Pretreatment of lignocellulosic wastes for biofuel produ

Renewable and Sustainable Energy Reviews 90, 877-891

DOI: 10.1016/j.rser.2018.03.111

Citation Report

#	Article	IF	CITATIONS
1	Pretreatment of Lignocellulosic Materials as Substrates for Fermentation Processes. Molecules, 2018, 23, 2937.	3.8	345
2	Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products. Frontiers in Energy Research, 2018, 6, .	2.3	622
3	Biobutanol production from coffee silverskin. Microbial Cell Factories, 2018, 17, 154.	4.0	38
4	Comparing the Biomass Yield and Biogas Potential of Phragmites australis with Miscanthus x giganteus and Panicum virgatum Grown in Canada. Energies, 2018, 11, 2198.	3.1	18
5	Effective Concentration of Ionic Liquids for Enhanced Saccharification of Cellulose. ChemEngineering, 2018, 2, 47.	2.4	5
6	Production, purification and characterization of an acid/alkali and thermo tolerant cellulase from Schizophyllum commune NAIMCC-F-03379 and its application in hydrolysis of lignocellulosic wastes. AMB Express, 2018, 8, 173.	3.0	66
7	Valorization of food waste based on its composition through the concept of biorefinery. Current Opinion in Green and Sustainable Chemistry, 2018, 14, 67-79.	5.9	91
8	Food waste enhanced anaerobic digestion of biologically pretreated yard waste: Analysis of cellulose crystallinity and microbial communities. Waste Management, 2018, 79, 109-119.	7.4	41
9	Alkaline organosolv pretreatment of corn stover for enhancing the enzymatic digestibility. Bioresource Technology, 2018, 265, 464-470.	9.6	86
10	Optimizing key factors for biomethane production from KOH-pretreated switchgrass by response surface methodology. Environmental Science and Pollution Research, 2019, 26, 25084-25091.	5.3	8
11	Selective deconstruction of hemicellulose and lignin with producing derivatives by sequential pretreatment process for biorefining concept. Bioresource Technology, 2019, 291, 121913.	9.6	35
12	Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review. Journal of Cleaner Production, 2019, 238, 117925.	9.3	64
13	Methanolysis Fractionation and Catalytic Conversion of Poplar Wood toward Methyl Levulinate, Phenolics, and Glucose. Journal of Agricultural and Food Chemistry, 2019, 67, 9840-9850.	5.2	7
14	Choosing Physical, Physicochemical and Chemical Methods of Pre-Treating Lignocellulosic Wastes to Repurpose into Solid Fuels. Sustainability, 2019, 11, 3604.	3.2	43
15	Pretreatment of rice straw using microwave assisted FeCl3-H3PO4 system for ethanol and oligosaccharides generation. Bioresource Technology Reports, 2019, 7, 100295.	2.7	24
16	A two-stage pretreatment using dilute sodium hydroxide solution followed by an ionic liquid at low temperatures: Toward construction of lignin-first biomass pretreatment. Bioresource Technology Reports, 2019, 7, 100286.	2.7	11
17	Insight into Pretreatment Methods of Lignocellulosic Biomass to Increase Biogas Yield: Current State, Challenges, and Opportunities. Applied Sciences (Switzerland), 2019, 9, 3721.	2.5	144
18	Overcoming lignocelluloseâ€derived microbial inhibitors: advancing the <i>Saccharomyces cerevisiae</i> resistance toolbox. Biofuels, Bioproducts and Biorefining, 2019, 13, 1520-1536.	3.7	36

#	Article	IF	CITATIONS
19	The utilization of n-butanol/diesel blends in Acetylene Dual Fuel Engine. Energy Reports, 2019, 5, 1030-1040.	5.1	23
20	Microbial Responses to Different Operating Practices for Biogas Production Systems., 0,,.		40
21	Hydration of lignocellulosic biomass. Modelling and experimental validation. Industrial Crops and Products, 2019, 131, 70-77.	5.2	14
22	Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 2019, 105, 105-128.	16.4	315
23	Long-Term Storage and Use of Artificially Immobilized Anaerobic Sludge as a Powerful Biocatalyst for Conversion of Various Wastes Including Those Containing Xenobiotics to Biogas. Catalysts, 2019, 9, 326.	3.5	51
24	Cellulosic sugars from biomass: Effect of acid presoaking on pretreatment efficiency and operating cost estimation for sugar production. Bioresource Technology Reports, 2019, 7, 100259.	2.7	6
25	A review on bioprocessing of paddy straw to ethanol using simultaneous saccharification and fermentation. Process Biochemistry, 2019, 85, 125-134.	3.7	53
26	Investigation on methane yield of wheat husk anaerobic digestion andÂits enhancement effect by liquid digestate pretreatment. Anaerobe, 2019, 59, 92-99.	2.1	20
27	Status of biofuel in India with production and performance characteristics: a review. International Journal of Ambient Energy, 2022, 43, 61-77.	2.5	14
28	Strategies to Improve Solid-State Fermentation Technology. , 2019, , 155-180.		8
29	Enhanced Enzymatic Hydrolysis of Pennisetum alopecuroides by Dilute Acid, Alkaline and Ferric Chloride Pretreatments. Molecules, 2019, 24, 1715.	3.8	13
30	Approaches for More Efficient Biological Conversion of Lignocellulosic Feedstocks to Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2019, 7, 9062-9079.	6.7	89
31	The effect of mechanical pretreatment on the anaerobic digestion of Hybrid Pennisetum. Fuel, 2019, 252, 469-474.	6.4	40
32	Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. Biotechnology Advances, 2019, 37, 107374.	11.7	71
33	The effect of atmospheric pressure plasma pretreatment with various gases on the structural characteristics and chemical composition of wheat straw and applications to enzymatic hydrolysis. Energy, 2019, 176, 195-210.	8.8	35
34	Technologies for Biofuel Production: Current Development, Challenges, and Future Prospects. Biofuel and Biorefinery Technologies, 2019, , 1-50.	0.3	48
35	Applying the Theory of Consumption Values to Explain Drivers' Willingness to Pay for Biofuels. Sustainability, 2019, 11, 668.	3.2	40
36	Sequential pretreatment of bamboo shoot shell and biosynthesis of ethyl (R)-4-chloro-3-hydroxybutanoate in aqueous-butyl acetate media. Process Biochemistry, 2019, 80, 112-118.	3.7	14

