Material platforms for spin-based photonic quantum te

Nature Reviews Materials 3, 38-51 DOI: 10.1038/s41578-018-0008-9

Citation Report

IF CITATIONS

1	Polytypism driven zero-field splitting of silicon vacancies in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>6 </mml:mn> <mml:mi>H -SiC. Physical Review B, 2018, 98, .</mml:mi></mml:mrow></mml:math 	i> ₄/ı mml:m	raww >
2	Preparing multiparticle entangled states of nitrogen-vacancy centers via adiabatic ground-state transitions. Physical Review A, 2018, 98, .	1.0	29
3	Direct writing of single germanium vacancy center arrays in diamond. New Journal of Physics, 2018, 20, 125004.	1.2	28
4	Optimized single-crystal diamond scanning probes for high sensitivity magnetometry. New Journal of Physics, 2018, 20, 125001.	1.2	23
5	Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Physical Review B, 2018, 98, .	1.1	44
6	Growth of polycrystalline and single-crystal CVD diamonds with bright photoluminescence of Ge-V color centers using germane GeH4 as the dopant source. Diamond and Related Materials, 2018, 90, 47-53.	1.8	39
7	Quantum technologies with optically interfaced solid-state spins. Nature Photonics, 2018, 12, 516-527.	15.6	581
8	Effects of High-Energy Electron Irradiation on Quantum Emitters in Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2018, 10, 24886-24891.	4.0	61
9	Extraordinary synergetic effect of precursors in laser CVD deposition of SiBCN films. Journal of the European Ceramic Society, 2019, 39, 5123-5131.	2.8	17
10	Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond. Physical Review Letters, 2019, 123, 033602.	2.9	31
11	On the route to produce conductive Ni-related color centers in CVD-grown diamond. Multifunctional Materials, 2019, 2, 035001.	2.4	4
12	Optical Properties of Vanadium in 4 <i>H</i> Silicon Carbide for Quantum Technology. Physical Review Applied, 2019, 12, .	1.5	51
13	Inverse-designed diamond photonics. Nature Communications, 2019, 10, 3309.	5.8	109
14	In2S3 Quantum Dots: Preparation, Properties and Optoelectronic Application. Nanoscale Research Letters, 2019, 14, 161.	3.1	19
15	Raman quantum memory based on an ensemble of silicon-vacancy centers in diamond. Laser Physics, 2019, 29, 104001.	0.6	7
16	Purification of single-photon emission from hBN using post-processing treatments. Nanophotonics, 2019, 8, 2049-2055.	2.9	35
17	Quantum Materials with Atomic Precision: Artificial Atoms in Solids: Ab Initio Design, Control, and Integration of Single Photon Emitters in Artificial Quantum Materials. Advanced Functional Materials, 2019, 29, 1904557.	7.8	11
18	Reliable Nanofabrication of Single-Crystal Diamond Photonic Nanostructures for Nanoscale Sensing. Micromachines, 2019, 10, 718.	1.4	11

ARTICLE

#

	CITATION	Report	
#	Article	IF	CITATIONS
19	Toward Ultrafast Tuning and Triggering Single-Photon Electroluminescence of Color Centers in Silicon Carbide. ACS Applied Electronic Materials, 2019, 1, 1859-1865.	2.0	6
20	Suppression of spectral diffusion by anti-Stokes excitation of quantum emitters in hexagonal boron nitride. Applied Physics Letters, 2019, 115, .	1.5	19
21	Advances in quantum light emission from 2D materials. Nanophotonics, 2019, 8, 2017-2032.	2.9	74
22	Electrical Charge State Manipulation of Single Silicon Vacancies in a Silicon Carbide Quantum Optoelectronic Device. Nano Letters, 2019, 19, 7173-7180.	4.5	61
23	Quantum defects by design. Nanophotonics, 2019, 8, 1867-1888.	2.9	58
24	Semideterministic Entanglement between a Single Photon and an Atomic Ensemble. Physical Review Letters, 2019, 123, 140504.	2.9	18
25	Pulse-enhanced two-photon interference with solid state quantum emitters. Physical Review B, 2019, 100, .	1.1	4
26	Engineering and Tuning of Quantum Emitters in Few-Layer Hexagonal Boron Nitride. ACS Nano, 2019, 13, 3132-3140.	7.3	101
27	Spin polarization through intersystem crossing in the silicon vacancy of silicon carbide. Physical Review B, 2019, 99, .	1.1	19
28	Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation. Nature Communications, 2019, 10, 2755.	5.8	132
29	Optically Coherent Nitrogen-Vacancy Centers in Micrometer-Thin Etched Diamond Membranes. Nano Letters, 2019, 19, 3987-3992.	4.5	59
30	Selective Defect Formation in Hexagonal Boron Nitride. Advanced Optical Materials, 2019, 7, 1900397.	3.6	39
31	Characterization of optical and spin properties of single tin-vacancy centers in diamond nanopillars. Physical Review B, 2019, 99, .	1.1	43
32	Droplet epitaxy of semiconductor nanostructures for quantum photonic devices. Nature Materials, 2019, 18, 799-810.	13.3	139
33	Top-down fabrication of high-uniformity nanodiamonds by self-assembled block copolymer masks. Scientific Reports, 2019, 9, 6914.	1.6	12
34	Very Large and Reversible Stark-Shift Tuning of Single Emitters in Layered Hexagonal Boron Nitride. Physical Review Applied, 2019, 11, .	1.5	48
35	High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nature Communications, 2019, 10, 1954.	5.8	167
36	Silicon photonic crystal cavities at near band-edge wavelengths. Applied Physics Letters, 2019, 114, .	1.5	4

#	RTICLE		CITATIONS
37	Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitride. ACS Nano, 2019, 13, 4538-4547.		47
38	Neutral oxygen-vacancy defect in cubic boron nitride: A plausible qubit candidate. Applied Physics Letters, 2019, 114, .	1.5	12
39	Spectrally Stable Defect Qubits with no Inversion Symmetry for Robust Spin-To-Photon Interface. Physical Review Applied, 2019, 11, .	1.5	43
40	Single photon emission in WSe ₂ up 160 K by quantum yield control. 2D Materials, 2019, 6, 035017.		53
41	Excitation and coherent control of spin qudit modes in silicon carbide at room temperature. Nature Communications, 2019, 10, 1678.	5.8	65
42	Lead-related quantum emitters in diamond. Physical Review B, 2019, 99, .	1.1	78
43	Single Photon Sources in Atomically Thin Materials. Annual Review of Physical Chemistry, 2019, 70, 123-142.	4.8	145
44	Perspectives on deterministic control of quantum point defects by scanned probes. Nanophotonics, 2019, 8, 2033-2040.	2.9	8
45	Nanoscale sensing based on nitrogen vacancy centers in single crystal diamond and nanodiamonds: achievements and challenges. Nano Futures, 2019, 3, 042004.	1.0	41
46	Influence of Impurities on Polarization Properties of Lattice Vibrations. Semiconductors, 2019, 53, 2129-2132.	0.2	3
47	Quantum units from the topological engineering of molecular graphenoids. Science, 2019, 366, 1107-1110.	6.0	116
48	Coherent electrical readout of defect spins in silicon carbide by photo-ionization at ambient conditions. Nature Communications, 2019, 10, 5569.	5.8	43
49	Quantum nanophotonics with group IV defects in diamond. Nature Communications, 2019, 10, 5625.	5.8	263
50	Imaging stress and magnetism at high pressures using a nanoscale quantum sensor. Science, 2019, 366, 1349-1354.	6.0	129
51	Discrete color centers in two-dimensional hexagonal boron nitride induced by fast neutron irradiation. Journal of Materials Chemistry C, 2019, 7, 12211-12216.	2.7	10
52	Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars. Beilstein Journal of Nanotechnology, 2019, 10, 2383-2395.	1.5	21
53	Photonic Nanostructures from Hexagonal Boron Nitride. Advanced Optical Materials, 2019, 7, 1801344.	3.6	37
54	Nonvolatile Current-Modulated Four-State Magnetoplasmonic Memory. Physical Review Applied, 2019, 11, .	1.5	0

