Distinct roles of resident and nonresident macrophages

Proceedings of the National Academy of Sciences of the Unite 115, E4661-E4669

DOI: 10.1073/pnas.1720065115

Citation Report

#	Article	IF	CITATIONS
1	A Miniaturized, Programmable Pacemaker for Long-Term Studies in the Mouse. Circulation Research, 2018, 123, 1208-1219.	2.0	18
2	Manipulating Macrophage Polarization to Fix the Broken Heart. Journal of the American College of Cardiology, 2018, 72, 905-907.	1.2	9
3	Understanding the Biology of Self-Renewing Macrophages. Cells, 2018, 7, 103.	1.8	82
4	CD8 ⁺ T-cells negatively regulate inflammation post-myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H581-H596.	1.5	56
5	Ameliorating the Fibrotic Remodeling of the Heart through Direct Cardiac Reprogramming. Cells, 2019, 8, 679.	1.8	21
6	JAK2-Mediated Clonal Hematopoiesis Accelerates Pathological Remodeling in Murine HeartÂFailure. JACC Basic To Translational Science, 2019, 4, 684-697.	1.9	114
7	Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 317, H877-H890.	1.5	54
8	Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Frontiers in Cardiovascular Medicine, 2019, 6, 32.	1.1	43
9	Transition of Macrophages to Fibroblast-Like Cells in HealingÂMyocardial Infarction. Journal of the American College of Cardiology, 2019, 74, 3124-3135.	1.2	92
10	Qishen Granule Improved Cardiac Remodeling via Balancing M1 and M2 Macrophages. Frontiers in Pharmacology, 2019, 10, 1399.	1.6	21
11	Sequential CCL2 Expression Profile After Disc Injury in Mice. Journal of Orthopaedic Research, 2020, 38, 895-901.	1.2	16
12	New Approaches to Target Inflammation in Heart Failure: Harnessing Insights from Studies of Immune Cell Diversity. Annual Review of Physiology, 2020, 82, 1-20.	5.6	29
13	The Dynamic Interplay Between Cardiac Inflammation and Fibrosis. Frontiers in Physiology, 2020, 11, 529075.	1.3	47
14	The E3 ubiquitin ligase HectD3 attenuates cardiac hypertrophy and inflammation in mice. Communications Biology, 2020, 3, 562.	2.0	17
15	The immune response to infection in the bladder. Nature Reviews Urology, 2020, 17, 439-458.	1.9	76
16	Doxorubicin-Induced Ascension of Resident Cardiac Macrophages. Circulation Research, 2020, 127, 628-630.	2.0	1
17	Resident macrophages as potential therapeutic targets for cardiac ageing and injury. Clinical and Translational Immunology, 2020, 9, e1167.	1.7	10
18	The Acute Effects of 5 Fluorouracil on Skeletal Muscle Resident and Infiltrating Immune Cells in Mice. Frontiers in Physiology, 2020, 11, 593468.	1.3	19