3

#	ARTICLE	IF	CITATIONS
37	Future prospects of delignification pretreatments for the lignocellulosic materials to produce second generation bioethanol. International Journal of Energy Research, 2019, 43, 1411-1427.	4.5	41
38	A perspective on galactose-based fermentative hydrogen production from macroalgal biomass: Trends and opportunities. Bioresource Technology, 2019, 280, 447-458.	9.6	36
39	Factorial Analysis on Nitric Acid Pretreatment of Oil Palm Frond Bagasse for Xylan Recovery. Materials Today: Proceedings, 2019, 19, 1189-1198.	1.8	3
40	Single reagent treatment and degradation of switchgrass using iron(III)chloride: The effects on hemicellulose, cellulose and lignin. Biomass and Bioenergy, 2019, 131, 105421.	5.7	16
41	In situ deep eutectic solvent pretreatment to improve lignin removal from garden wastes and enhance production of bio-methane and microbial lipids. Bioresource Technology, 2019, 271, 210-217.	9.6	48
42	Xylooligosaccharides from potential agricultural waste: Characterization and screening on the enzymatic hydrolysis factors. Industrial Crops and Products, 2019, 129, 575-584.	5. 2	33
43	Enhancing biohydrogen production from Agave tequilana bagasse: Detoxified vs. Undetoxified acid hydrolysates. Bioresource Technology, 2019, 276, 74-80.	9.6	24
44	Pressurized pretreatment and simultaneous saccharification and fermentation with in situ detoxification to increase bioethanol production from green coconut fibers. Industrial Crops and Products, 2019, 130, 259-266.	5. 2	42
45	Wood-lignin: Supply, extraction processes and use as bio-based material. European Polymer Journal, 2019, 112, 228-240.	5. 4	216
46	Waste Biomass and Blended Bioresources in Biogas Production. Biofuel and Biorefinery Technologies, 2019, , 1-23.	0.3	4
47	Potential of bio-hydrogen production from dark fermentation of crop residues: A review. International Journal of Hydrogen Energy, 2019, 44, 17346-17362.	7.1	95
48	Tolerance Characterization and Isoprenol Production of Adapted <i>Escherichia coli</i> in the Presence of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 1457-1463.	6.7	10
49	Investigation of molten salt in wet torrefaction and its effects on fast pyrolysis behaviors. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 577-585.	2.3	4
50	Genomic analysis of a lignocellulose degrading strain from the underexplored genus Meridianimaribacter. Genomics, 2020, 112, 952-960.	2.9	20
51	Ultrasonic assisted petha waste water pretreatment of rice straw for optimum production of methane and ethanol using mixed microbial culture. Renewable Energy, 2020, 145, 682-690.	8.9	30
52	Lignocellulosic biofuel production: review of alternatives. Biomass Conversion and Biorefinery, 2020, 10, 779-791.	4.6	59
53	Sequential Fractionation of Lignocellulosic Biomass Using CO ₂ â€Assisted Hydrolysis Combined with γâ€Valerolactone Treatment. Energy Technology, 2020, 8, 1900949.	3.8	4
54	Lignocellulosic conversion into value-added products: A review. Process Biochemistry, 2020, 89, 110-133.	3.7	91

#	Article	IF	CITATIONS
55	Evaluation of hydrothermal pretreatment for biological treatment of lignocellulosic feedstock (pepper plant and eggplant). Waste Management, 2020, 102, 76-84.	7.4	16
56	Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production. Renewable Energy, 2020, 146, 1444-1450.	8.9	22
57	Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Processing Technology, 2020, 199, 106244.	7.2	386
58	Efficient biohydrogen and advanced biofuel coproduction from municipal solid waste through a clean process. Bioresource Technology, 2020, 300, 122656.	9.6	50
59	Employing anaerobic fungi in biogas production: challenges & amp; opportunities. Bioresource Technology, 2020, 300, 122687.	9.6	34
60	Sweet sorghum: a potential resource for bioenergy production. , 2020, , 215-242.		8
61	Biomethane recovery from olive mill residues through anaerobic digestion: A review of the state of the art technology. Science of the Total Environment, 2020, 703, 135508.	8.0	62
62	Coupled green pretreatment of petha wastewater and rice straw. Environmental and Sustainability Indicators, 2020, 5, 100013.	3.3	4
63	Sustainability metrics of pretreatment processes in a waste derived lignocellulosic biomass biorefinery. Bioresource Technology, 2020, 298, 122558.	9.6	98
64	Advanced biofuel production and road to commercialization: An insight into bioconversion potential of Rhodosporidium sp Biomass and Bioenergy, 2020, 132, 105439.	5.7	39
65	Biobutanol from lignocellulosic biomass: bioprocess strategies. , 2020, , 169-193.		13
66	Recent advances in the pretreatment of microalgal and lignocellulosic biomass: A comprehensive review. Bioresource Technology, 2020, 298, 122476.	9.6	195
67	Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood. Energies, 2020, 13, 4552.	3.1	9
68	Biofuels Production – Sustainability and Advances in Microbial Bioresources. Biofuel and Biorefinery Technologies, 2020, , .	0.3	14
69	Dark fermentative hydrogen production from pretreated lignocellulosic biomass: Effects of inhibitory byproducts and recent trends in mitigation strategies. Renewable and Sustainable Energy Reviews, 2020, 133, 110338.	16.4	60
70	Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review. Renewable Energy, 2020, 160, 1228-1252.	8.9	91
71	Lignocellulosic Ethanol Production from a Biorefinery Perspective. , 2020, , .		4
72	Microbial conversion of vanillin from ferulic acid extracted from raw coir pith. Natural Product Research, 2022, 36, 901-908.	1.8	16

#	Article	IF	CITATIONS
73	2-Hydroxy-1,4-naphthoquinone (Lawsone) as a Redox Catalyst for the Improvement of the Alkaline Pretreatment of Sugarcane Bagasse. Energy & Energy & 16228, 2020, 34, 16228-16239.	5.1	7
74	Luffa as a lignocellulosic material for fabrication of a new and green catalyst in promoting of coumarin and bis(indolyl)methane derivatives. Green Chemistry Letters and Reviews, 2020, 13, 328-340.	4.7	2
75	Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products. Current Microbiology, 2020, 77, 3136-3146.	2,2	9
76	Passenger gas diesels to preserve the city's ecology. IOP Conference Series: Materials Science and Engineering, 2020, 862, 062078.	0.6	0
77	Steam Explosion Pretreatment of Beechwood. Part 2: Quantification of Cellulase Inhibitors and Their Effect on Avicel Hydrolysis. Energies, 2020, 13, 3638.	3.1	13
78	Recent advancements in pretreatment technologies of biomass to produce bioenergy. , 2020, , 311-324.		2
79	Application of computational methods for pretreatment processes of different biomass feedstocks. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100366.	5.9	4
80	Biohydrogen from microalgae. , 2020, , 391-418.		3
81	Rapid hydrogen generation from cotton wastes by mean of dark fermentation. SN Applied Sciences, 2020, 2, 1.	2.9	7
82	Mild fractionation of sugarcane bagasse into fermentable sugars and \hat{i}^2 -O-4 linkage-rich lignin based on acid-catalysed crude glycerol pretreatment. Bioresource Technology, 2020, 318, 124059.	9.6	35
83	Facilely reducing recalcitrance of lignocellulosic biomass by a newly developed ethylamine-based deep eutectic solvent for biobutanol fermentation. Biotechnology for Biofuels, 2020, 13, 166.	6.2	23
84	Efficacy of chemical factors on production and extraction of biodiesel by microalgae. International Journal of Energy Research, 2021, 45, 17080-17093.	4.5	9
85	Experimental optimization of thermochemical pretreatment of sal (Shorea robusta) sawdust by Central Composite Design study for bioethanol production by co-fermentation using Saccharomyces cerevisiae (MTCC-36) and Pichia stipitis (NCIM-3498). Biomass and Bioenergy, 2020, 143, 105819.	5.7	13
86	Environmental Sustainability of Heating Systems Based on Pellets Produced in Mobile and Stationary Plants from Vineyard Pruning Residues. Resources, 2020, 9, 94.	3.5	9
87	Lignocellulosic Biomass-Based Biorefinery: an Insight into Commercialization and Economic Standout. Current Sustainable/Renewable Energy Reports, 2020, 7, 122-136.	2.6	40
88	The Improvement of Bioethanol Production by Pentose-Fermenting Yeasts Isolated from Herbal Preparations, the Gut of Dung Beetles, and Marula Wine. International Journal of Microbiology, 2020, 2020, 1-13.	2.3	10
89	Saccharification of water hyacinth biomass by a combination of steam explosion with enzymatic technologies for bioethanol production. 3 Biotech, 2020, 10, 432.	2.2	16
90	Effect of two-stage sodium hydroxide pretreatment on the composition and structure of Napier grass (Pakchong 1) (<i>Pennisetum purpureum</i>). International Journal of Green Energy, 2020, 17, 864-871.	3.8	15