#	Article		CITATIONS
55	A Cratered Photonic Crystal Cavity Mode for Nonlocal Exciton–Photon Interactions. Advanced Quantum Technologies, 2020, 3, 1900024.		3
56	Ultraeffective Cancer Therapy with an Antimoneneâ€Based Xâ€Ray Radiosensitizer. Advanced Functional Materials, 2020, 30, 1906010.	7.8	57
57	Building Blocks for Quantum Network Based on Groupâ€iV Splitâ€Vacancy Centers in Diamond. Advanced Quantum Technologies, 2020, 3, 1900069.	1.8	28
58	Efficient Optical Quantification of Heterogeneous Emitter Ensembles. ACS Photonics, 2020, 7, 288-295.	3.2	13
59	Spectroscopic investigations of negatively charged tin-vacancy centres in diamond. New Journal of Physics, 2020, 22, 013048.	1.2	62
60	Stark Tuning of the Silicon Vacancy in Silicon Carbide. Nano Letters, 2020, 20, 658-663.	4.5	25
61	Material platforms for defect qubits and single-photon emitters. Applied Physics Reviews, 2020, 7, .	5.5	96
62	Enhancing Spin-Phonon and Spin-Spin Interactions Using Linear Resources in a Hybrid Quantum System. Physical Review Letters, 2020, 125, 153602. Theoretical spectroscopy of the <mml:math< td=""><td>2.9</td><td>63</td></mml:math<>	2.9	63
63	xmlns:mml="http://www.w3.org/1998/Math/MathML"> < mml:mrow> < mml:msub> < mml:mi mathvariant="normal">V < mml:mi mathvariant="normal">N < mml:msub> < mml:mi mathvariant="normal">N < mml:mi	1.1	17
64	mathvariant="normal">B defect in hexagonal boron Observation of Binary Spectral Jumps in Color Centers in Diamond. Advanced Optical Materials, 2020, 8, 2000495.	3.6	2
65	Coherent Manipulation with Resonant Excitation and Single Emitter Creation of Nitrogen Vacancy Centers in 4H Silicon Carbide. Nano Letters, 2020, 20, 6142-6147.	4.5	46
66	Polarization and Localization of Single-Photon Emitters in Hexagonal Boron Nitride Wrinkles. ACS Applied Materials & Interfaces, 2020, 12, 36362-36369.	4.0	34
67	Trigonal Bipyramidal V ³⁺ Complex as an Optically Addressable Molecular Qubit Candidate. Journal of the American Chemical Society, 2020, 142, 20400-20408.	6.6	46
68	Defect Engineering for Quantum Grade Rare-Earth Nanocrystals. ACS Nano, 2020, 14, 9953-9962.	7.3	13
69	Scalable production of solid-immersion lenses for quantum emitters in silicon carbide. Applied Physics Letters, 2020, 117, .	1.5	12
70	Geometry-based circulation of local photonic transport in a triangular metastructure. Physical Review A, 2020, 102, .	1.0	5
71	Versatile direct-writing of dopants in a solid state host through recoil implantation. Nature Communications, 2020, 11, 5039.	5.8	15
72	Observation of site-controlled localized charged excitons in CrI3/WSe2 heterostructures. Nature Communications, 2020, 11, 5502.	5.8	23

	CITATION REF	PORT	
#	Article	IF	CITATIONS
73	Analyzing photon-count heralded entanglement generation between solid-state spin qubits by decomposing the master-equation dynamics. Physical Review A, 2020, 102, .	1.0	13
74	Bright High-Purity Quantum Emitters in Aluminum Nitride Integrated Photonics. ACS Photonics, 2020, 7, 2650-2657.	3.2	33
75	Integrated single photon emitters. AVS Quantum Science, 2020, 2, .	1.8	40
76	Coherence Time Extension by Large-Scale Optical Spin Polarization in a Rare-Earth Doped Crystal. Physical Review X, 2020, 10, .	2.8	11
77	Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing. ACS Nano, 2020, 14, 13406-13417.	7.3	75
78	Bright Nitrogen-Vacancy Centers in Diamond Inverted Nanocones. ACS Photonics, 2020, 7, 2739-2747.	3.2	23
79	Imaging with Nanometer Resolution Using Optically Active Defects in Silicon Carbide. Physical Review Applied, 2020, 14, .	1.5	15
80	Strong spin–orbit quenching via the product Jahn–Teller effect in neutral group IV qubits in diamond. Npj Quantum Materials, 2020, 5, .	1.8	16
81	A single silicon colour centre resolved. Nature Electronics, 2020, 3, 734-735.	13.1	2
82	Optically Detected Magnetic Resonance in Neutral Silicon Vacancy Centers in Diamond via Bound Exciton States. Physical Review Letters, 2020, 125, 237402.	2.9	36
83	Group-III quantum defects in diamond are stable spin-1 color centers. Physical Review B, 2020, 102, .	1.1	23
84	Prevalence of oxygen defects in an in-plane anisotropic transition metal dichalcogenide. Physical Review B, 2020, 102, .	1.1	10
85	Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions. Physical Review Letters, 2020, 125, 247702.	2.9	51
86	Visible and Infrared Photoluminescence in Hexagonal Silicon Carbide by Direct Femtosecond Laser Writing. IOP Conference Series: Materials Science and Engineering, 2020, 840, 012010.	0.3	4
87	Orbital and Spin Dynamics of Single Neutrally-Charged Nitrogen-Vacancy Centers in Diamond. Physical Review Letters, 2020, 125, 193601.	2.9	16
88	Optical Gating of Photoluminescence from Color Centers in Hexagonal Boron Nitride. Nano Letters, 2020, 20, 4256-4263.	4.5	32
89	Low-Temperature Electron–Phonon Interaction of Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics, 2020, 7, 1410-1417.	3.2	30
90	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mn>3</mml:mn> <mml:mi>C</mml:mi> -silicon carbide: Negative- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi> properties and</mml:math 	> 1.1	10

