, .	1.6	0
300	Palladium(II) Complexes Bearing a Mixed Set of aNHC/Py/PR3/I2 Ligands: Applications in α-Arylation of Amide and Suzuki-Miyaura Coupling Reactions. Journal of Organometallic Chemistry, 2021, 949, 121925.	0.8	10
301	Catalytically Active Gold Nanomaterials Stabilized by <i>N</i> â€heterocyclic Carbenes. Chemistry - an Asian Journal, 2021, 16, 3026-3037.	1.7	16
302	An Anionic, Chelating C(sp3)/NHC ligand from the Combination of an N-heterobicyclic Carbene and Barbituric Heterocycle. Organometallics, 2021, 40, 3223-3234.	1.1	0
303	Recent advances in the chemistry and applications of N-heterocyclic carbenes. Nature Reviews Chemistry, 2021, 5, 711-725.	13.8	282
304	Carbazole Substituted Amidinato Silylene: Synthesis, Bonding, and Coordination Behavior with Coinage Metals. Organometallics, 2021, 40, 3201-3210.	1.1	3
305	Synthesis of Platinum(II) N-Heterocyclic Carbenes Based on Adenosine. Molecules, 2021, 26, 5384.	1.7	4
306	A Highly Efficient <i>N</i> àâ€Mesityl Thiazolylidene for the Aliphatic Stetter Reaction: Stereoelectronic Quantification for Comparison of Nâ€Heterocyclic Carbene Organocatalysts. Asian Journal of Organic Chemistry, 2021, 10, 2869-2875.	1.3	3
307	Reactions of 9-Carbene-9-Borafluorene Monoanion and Selenium: Synthesis of Boryl-Substituted Selenides and Diselenides. Inorganic Chemistry, 2021, 60, 13941-13949.	1.9	13
308	The search for molecular corks beyond carbon monoxide: A quantum mechanical study of N-Heterocyclic carbene adsorption on Pd/Cu(111) and Pt/Cu(111) single atom alloys. Jcis Open, 2021, 3, 100013.	1.5	3

#	Article	IF	CITATIONS
309	Synthesis, crystal structure, and catalytic activity of bridged-bis(N-heterocyclic carbene) palladium(II) complexes in selective Mizoroki-Heck cross-coupling reactions. Polyhedron, 2021, 207, 115371.	1.0	3
310	Modulating the electronics of orthometalated Rull-NHC complexes via substitution patterns or NHC donors: Studies towards the impacts in catalysis. Journal of Organometallic Chemistry, 2021, 951, 122008.	0.8	7
311	Recent advancements in \hat{l}_{\pm} -diimine-nickel and -palladium catalysts for ethylene polymerization. European Polymer Journal, 2021, 160, 110783.	2.6	44
312	Picolyl and benzyl functionalized biphenyl NHC carbenes and their silver complexes: Sigma donating and antimicrobial properties. Journal of Organometallic Chemistry, 2021, 954-955, 122075.	0.8	4
313	Uncommon carbene-to-azole ligand rearrangement of N-heterocyclic carbenes in a ruthenium system. Chemical Communications, 2021, 57, 6879-6882.	2.2	0
314	N-Heterocyclic Carbene Complexes of Nickel, Palladium, and Iridium Derived from Nitron: Synthesis, Structures, and Catalytic Properties. Organometallics, 2021, 40, 166-183.	1.1	15
315	Actinide tetra-N-heterocyclic carbene â€~sandwiches'. Chemical Science, 2021, 12, 7882-7887.	3.7	11
316	Sustainable Synthesis of Biaryls Using Silica Supported Ferrocene Appended N-Heterocyclic Carbene-Palladium Complex. Catalysis Letters, 2021, 151, 2237-2249.	1.4	2
317	[Co(NHC)(CO) ₃]: Isolation and Reactivity Study of a Model 17-Electron Species in the Oxo Process. Organometallics, 2021, 40, 500-507.	1.1	7
318	Hybrids of cationic [4]helicene and N-heterocyclic carbene as ligands for complexes exhibiting (chir)optical properties in the far red spectral window. Chemical Communications, 2021, 57, 3793-3796.	2.2	17
319	A 2,2′-diphosphinotolane as a versatile precursor for the synthesis of P-ylidic mesoionic carbenes <i>via</i> reversible C–P bond formation. Chemical Science, 2021, 12, 3693-3701.	3.7	10
320	Using internal electrostatic fields to manipulate the valence manifolds of copper complexes. Chemical Science, 2021, 12, 4395-4404.	3.7	15
321	N-Heterocyclic carbene complexes enabling the \hat{l}_{\pm} -arylation of carbonyl compounds. Chemical Communications, 2021, 57, 4354-4375.	2.2	40
322	N-Heterocyclic silylenes as ambiphilic activators and ligands. Dalton Transactions, 2021, 50, 6752-6765.	1.6	28
323	Monosubstituted, Anionic Imidazolyl Ligands from Nâ^'H NHC Precursors and Their Activity in Pdâ€Catalyzed Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2020, 362, 2876-2881.	2.1	11
324	Alkylidene Complexes of the Group 3 Metals and Lanthanides. , 2020, , .		1