#	Article	IF	CITATIONS
91	Method of calculating the working process of the engine when working on methanol. IOP Conference Series: Materials Science and Engineering, 2020, 919, 062008.	0.6	9
92	Mechanism and Compatibility of Pretreated Lignocellulosic Biomass and Polymeric Mixed Matrix Membranes: A Review. Membranes, 2020, 10, 370.	3.0	16
93	Impact of Hot Water and Alkaline Pre-treatments in Cellulosic Ethanol Production from Banana Pseudostem. Bioenergy Research, 2020, 13, 1159-1170.	3.9	14
94	Increasing the Carbohydrate Output of Bamboo Using a Combinatorial Pretreatment. ACS Sustainable Chemistry and Engineering, 2020, 8, 7380-7393.	6.7	41
95	Production of hydrogen and methane from lignocellulose waste by fermentation. A review of chemical pretreatment for enhancing the efficiency of the digestion process. Journal of Cleaner Production, 2020, 267, 121721.	9.3	87
96	Enzymatic delignification of sugar cane bagasse and rice husks and its effect in saccharification. Renewable Energy, 2020, 157, 987-997.	8.9	25
97	Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 56-60.	5.9	69
99	Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment. Bioresource Technology, 2020, 311, 123540.	9.6	27
100	Enhanced hydrogen gas production from mixture of beer spent grains (BSG) and distiller's grains (DG) with glycerol by Escherichia coli. International Journal of Hydrogen Energy, 2020, 45, 17233-17240.	7.1	11
101	Biofuels production of third generation biorefinery from macroalgal biomass in the Mexican context: An overview. , 2020, , 393-446.		13
102	Roasted coffee wastes as a substrate for <i>Escherichia coli</i> i> to grow and produce hydrogen. FEMS Microbiology Letters, 2020, 367, .	1.8	11
103	Recent Development of Extremophilic Bacteria and Their Application in Biorefinery. Frontiers in Bioengineering and Biotechnology, 2020, 8, 483.	4.1	84
104	Membrane applications for microbial energy conversion: a review. Environmental Chemistry Letters, 2020, 18, 1581-1592.	16.2	38
105	Comprehensively Understanding Enzymatic Hydrolysis of Lignocellulose and Cellulase–Lignocellulose Adsorption by Analyzing Substrates' Physicochemical Properties. Bioenergy Research, 2020, 13, 1108-1120.	3.9	6
106	A low-cost approach for the generation of enhanced sugars and ethanol from rice straw using in-house produced cellulase-hemicellulase consortium from A. niger P-19. Bioresource Technology Reports, 2020, 11, 100469.	2.7	23
107	Enzyme mediated multi-product process: A concept of bio-based refinery. Industrial Crops and Products, 2020, 154, 112607.	5.2	55
108	Microwave assisted transition metal salt and orthophosphoric acid pretreatment systems: Generation of bioethanol and xylo-oligosaccharides. Renewable Energy, 2020, 158, 574-584.	8.9	19
109	State of the art of straw treatment technology: Challenges and solutions forward. Bioresource Technology, 2020, 313, 123656.	9.6	69

#	Article	IF	Citations
110	Experimental Investigation of Performance and Emissions of Ethanol and n-Butanol Fuel Blends in a Heavy-Duty Diesel Engine. Frontiers in Mechanical Engineering, 2020, 6, .	1.8	13
111	Comparative Evaluation of Industrial Hemp Cultivars: Agronomical Practices, Feedstock Characterization, and Potential for Biofuels and Bioproducts. ACS Sustainable Chemistry and Engineering, 2020, 8, 6200-6210.	6.7	22
112	Fed-batch enzymatic hydrolysis of plantain pseudostem to fermentable sugars production and the impact of particle size at high solids loadings. Biomass Conversion and Biorefinery, 2021, 11, 2975-2982.	4.6	9
113	Energy From Biomass. , 2020, , 447-471.		9
114	Recent developments in the application of kraft pulping alkaline chemicals for lignocellulosic pretreatment: Potential beneficiation of green liquor dregs waste. Bioresource Technology, 2020, 306, 123225.	9.6	38
115	Biofuel Production Technologies: Critical Analysis for Sustainability. Clean Energy Production Technologies, 2020, , .	0.5	6
116	Lignocellulosic Ethanol: Technology and Economics. , 0, , .		18
117	Efficient use of brewer's spent grain hydrolysates in <scp>ABE</scp> fermentation by <i>Clostridium beijerinkii</i> . Effect of high solid loads in the enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2020, 95, 2393-2402.	3.2	13
118	Techno-economic analysis of an integrated biorefinery strategy based on one-pot biomass fractionation and furfural production. Journal of Cleaner Production, 2020, 260, 120837.	9.3	72
119	Effects of Gamma-Valerolactone Assisted Fractionation of Ball-Milled Pine Wood on Lignin Extraction and Its Characterization as Well as Its Corresponding Cellulose Digestion. Applied Sciences (Switzerland), 2020, 10, 1599.	2.5	17
120	Green synthesis of cellulose acetate from corncob: Physicochemical properties and assessment of environmental impacts. Journal of Cleaner Production, 2020, 260, 120865.	9.3	41
121	Effect of ternary blends on the noise, vibration, and emission characteristics of an automotive spark ignition engine. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0, , 1-22.	2.3	8
122	Screening of factors influencing dilute nitric acid pretreatment for xylan recovery from oil palm frond bagasse. IOP Conference Series: Materials Science and Engineering, 2020, 736, 032007.	0.6	0
123	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	7. 5	223
124	Malodorous gases production from food wastes decomposition by indigenous microorganisms. Science of the Total Environment, 2020, 717, 137175.	8.0	36
125	Effect of sodium hydroxide pretreatment on physicochemical changes and enzymatic hydrolysis of herbaceous and woody lignocelluloses. Industrial Crops and Products, 2020, 145, 112145.	5.2	49
126	Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment. Bioresource Technology, 2020, 302, 122795.	9.6	27
127	Alkaline pretreatment of yerba mate (llex paraguariensis) waste for unlocking low-cost cellulosic biofuel. Fuel, 2020, 266, 117068.	6.4	22