#	Article		CITATIONS
91	Coupling Hexagonal Boron Nitride Quantum Emitters to Photonic Crystal Cavities. ACS Nano, 2020, 14, 7085-7091.		64
92	Dependence of Photoluminescence Emission on Excitation Power and Temperature in Highly Doped 6H- SiC. Physical Review Applied, 2020, 13, .	1.5	8
93	Coherent Control of Nitrogen-Vacancy Center Spins in Silicon Carbide at Room Temperature. Physical Review Letters, 2020, 124, 223601.	2.9	102
94	Developing silicon carbide for quantum spintronics. Applied Physics Letters, 2020, 116, .	1.5	101
95	Spectroscopy properties of a single praseodymium ion in a crystal. New Journal of Physics, 2020, 22, 073002.	1.2	10
96	Role of knock-on in electron beam induced etching of diamond. Carbon, 2020, 164, 51-58.	5.4	8
97	Room-temperature coherent control of implanted defect spins in silicon carbide. Npj Quantum Information, 2020, 6, .	2.8	25
98	Selective acoustic control of photon-mediated qubit-qubit interactions. Physical Review A, 2020, 101, .	1.0	5
99	Solid-state laser refrigeration of a composite semiconductor Yb:YLiF4 optomechanical resonator. Nature Communications, 2020, 11, 3235.	5.8	17
100	Hexagonal boron nitride: a review of the emerging material platform for single-photon sources and the spin–photon interface. Beilstein Journal of Nanotechnology, 2020, 11, 740-769.	1.5	40
101	Dynamical nuclear decoupling of electron spins in molecular graphenoid radicals and biradicals. Physical Review B, 2020, 101, .	1.1	7
102	Highly nitrogen-vacancy doped diamond nanostructures fabricated by ion implantation and optimum annealing. APL Materials, 2020, 8, 031113.	2.2	14
103	Large-scale integration of artificial atoms in hybrid photonic circuits. Nature, 2020, 583, 226-231.	13.7	248
104	Color centers based on heavy group-IV elements. Semiconductors and Semimetals, 2020, 103, 237-256.	0.4	5
105	Spin coherence and depths of single nitrogen-vacancy centers created by ion implantation into diamond via screening masks. Journal of Applied Physics, 2020, 127, 244502.	1.1	4
106	Optical Spin-Wave Storage in a Solid-State Hybridized Electron-Nuclear Spin Ensemble. Physical Review Letters, 2020, 124, 053606.	2.9	42
107	Identification and Control of Electron-Nuclear Spin Defects in Diamond. Physical Review Letters, 2020, 124, 083602.	2.9	18
108	Silicon carbide color centers for quantum applications. JPhys Photonics, 2020, 2, 022001.	2.2	129

#	Article		CITATIONS
109	Solid-state single photon source with Fourier transform limited lines at room temperature. Physical Review B, 2020, 101, .		56
110	Photonic devices fabricated from (111)â€oriented single crystal diamond. InformaÄnÃ-Materiály, 2020, 2, 1241-1246.	8.5	8
111	Generation of Tin-Vacancy Centers in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth. Nano Letters, 2020, 20, 1614-1619.	4.5	40
112	Construction and operation of a tabletop system for nanoscale magnetometry with single nitrogen-vacancy centers in diamond. AIP Advances, 2020, 10, .	0.6	19
113	Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nature Materials, 2020, 19, 534-539.	13.3	130
114	Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nature Materials, 2020, 19, 540-545.	13.3	260
115	Real-Time Charge Initialization of Diamond Nitrogen-Vacancy Centers for Enhanced Spin Readout. Physical Review Applied, 2020, 13, .	1.5	29
116	Hidden Fine Structure of Quantum Defects Revealed by Single Carbon Nanotube Magneto-Photoluminescence. ACS Nano, 2020, 14, 3451-3460.	7.3	14
117	Defect states in monolayer hexagonal BN: A comparative DFT and DFT-1/2 study. Physica B: Condensed Matter, 2020, 584, 411959.	1.3	4
118	Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond. Physical Review Letters, 2020, 124, 023602.	2.9	119
120	Spin-phonon relaxation times in centrosymmetric materials from first principles. Physical Review B, 2020, 101, .	1.1	16
121	Coherent control and high-fidelity readout of chromium ions in commercial silicon carbide. Npj Quantum Information, 2020, 6, .	2.8	42
122	Strain-Correlated Localized Exciton Energy in Atomically Thin Semiconductors. ACS Photonics, 2020, 7, 1135-1140.	3.2	25
123	Strainâ€Induced Modification of the Optical Characteristics of Quantum Emitters in Hexagonal Boron Nitride. Advanced Materials, 2020, 32, e1908316.	11.1	72
124	Reactive ion etching of single crystal diamond by inductively coupled plasma: State of the art and catalog of recipes. Diamond and Related Materials, 2020, 108, 107839.	1.8	17
125	Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nature Materials, 2020, 19, 624-629.	13.3	109
126	Spinning up quantum defects in 2D materials. Nature Materials, 2020, 19, 487-489.	13.3	18
127	Micro-manipulation of nanodiamonds containing NV centers for quantum applications. Diamond and Related Materials, 2020, 106, 107840.	1.8	10

#	Article		CITATIONS
128	Novel color center platforms enabling fundamental scientific discovery. InformaÄnÃ-Materiály, 2021, 3, 869-890.		29
129	Photonic Bound States in the Continuum: From Basics to Applications. Advanced Optical Materials, 2021, 9, .	3.6	237
130	Grain Dependent Growth of Bright Quantum Emitters in Hexagonal Boron Nitride. Advanced Optical Materials, 2021, 9, .	3.6	13
131	Quantum Information and Algorithms for Correlated Quantum Matter. Chemical Reviews, 2021, 121, 3061-3120.	23.0	67
132	Jahn–Teller and Pseudo-Jahn–Teller Effects: From Particular Features to General Tools in Exploring Molecular and Solid State Properties. Chemical Reviews, 2021, 121, 1463-1512.	23.0	67
133	Diamond quantum nanophotonics and optomechanics. Semiconductors and Semimetals, 2021, 104, 219-251.	0.4	2
134	Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nature Materials, 2021, 20, 321-328.	13.3	210
135	Gate-Switchable Arrays of Quantum Light Emitters in Contacted Monolayer MoS ₂ van der Waals Heterodevices. Nano Letters, 2021, 21, 1040-1046.	4.5	36
136	The characteristics of Ib diamond crystals synthesized in a Fe–Ni–C system with different SiC contents. CrystEngComm, 2021, 23, 6070-6078.	1.3	7
137	Diamond with nitrogen: states, control, and applications. Functional Diamond, 2021, 1, 63-82.	1.7	30
138	Single-crystal 3C-SiC-on-insulator platform for integrated quantum photonics. Optics Express, 2021, 29, 1011.	1.7	9
139	Interlayer Exciton Transport in MoSe ₂ /WSe ₂ Heterostructures. ACS Nano, 2021, 15, 1539-1547.	7.3	61
140	Recoil implantation using gas-phase precursor molecules. Nanoscale, 2021, 13, 9322-9327.	2.8	2
141	Roadmap on quantum nanotechnologies. Nanotechnology, 2021, 32, 162003.	1.3	45
142	Two-Dimensional Hexagonal Boron Nitride for Building Next-Generation Energy-Efficient Devices. ACS Energy Letters, 2021, 6, 985-996.	8.8	37
143	Semiconductor qubits in practice. Nature Reviews Physics, 2021, 3, 157-177.	11.9	164
144	Hybridized Defects in Solid-State Materials as Artificial Molecules. ACS Nano, 2021, 15, 5240-5248.	7.3	13
145	Development of Quantum Interconnects (QuICs) for Next-Generation Information Technologies. PRX Quantum, 2021, 2, .	3.5	172