#	Article	IF	CITATIONS
19	Macrophage Proinflammatory Responses to Microorganisms and Transplanted Organs. International Journal of Molecular Sciences, 2020, 21, 9669.	1.8	11
20	Adipose Tissue Hypertrophy, An Aberrant Biochemical Profile and Distinct Gene Expression in Lipedema. Journal of Surgical Research, 2020, 253, 294-303.	0.8	48
21	Self-Maintenance of Cardiac Resident Reparative Macrophages Attenuates Doxorubicin-Induced Cardiomyopathy Through the SR-A1-c-Myc Axis. Circulation Research, 2020, 127, 610-627.	2.0	47
22	Macphatics and PoEMs in Postpartum Mammary Development and Tumor Progression. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 103-113.	1.0	8
23	Folate Receptor β (FRβ) Expression in Tissue-Resident and Tumor-Associated Macrophages Associates with and Depends on the Expression of PU.1. Cells, 2020, 9, 1445.	1.8	18
24	Obesity, Hypertension, and Cardiac Dysfunction. Circulation Research, 2020, 126, 789-806.	2.0	252
25	How to use macrophages to realise the treatment of tumour. Journal of Drug Targeting, 2020, 28, 1034-1045.	2.1	8
26	The Impact of the Cancer Microenvironment on Macrophage Phenotypes. Frontiers in Immunology, 2020, 11, 1308.	2.2	21
27	Fibroblast transdifferentiation promotes conversion of M1 macrophages and replenishment of cardiac resident macrophages following cardiac injury in mice. European Journal of Immunology, 2020, 50, 795-808.	1.6	11
28	Investigation of resident and recruited macrophages following disc injury in mice. Journal of Orthopaedic Research, 2020, 38, 1703-1709.	1.2	34
29	Glucocorticoids mobilize macrophages by transcriptionally up-regulating the exopeptidase DPP4. Journal of Biological Chemistry, 2020, 295, 3213-3227.	1.6	26
30	Reappraising the role of inflammation in heart failure. Nature Reviews Cardiology, 2020, 17, 269-285.	6.1	389
31	Critical roles of macrophages in pressure overload-induced cardiac remodeling. Journal of Molecular Medicine, 2021, 99, 33-46.	1.7	10
32	SupErbB monocytes? Innate immune cells help the heart adapt. Journal of Molecular and Cellular Cardiology, 2021, 152, 92-94.	0.9	0
33	The role of diet-derived short-chain fatty acids in regulating cardiac pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H475-H486.	1.5	11
34	Protective role of ErbB3 signaling in myeloid cells during adaptation to cardiac pressure overload. Journal of Molecular and Cellular Cardiology, 2021, 152, 1-16.	0.9	9
35	Exploring cardiac macrophage heterogeneity in the healthy and diseased myocardium. Current Opinion in Immunology, 2021, 68, 54-63.	2.4	38
36	A Comprehensive miRNome Analysis of Macrophages Isolated from db/db Mice and Selected miRNAs Involved in Metabolic Syndrome-Associated Cardiac Remodeling. International Journal of Molecular Sciences, 2021, 22, 2197.	1.8	3

#	Article	IF	CITATIONS
37	The Cellular Stress Response Interactome and Extracellular Matrix Cross-Talk during Fibrosis: A Stressed Extra-Matrix Affair. Biochemistry, 0, , .	0.8	3
39	Origins, Biology, and Diseases of Tissue Macrophages. Annual Review of Immunology, 2021, 39, 313-344.	9.5	88
40	MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 2021, 143, 1513-1525.	1.6	67
41	Importance of clonal hematopoiesis in heart failure. Trends in Cardiovascular Medicine, 2022, 32, 198-203.	2.3	7
42	Obesity, inflammation, and heart failure: links and misconceptions. Heart Failure Reviews, 2021, , 1.	1.7	8
43	Bone Marrow Transplantation Procedures in Mice to Study Clonal Hematopoiesis. Journal of Visualized Experiments, 2021, , .	0.2	10
44	Evolutionary Protection of Krüppel-Like Factors 2 and 4 in the Development of the Mature Hemovascular System. Frontiers in Cardiovascular Medicine, 2021, 8, 645719.	1.1	8
45	The GABAA Receptor Influences Pressure Overload-Induced Heart Failure by Modulating Macrophages in Mice. Frontiers in Immunology, 2021, 12, 670153.	2.2	8
46	Fibroblasts and macrophages: Collaborators in tissue homeostasis. Immunological Reviews, 2021, 302, 86-103.	2.8	29
47	4-Methylumbelliferone Attenuates Macrophage Invasion and Myocardial Remodeling in Pressure-Overloaded Mouse Hearts. Hypertension, 2021, 77, 1918-1927.	1.3	8
48	Inhibition of the canonical Wnt signaling pathway by a β-catenin/CBP inhibitor prevents heart failure by ameliorating cardiac hypertrophy and fibrosis. Scientific Reports, 2021, 11, 14886.	1.6	18
49	RhoA Signaling in Immune Cell Response and Cardiac Disease. Cells, 2021, 10, 1681.	1.8	4
50	Innate Immune Cells in Pressure Overload-Induced Cardiac Hypertrophy and Remodeling. Frontiers in Cell and Developmental Biology, 2021, 9, 659666.	1.8	19
51	Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Frontiers in Physiology, 2021, 12, 695047.	1.3	22
52	Myeloid-Derived Growth Factor Protects Against Pressure Overload–Induced Heart Failure by Preserving Sarco/Endoplasmic Reticulum Ca ²⁺ -ATPase Expression in Cardiomyocytes. Circulation, 2021, 144, 1227-1240.	1.6	27
53	Heart Failure Syndrome With Preserved Ejection Fraction Is a Metabolic Cluster of Non-resolving Inflammation in Obesity. Frontiers in Cardiovascular Medicine, 2021, 8, 695952.	1.1	13
54	Chronic lowâ€grade inflammation in heart failure with preserved ejection fraction. Aging Cell, 2021, 20, e13453.	3.0	33
55	Mechanisms and strategies for a therapeutic cardiac immune response. Journal of Molecular and Cellular Cardiology, 2021, 158, 82-88.	0.9	4