#	Article	IF	CITATIONS
128	Sequential dark and photo-fermentative hydrogen gas production from agar embedded molasses. International Journal of Hydrogen Energy, 2020, 45, 34730-34738.	7.1	11
130	Fed-batch enzymatic hydrolysis of alkaline organosolv-pretreated corn stover facilitating high concentrations and yields of fermentable sugars for microbial lipid production. Biotechnology for Biofuels, 2020, 13, 13.	6.2	37
131	Fundamental review of organosolv pretreatment and its challenges in emerging consolidated bioprocessing. Biofuels, Bioproducts and Biorefining, 2020, 14, 808-829.	3.7	63
132	Bioreactor production of 2,3-butanediol by Pantoea agglomerans using soybean hull acid hydrolysate as substrate. Bioprocess and Biosystems Engineering, 2020, 43, 1689-1701.	3.4	9
133	Improvement of Anaerobic Digestion of Hydrolysed Corncob Waste by Organosolv Pretreatment for Biogas Production. Applied Sciences (Switzerland), 2020, 10, 2785.	2.5	12
134	Valorising Agro-industrial Wastes within the Circular Bioeconomy Concept: the Case of Defatted Rice Bran with Emphasis on Bioconversion Strategies. Fermentation, 2020, 6, 42.	3.0	35
135	Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure. Bioresource Technology, 2020, 309, 123311.	9.6	39
136	Energy potential of agricultural residues generated in Mexico and their use for butanol and electricity production under a biorefinery configuration. Environmental Science and Pollution Research, 2020, 27, 28607-28622.	5.3	18
137	Evaluation of Ultrasound Pretreatment for Enhanced Anaerobic Digestion of Sida hermaphrodita. Bioenergy Research, 2020, 13, 824-832.	3.9	27
138	A critical review of the effects of pretreatment methods on the exergetic aspects of lignocellulosic biofuels. Energy Conversion and Management, 2020, 212, 112792.	9.2	230
139	Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview. Energy, 2020, 199, 117457.	8.8	292
140	Experimental investigation of ethanol/diesel dual-fuel combustion in a heavy-duty diesel engine. Fuel, 2020, 275, 117867.	6.4	60
141	Pretreatment methods of lignocellulosic wastes into value-added products: recent advances and possibilities. Biomass Conversion and Biorefinery, 2022, 12, 547-564.	4.6	39
142	Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 2020, 150, 112408.	5.2	25
143	Comparison of sodium hydroxide and sodium bicarbonate pretreatment methods for characteristic and enzymatic hydrolysis of sago palm bark. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 0 , 1 -11.	2.3	12
144	Biological treatment of plant biomass and factors affecting bioactivity. Journal of Cleaner Production, 2021, 279, 123546.	9.3	31
145	Commodity chemical production fromÂthirdâ€generation biomass: a technoâ€economic assessment of lactic acid production. Biofuels, Bioproducts and Biorefining, 2021, 15, 257-281.	3.7	17
146	Molecular engineering to improve lignocellulosic biomass based applications using filamentous fungi. Advances in Applied Microbiology, 2021, 114, 73-109.	2.4	8

#	Article	IF	Citations
147	Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. Journal of Cleaner Production, 2021, 287, 125037.	9.3	47
148	Liquid ammonia pretreatment optimization for improved release of fermentable sugars from sugarcane bagasse. Journal of Cleaner Production, 2021, 281, 123922.	9.3	20
149	Mild O2-aided alkaline pretreatment effectively improves fractionated efficiency and enzymatic digestibility of Napier grass stem towards a sustainable biorefinery. Bioresource Technology, 2021, 319, 124162.	9.6	20
150	Fundamentals of Lignin-Carbohydrate Complexes and Its Effect on Biomass Utilization. , 2021, , 133-155.		2
151	Biochemical conversion of lignocellulosic waste into renewable energy., 2021,, 147-171.		4
152	Fusion catalyst mediated lignin valorization. , 2021, , 243-266.		0
153	Alternative Lime Pretreatment of Corn Stover for Second-Generation Bioethanol Production. Agronomy, 2021, $11,155.$	3.0	8
154	Xylan., 2021, , 129-161.		O
155	An overview on pretreatment processes for an effective conversion of lignocellulosic biomass into bioethanol., 2021,, 41-68.		2
156	Methane production from wheat straw pretreated with CaO ₂ /cellulase. RSC Advances, 2021, 11, 20541-20549.	3.6	3
157	Optimization Issues of a Hammer Mill Working Process Using Statistical Modelling. Sustainability, 2021, 13, 973.	3.2	5
158	An integrated approach to quantifying the efficiency of plants and algae in water purification and bioethanol production. Biomass Conversion and Biorefinery, 0, , 1.	4.6	3
159	Thread Rolling: An Efficient Mechanical Pretreatment for Corn Stover Saccharification. Energies, 2021, 14, 542.	3.1	2
160	Chemical pre-treatments effect for reducing lignin on cocoa pulp waste for biogas production. AIP Conference Proceedings, 2021, , .	0.4	2
161	The Place of Biofuel in Sustainable Living; Prospects and Challenges. , 2022, , 226-258.		6
162	Microwave-assisted Natural Deep Eutectic Solvents Pretreatment Followed by Hydrodistillation Coupled with GC-MS for Analysis of Essential Oil from Turmeric (<i>Curcuma longa</i> L.). Journal of Oleo Science, 2021, 70, 1481-1494.	1.4	14
163	Challenges and Perspectives of Biorefineries. , 2021, , 1-21.		0
164	Liquid Hot Water Pretreatment for Lignocellulosic Biomass Biorefinery. , 2021, , 81-109.		0

#	Article	IF	CITATIONS
165	Sustainable Management of Agricultural Waste in India. , 2021, , 1-26.		1
166	Challenges in Bioethanol Production: Effect of Inhibitory Compounds. Clean Energy Production Technologies, 2021, , 119-154.	0.5	3
167	Economical Biofuel Production Strategies from Biomass Biowaste. Clean Energy Production Technologies, $2021, 122$.	0.5	0
168	Understanding Ethanol Tolerance Mechanism in Saccharomyces cerevisiae to Enhance the Bioethanol Production: Current and Future Prospects. Bioenergy Research, 2021, 14, 670-688.	3.9	21
170	Advances in Valorization of Lignocellulosic Biomass towards Energy Generation. Catalysts, 2021, 11, 309.	3.5	67
171	Mature Landfill Leachate as a Medium for Hydrodynamic Cavitation of Brewery Spent Grain. Energies, 2021, 14, 1150.	3.1	5
172	Bacterial pretreatment of microalgae and the potential of novel nature hydrolytic sources. Environmental Technology and Innovation, 2021, 21, 101362.	6.1	30
173	A study on biofuel produced by catalytic cracking of mustard and castor oil using porous $H\hat{I}^2$ and AlMCM-41 catalysts. Science of the Total Environment, 2021, 757, 143781.	8.0	9
174	Impact of Alkaline Pretreatment Condition on Enzymatic Hydrolysis of Sugarcane Bagasse and Pretreatment Cost. Applied Biochemistry and Biotechnology, 2021, 193, 2087-2097.	2.9	12
175	Pretreatment of Tropical Lignocellulosic Biomass for Industrial Biofuel Production : A Review. IOP Conference Series: Materials Science and Engineering, 2021, 1053, 012097.	0.6	6
176	Influence of Higher Alcohol Additives in Methanol–Gasoline Blends on the Performance and Emissions of an Unmodified Automotive SI Engine: A Review. Arabian Journal for Science and Engineering, 2021, 46, 7057-7085.	3.0	4
177	Upgrading the enzymatic hydrolysis of lignocellulosic biomass by immobilization of metagenome-derived novel halotolerant cellulase on the carboxymethyl cellulose-based hydrogel. Cellulose, 2021, 28, 3485-3503.	4.9	24
178	The Availability and Assessment of Potential Agricultural Residues for the Regional Development of Second-Generation Bioethanol in Thailand. Waste and Biomass Valorization, 2021, 12, 6091-6118.	3.4	29
179	Pretreatment of second and third generation feedstock for enhanced biohythane production: Challenges, recent trends and perspectives. International Journal of Hydrogen Energy, 2021, 46, 11252-11268.	7.1	37
180	A comprehensive review on the pretreatment of lignocellulosic wastes for improved biogas production by anaerobic digestion. International Journal of Environmental Science and Technology, 2022, 19, 3429-3456.	3.5	34
181	Enzymatic response of ryegrass cellulose and hemicellulose valorization introduced by sequential alkaline extractions. Biotechnology for Biofuels, 2021, 14, 72.	6.2	11
182	Base activation of persulfate: an effective pretreatment method to enhance glucose production from lignocellulosic biomass. Cellulose, 2021, 28, 4039-4051.	4.9	6
183	The study of the toxicity of exhaust gases of a diesel engine when operating on methanol and methyl ester of rapeseed oil. Journal of Physics: Conference Series, 2021, 1889, 042066.	0.4	0