#	Article		CITATIONS
146	Collective decay induce quantum phase transition in a well-controlled hybrid quantum system. Results in Physics, 2021, 21, 103832.		5
147	Quantum Simulators: Architectures and Opportunities. PRX Quantum, 2021, 2, .	3.5	229
148	Silicon carbide single-photon sources: challenges and prospects. Materials for Quantum Technology, 2021, 1, 023001.	1.2	32
149	Photoluminescence line shapes for color centers in silicon carbide from density functional theory calculations. Physical Review B, 2021, 103, .	1.1	16
150	Chiral single-photon switch-assisted quantum logic gate with a nitrogen-vacancy center in a hybrid system. Photonics Research, 2021, 9, 405.	3.4	15
151	Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride. Physical Review B, 2021, 103, .	1.1	20
152	Hybrid III-V diamond photonic platform for quantum nodes based on neutral silicon vacancy centers in diamond. Optics Express, 2021, 29, 9174.	1.7	8
153	Field-based design of a resonant dielectric antenna for coherent spin-photon interfaces. Optics Express, 2021, 29, 16469.	1.7	7
154	Improvement on the manipulation of a single nitrogen-vacancy spin and microwave photon at single-quantum level. Communications in Theoretical Physics, 2021, 73, 065101.	1.1	5
155	Stimulated Emission Depletion Spectroscopy of Color Centers in Hexagonal Boron Nitride. ACS Photonics, 2021, 8, 1007-1012.	3.2	17
157	Quantum guidelines for solid-state spin defects. Nature Reviews Materials, 2021, 6, 906-925.	23.3	185
158	Single-Crystal Diamond Needle Fabrication Using Hot-Filament Chemical Vapor Deposition. Materials, 2021, 14, 2320.	1.3	11
159	Scalable and Deterministic Fabrication of Quantum Emitter Arrays from Hexagonal Boron Nitride. Nano Letters, 2021, 21, 3626-3632.	4.5	42
160	Nanoscopic Charge Fluctuations in a Gallium Phosphide Waveguide Measured by Single Molecules. Physical Review Letters, 2021, 126, 133602.	2.9	10
161	Integrated Magnetometry Platform with Stackable Waveguide-Assisted Detection Channels for Sensing Arrays. Physical Review Applied, 2021, 15, .	1.5	13
162	Accurate prediction of the properties of materials using the <scp>CAMâ€B3LYP</scp> density functional. Journal of Computational Chemistry, 2021, 42, 1486-1497.	1.5	35
163	Quantum computing hardware in the cloud: Should a computational chemist care?. International Journal of Quantum Chemistry, 2021, 121, e26688.	1.0	2
164	Bottomâ€Up Synthesis of Single Crystal Diamond Pyramids Containing Germanium Vacancy Centers. Advanced Quantum Technologies, 2021, 4, 2100037.	1.8	1

#	Article	IF	CITATIONS
165	Synthetic tuning of the quantum properties of open-shell radicaloids. CheM, 2021, 7, 1363-1378.	5.8	6
166	Creation of Negatively Charged Boron Vacancies in Hexagonal Boron Nitride Crystal by Electron Irradiation and Mechanism of Inhomogeneous Broadening of Boron Vacancy-Related Spin Resonance Lines. Nanomaterials, 2021, 11, 1373.	1.9	25
167	Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers in diamond. , 2021, , 403-412.		0
168	Manipulating Singleâ€Photon Emission from Point Defects in Diamond and Silicon Carbide. Advanced Quantum Technologies, 2021, 4, 2100003.	1.8	25
169	Experimental Optical Properties of Single-Photon Emitters in Aluminum Nitride Films. Journal of Physical Chemistry C, 2021, 125, 11043-11047.	1.5	9
170	Quantum photonics in triangular-cross-section nanodevices in silicon carbide. JPhys Photonics, 2021, 3, 034008.	2.2	13
171	Removing the orientational degeneracy of the TS defect in 4H–SiC by electric fields and strain. New Journal of Physics, 2021, 23, 073002.	1.2	4
172	Quantum Sensing for Energy Applications: Review and Perspective. Advanced Quantum Technologies, 2021, 4, 2100049.	1.8	33
173	Hyperfine and nuclear quadrupole splitting of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi>NV</mml:mi>ground state in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>4</mml:mn><mml:mi>HSiC_PluningLPuning_P_2021_102</mml:mi></mml:mrow></mml:math </mml:mrow></mml:msup></mml:math 	mrow> <n 1.1 1i><td>nml:mo>â^'<!--<br-->5 mrow></td></n 	nml:mo>â^' <br 5 mrow>
174	Nanotesla Magnetometry with the Silicon Vacancy in Silicon Carbide. Physical Review Applied, 2021, 15,	1.5	18
175	Nanomechanical and Optomechanical Coupling in Silicon Carbide / Hexagonal Boron Nitride Hybrid Resonator. , 2021, , .		2
176	Cavity quantum electrodynamics design with single photon emitters in hexagonal boron nitride. Applied Physics Letters, 2021, 118, 244003.	1.5	10
177	Optimized diamond inverted nanocones for enhanced color center to fiber coupling. Applied Physics Letters, 2021, 118, .	1.5	14
178	Charge state control of the silicon vacancy and divacancy in silicon carbide. Journal of Applied Physics, 2021, 129, .	1.1	16
179	Entanglement of dark electron-nuclear spin defects in diamond. Nature Communications, 2021, 12, 3470.	5.8	29
180	Quantum Photonic Interface for Tin-Vacancy Centers in Diamond. Physical Review X, 2021, 11, .	2.8	34
181	Room-temperature coherent manipulation of single-spin qubits in silicon carbide with a high readout contrast. National Science Review, 2022, 9, .	4.6	44
182	Coupling Spin Defects in Hexagonal Boron Nitride to Monolithic Bullseye Cavities. Nano Letters, 2021, 21, 6549-6555.	4.5	49

TION

#	Article	IF	CITATIONS
183	Silicon photonic quantum computing with spin qubits. APL Photonics, 2021, 6, .	3.0	22
184	Phonon dephasing and spectral diffusion of quantum emitters in hexagonal boron nitride. Optica, 2021, 8, 1153.	4.8	21
185	Hyperfine-mediated transitions between electronic spin-1/2 levels of transition metal defects in SiC. New Journal of Physics, 2021, 23, 083010.	1.2	5
186	Understanding the photonics of single color-center emission in a high-indexed nano-pillar. Journal of Applied Physics, 2021, 130, .	1.1	5
187	All optical control of magnetization in quantum confined ultrathin magnetic metals. Scientific Reports, 2021, 11, 15976.	1.6	4
188	High-Resolution, High-Contrast Optical Interface for Defect Qubits. ACS Photonics, 2021, 8, 2642-2649.	3.2	3
189	Integration of hBN Quantum Emitters in Monolithically Fabricated Waveguides. ACS Photonics, 2021, 8, 2966-2972.	3.2	34
190	Optoelectronics of Color Centers in Diamond and Silicon Carbide: From Singleâ€Photon Luminescence to Electrically Controlled Spin Qubits. Advanced Quantum Technologies, 2021, 4, 2100048.	1.8	6
191	2022 Roadmap on integrated quantum photonics. JPhys Photonics, 2022, 4, 012501.	2.2	152
192	Nanoscale Positioning Approaches for Integrating Single Solidâ€5tate Quantum Emitters with Photonic Nanostructures. Laser and Photonics Reviews, 2021, 15, 2100223.	4.4	27
193	Defect Polaritons from First Principles. ACS Nano, 2021, 15, 15142-15152.	7.3	7
194	Hybrid Quantum Photonics Based on Artificial Atoms Placed Inside One Hole of a Photonic Crystal Cavity. ACS Photonics, 2021, 8, 2635-2641.	3.2	18
195	Extended spin coherence of the zinc-vacancy centers in ZnSe with fast optical access. Communications Materials, 2021, 2, .	2.9	5
196	Nanoscale axial position and orientation measurement of hexagonal boron nitride quantum emitters using a tunable nanophotonic environment. Nanotechnology, 2022, 33, 015001.	1.3	7
197	Demonstration of Hybrid High- <i>Q</i> Hexagonal Boron Nitride Microresonators. ACS Photonics, 2021, 8, 3027-3033.	3.2	7
198	High-pressure synthesis and characterization of diamond from europium containing systems. Carbon, 2021, 182, 815-824.	5.4	4
199	Spin Polarization, Electron–Phonon Coupling, and Zero-Phonon Line of the NV Center in 3C-SiC. Nano Letters, 2021, 21, 8119-8125.	4.5	10
200	Experimental quantification of the robustness of adiabatic rapid passage for quantum state inversion in semiconductor quantum dots. Optics Express, 2021, 29, 41766.	1.7	7