325	Synthesis and crystal structure of 1,3-bis(4-hydroxyphenyl)-1 <i>H</i> ionidazol-3-ium chloride. Acta Crystallographica Section E: Crystallographic Communications, 2019, 75, 1311-1315.	0.2	1
326	Synthesis, structural characterization, and coordination chemistry of imidazole-based alkylidene ketenes. Chemical Communications, 2021, 57, 11509-11512.	2.2	12

#	Article	IF	CITATIONS
327	NMR Crystallography Enhanced by Quantum Chemical Calculations and Liquid State NMR Spectroscopy for the Investigation of Seâ€NHC Adducts**. Chemistry - A European Journal, 2021, 27, 16477-16487.	1.7	0
328	Crystal structure of 1-butyl-3-{2-[(indan-5-yl)amino]-2-oxoethyl}-1 <i>H</i> -imidazol-3-ium chloride. Acta Crystallographica Section E: Crystallographic Communications, 2018, 74, 1665-1668.	0.2	O
329	Continuous Flow Synthesis of Sulfur―and Seleniumâ^'NHC Compounds (NHC= <i>N</i> â€Heterocyclic) Tj ETQqC	0 0 rgBT	/Qverlock 10
330	Steric properties of Nâ€heterocyclic carbenes affect the performance of electronic probes. European Journal of Inorganic Chemistry, 0, , .	1.0	5
331	Synthesis and structures of 4,5-dimethyl-1,3-bis(pyridin-2-ylmethyl)-1H-imidazolium chloride and 1,1′-bis(pyridin-2-ylmethyl)-2,2′-bis(4,5-dimethylimidazole). Russian Chemical Bulletin, 2021, 70, 1957-1963.	0.4	1
332	Cyclic (Amino)(Aryl)Nitrenium Cations with Lewis Acidity Controlled by Remote Substituents. Chinese Journal of Chemistry, 0, , .	2.6	2
333	Zerovalent Nickel Organometallic Complexes. , 2021, , .		0
334	Reaction Parameterization as a Tool for Development in Organometallic Catalysis., 2021, , .		2
335	Stable Singlet Carbenes as Organic Superbases. Angewandte Chemie - International Edition, 2021, 60, 27253-27257.	7.2	15
336	Stable Singlet Carbenes as Organic Superbases. Angewandte Chemie, 0, , .	1.6	3
338	Theoretical Investigations in the Reactions of Group 15 Analogues of the Monocationic Five-Membered NHCs: Interplay of Electrophilicity, Basicity, and Aromaticity Governing the Reactivity. New Journal of Chemistry, 0 , , .	1.4	0
339	Ruthenium(II) complexes bearing chelating Carboxylate-anchored normal and abnormal Carbenes: Synthesis, characterizations and catalytic applications. Polyhedron, 2022, 212, 115593.	1.0	0
340	Highly selective ethenolysis with acyclic-aminooxycarbene ruthenium catalysts. Inorganic Chemistry Frontiers, 0, , .	3.0	3
341	Syntheses and Reactivity of Piano-Stool Iron Complexes of Picolyl-Functionalized N-Heterocyclic Carbene Ligands. Organometallics, 2021, 40, 3943-3951.	1.1	8
342	Linear Carbene Pyridine Copper Complexes with Sterically Demanding <i>N</i> N, N, Structures, and Photophysical Properties. Inorganic Chemistry, 2021, 60, 18529-18543.	1.9	24
343	Computational Insight into the Ligand Effect on the Original Activity of Rh-Catalyzed Formaldehyde Hydroformylation. Journal of Physical Chemistry C, 2021, 125, 25514-25524.	1.5	6
344	Synthesis, Reactivity and Electronic Properties of Quinazolinâ€2â€oneâ€Based Nâ€Heterocyclic Carbenes. European Journal of Inorganic Chemistry, 2022, 2022, e202100894.	1.0	2
345	Gram-scale synthesis of carboxylic acids via catalytic acceptorless dehydrogenative coupling of alcohols and hydroxides at an ultralow Ru loading. Applied Catalysis A: General, 2022, 630, 118443.	2.2	11

#	ARTICLE	IF	Citations
346	Understanding the Binding Properties of Nâ€heterocyclic Carbenes through BDE Matrix App. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	5
347	Analytic Alchemical Derivatives for the Analysis of Differential Acidity Assisted by the <i>h</i> Function. Journal of Physical Chemistry A, 2021, 125, 10463-10474.	1.1	4
348	Bidentate Pyridylâ€NHC Ligands: Synthesis, Ground and Excited State Properties of Their Iron(II) Complexes and the Role of the fac/mer Isomerism. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	7
349	N-Heterocyclic Carbene Complexes of Cobalt. , 2022, , 632-758.		2
350	Mixed NHCâ€"thiolato complexes of palladium: understanding the formation of di- <i>versus</i> mononuclear complexes. Dalton Transactions, 2021, 50, 18118-18127.	1.6	2
351	Thiazetidin-2-ylidenes as four membered N-heterocyclic carbenes: theoretical studies and the generation of complexes with N ⁺ center. Physical Chemistry Chemical Physics, 2022, 24, 629-633.	1.3	6