#	Article	IF	CITATIONS
184	A Comprehensive Review on Valorization of Agro-Food Industrial Residues by Solid-State Fermentation. Foods, 2021, 10, 927.	4.3	67
185	Effects of freezing–thawing pretreatment on anaerobic digestion of wheat straw and its kinetics analysis. Clean Technologies and Environmental Policy, 2022, 24, 125-141.	4.1	3
186	An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies. Renewable and Sustainable Energy Reviews, 2021, 140, 110758.	16.4	92
187	Potential Valorization of Hazelnut Shells through Extraction, Purification and Structural Characterization of Prebiotic Compounds: A Critical Review. Foods, 2021, 10, 1197.	4.3	14
188	Persea Americana Agro-Industrial Waste Biorefinery for Sustainable High-Value-Added Products. Polymers, 2021, 13, 1727.	4.5	22
189	Optimisation of Pretreatment Catalyst, Enzyme Cocktail and Solid Loading for Improved Ethanol Production from Sweet Sorghum Bagasse. Bioenergy Research, 2022, 15, 1083-1095.	3.9	6
190	Nanomaterial in liquid biofuel production: applications and current status. Environmental Sustainability, 2021, 4, 343-353.	2.8	13
191	Recent advances and viability in biofuel production. Energy Conversion and Management: X, 2021, 10, 100070.	1.6	63
192	A study on green pretreatment of rice straw using Petha wastewater and Mausami waste assisted with microwave for production of ethanol and methane. Energy Conversion and Management: X, 2021, 10, 100067.	1.6	5
193	Enhanced Methane Production from Anaerobic Co-Digestion of Wheat Straw Rice Straw and Sugarcane Bagasse: A Kinetic Analysis. Applied Sciences (Switzerland), 2021, 11, 6069.	2.5	10
195	Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling. Industrial & Engineering Chemistry Research, 2021, 60, 9347-9367.	3.7	44
196	Harvesting and pretreatment techniques of aquatic macrophytes and macroalgae for production of biofuels. Environmental Sustainability, 2021, 4, 299-316.	2.8	12
197	Spray Drying as a Method of Choice for Obtaining High Quality Products from Food Wastes– A Review. Food Reviews International, 2023, 39, 1953-1985.	8.4	4
198	Effect of MgCl2 solution pretreatment on pubescens conversion at room temperature. Renewable Energy, 2021, 171, 287-298.	8.9	7
199	A comprehensive review on ecological approaches of waste to wealth strategies for production of sustainable biobutanol and its suitability in automotive applications. Energy Conversion and Management, 2021, 239, 114219.	9.2	46
200	Current status and future prospective of bio-ethanol industry in China. Renewable and Sustainable Energy Reviews, 2021, 145, 111079.	16.4	43
201	Optimization of enzymatic hydrolysis conditions of chemical pretreated cotton stalk using response surface methodology for enhanced bioethanol production yield. Biomass Conversion and Biorefinery, 2023, 13, 6623-6634.	4.6	5
202	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Ener	5.1	39

#	Article	IF	CITATIONS
203	Biomethane Yield, Physicochemical Structures, and Microbial Community Characteristics of Corn Stover Pretreated by Urea Combined with Mild Temperature Hydrotherm. Polymers, 2021, 13, 2207.	4.5	5
204	Bio-based Products from Lignocellulosic Waste Biomass. Chemical and Biochemical Engineering Quarterly, 2021, 35, 139-156.	0.9	14
205	Immobilization of cellulase enzymes on nano and micro-materials for breakdown of cellulose for biofuel production-a narrative review. International Journal of Biological Macromolecules, 2021, 182, 1793-1802.	7.5	58
206	Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian Journal of Microbiology, 2021, 61, 427-440.	2.7	11
207	A critical review on prospects and challenges in production of biomethanol from lignocellulose biomass. Biomass Conversion and Biorefinery, 2022, 12, 1835-1849.	4.6	12
208	Two-Stage Fractionation of Sugarcane Bagasse by a Flow-through Hydrothermal/Ethanosolv Process. Industrial & Description of Sugarcane Bagasse by a Flow-through Hydrothermal/Ethanosolv Process.	3.7	3
209	Review Hidrolisis Biomasa Lignoselulosa Untuk Xilitol. Jurnal Ilmu Lingkungan, 2021, 19, 485-496.	0.2	0
210	Biorefining for olive wastes management and efficient bioenergy production. Energy Conversion and Management, 2021, 244, 114467.	9.2	32
211	Biomethane production kinetics of rumen pretreated lignocellulosic wastes. Clean Technologies and Environmental Policy, 2021, 23, 2941-2954.	4.1	5
212	In silico characterization of the GH5-cellulase family from uncultured microorganisms: physicochemical and structural studies. Journal of Genetic Engineering and Biotechnology, 2021, 19, 143.	3.3	4
213	Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. BioMed Research International, 2021, 2021, 1-16.	1.9	11
214	Pretreated rice straw improves the biogas production and heavy metals passivation of pig manure containing copper and zinc. Journal of Cleaner Production, 2021, 315, 128171.	9.3	19
216	Lignin-based adsorbent materials for metal ion removal from wastewater: A review. Industrial Crops and Products, 2021, 167, 113510.	5.2	62
217	Alone or together? A review on pure and mixed microbial cultures for butanol production. Renewable and Sustainable Energy Reviews, 2021, 147, 111244.	16.4	27
218	Lignocellulose-based materials and their application in the removal of dyes from water: A review. Sustainable Materials and Technologies, 2021, 29, e00320.	3.3	21
219	Recent advances in valorization of organic municipal waste into energy using biorefinery approach, environment and economic analysis. Bioresource Technology, 2021, 337, 125498.	9.6	31
220	Ethanol from lignocellulosic biomass: An in-depth analysis of pre-treatment methods, fermentation approaches and detoxification processes. Journal of Environmental Chemical Engineering, 2021, 9, 105798.	6.7	92
221	Pretreatment of lignocellulosic agricultural waste for delignification, rapid hydrolysis, and enhanced biogas production: A review. Journal of the Indian Chemical Society, 2021, 98, 100147.	2.8	46