		CITATION REI	PORT	
#	Article		IF	CITATIONS
201	Gate-controlled quantum dots in monolayer WSe2. Applied Physics Letters, 2021, 119, .		1.5	15
202	Dephasing of Exchangeâ€Coupled Spins in Quantum Dots for Quantum Computing. Advanced Technologies, 2021, 4, 2100018.	Quantum	1.8	4
203	Synthesis of hexagonal boron nitrides by chemical vapor deposition and their use as single pho emitters. Nano Materials Science, 2021, 3, 291-312.	ton	3.9	29
204	Electric field induced tuning of electronic correlation in weakly confining quantum dots. Physic Review B, 2021, 104, .	al	1.1	15
205	Coherent Spin-Photon Interface with Waveguide Induced Cycling Transitions. Physical Review L 2021, 126, 013602.	etters,	2.9	27
206	Engineering the Luminescence and Generation of Individual Defect Emitters in Atomically Thin MoS ₂ . ACS Photonics, 2021, 8, 669-677.		3.2	48
207	Raman spectrum of Janus transition metal dichalcogenide monolayers WSSe and MoSSe. Physi Review B, 2021, 103, .	cal	1.1	63
208	The Development of Quantum Emitters Based on Semiconductor Quantum Dots. Lecture Note Nanoscale Science and Technology, 2020, , 83-106.	s in	0.4	3
209	Colloidal Quantum Dots as Platforms for Quantum Information Science. Chemical Reviews, 202 3186-3233.	21, 121,	23.0	138
210	Photonic crystal cavity-enhanced emission from silicon vacancy centers in polycrystalline diamo achieved without postfabrication fine-tuning. Nanoscale, 2020, 12, 13055-13063.	nd	2.8	13
211	Identification and thermal stability of point defects in neutron-irradiated hexagonal boron nitric (h-BN). Journal Physics D: Applied Physics, 2021, 54, 065303.	le	1.3	8
212	Precise high-fidelity electron–nuclear spin entangling gates in NV centers via hybrid dynamica decoupling sequences. New Journal of Physics, 2020, 22, 073059.	al	1.2	5
213	Spin-relaxation times exceeding seconds for color centers with strong spin–orbit coupling in New Journal of Physics, 2020, 22, 103051.	SiC.	1.2	15
214	Doubly charged silicon vacancy center, Si-N complexes, and photochromism in N and Si codope diamond. Physical Review B, 2020, 101, . Transition metal qubits in Ammi: math	d	1.1	13
215	xmins:mml="http://www.w3.org/1998/Math/Math/ML"> <mml:mrow><mml:mn>4</mml:mn><n -silicon carbide: A correlated EPR and DFT study of the spin <mml:math xmlns:mml="http://www.w3.org/1998/Math/Math/ML"><mml:mrow><mml:mi>S</mml:mi><mr vanadium <mml:math< td=""><td>nl:mo>=<td>>> congmi:mr</td><td>n>112x/mml:m</td></td></mml:math<></mr </mml:mrow></mml:math </n </mml:mrow>	nl:mo>= <td>>> congmi:mr</td> <td>n>112x/mml:m</td>	>> congmi:mr	n>112x/mml:m
216	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup><mml:mrow><mml:mi mathyariant="n Dipole-coupled emitters as deterministic entangled photon-pair sources. Physical Review Resea 2020, 2, .</mml:mi </mml:mrow></mml:msup>	rch,	1.3	9
217	Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects. PRX Quantum,	2020, 1, .	3.5	89
218	Photodynamics and quantum efficiency of germanium vacancy color centers in diamond. Advar Photonics, 2019, 1, 1.	nced	6.2	16

#	Article	IF	CITATIONS
219	Hexagonal boron nitride (h-BN) 2D nanoscale devices for classical and quantum signal transduction. , 2019, , .		2
220	Quantum microwave-to-optical conversion in electrically driven multilayer graphene. Optics Express, 2019, 27, 5945.	1.7	20
221	Engineering telecom single-photon emitters in silicon for scalable quantum photonics. Optics Express, 2020, 28, 26111.	1.7	43
222	Quantum emission from localized defects in zinc sulfide. Optics Letters, 2019, 44, 4873.	1.7	11
223	High-quality integrated microdisk resonators in the visible-to-near-infrared wavelength range on a 3C-silicon carbide-on-insulator platform. Optics Letters, 2020, 45, 153.	1.7	23
224	Metal-dielectric nanoantenna for radiation control of a single-photon emitter. Optical Materials Express, 2020, 10, 29.	1.6	15
225	Optical contrast signatures of hexagonal boron nitride on a device platform. Optical Materials Express, 2019, 9, 1223.	1.6	7
226	Bottom up engineering of single crystal diamond membranes with germanium vacancy color centers. Optical Materials Express, 2019, 9, 4708.	1.6	13
227	Plasma treatments and photonic nanostructures for shallow nitrogen vacancy centers in diamond. Optical Materials Express, 2019, 9, 4716.	1.6	11
228	Cavity quantum electrodynamics with color centers in diamond. Optica, 2020, 7, 1232.	4.8	72
229	Evidence of photochromism in a hexagonal boron nitride single-photon emitter. Optica, 2021, 8, 1.	4.8	18
230	Purcell-enhanced emission from individual SiV ^{â^²} center in nanodiamonds coupled to a Si ₃ N ₄ -based, photonic crystal cavity. Nanophotonics, 2020, 9, 3655-3662.	2.9	21
231	Adjoint-optimized nanoscale light extractor for nitrogen-vacancy centers in diamond. Nanophotonics, 2020, 10, 393-401.	2.9	13
232	Color Centers Enabled by Direct Femto-Second Laser Writing in Wide Bandgap Semiconductors. Nanomaterials, 2021, 11, 72.	1.9	30
233	Generation of High-Density Quantum Emitters in High-Quality, Exfoliated Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2021, 13, 47283-47292.	4.0	13
234	Optical activation and detection of charge transport between individual colour centres in diamond. Nature Electronics, 2021, 4, 717-724.	13.1	23
235	Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register. Quantum - the Open Journal for Quantum Science, 0, 5, 565.	0.0	17
236	Creating Quantum Emitters in Hexagonal Boron Nitride Deterministically on Chip-Compatible Substrates. Nano Letters, 2021, 21, 8182-8189.	4.5	45