#	Article	IF	CITATIONS
56	Early activation of the cardiac CX3CL1/CX3CR1 axis delays β-adrenergic-induced heart failure. Scientific Reports, 2021, 11, 17982.	1.6	6
57	Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity, 2021, 54, 2057-2071.e6.	6.6	55
58	The magic of communication: the need to study organ and cell communication in pulmonary arterial hypertension-induced right heart failure. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L634-L636.	1.3	3
60	Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload–associated maladaptation. JCI Insight, 2019, 4, .	2.3	24
61	A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. Vessel Plus, 2018, 2, 29.	0.4	22
62	Role of Cardiac Macrophages on Cardiac Inflammation, Fibrosis and Tissue Repair. Cells, 2021, 10, 51.	1.8	159
63	Atypical Antipsychotic Medications Disrupt the Cardio-Metabolic and Cardio-Immune Axes. , 2020, 12, .		2
64	Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicological Sciences, 2021, 185, 64-76.	1.4	5
65	The Gene Signature of Activated M-CSF-Primed Human Monocyte-Derived Macrophages Is IL-10-Dependent. Journal of Innate Immunity, 2022, 14, 243-256.	1.8	12
66	NF-κB activation in cardiac fibroblasts results in the recruitment of inflammatory Ly6C ^{hi} monocytes in pressure-overloaded hearts. Science Signaling, 2021, 14, eabe4932.	1.6	13
67	Inflammation and Heart Failure: Friend or Foe?. Circulation, 2021, 144, 1241-1243.	1.6	1
68	The Roles of Macrophages in Heart Regeneration and Repair After Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 744615.	1.1	13
69	Cardiac Resident Macrophages Prevent Fibrosis and Stimulate Angiogenesis. Circulation Research, 2021, 129, 1086-1101.	2.0	89
70	KLF2 regulates neutrophil activation and thrombosis in cardiac hypertrophy and heart failure progression. Journal of Clinical Investigation, 2022, 132, .	3.9	29
71	Resident Macrophages in the Heart: Cardioprotective Under Pressure. Circulation Research, 2021, 129, 1102-1104.	2.0	2
72	Transcriptomic and Lipidomic Mapping of Macrophages in the Hub of Chronic Beta-Adrenergic-Stimulation Unravels Hypertrophy-, Proliferation-, and Lipid Metabolism-Related Genes as Novel Potential Markers of Early Hypertrophy or Heart Failure. Biomedicines, 2022, 10, 221.	1.4	2
73	Myocardin-related transcription factor A in macrophages mediates pathological hypertrophy. Cardiovascular Research, 2022, , .	1.8	1
74	Chronic kidney disease mediates cardiac dysfunction associated with increased resident cardiac macrophages. BMC Nephrology, 2022, 23, 47.	0.8	3