#	Article	IF	CITATIONS
222	Recent advances in green pre-treatment methods of lignocellulosic biomass for enhanced biofuel production. Journal of Cleaner Production, 2021, 321, 129038.	9.3	59
223	Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renewable and Sustainable Energy Reviews, 2021, 150, 111491.	16.4	91
224	Acid-based lignocellulosic biomass biorefinery for bioenergy production: Advantages, application constraints, and perspectives. Journal of Environmental Management, 2021, 296, 113194.	7.8	82
225	Intensification of sugar production by using Tween 80 to enhance metal-salt catalyzed pretreatment and enzymatic hydrolysis of sugarcane bagasse. Bioresource Technology, 2021, 339, 125522.	9.6	22
226	Soybean hulls as carbohydrate feedstock for medium to high-value biomolecule production in biorefineries: A review. Bioresource Technology, 2021, 339, 125594.	9.6	23
227	Lewis acid-mediated aqueous glycerol pretreatment of sugarcane bagasse: Pretreatment recycling, one-pot hydrolysis and lignin properties. Renewable Energy, 2021, 178, 1456-1465.	8.9	20
228	Production of solid biofuels from organic waste in developing countries: A review from sustainability and economic feasibility perspectives. Science of the Total Environment, 2021, 795, 148816.	8.0	50
229	Biohydrogen from organic wastes as a clean and environment-friendly energy source: Production pathways, feedstock types, and future prospects. Bioresource Technology, 2021, 342, 126021.	9.6	68
230	Ultrastructural change in lignocellulosic biomass during hydrothermal pretreatment. Bioresource Technology, 2021, 341, 125807.	9.6	54
231	Current status, opportunities and challenges in anaerobic digestion in Indian context: An overview. Bioresource Technology Reports, 2021, 16, 100830.	2.7	7
232	Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin. Applied Energy, 2021, 303, 117653.	10.1	25
233	Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable Energy Reviews, 2021, 152, 111677.	16.4	65
234	Direct removal of harmful cyanobacterial species by adsorption process and their potential use as a lipid source. Chemical Engineering Journal, 2022, 427, 131727.	12.7	7
235	Impact of Culture Condition Modulation on the High-Yield, High-Specificity, and Cost-Effective Production of Terpenoids from Microbial Sources: a Review. Applied and Environmental Microbiology, 2021, 87, .	3.1	7
236	Pretreatment processes and their effect on enzymatic hydrolysis of lignocellulosic biomass for improved biofuel production., 2021,, 115-144.		1
237	Bioconversion of Agro-Industrial Waste into Value-Added Compounds. Advances in Science, Technology and Innovation, 2021, , 349-368.	0.4	18
238	Essential process and key barriers for converting plant biomass into biofuels., 2021,, 53-70.		3
239	Nanotechnology in functional and active food packaging. , 2021, , 405-441.		3

#	Article	IF	CITATIONS
240	Enhanced medium chain length-polyhydroxyalkanoate production by co-fermentation of lignin and holocellulose hydrolysates. Green Chemistry, 2021, 23, 8226-8237.	9.0	17
241	Modified Simultaneous Saccharification and Co-Fermentation of DLC Pretreated Corn Stover for High-Titer Cellulosic Ethanol Production Without Water Washing or Detoxifying Pretreated Biomass. SSRN Electronic Journal, 0, , .	0.4	0
242	Exploration of benign deep eutectic solvent–water systems for the highly efficient production of furfurylamine from sugarcane bagasse ⟨i⟩via⟨ i⟩ chemoenzymatic cascade catalysis. Green Chemistry, 2021, 23, 8154-8168.	9.0	50
243	Membrane Technologies for Sustainable and Eco-Friendly Microbial Energy Production. Environmental Chemistry for A Sustainable World, 2020, , 353-381.	0.5	1
244	Agro-industrial Wastes: Environmental Toxicology, Risks, and Biological Treatment Approaches. Microorganisms for Sustainability, 2019, , 1-23.	0.7	3
245	Bioethanol Production: Generation-Based Comparative Status Measurements. Clean Energy Production Technologies, 2020, , 155-201.	0.5	16
246	Application of Hydrolytic Enzymes in Biorefinery and Its Future Prospects. Clean Energy Production Technologies, 2020, , 59-83.	0.5	18
247	Bioaldehydes and beyond: Expanding the realm of bioderived chemicals using biogenic aldehydes as platforms. Current Opinion in Chemical Biology, 2020, 59, 37-46.	6.1	10
248	Past practices and current trends in the recovery and purification of first generation ethanol: A learning curve for lignocellulosic ethanol. Journal of Cleaner Production, 2020, 268, 122357.	9.3	32
249	Pretreatment of Oil Palm Empty Fruit Bunch (OPEFB) at Bench-Scale High Temperature-Pressure Steam Reactor for Enhancement of Enzymatic Saccharification. International Journal of Renewable Energy Development, 2021, 10, 157-169.	2.4	12
250	Silicon nanowires (SiNWs) surface engineering potential for bioenergy. MOJ Applied Bionics and Biomechanics, $2018, 2, .$	0.3	3
251	Treatment and characterization of biomass of soybean and rice hulls using ionic liquids for the liberation of fermentable sugars. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20191258.	0.8	4
253	A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance. Energies, 2020, 13, 2451.	3.1	18
254	Effects of Butanol Isomers on the Combustion and Emission Characteristics of a Heavy-Duty Engine in RCCI Mode. , 0, , .		8
255	Evaluation of pretreatment potential and hydrogen recovery from lignocellulosic biomass in an anoxic double-staged bioelectrochemical system. International Journal of Hydrogen Energy, 2021, 46, 39122-39135.	7.1	11
256	Biomethane enhancement from corn straw using anaerobic digestion by-products as pretreatment agents: A highly effective and green strategy. Bioresource Technology, 2022, 344, 126177.	9.6	12
257	Recent advances and sustainable development of biofuels production from lignocellulosic biomass. Bioresource Technology, 2022, 344, 126203.	9.6	129
258	Roles of calcium-containing alkali materials on dark fermentation and anaerobic digestion: A systematic review. International Journal of Hydrogen Energy, 2021, 46, 38645-38662.	7.1	15

#	Article	IF	CITATIONS
259	Integrated Biorefinery for Valorization of Engineered Bioenergy Crops—A Review. Industrial Biotechnology, 2021, 17, 271-282.	0.8	5
260	State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges. Science of the Total Environment, 2022, 809, 151170.	8.0	26
261	Development of microwave-assisted alkaline pretreatment methods for enhanced sugar recovery from bamboo and corn cobs: Process optimization, chemical recyclability and kinetics of bioethanol production. Industrial Crops and Products, 2021, 174, 114166.	5.2	15
262	Pretreatment Processes For Lignocellulosic Wastes. , 2018, , .		1
263	Lignocellulosic Biofuel Production Technologies and Their Applications for Bioenergy Systems. Biofuel and Biorefinery Technologies, 2020, , 287-306.	0.3	1
264	Biofuel Production: Global Scenario and Future Challenges. Biofuel and Biorefinery Technologies, 2020, , 337-369.	0.3	1
265	Biofuel Synthesis by Extremophilic Microorganisms. Biofuel and Biorefinery Technologies, 2020, , $115\text{-}138$.	0.3	3
266	Effective indicators of diesel powered by natural gas and alcohol-fuel emulsions. IOP Conference Series: Earth and Environmental Science, 0, 548, 062028.	0.3	2
267	Comparative life cycle assessment of biochar-based lignocellulosic biohydrogen production: Sustainability analysis and strategy optimization. Bioresource Technology, 2022, 344, 126261.	9.6	11
268	Recent advances in hydrodynamic cavitation-based pretreatments of lignocellulosic biomass for valorization. Bioresource Technology, 2022, 345, 126251.	9.6	43
269	Glycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource Technology, 2022, 344, 126264.	9.6	44
270	Rice husk as renewable energy for biogas production from biomass: prospect and challenges. E3S Web of Conferences, 2020, 202, 06024.	0.5	2
271	Pretreatment Technologies for Biomass Deconstruction. , 2020, , 65-109.		1
272	Densifying lignocellulosic biomass with sulfuric acid provides a durable feedstock with high digestibility and high fermentability for cellulosic ethanol production. Renewable Energy, 2022, 182, 377-389.	8.9	33
273	Enhanced Biofuel Production from Lignocellulosic Biomass: An Overview of Advanced Physico-Chemical and Biological Technologies. Clean Energy Production Technologies, 2020, , 151-172.	0.5	1
274	Bioethanol Extraction and Its Production from Agricultural Residues for Sustainable Development. , 2020, , 143-163.		0
275	Use of Agroindustrial Biomass for Biofuel and Enzyme Discovery and Production., 2020,, 271-318.		2
276	Commercial Application of Lignocellulose-Degrading Enzymes in a Biorefinery. Microorganisms for Sustainability, 2020, , 287-301.	0.7	2