	Сітаті	CITATION REPORT	
#	Article	IF	CITATIONS
237	Nonâ€Volatile Photoâ€Switch Using a Diamond pn Junction. Advanced Electronic Materials, 0, , 2100542.	2.6	3
238	Photo-Induced Magneto-Optical Kerr Effect in Europium Sulfide EuS. Physics of the Solid State, 2020, 62, 1619-1623.	0.2	Ο
239	Thermo-optical dynamics of a nonlinear GaInP photonic crystal nanocavity depend on the optical mode profile. OSA Continuum, 2020, 3, 1879.	1.8	4
240	Suppression of decoherence tied to electron–phonon coupling in telecom-compatible quantum dots: low-threshold reappearance regime for quantum state inversion. Optics Letters, 2020, 45, 6498.	1.7	7
241	Single-mode, single-polarization and dispersion-flattened waveguides based on silicon carbide and diamond. Optics and Laser Technology, 2022, 148, 107692.	2.2	1
242	Bright Silicon Carbide Single-Photon Emitting Diodes at Low Temperatures: Toward Quantum Photonics Applications. Nanomaterials, 2021, 11, 3177.	1.9	0
243	High finesse microcavities in the optical telecom O-band. Applied Physics Letters, 2021, 119, 221112.	1.5	7
244	Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nature Materials, 2022, 21, 67-73.	13.3	80
245	Silicon carbide incorporates quantum gates. Nature Materials, 2022, 21, 8-9.	13.3	2
246	Fidelity of time-bin-entangled multiphoton states from a quantum emitter. Physical Review A, 2021, 104,	1.0	8
248	Quantum Control of the Tin-Vacancy Spin Qubit in Diamond. Physical Review X, 2021, 11, .	2.8	30
249	Laser Writing of Color Centers. Laser and Photonics Reviews, 2022, 16, .	4.4	23
250	Site-controlled telecom-wavelength single-photon emitters in atomically-thin MoTe2. Nature Communications, 2021, 12, 6753.	5.8	41
251	Tuning the Optical Properties of a MoSe ₂ Monolayer Using Nanoscale Plasmonic Antennas. Nano Letters, 2022, 22, 561-569.	4.5	11
252	Decoherence-protected quantum register of nuclear spins in diamond. Quantum Science and Technology, 2022, 7, 025015.	2.6	6
253	Quantum photonics with layered 2D materials. Nature Reviews Physics, 2022, 4, 219-236.	11.9	82
254	Rational Control on Quantum Emitter Formation in Carbon-Doped Monolayer Hexagonal Boron Nitride. ACS Applied Materials & Interfaces, 2022, 14, 3189-3198.	4.0	9
255	Direct writing of divacancy centers in silicon carbide by femtosecond laser irradiation and subsequent thermal annealing. Applied Physics Letters, 2022, 120, .	1.5	12

#	Article	IF	Citations
256	Using Molecular Design to Enhance the Coherence Time of Quintet Multiexcitons Generated by Singlet Fission in Single Crystals. Journal of the American Chemical Society, 2022, 144, 2276-2283.	6.6	35
257	Singleâ€Photon Emitters in Layered Van der Waals Materials. Physica Status Solidi (B): Basic Research, 2022, 259, .	0.7	19
258	Density functionals with asymptotic-potential corrections are required for the simulation of spectroscopic properties of materials. Chemical Science, 2022, 13, 1492-1503.	3.7	7
259	Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride. Nature Communications, 2022, 13, 618.	5.8	97
260	Prospects and challenges of quantum emitters in perovskites nanocrystals. Applied Materials Today, 2022, 26, 101401.	2.3	6
261	Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures. Applied Physics Reviews, 2022, 9, .	5.5	37
262	Towards a quantum interface between spin waves and paramagnetic spin baths. Physical Review B, 2022, 105, .	1.1	11
263	Sub-bandgap photoluminescence properties of multilayer h-BN-on-sapphire. Nanotechnology, 2022, 33, 215702.	1.3	2
264	Addressing Single Nuclear Spins Quantum Memories by a Central Electron Spin. Applied Magnetic Resonance, 2022, 53, 1317-1330.	0.6	4
265	Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths. Nature Communications, 2022, 13, 748.	5.8	19
266	High-speed programmable photonic circuits in a cryogenically compatible, visible–near-infrared 200 mm CMOS architecture. Nature Photonics, 2022, 16, 59-65.	15.6	91
267	Spin defects in hexagonal boron nitride for strain sensing on nanopillar arrays. Nanoscale, 2022, 14, 5239-5244.	2.8	17
268	Tunable microcavities coupled to rare-earth quantum emitters. Optica, 2022, 9, 445.	4.8	29
269	Carbon defect qubit in two-dimensional WS2. Nature Communications, 2022, 13, 1210.	5.8	12
270	High-fidelity multiphoton-entangled cluster state with solid-state quantum emitters in photonic nanostructures. Physical Review A, 2022, 105, .	1.0	16
271	Deep-Learning-Enhanced Single-Spin Readout in Silicon Carbide at Room Temperature. Physical Review Applied, 2022, 17, .	1.5	2
272	Interplay between multipole expansion of exchange interaction and Coulomb correlation of exciton in colloidal II–VI quantum dots. Electronic Structure, 2022, 4, 015006.	1.0	6
273	Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon interface. Npj Quantum Information, 2022, 8, .	2.8	6

#	Article	IF	CITATIONS
274	Room-temperature coherence boosting of molecular graphenoids by environmental spectral decomposition. Physical Review B, 2022, 105, .	1.1	0
275	A diamond-confined open microcavity featuring a high quality-factor and a small mode-volume. Journal of Applied Physics, 2022, 131, .	1.1	10
276	Generating Bright Emissive States by Modulating the Bandgap of Monolayer Tungsten Diselenide. Journal of Physical Chemistry C, 2022, 126, 5598-5606.	1.5	3
277	Engineering Optically Active Defects in Hexagonal Boron Nitride Using Focused Ion Beam and Water. ACS Nano, 2022, 16, 3695-3703.	7.3	28
278	Investigation of electronic excited states in single-molecule junctions. Nano Research, 2022, 15, 5726-5745.	5.8	7
279	Quantum information processing with integrated silicon carbide photonics. Journal of Applied Physics, 2022, 131, .	1.1	16
280	Generalized scaling of spin qubit coherence in over 12,000 host materials. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2121808119.	3.3	38
281	Integrated silicon carbide electro-optic modulator. Nature Communications, 2022, 13, 1851.	5.8	46
282	Spin-dependent vibronic response of a carbon radical ion in two-dimensional WS2. Nature Communications, 2021, 12, 7287.	5.8	15
283	Silicon Carbide Photonics Bridging Quantum Technology. ACS Photonics, 2022, 9, 1434-1457.	3.2	40
284	Quantum Communication Using Semiconductor Quantum Dots. Advanced Quantum Technologies, 2022, 5, .	1.8	64
285	Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD. FlatChem, 2022, 33, 100366.	2.8	5
286	Characterization methods for defects and devices in silicon carbide. Journal of Applied Physics, 2022, 131, .	1.1	15
287	Room-Temperature Emitters in Wafer-Scale Few-Layer Hbn by Atmospheric Pressure Cvd. SSRN Electronic Journal, 0, , .	0.4	0
288	Charge State Manipulation of NV Centers in Diamond under Phonon-Assisted Anti-Stokes Excitation of NV ⁰ . ACS Photonics, 2022, 9, 1605-1613.	3.2	6
289	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>A</mml:mi><mml:mi>b</mml:mi> and group theoretical study of properties of a carbon trimer defect in hexagonal boron nitride. Physical Review B, 2022, 105</mml:mrow></mml:math 	<td>owy₃<mml:me< td=""></mml:me<></td>	owy₃ <mml:me< td=""></mml:me<>
290	A bright future for silicon in quantum technologies. Journal of Applied Physics, 2022, 131, .	1.1	7
291	Synergistic enhancement of spin–phonon interaction in a hybrid system. Photonics Research, 2022, 10, 1640.	3.4	11