352	Using N-Heterocyclic Carbenes as Weak Equatorial Ligands to Design Single-Molecule Magnets: Zero-Field Slow Relaxation in Two Octahedral Dysprosium(III) Complexes. Inorganic Chemistry, 2022, 61, 1264-1269.	1.9	5
353	Nâ€Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	15
354	Influence of the Flexibility of Nickel PCPâ€Pincer Complexes on Câ^'H and Pâ^'C Bond Activation and Ethylene Reactivity: A Combined Experimental and Theoretical Investigation. Chemistry - A European Journal, 2022, 28, .	1.7	2
355	Correlating Electronic Properties of N â€Heterocyclic Carbenes with Structure, and the Implications of Using Different Probes. ChemistrySelect, 2022, 7, .	0.7	3
356	Palladium and Platinum NHC Complexes. , 2022, , .		0
357	Carbon Monoxide in Main-Group Chemistry. Journal of the American Chemical Society, 2022, 144, 2034-2050.	6.6	63
358	N-Alkoxyimidazolylidines (NOHCs): nucleophilic carbenes based on an oxidized imidazolium core. Chemical Communications, 2022, 58, 1538-1541.	2.2	1
359	Chiral Bicyclic NHC/Rh Complexes and Their Application to Catalytic Asymmetric Ring-Opening Reaction of Oxabenzonorbornadienes with Amines. Journal of Organic Chemistry, 2022, , .	1.7	1
360	Novel ruthenium complexes bearing bipyridine-based and N-heterocyclic carbene-supported pyridine (NCN) ligands: the influence of ligands on catalytic transfer hydrogenation of ketones. Dalton Transactions, 2021, 51, 340-351.	1.6	4
361	Recent Advances in the Domain of Cyclic (Alkyl)(Amino) Carbenes. Chemistry - an Asian Journal, 2022, 17,	1.7	38
362	Strongly Electron-Donating Triazolylidene Ligands: Cationic Metal Carbonyl Complexes of 1-Methyl-1,2,3-triazole as Triazolium Surrogates. Inorganic Chemistry, 2022, 61, 1254-1258.	1.9	0
363	Unveiling a key catalytic pocket for the ruthenium NHC-catalysed asymmetric heteroarene hydrogenation. Chemical Science, 2022, 13, 985-995.	3.7	12

#	Article	IF	CITATIONS
364	Stereoelectronic Evaluation of Pyrazole- and Indazole-Derived N-Heterocyclic Carbenes. Organometallics, 2022, 41, 335-344.	1.1	4
365	N-Heterocyclic-Carbene-Catalyzed C–H Acylation via Radical Relay. Organic Letters, 2022, 24, 944-948.	2.4	36
366	Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie, 0, , .	1.6	1
367	Calix[4]pyrrolato Stannate(II): A Tetraamido Tin(II) Dianion and Strong Metalâ€Centered Ïfâ€Donor. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
368	Ru $<$ sup $>$ II $<$ /sup $>$ -Complexes of heteroditopic chelating NHC ligands: effective catalysts for the \hat{I}^2 -alkylation of secondary alcohols and the synthesis of 2-alkylaminoquinoline derivatives following the dehydrogenative protocol. Organic and Biomolecular Chemistry, 2022, 20, 1945-1951.	1.5	9
369	Oneâ€Step Access to Heteroatomâ€Functionalized Imidazol(in)ium Salts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
370	Bi- and trimetallic complexes with macrocyclic xanthene-4,5-diNHC ligands. Dalton Transactions, 2022, 51, 2464-2479.	1.6	1
371	Calix[4]pyrrolatostannat(II): Ein Tetraamidozinn(II)dianion als starker, metallzentrierter Ïfâ€Donor. Angewandte Chemie, 2022, 134, .	1.6	2
372	Palladium-NHC (NHC = N-heterocyclic Carbene)-Catalyzed Suzuki–Miyaura Cross-Coupling of Alkyl Amides. ACS Catalysis, 2022, 12, 2426-2433.	5 . 5	23
373	Synthesis and Contemporary Applications of Platinum Group Metals Complexes with Acyclic Diaminocarbene Ligands (Review). Russian Journal of Inorganic Chemistry, 2022, 67, 48-90.	0.3	16
374	Alternative Synthetic Pathway to Bicarbene Pd (0) Complexes Supported by Nhc Carbene and Their Crystal Structure. SSRN Electronic Journal, 0, , .	0.4	0
375	Experimental and computational tuning of metalla-N-heterocyclic carbenes at palladium(<scp>ii</scp>) and platinum(<scp>ii</scp>) centers. Dalton Transactions, 2022, 51, 6718-6734.	1.6	11
376	N-Heterocyclic Carbene Complexes of Nickel. , 2022, , .		0
377	Electrostatic <i>vs.</i> inductive effects in phosphine ligand donor properties and reactivity. Chemical Science, 2022, 13, 4377-4387.	3.7	11
378	Janus-type homo-, hetero- and mixed valence-bimetallic complexes with one metal encapsulated in a cyclodextrin. Chemical Communications, 2022, 58, 4516-4519.	2.2	1
379	Cycloaddition of isoselenocyanates to sodium and magnesium metallacycles. Dalton Transactions, 2022, 51, 4113-4121.	1.6	10
380	Unraveling differences in aluminyl and carbene coordination chemistry: bonding in gold complexes and reactivity with carbon dioxide. Chemical Science, 2022, 13, 4623-4634.	3.7	8