#	Article	IF	CITATIONS
277	Efficiency of Corn and Poplar Biomass Saccharification after Pretreatment with Potassium Hydroxide. Ecological Chemistry and Engineering S, 2020, 27, 41-53.	1.5	2
278	Renewable biohydrogen production from straw biomass – Recent advances in pretreatment/hydrolysis technologies and future development. International Journal of Hydrogen Energy, 2022, 47, 37359-37373.	7.1	12
279	Development of Kraft waste-based pretreatment strategies for enhanced sugar recovery from lignocellulosic waste. Industrial Crops and Products, 2021, 174, 114222.	5.2	5
280	Role of Substrate to Improve Biomass to Biofuel Production Technologies. Clean Energy Production Technologies, 2021, , 127-156.	0.5	1
282	Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review. Renewable and Sustainable Energy Reviews, 2022, 154, 111871.	16.4	96
283	The potential and prospect of biomass as primary energy in Indonesia. IOP Conference Series: Earth and Environmental Science, 2021, 896, 012055.	0.3	1
284	Applications of bioactive compounds extracted from olive industry wastes: A review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 453-476.	11.7	17
285	Opportunities and knowledge gaps in biochemical interventions for mining of resources from solid waste: A special focus on anaerobic digestion. Fuel, 2022, 311, 122625.	6.4	40
286	$L\tilde{A}^3$ gica fuzzy aplicada ao pr \tilde{A} ©-tratamento do capim-elefante: uma revis \tilde{A} £o bibliogr \tilde{A} ¡fica sistem \tilde{A} ¡tica. Research, Society and Development, 2021, 10, e439101523302.	0.1	1
287	Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis. International Journal of Renewable Energy Development, 2022, 11, 275-285.	2.4	10
288	Advances in Lignocellulosic Biomass Pretreatment Strategies. Studies in Systems, Decision and Control, 2022, , 71-89.	1.0	3
289	Effects of storage temperature and time on enzymatic digestibility and fermentability of Densifying lignocellulosic biomass with chemicals pretreated corn stover. Bioresource Technology, 2022, 347, 126359.	9.6	8
290	BIOETHANOL PRODUCTION FROM AGRICULTURAL WASTES BY ZYMOMONAS MOBILIS AND USED IN VINEGAR PRODUCTION. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 11, e3709.	0.8	2
291	Energy from biomass and plastics recycling: a review. Cogent Engineering, 2021, 8, .	2.2	8
293	Pretreatment of Lignocellulosic Materials to Enhance their Methane Potential. Applied Environmental Science and Engineering for A Sustainable Future, 2022, , 85-120.	0.5	3
294	Comparative pyrolysis studies of lignocellulosic biomasses: Online gas quantification, kinetics triplets, and thermodynamic parameters of the process. Bioresource Technology, 2022, 346, 126598.	9.6	17
295	Biochemical biorefinery: A low-cost and non-waste concept for promoting sustainable circular bioeconomy. Journal of Environmental Management, 2022, 305, 114333.	7.8	22
296	A comprehensive review on current status and future perspectives of microbial volatile fatty acids production as platform chemicals. Science of the Total Environment, 2022, 815, 152500.	8.0	34

#	Article	IF	Citations
297	Hydrodynamic cavitation for lignocellulosic biomass pretreatment: a review of recent developments and future perspectives. Bioresources and Bioprocessing, 2022, 9, .	4.2	13
298	Advancements in the Conversion of Lipid-Rich Biowastes and Lignocellulosic Residues into High-Quality Road and Jet Biofuels Using Nanomaterials as Catalysts. Processes, 2022, 10, 187.	2.8	3
299	Anaerobic digestion via codigestion strategies for production of bioenergy., 2022,, 233-252.		0
300	Poplar Sawdust Stack Self-Heating Properties and Variations of Internal Microbial Communities. Materials, 2022, 15, 1114.	2.9	0
301	Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 2022, 24, 614-646.	9.0	84
302	Insect gut bacteria: a promising tool for enhanced biogas production. Reviews in Environmental Science and Biotechnology, 2022, 21, 1-25.	8.1	20
305	Coproduction Xylo-Oligosaccharides With Low Degree of Polymerization and Glucose from Sugarcane Bagasse by Non-Isothermal Subcritical CO ₂ -Assisted Seawater Autohydrolysis. SSRN Electronic Journal, 0, , .	0.4	0
306	Sustainable biorefineries for circular bioeconomy. , 2022, , 3-28.		1
307	Feedstock pretreatment for enhanced anaerobic digestion of lignocellulosic residues for bioenergy production., 2022,, 253-282.		2
308	Emerging approaches in lignocellulosic biomass pretreatment and anaerobic bioprocesses for sustainable biofuels production. Journal of Cleaner Production, 2022, 333, 130180.	9.3	67
309	Analysis of Biogas Component Production during Anaerobic Digestion of Sour Cabbage in Microaeration Conditions under Different pH Conditions. Biomass, 2022, 2, 14-26.	2.8	5
310	Influence of Pre-Hydrolysis on the Chemical Composition of Prunus avium Cherry Seeds. Agronomy, 2022, 12, 280.	3.0	4
311	Energy-efficient glucose recovery from chestnut shell by optimization of NaOH pretreatment at room temperature and application to bioethanol production. Environmental Research, 2022, 208, 112710.	7.5	14
312	Breakthrough in hydrolysis of waste biomass by physico-chemical pretreatment processes for efficient anaerobic digestion. Chemosphere, 2022, 294, 133617.	8.2	26
313	Sustainable Management of Agricultural Waste in India. , 2022, , 497-522.		0
314	Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach. Bioenergy Research, 2022, 15, 1820-1841.	3.9	78
315	Green synthesis of biomethanol—managing food waste for carbon footprint and bioeconomy. Biomass Conversion and Biorefinery, 2022, 12, 1889-1909.	4.6	14
320	Hydrothermal carbonization of biomass: experimental study, energy balance, process simulation, design, and techno-economic analysis. Biomass Conversion and Biorefinery, 2024, 14, 2561-2576.	4.6	9