ARTICLE IF CITATIONS # First-principles study of the T center in silicon. Physical Review Materials, 2022, 6, . 292 0.9 12 Erbium-implanted materials for quantum communication applications. Physical Review B, 2022, 105, . 1.1 24 $\label{eq:statespin-resonance} \end{tabular} \label{eq:statespin-resonance} \end{tabular} \label{eq:statespin-resonance} \end{tabular} \end{$ 294 5.8 21 hexagonal boron nitride. Nature Communications, 2022, 13, . Electrical control of quantum emitters in a Van der Waals heterostructure. Light: Science and Applications, 2022, 11, . Progress of quantum entanglement in a trapped-ion based quantum computer. Current Applied Physics, 296 1.1 3 2022,,. Quantum state transfer between a frequency-encoded photonic qubit and a quantum-dot spin in a nanophotonic waveguide. Physical Review A, 2022, 105, . 1.0 Diamond Spectroscopy, Defect Centers, Color, and Treatments. Reviews in Mineralogy and 298 2.2 17 Geochemistry, 2022, 88, 637-688. Identification of the phosphorus-doping defect in MgS as a potential qubit. Chinese Physics B, O, , . 299 300 Modified divacancies in 4H-SiC. Journal of Applied Physics, 2022, 132, . 1.1 3 Towards compact high-efficiency grating couplers for visible wavelength photonics. Optics Letters, 0, 1.7 Anisotropic Band-Edge Absorption of Millimeter-Sized Zn(3-ptz)₂ Single-Crystal 303 3 1.6 Metal–Organic Frameworks. ACS Omega, 2022, 7, 24432-24437. Micius quantum experiments in space. Reviews of Modern Physics, 2022, 94, . 16.4 Dynamical quantum phase transition in diamond: Applications in quantum metrology. Physical Review 305 1.1 3 B, 2022, 106, . Coherent Quantum Emitters in Hexagonal Boron Nitride. Advanced Quantum Technologies, 2022, 5, . 306 1.8 First-principles study of transition metal dopants as spin qubits. Physical Review Materials, 2022, 6, . 307 0.9 4 Gaussian entanglement properties in a completely dynamical Arthurs–Kelly measurement process. 308 Quantum Information Processing, 2022, 21, . Microscopic Study of Optically Stable Coherent Color Centers in Diamond Generated by 309 1.53 High-Temperature Annealing. Physical Review Applied, 2022, 18, . Enhancing Spin Coherence in Optically Addressable Molecular Qubits through Host-Matrix Control. 2.8 Physical Review X, 2022, 12, .

#	Article	IF	CITATIONS
311	High-resolution two-photon fluorescence microscope imaging of nanodiamonds containing NV color centers. Results in Physics, 2022, 40, 105874.	2.0	2
312	Silicon carbide for integrated photonics. Applied Physics Reviews, 2022, 9, .	5.5	30
314	Piezoelectric control of spin quantum memories in a cryogenic programmable photonic circuit platform. , 2022, , .		1
315	Quantum Control of the Tin-Vacancy Spin Qubit in Diamond. , 2022, , .		2
316	Coupling spin defects in hexagonal boron nitride to titanium dioxide ring resonators. Nanoscale, 2022, 14, 14950-14955.	2.8	4
317	Deterministic Creation of Single Nitrogen-Vacancy Center in Diamond Using Femtosecond Laser Writing. , 2022, , .		0
318	On-Chip Quantum Devices Enabled by Shallow-Implanted Vacancy Centers in Laser-Written Waveguides in Diamond. , 2022, , .		0
319	Predicting solid state material platforms for quantum technologies. Npj Computational Materials, 2022, 8, .	3.5	3
320	Symmetryâ€Protected Two‣evel System in the H ₃ Center Enabled by a Spin–Photon Interface: A Competitive Qubit Candidate for the NISQ Technology. Advanced Quantum Technologies, 0, , 2200044.	1.8	1
321	First-principles theory of extending the spin qubit coherence time in hexagonal boron nitride. Npj 2D Materials and Applications, 2022, 6, .	3.9	9
322	Single quantum emitters with spin ground states based on Cl bound excitons in ZnSe. Physical Review A, 2022, 106, .	1.0	5
323	Super-Poissonian Light Statistics from Individual Silicon Vacancy Centers Coupled to a Laser-Written Diamond Waveguide. ACS Photonics, 2022, 9, 3366-3373.	3.2	2
324	2D Boron Carbide, Carbon Nitride, and Silicon Carbide: A Theoretical Prediction. ACS Applied Electronic Materials, 2022, 4, 4903-4911.	2.0	4
325	Tailored light emission from color centers in nanodiamond using self-assembled photonic crystals. Frontiers in Nanotechnology, 0, 4, .	2.4	1
326	Controlling the photoluminescence of quantum emitters in hexagonal boron nitride by external magnetic fields. 2D Materials, 2023, 10, 015004.	2.0	4
327	Notch-filtered adiabatic rapid passage for optically driven quantum light sources. APL Photonics, 2022, 7, .	3.0	7
328	Efficient Analysis of Photoluminescence Images for the Classification of Single-Photon Emitters. ACS Photonics, 2022, 9, 3540-3549.	3.2	2
329	Two-Photon Interference of Single Photons from Dissimilar Sources. Physical Review Applied, 2022, 18,	1.5	2