381	Mesoionic Imines (MIIs): Strong Donors and Versatile Ligands for Transition Metals and Main Group Substrates. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8

#	Article	IF	Citations
382	Mesoionic Imines (MIIs): Strong Donors and Versatile Ligands for Transition Metals and Main Group Substrates. Angewandte Chemie, $0, \dots$	1.6	2
383	N-Heterocyclic Carbenes (NHCs): An Introduction. , 0, , .		0
384	NHC and NHC Complex Synthesis by Chloronium Ion Abstraction from 2â€Chloroazolium Salts Using Electronâ€Rich Phosphines. Angewandte Chemie, 0, , .	1.6	6
385	Nâ€Heterocyclic Carbenes Carrying Weakly Coordinating Anions. Chemistry - A European Journal, 2022, 28, .	1.7	8
386	Dynamic Tuning of the Bandgap of CdSe Quantum Dots through Redox-Active Exciton-Delocalizing N-Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 2022, 144, 4300-4304.	6.6	6
387	Synthesis of <i>N</i> â€Heterocyclic Carbenes and Their Complexes by Chloronium Ion Abstraction from 2â€Chloroazolium Salts Using Electronâ€Rich Phosphines. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
388	$Imidazolium\text{-}Based \ N\text{-}Heterocyclic \ Carbenes \ (NHCs) \ and \ Metal\text{-}Mediated \ Catalysis.} \ , 0,,.$		2
389	Auâ€NHC complexes with thiocarboxylate ligands: Synthesis, structure, stability, thiol exchange and in vitro anticancer activity. Applied Organometallic Chemistry, 0, , .	1.7	6
390	An Anionic Dinuclear Ruthenium Dihydrogen Complex of Relevance for Alkyne gemâ€Hydrogenation. Angewandte Chemie, 0, , .	1.6	0
391	NHC–BIAN–Cu(I)-Catalyzed Friedläder-Type Annulation of 2-Amino-3-(per)fluoroacetylpyridines with Alkynes on Water. Journal of Organic Chemistry, 2022, 87, 6115-6136.	1.7	6
392	An Anionic Dinuclear Ruthenium Dihydrogen Complex of Relevance for Alkyne gemâ€Hydrogenation. Angewandte Chemie - International Edition, 2022, , .	7.2	5
393	N-Heterocyclic Carbene Complexes of Nickel(II) from Caffeine and Theophylline: Sustainable Alternative to Imidazol-2-ylidenes. Organometallics, 2022, 41, 1806-1815.	1.1	12
394	Revisiting metallodrugs for the treatment of skin cancers. Coordination Chemistry Reviews, 2022, 462, 214506.	9.5	11
395	Formation and Cleavage of a Sbâ^'Sb Double Bond: From Carbeneâ€Coordinated Distibenes to Stibinidenes. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	6
396	Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. Jacs Au, 2022, 2, 22-57.	3.6	47
397	Robust Water-Soluble Gold Nanoparticles via Polymerized Mesoionic ⟨i>N⟨/i>-Heterocyclic Carbene–Gold(I) Complexes. Chemistry of Materials, 2021, 33, 9588-9600.	3.2	17
398	A DFT study of NHC-catalyzed reactions between 2-bromo-2-enals and acylhydrazones: mechanisms, and chemo- and stereoselectivities. New Journal of Chemistry, 2022, 46, 9146-9154.	1.4	3
399	Application of Indazolin-3-ylidenes in Catalysis: Steric Tuning of Nonclassical Formally Normal <i>N</i> +Neterocyclic Carbenes with Dual Electronic Character for Catalysis. Organometallics, 2022, 41, 1115-1124.	1.1	11

#	Article	IF	CITATIONS
400	Pyrazoles in the Intersection of Mesomeric Betaines and N-Heterocyclic Carbenes: Formation of NHC Selenium Adducts of Pyrazolium-4-aminides. Synthesis, 2022, 54, 3351-3366.	1.2	2
401	Crystalline phosphino-functionalized mesoionic olefins (p-MIOs). Dalton Transactions, 2022, 51, 8217-8222.	1.6	7
402	Carbene chemistry of arsenic, antimony, and bismuth: origin, evolution and future prospects. Dalton Transactions, 2022, 51, 8540-8556.	1.6	11
403	A Series of Rareâ€Earth Mesoionic Carbene Complexes. Chemistry - A European Journal, 2022, , .	1.7	1
404	NHC-Catalyzed [2 + 4] Annulation of Alkynyl Ester with Chalcone. Journal of Organic Chemistry, 2022, 87, 6902-6909.	1.7	4
405	Palladium heteroâ€di(Nâ€heterocyclic carbene) complexes and their catalytic activities in direct C–H arylation of heteroarenes. Applied Organometallic Chemistry, 0, , .	1.7	0
406	Thiazol-2-ylidenes as N-Heterocyclic carbene ligands with enhanced electrophilicity for transition metal catalysis. Communications Chemistry, 2022, 5, .	2.0	17
407	Experimental and Theoretical Study of Ni ^{II} ―and Pd ^{II} â€Promoted Double Geminal C(sp ³)â°'H Bond Activation Providing Facile Access to NHC Pincer Complexes: Isolated Intermediates and Mechanism. Chemistry - A European Journal, 2022, 28, .	1.7	4