#	Article	IF	CITATIONS
75	Mapping Macrophage Polarization and Origin during the Progression of the Foreign Body Response to a Poly(ethylene glycol) Hydrogel Implant. Advanced Healthcare Materials, 2022, 11, e2102209.	3.9	7
76	The heart under pressure: immune cells in fibrotic remodeling. Current Opinion in Physiology, 2022, 25, 100484.	0.9	4
77	Cardiac macrophages regulate isoproterenol-induced Takotsubo-like cardiomyopathy. JCI Insight, 2022, 7, .	2.3	20
80	Deciphering Cell-Type-Specific Gene Expression Signatures of Cardiac Diseases Through Reconstruction of Bulk Transcriptomes. Frontiers in Cell and Developmental Biology, 2022, 10, 792774.	1.8	2
81	Cardio-omentopexy requires a cardioprotective innate immune response to promote myocardial angiogenesis in mice. JTCVS Open, 2022, , .	0.2	0
82	Depletion of microRNA-92a Enhances the Role of Sevoflurane Treatment in Reducing Myocardial Ischemia–Reperfusion Injury by Upregulating KLF4. Cardiovascular Drugs and Therapy, 2023, 37, 1053-1064.	1.3	6
83	Different Roles of Resident and Non-resident Macrophages in Cardiac Fibrosis. Frontiers in Cardiovascular Medicine, 2022, 9, 818188.	1.1	9
84	Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines, 2022, 10, 661.	1.4	6
85	Early Protective Role of Inflammation in Cardiac Remodeling and Heart Failure: Focus on TNFα and Resident Macrophages. Cells, 2022, 11, 1249.	1.8	22
87	HMGB1 in macrophage nucleus protects against pressure overload induced cardiac remodeling via regulation of macrophage differentiation and inflammatory response. Biochemical and Biophysical Research Communications, 2022, 611, 91-98.	1.0	4
90	Macrophages in the heart: Active players or simple bystanders?. International Review of Cell and Molecular Biology, 2022, , 109-141.	1.6	1
91	Role of Cardiomyocyte-Derived Exosomal MicroRNA-146a-5p in Macrophage Polarization and Activation. Disease Markers, 2022, 2022, 1-13.	0.6	6
92	The Dynamic Role of Cardiac Macrophages in Aging and Disease. Current Cardiology Reports, 2022, 24, 925-933.	1.3	5
93	Cardiac Macrophages and Their Effects on Arrhythmogenesis. Frontiers in Physiology, 0, 13, .	1.3	7
94	Dirty Jobs: Macrophages at the Heart of Cardiovascular Disease. Biomedicines, 2022, 10, 1579.	1.4	4
95	Of Mouse and Man: Cross-Species Characterization of Hypertensive Cardiac Remodeling. International Journal of Molecular Sciences, 2022, 23, 7709.	1.8	3
96	Macrophage Polarization, Metabolic Reprogramming, and Inflammatory Effects in Ischemic Heart Disease. Frontiers in Immunology, 0, 13, .	2.2	5
97	The cellular and molecular mediators of metastasis to the lung. Growth Factors, 2022, 40, 119-152.	0.5	5

#	Article	IF	CITATIONS
98	5-Fluorouracil disrupts skeletal muscle immune cells and impairs skeletal muscle repair and remodeling. Journal of Applied Physiology, 2022, 133, 834-849.	1.2	10
99	Pathogenic variants damage cell composition and single cell transcription in cardiomyopathies. Science, 2022, 377, .	6.0	76
100	Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity, 2022, 55, 1549-1563.	6.6	27
101	Therapeutic CCR2 Blockade Prevents Inflammation and Alleviates Myxomatous Valve Disease in Marfan Syndrome. JACC Basic To Translational Science, 2022, 7, 1143-1157.	1.9	4
103	CSK3Î ² Inhibition Prevents Macrophage Reprogramming by High-Dose Methotrexate. Journal of Innate Immunity, 2023, 15, 283-296.	1.8	1
104	Single-cell RNA sequencing reveals resident progenitor and vascularization-associated cell subpopulations in rat annulus fibrosus. Journal of Orthopaedic Translation, 2023, 38, 256-267.	1.9	4
105	The E3 ubiquitin ligase WWP2 regulates pro-fibrogenic monocyte infiltration and activity in heart fibrosis. Nature Communications, 2022, 13, .	5.8	9
107	Single-cell transcriptome sequencing of macrophages in common cardiovascular diseases. Journal of Leukocyte Biology, 2023, 113, 139-148.	1.5	3
108	Macrophage-Specific NLRC5 Protects From Cardiac Remodeling Through Interaction With HSPA8. JACC Basic To Translational Science, 2023, 8, 479-496.	1.9	3
109	The role of macrophage subsets in and around the heart in modulating cardiac homeostasis and pathophysiology. Frontiers in Immunology, 0, 14, .	2.2	3
110	Immune Cells in Cardiac Injury Repair and Remodeling. Current Cardiology Reports, 2023, 25, 315-323.	1.3	1
111	Therapeutic Innovations for Heart Failure. Cardiac and Vascular Biology, 2023, , 337-353.	0.2	0