#	Article	IF	CITATIONS
330	Hybrid quantum nanophotonic devices with color centers in nanodiamonds [Invited]. Optical Materials Express, 2023, 13, 191.	1.6	11
331	Single-exciton trapping in an electrostatically defined two-dimensional semiconductor quantum dot. Physical Review B, 2022, 106, .	1.1	1
332	Individual Addressing Closely-Spaced Solid-State Defect Qubits with Microsphere-Assisted Microscopy. , 2022, , .		0
333	Quantum memory based on SiV-centers in nanodiamonds. Laser Physics Letters, 2022, 19, 125206.	0.6	1
334	Monitoring of the recovery of ion-damaged 4H-SiC with in situ synchrotron X-ray diffraction as a tool for strain-engineering. Journal of Materials Science, 2022, 57, 20309-20319.	1.7	1
335	Greatly Enhanced Emission from Spin Defects in Hexagonal Boron Nitride Enabled by a Low-Loss Plasmonic Nanocavity. Nano Letters, 2023, 23, 25-33.	4.5	15
336	2023 roadmap for materials for quantum technologies. Materials for Quantum Technology, 2023, 3, 012501.	1.2	12
337	The dependence of timing jitter of superconducting nanowire single-photon detectors on the multi-layer sample design and slew rate. Nanoscale, 2023, 15, 1086-1091.	2.8	3
338	Hybrid Quantum Nanophotonics—Interfacing Color Center in Nanodiamonds with \$\$extrm{Si}_3extrm{N}_4\$\$-Photonics. Topics in Applied Physics, 2022, , 123-174.	0.4	4
339	Could the Quantum Internet Be Comprised of Molecular Spins with Tunable Optical Interfaces?. Journal of the American Chemical Society, 2022, 144, 21810-21825.	6.6	15
340	Energy-band echoes: Time-reversed light emission from optically driven quasiparticle wave packets. Physical Review Research, 2022, 4, .	1.3	3
341	Fabrication and Detection of Silicon Carbide Color Centers Based on Nanosecond Laser Technology. Journal of Russian Laser Research, 2022, 43, 708-714.	0.3	0
342	Coherence Properties of Electron-Beam-Activated Emitters in Hexagonal Boron Nitride Under Resonant Excitation. Physical Review Applied, 2022, 18, .	1.5	13
343	Sensing the Local Magnetic Environment through Optically Active Defects in a Layered Magnetic Semiconductor. ACS Nano, 2023, 17, 288-299.	7.3	15
344	Strain control of hybridization between dark and localized excitons in a 2D semiconductor. Nature Communications, 2022, 13, .	5.8	16
345	Photon extraction enhancement of praseodymium ions in gallium nitride nanopillars. Scientific Reports, 2022, 12, .	1.6	3
346	Quantifying the Spectral Diffusion of N- <i>V</i> Centers by Symmetry. Physical Review Applied, 2022, 18, .	1.5	5
347	<i>Colloquium</i> : Cavity-enhanced quantum network nodes. Reviews of Modern Physics, 2022, 94, .	16.4	15

#	Article	IF	Citations
348	Density Functional Theory Search of 3 <i>d</i> Transition Metal Complexes in Diamond for Quantum Sensing Applications. Physica Status Solidi (B): Basic Research, 0, , 2200449.	0.7	0
349	Metal-Dielectric Nanopillar Antenna-Resonators for Efficient Collected Photon Rate from Silicon Carbide Color Centers. Nanomaterials, 2023, 13, 195.	1.9	1
350	Nanothermometry with Enhanced Sensitivity and Enlarged Working Range Using Diamond Sensors. Accounts of Chemical Research, 2023, 56, 95-105.	7.6	3
351	Observational-entropic study of Anderson localization. Physical Review A, 2022, 106, .	1.0	2
352	Two-Emitter Multimode Cavity Quantum Electrodynamics in Thin-Film Silicon Carbide Photonics. Physical Review X, 2023, 13, .	2.8	4
353	Coherence protection of spin qubits in hexagonal boron nitride. Nature Communications, 2023, 14, .	5.8	11
354	Single photon emitters originating from donor–acceptor pairs. Journal of Semiconductors, 2023, 44, 010401.	2.0	2
355	Fabrication of single color centers in sub-50Ânm nanodiamonds using ion implantation. Nanophotonics, 2023, 12, 485-494.	2.9	5
356	Development of Flux-Tuneable Inductive Nanobridge SQUIDs for Quantum Technology Applications. IEEE Transactions on Applied Superconductivity, 2023, 33, 1-5.	1.1	1
357	Tuning spectral properties of individual and multiple quantum emitters in noisy environments. Physical Review A, 2023, 107, .	1.0	0
358	Perspective on functional metal-oxide plasmonic metastructures. Journal of Applied Physics, 2023, 133, 070901.	1.1	1
359	Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide. Npj Quantum Information, 2023, 9, .	2.8	8
360	Strain-Relaxed Nanocrystalline Diamond Thin Films with Silicon Vacancy Centers Using Femtosecond Laser Irradiation for Photonic Applications. ACS Applied Nano Materials, 2023, 6, 3268-3276.	2.4	0
361	Multiple Tin-Vacancy Centers in Diamond with Nearly Identical Photon Frequency and Linewidth. Physical Review Applied, 2023, 19, .	1.5	8
362	Photon-Emission-Correlation Spectroscopy as an Analytical Tool for Solid-State Quantum Defects. PRX Quantum, 2023, 4, .	3.5	4
363	Control of photoluminescence of nitrogen-vacancy centers embedded in diamond nanoparticles coupled to silicon nanoantennas. Applied Physics Letters, 2023, 122, .	1.5	0
364	Neutral Silicon-Vacancy Centers in Diamond via Photoactivated Itinerant Carriers. Physical Review Applied, 2023, 19, .	1.5	5
365	Silicon Vacancy Color Centers in 6H-SiC Fabricated by Femtosecond Laser Direct Writing. Nanomanufacturing and Metrology, 2023, 6, .	1.5	1

#	Article	IF	CITATIONS
366	Optically Coherent Nitrogen-Vacancy Defect Centers in Diamond Nanostructures. Physical Review X, 2023, 13, .	2.8	12
367	Quantum Emitters with Narrow Band and High Debye–Waller Factor in Aluminum Nitride Written by Femtosecond Laser. Nano Letters, 2023, 23, 2743-2749.	4.5	6
368	Single-Photon Emission from Two-Dimensional Materials, to a Brighter Future. Journal of Physical Chemistry Letters, 2023, 14, 3274-3284.	2.1	6
369	Laser Direct Writing of Visible Spin Defects in Hexagonal Boron Nitride for Applications in Spin-Based Technologies. ACS Applied Nano Materials, 2023, 6, 6407-6414.	2.4	4
370	A Telecom O-Band Emitter in Diamond. Nano Letters, 2023, 23, 2557-2562.	4.5	3
371	Stark Effect of Blue Quantum Emitters in Hexagonal Boron Nitride. Physical Review Applied, 2023, 19, .	1.5	7
372	Intrinsic Control of Interlayer Exciton Generation in Van der Waals Materials via Janus Layers. Nano Letters, 0, , .	4.5	1
373	Phonon-assisted upconversion photoluminescence of quantum emitters. Journal of Semiconductors, 2023, 44, 041901.	2.0	3
374	Modular chip-integrated photonic control of artificial atoms in diamond waveguides. Optica, 2023, 10, 634.	4.8	6
375	Neutral Silicon Vacancy Centers in Undoped Diamond via Surface Control. Physical Review Letters, 2023, 130, .	2.9	8
385	Integrated photonic platforms for quantum technology: a review. ISSS Journal of Micro and Smart Systems, 2023, 12, 83-104.	1.0	1
386	Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS Nano, 2023, 17, 9870-9905.	7.3	8
390	Accelerating quantum technologies with programmable integrated photonics. , 2023, , .		0
391	Layered materials as a platform for quantum technologies. Nature Nanotechnology, 2023, 18, 555-571.	15.6	13
396	Manipulating the Charge State of Spin Defects in Hexagonal Boron Nitride. Nano Letters, 2023, 23, 6141-6147.	4.5	1
399	Efficient Spin-Photon Interfaces for Quantum Networks. , 2022, , .		0
403	Resonant Spectroscopy of Blue Quantum Emitters in Hexagonal Boron Nitride. , 2023, , .		0
404	Niobium Nitride Superconducting Nanowire Single Photon Detector on 4H-Silicon Carbide. , 2023, , .		0

#	Article	IF	CITATIONS
416	Diamond "Sawfish―Photonic Crystal Cavities. , 2023, , .		0
450	Efficient Spin-Photon Interfaces for Quantum Networks. , 2022, , .		0