408	Tricyanoboraneâ€Functionalized Anionic Nâ€Heterocyclic Carbenes: Adjustment of Charge and Stereoâ€Electronic Properties. Chemistry - A European Journal, 2022, 28, .	1.7	11
409	NHC Catalyzed \hat{l}^2 -Carbon functionalization of carboxylic esters towards formation of \hat{l} -Lactams: A mechanistic study. Molecular Catalysis, 2022, 524, 112311.	1.0	0
410	Thermopower of Molecular Junction in Harsh Thermal Environments. Nano Letters, 2022, 22, 3953-3960.	4.5	15
411	Halo complexes of gold(I) containing glycoconjugate carbene ligands: synthesis, characterization, cytotoxicity and interaction with protein and DNA model systems. Dalton Transactions, 0, , .	1.6	6
412	Monoâ€Nâ€Alkylation of Sulfonamides with Alcohols Catalyzed by Iridium Nâ€Heterocyclic Carbeneâ€Phosphine Complexes. Asian Journal of Organic Chemistry, 0, , .	1.3	2
413	Fluorinated Analogues of Lepidilines A and C: Synthesis and Screening of Their Anticancer and Antiviral Activity. Molecules, 2022, 27, 3524.	1.7	5
414	Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV). Organometallics, 2022, 41, 1353-1363.	1.1	2
415	N-Heterocyclic Carbene Ligands' Electronic Effects on Metallopolymer Anion Exchange Membranes. Organometallics, 2022, 41, 1419-1425.	1.1	4
416	Evaluating the thermal behaviour of benzimidazolylidene sources for thin-film applications. Materials Advances, 0 , , .	2.6	0
417	Bimetallic Pd ^{II} complexes with NHC/Py/PCy ₃ donor set ligands: applications in α-arylation, Suzuki–Miyaura and Sonogashira coupling reactions. New Journal of Chemistry, 2022, 46, 13075-13081.	1.4	7

#	Article	IF	Citations
418	Cyclic (alkyl)(amino)carbene (CAAC) ligands: Electronic structure and application as chemically- and redox-non-innocent ligands and chromophores. Advances in Organometallic Chemistry, 2022, , 79-132.	0.5	4
419	Synthesis of a CCCâ€NHC pincer Re complex: An air stable catalyst for coupling ketones with primary alcohols via borrowing hydrogen. Applied Organometallic Chemistry, 0, , .	1.7	0
420	Redox-Switchable Behavior of Transition-Metal Complexes Supported by Amino-Decorated N-Heterocyclic Carbenes. Molecules, 2022, 27, 3776.	1.7	2
421	Nexus among board characteristics, earnings management and dividend payout: evidence from an emerging market. International Journal of Emerging Markets, 2024, 19, 106-133.	1.3	8
422	βâ€Aminosulfonyl Fluorides via Waterâ€Accelerated Nâ€Heterocyclic Carbene Catalysis. ChemSusChem, 2022, 15, .	3.6	4
423	Room-Temperature-Stable Magnesium Electride via Ni(II) Reduction. Journal of the American Chemical Society, 2022, 144, 13109-13117.	6.6	16
424	Gauging Radical Stabilization with Carbenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
425	Gauging Radical Stabilization with Carbenes. Angewandte Chemie, 2022, 134, .	1.6	5
426	Synthesis of Pd ^{II} Triazolylidene Complexes via an Unusual C _{sp2} â€C _{sp2} Decoupling Reaction: Applications in αâ€Arylation of Amide and Suzukiâ€Miyaura Coupling Reactions. ChemistrySelect, 2022, 7, .	0.7	3
427	Magnesium Complexes with Isomeric Pyrazolâ€4â€ylidene and Imidazolâ€2â€ylidene Ligands. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 0, , .	0.6	0
428	Insights into Triazolylidene Ligands Behaviour at a Di-Iron Site Related to [FeFe]-Hydrogenases. Molecules, 2022, 27, 4700.	1.7	2
429	<i>p</i> àâ€TSAâ€Mediated Fourâ€Component Reaction: Oneâ€Step Access to Mesoionic 1 <i>H</i> â€Imidazolâ€3â€iumâ€4â€olates, Direct NHC Precursors. Advanced Synthesis and Catalysis, 2022, 364, 2996-3003.	2.1	1
430	Nâ€Heterocyclic Carbene and Cyclic (Alkyl)(amino)carbene Adducts of Germanium(IV) and Tin(IV) ChloridesÂand Organyl Chlorides. European Journal of Inorganic Chemistry, 0, , .	1.0	4
431	Pd–PEPPSI N-Heterocyclic Carbene Complexes from Caffeine: Application in Suzuki, Heck, and Sonogashira Reactions /b>. Organometallics, 2022, 41, 2281-2290.	1.1	17
432	Ligand Exchange Triggered Photosensitizers – Bodipyâ€Tagged NHCâ€Metal Complexes for Conversion of ³ O ₂ to ¹ O ₂ . European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
433	Cooperative NHC/Photoredox Catalysis: Three Component Radical Coupling of Aroyl Fluorides, Styrenes and Alcohols. Advanced Synthesis and Catalysis, 2022, 364, 3348-3353.	2.1	17
434	NHC-catalyzed $[3\hat{A}+\hat{A}4]$ annulation between 2-dromoenal and aryl 1,2-diamine: Insights into mechanisms, chemo and stereoselectivities. Molecular Catalysis, 2022, 530, 112604.	1.0	1
435	Ambiphilic singlet carbenes: Electron donors and acceptors. Bulletin of the Korean Chemical Society, 2022, 43, 1328-1341.	1.0	15

#	Article	IF	Citations
436	Preparation, Characterization and Stability Studies of Gold Nanoparticles Capped by 1,2,3â€Triazoleâ€Based Mesoionic Carbenes. ChemistrySelect, 2022, 7, .	0.7	4
437	Arylation of aldehydes catalyzed by fluorinated NHC–Rh(<scp>i</scp>) complexes. New Journal of Chemistry, 2022, 46, 16789-16800.	1.4	3
438	A crystalline cyclic (alkyl)(amino)carbene with a $1,1\hat{a}\in^2$ -ferrocenylene backbone. Chemical Communications, 2022, 58, 10396-10399.	2.2	2
439	Direct observation of reversible bond homolysis by 2D EXSY NMR. Chemical Science, 2022, 13, 9202-9209.	3.7	0
440	Crystalline phosphino(silyl)carbenes that readily form transition metal complexes. Chemical Communications, 2022, 58, 11831-11834.	2.2	1
441	The Core Difference between a Mesoionic and a Normal <i>N</i> -Heterocyclic Carbene. ACS Omega, 2022, 7, 34657-34664.	1.6	3
442	Fused Polycyclic NHC Ligands in Gold Catalysis: Recent Advances. Israel Journal of Chemistry, 2023, 63,	1.0	3
443	Highly cytotoxic palladium(ii) complexes with $1,2,4$ -triazole-derived carbene ligands. Mendeleev Communications, 2022, 32, 594-596.	0.6	2
444	Synthesis, Crystal Structure Determination and Electrochemistry of Homoleptic Pd(0) Complexes Supported by Normal and Abnormal N-Heterocyclic Carbene Ligands. Journal of Chemical Crystallography, 0, , .	0.5	0
445	Chiral Cyclic Alkyl Amino Carbene (CAAC) Transition-Metal Complexes: Synthesis, Structural Analysis, and Evaluation in Asymmetric Catalysis. Organometallics, 2022, 41, 2731-2741.	1.1	6
446	Activation of Geâ^'H and Snâ^'H Bonds with Nâ€Heterocyclic Carbenes and a Cyclic (Alkyl)(amino)carbene. Chemistry - A European Journal, 2023, 29, .	1.7	5
447	Recent progress in transition metal complexes supported by multidentate ligands featuring group 13 and 14 elements as coordinating atoms. Coordination Chemistry Reviews, 2022, 473, 214837.	9.5	21
448	Towards new coordination modes of 1,2,3-triazolylidene: controlled by the nature of the 1 st metalation in a heteroditopic bis-NHC ligand. Chemical Science, 2022, 13, 13387-13392.	3.7	1
449	Dinuclear Pd ^{II} complexes bearing mixed NHC/Py/PPh ₃ donor set ligands: Catalytic applications and electrochemical investigations. Applied Organometallic Chemistry, 0, , .	1.7	3
450	Carbene–Calcium Silylamides and Amidoboranes. Organometallics, 2022, 41, 3064-3072.	1.1	1
451	Mesoionic Nâ€Heterocyclic Imines as Super Nucleophiles in Catalytic Coupling of Amides by CO2. Angewandte Chemie, 0, , .	1.6	1
452	Mesoionic Nâ€Heterocyclic Imines as Super Nucleophiles in Catalytic Couplings of Amides with CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
453	Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing <i>N</i> Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chemical Reviews, 2023, 123, 230-270.	23.0	47

#	Article	IF	CITATIONS
454	Bis(<i>N</i> -cyclopropenio)-imidazol-2-ylidene: An <i>N</i> -Heterocyclic Carbene Bearing Two <i>N</i> -Cationic Substituents. Organometallics, 2022, 41, 2868-2878.	1.1	3
455	Lightâ€Driven Alkyne gemâ€Hydrogenation: An Intramolecular Approach to Hoveydaâ€Grubbs Catalysts. Helvetica Chimica Acta, 0, , .	1.0	1
456	A chiral cylinder-like metallomacrocycles bis tri-N-heterocyclic carbene silver(I): Synthesis, characterization and anticancer study. Journal of Organometallic Chemistry, 2022, 982, 122536.	0.8	5
457	Electronic, steric and catalytic properties of N-heterocyclic carbene rhodium(<scp>i</scp>) complexes linked to (metallo)porphyrins. Chemical Communications, 2022, 58, 13270-13273.	2.2	3
458	CAAC–IPr*: easily accessible, highly sterically-hindered cyclic (alkyl)(amino)carbenes. Chemical Communications, 2022, 58, 13467-13470.	2.2	8
459	Decomposition of Ruthenium Metathesis Catalysts: Unsymmetrical <i>N</i> -Heterocyclic Carbenes versus Cyclic Alkyl Amino Carbenes. Organometallics, 2022, 41, 3627-3635.	1.1	2
460	Oxidative addition of 8-bromo-9-ethyl-1,N6-ethenoadenine to d10 metals. Inorganica Chimica Acta, 2022, , 121291.	1.2	0
461	Design strategy for redox-active organic materials derived from N-heterocyclic carbenes. Trends in Chemistry, 2023, 5, 112-115.	4.4	5
462	Electronic properties and supramolecular study of selenoureas with fluorinated-NHC ligands derived from imidazo[1,5- <i>a</i>)pyridines. New Journal of Chemistry, 2023, 47, 2090-2095.	1.4	1
463	N-heterocyclic carbene ligands with a bicyclic framework fused with either naphthalene or anthracene. Journal of Organometallic Chemistry, 2023, 984, 122576.	0.8	0
464	Carbohydrate-based N-heterocyclic carbene-metal complexes: a new avenue for sustainable catalysts in organic transformations. New Journal of Chemistry, 0, , .	1.4	1
465	Understanding cyclic(alkyl)(amino)carbene–copper complex catalysed N–H and O–H bond addition to electron deficient olefins. Chemical Communications, 2022, 59, 110-113.	2.2	2
466	Progress in the catalytic applications of cobalt Nâ€"heterocyclic carbene complexes: Emphasis on their synthesis, structure and mechanism. Molecular Catalysis, 2023, 535, 112850.	1.0	3
467	Rhenium(I)-tricarbonyl complexes with methimazole and its selenium analogue: Syntheses, characterization and cell toxicity. Journal of Inorganic Biochemistry, 2023, 240, 112092.	1.5	2
468	Isocyanide-Phosphine Complexes of Palladium(II) Dihalides: Synthesis, Structure, and Resistance to Ligand Disproportionation Reactions. Russian Journal of General Chemistry, 2022, 92, 2279-2289.	0.3	0
469	Controlled Access to Four- and Six-Membered Palladacycles <i>via</i> Modifying Donor Abilities of β-Ketiminato Ligands ("NacAcsâ€). Inorganic Chemistry, 2022, 61, 20087-20094.	1.9	5
470	A Stable Crystalline Nâ€Heterocyclic Carbene with a 1,1'â€Ferrocenylene Backbone and Benzylic <i>N</i> à€Substituents. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	0.6	3
471	On the Edge of the Known: Extremely Electronâ€rich (Di)carboranyl Phosphines. Angewandte Chemie, 0, ,	1.6	0

#	Article	IF	CITATIONS
472	On the Edge of the Known: Extremely Electronâ€Rich (Di)Carboranyl Phosphines. Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
473	N-heterocyclic carbenes with three and six fluorous ponytails and their highly fluorophilic Rh and Ir complexes. Journal of Organometallic Chemistry, 2022, , 122605.	0.8	0
474	Formation of Metallosupramolecular Helicates and Mesocates from Poly- <i>N</i> -Heterocyclic Carbene Ligands. Inorganic Chemistry, 2023, 62, 2599-2606.	1.9	2
475	Ag–NHC Complexes in the π-Activation of Alkynes. Molecules, 2023, 28, 950.	1.7	7
476	Captodative Effect Facilitates the Excitation in Diboron Molecule (CAAC) ₂ B ₂ (SH) ₂ . Chemistry - A European Journal, 2023, 29, .	1.7	2
477	Cooperative Asymmetric Dual Catalysis Involving a Chiral N-Heterocyclic Carbene Organocatalyst and Palladium in an Annulation Reaction: Mechanism and Origin of Stereoselectivity. ACS Catalysis, 0, , 1133-1148.	5. 5	2
478	Trizxolium Ionic Liquids and Tetrazolium Ionic Liquids. , 2022, , 1321-1329.		0
479	An easy-to-perform evaluation of steric properties of Lewis acids. Chemical Science, 2023, 14, 2275-2288.	3.7	18
480	Novel benzimidazolium salts and their silver(I)- <i>N</i> -heterocyclic carbene complexes: synthesis, characterization and their biological properties. Journal of Coordination Chemistry, 2023, 76, 120-133.	0.8	4
481	How To Enhance the Efficiency of Breslow Intermediates for SET Catalysis. Journal of Organic Chemistry, 2023, 88, 2535-2542.	1.7	7
482	Ru(II) complexes with phosphine-functionalized NHC ligands in catalytic transfer hydrogenations. Advances in Organometallic Chemistry, 2023, , .	0.5	0
483	Versatile halogenation <i>via</i> a C _{NHC} ^C _{sp3} palladacycle intermediate. Dalton Transactions, 2023, 52, 2223-2226.	1.6	1
484	The promise of N-heterocyclic carbenes to capture and valorize carbon dioxide, 2023, 2, 100018.		1
485	Mechanisms and origins of stereoselectivity involved in NHC-catalyzed [$3\hat{A}+\hat{A}3$] Annulation of 2-bromoenals and \hat{l}^2 -ketothioamides: A DFT study. Molecular Catalysis, 2023, 542, 113135.	1.0	0
486	Hydration reactions catalyzed by transition metal–NHC (NHCÂ=ÂN-heterocyclic carbene) complexes. Coordination Chemistry Reviews, 2023, 485, 215110.	9.5	7
487	Boranes Paving the Way to Anionic Cyclic (Alkyl)(amino)carbenes (Ani AACs). Angewandte Chemie - International Edition, 2023, 62, .	7.2	7
488	Borane als Wegbereiter zu anionischen cyclischen (Alkyl)(amino)carbenen (Ani AACs). Angewandte Chemie, 2023, 135, .	1.6	2
489	Pd–PEPPSI type complexes bearing unsymmetrical NHC ligand with phenylâ€substituted backbone: Highly efficient catalysts for Heck–Mizoroki and Suzuki–Miyaura crossâ€coupling reactions. Applied Organometallic Chemistry, 2023, 37, .	1.7	4

#	Article	IF	CITATIONS
490	Cyclic alkyl(amino)iminates (CAAIs) as strong 2σ,4π-electron donor ligands for the stabilisation of boranes and diboranes(4): a synthetic and computational study. Dalton Transactions, 2023, 52, 3869-3876.	1.6	1
491	Cyclic iron tetra N-heterocyclic carbenes: synthesis, properties, reactivity, and catalysis. Chemical Society Reviews, 2023, 52, 2238-2277.	18.7	7
492	Cyclometalated platinum(<scp>ii</scp>) complexes with acyclic diaminocarbene ligands for OLED application. Dalton Transactions, 2023, 52, 4595-4605.	1.6	5
493	Synthesis and a combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with $\langle i \rangle \circ \langle i \rangle$ -, $\langle i \rangle m \langle i \rangle$ -, and $\langle i \rangle p \langle i \rangle$ -halogen-substituted aryl groups (X = F, Cl, Br,) Tj ETQq1 1 0.78	4 31 64 rgB7	「/Overlock
494	Recent Development in the Catalytic Applications of Pdâ€NHC (NHC=Nâ€Heterocyclic Carbene) Compounds in Amide Câ^N Activation Reactions. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	2
495	Halogenâ€6ubstituted Mesoionicâ€Carbene/Palladium Complexes for Catalytic Arylation of Aldehydes. Asian Journal of Organic Chemistry, 2023, 12, .	1.3	1
496	Synthesis and Structure of P-Halogenated Benzazaphospholes and Their Reactivity toward Pt(0) Sources. Organometallics, 2023, 42, 672-688.	1.1	1
497	N-Heterocyclic carbenes as privileged ligands for nickel-catalysed alkene functionalisation. Chemical Society Reviews, 2023, 52, 2946-2991.	18.7	26
498	Cyclobutenylidene: A Multifaceted Two-Coordinate Carbon Species Obtained via Skeletal Editing of a Cyclopropenylidene. Journal of the American Chemical Society, 2023, 145, 9264-9272.	6.6	3
499	Asymmetric Synthesis of Chiral Seven-Membered NHCs, Their Transition-Metal Complexes and Application in Asymmetric ÂCatalysis. Synthesis, 0, , .	1.2	1
500	Catalytic production of ammonia from dinitrogen employing molybdenum complexes bearing N-heterocyclic carbene-based PCP-type pincer ligands. , 2023, 2, 635-644.		12
501	ltOct (I <i>t</i> Octyl) – pushing the limits of ItBu: highly hindered electron-rich N-aliphatic N-heterocyclic carbenes. Chemical Science, 2023, 14, 5141-5147.	3.7	4
502	Biological and Catalytic Applications of Pd(II)â€Indenyl Complexes Bearing Phosphine and <i>N</i> â€Heterocyclic Carbene Ligands. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	2
504	Carbon-Carbon Bond Formation Via Metal Carbene Complexes. , 2022, , .		0
510	Synthesis of \hat{I}^2 -Ketonitriles via $\langle i \rangle N \langle i \rangle$ -Heterocyclic-Carbene-Catalyzed Radical Coupling of Aldehydes and Azobis(isobutyronitrile). Organic Letters, 2023, 25, 3325-3329.	2.4	7
516	An account of synthetic strategies towards transition metal complexes. AIP Conference Proceedings, 2023, , .	0.3	0
523	Gold complexes with remote-substituted amino N-heterocyclic carbenes. Dalton Transactions, 2023, 52, 9908-9912.	1.6	0
528	N-Heterocyclic carbene as privileged scaffold in medicinal inorganic chemistry. , 2023, , 901-914.		0

#	Article	IF	CITATIONS
535	Photoswitchable electron-rich phosphines: using light to modulate the electron-donating ability of phosphines. Chemical Communications, 2023, 59, 12019-12022.	2.2	3
536	Heterostructured 2D material-based electro-/photo-catalysts for water splitting. Materials Chemistry Frontiers, 2023, 7, 6154-6187.	3.2	3
546	Carbanion-functionalized phosphines: New design elements for catalyst development. Advances in Catalysis, 2023, , .	0.1	0
551	N-Heterocyclic carbene-based porous polymer macroligand for the Ni-catalyzed C–H arylation of benzothiophenes. Catalysis Science and Technology, 2023, 13, 5825-5830.	2.1	1
583	Amine-functionalized bifunctional Co ^{III} -NHC complexes: highly effective phosphine-free catalysts for the α-alkylation of nitriles. Chemical Communications, 2024, 60, 3142-3145.	2.2	0