#	Article	IF	CITATIONS
321	Bio-Based Processes for Material and Energy Production from Waste Streams under Acidic Conditions. Fermentation, 2022, 8, 115.	3.0	7
322	Waste-Derived Fuels and Renewable Chemicals for Bioeconomy Promotion: A Sustainable Approach. Bioenergy Research, 2023, 16, 16-32.	3.9	7
323	De Novo Metagenomic Analysis of Microbial Community Contributing in Lignocellulose Degradation in Humus Samples Harvested from Cuc Phuong Tropical Forest in Vietnam. Diversity, 2022, 14, 220.	1.7	6
324	Enhanced efficiency of enzymatic hydrolysis of wheat straw via freeze–thaw pretreatment. Environmental Science and Pollution Research, 2022, 29, 56696-56704.	5. 3	11
325	Coproduction xylo-oligosaccharides with low degree of polymerization and glucose from sugarcane bagasse by non-isothermal subcritical carbon dioxide assisted seawater autohydrolysis. Bioresource Technology, 2022, 349, 126866.	9.6	12
326	A Comprehensive Review of Feedstocks as Sustainable Substrates for Next-Generation Biofuels. Bioenergy Research, 2023, 16, 105-122.	3.9	11
327	Modified simultaneous saccharification and co-fermentation of DLC pretreated corn stover for high-titer cellulosic ethanol production without water washing or detoxifying pretreated biomass. Energy, 2022, 247, 123488.	8.8	17
328	Lignocellulosic residues as supports for enzyme immobilization, and biocatalysts with potential applications. International Journal of Biological Macromolecules, 2022, 208, 748-759.	7.5	12
329	Advanced strategies for enhancing dark fermentative biohydrogen production from biowaste towards sustainable environment. Bioresource Technology, 2022, 351, 127045.	9.6	40
330	Lignocellulosic derivative-chitosan biocomposite adsorbents for the removal of soluble contaminants in aqueous solutions – Preparation, characterization and applications. Journal of Water Process Engineering, 2022, 47, 102654.	5.6	10
331	Pathways of lignocellulosic biomass deconstruction for biofuel and value-added products production. Fuel, 2022, 318, 123618.	6.4	32
332	Optimization of binary acids pretreatment of corncob biomass for enhanced recovery of cellulose to produce bioethanol. Fuel, 2022, 321, 124060.	6.4	56
333	Potential Use of Industrial Cocoa Waste in Biofuel Production. Journal of Chemistry, 2021, 2021, 1-11.	1.9	6
334	Effect of Ternary Deep Eutectic Solvents on Bagasse Cellulose and Lignin Structure in Low-Temperature Pretreatment. Processes, 2022, 10, 778.	2.8	4
335	Reactive extrusion as a sustainable alternative for the processing and valorization of biomass components. Journal of Cleaner Production, 2022, 355, 131840.	9.3	27
338	Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways. Biomass Conversion and Biorefinery, 2024, 14, 4567-4581.	4.6	12
339	Solvent effects on the molecular structure of isolated lignins of Eucalyptus nitens wood and oxidative depolymerization to phenolic chemicals. Polymer Degradation and Stability, 2022, 201, 109973.	5.8	3
340	An updated review on advancement in fermentative production strategies for biobutanol using Clostridium spp Environmental Science and Pollution Research, 2022, 29, 47988-48019.	5.3	9

#	Article	IF	CITATIONS
341	Biotechnological advances in biomass pretreatment for bio-renewable production through nanotechnological intervention. Biomass Conversion and Biorefinery, 2024, 14, 2959-2981.	4.6	15
342	Production of HMF and DMF biofuel from carbohydrates through catalytic pathways as a sustainable strategy for the future energy sector. Fuel, 2022, 324, 124474.	6.4	26
343	A comprehensive review on optimization of anaerobic digestion technologies for lignocellulosic biomass available in India. Biomass and Bioenergy, 2022, 161, 106479.	5.7	28
344	Utilization of Fruit-Vegetable Waste as Lignocellulosic Feedstocks for Bioethanol Fermentation. Clean Energy Production Technologies, 2022, , 189-211.	0.5	3
345	Mechanical properties of <scp>3D</scp> printed microâ€nano rice husk/polylactic acid filaments. Journal of Applied Polymer Science, 2022, 139, .	2.6	9
346	Enzymatic hydrolysis of lignocellulosic biomass using a novel, thermotolerant recombinant xylosidase enzyme from <i>Clostridium clariflavum</i> Advances, 2022, 12, 14917-14931.	3.6	10
347	Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion. Renewable Energy, 2022, , .	8.9	10
348	A review on key pretreatment approaches for lignocellulosic biomass to produce biofuel and value-added products. International Journal of Environmental Science and Technology, 2023, 20, 6929-6944.	3.5	23
349	Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production. Renewable and Sustainable Energy Reviews, 2022, 165, 112606.	16.4	15
350	Effect of Ammonia Fiber Expansion Combined with NaOH Pretreatment on the Resource Efficiency of Herbaceous and Woody Lignocellulosic Biomass. ACS Omega, 2022, 7, 18761-18769.	3.5	5
351	A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Materials for Renewable and Sustainable Energy, 2022, 11, 91-103.	3.6	8
352	Different Sequential Chemical Treatments Used to Obtain Bleached Cellulose from Orange Bagasse. Journal of Natural Fibers, 2022, 19, 12849-12861.	3.1	2
353	An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus, 2022, 6, 100086.	7.7	26
354	An overview of the production and prospect of polyhydroxyalkanote (PHA)-based biofuels: Opportunities and limitations. Scientific African, 2022, 16, e01233.	1.5	3
355	Boundaries and openings of biorefineries towards sustainable biofuel production., 2022,, 3-22.		1
356	Recent Methods in the Pretreatment of Corncob Wastes for Value-Added Bioproducts Carbon Sources. IOP Conference Series: Earth and Environmental Science, 2022, 1024, 012032.	0.3	0
357	Rice straw structure changes following green pretreatment with petha wastewater for economically viable bioethanol production. Scientific Reports, 2022, 12, .	3.3	16
358	An insight into the principles of lignocellulosic biomass-based zero-waste biorefineries: a green leap towards imperishable energy-based future. Biotechnology and Genetic Engineering Reviews, 2022, 38, 288-338.	6.2	4

#	ARTICLE	IF	CITATIONS
359	Enhanced pyrolysis of lignocellulosic biomass by room-temperature dilute sulfuric acid pretreatment. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105588.	5 . 5	12
360	Harnessing the power of cellulolytic nitrogen-fixing bacteria for biovalorization of lignocellulosic biomass. Industrial Crops and Products, 2022, 186, 115235.	5.2	7
361	Introduction to microbial lipidsâ€"Processes, products, and innovations. , 2022, , 1-11.		0
362	Activated Carbon: A Review of Residual Precursors, Synthesis Processes, Characterization Techniques, and Applications in the Improvement of Biogas. Environmental Engineering Research, 2023, 28, 220100-0.	2.5	6
363	Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review. Bioresource Technology, 2022, 360, 127631.	9.6	66
364	Cross-Comparison of the Impact of Grass Silage Pulsed Electric Field and Microwave-Induced Disintegration on Biogas Production Efficiency. Energies, 2022, 15, 5122.	3.1	3
365	CRISPR-Cas9 Approach Constructed Engineered Saccharomyces cerevisiae with the Deletion of GPD2, FPS1, and ADH2 to Enhance the Production of Ethanol. Journal of Fungi (Basel, Switzerland), 2022, 8, 703.	3. 5	6
366	Sugarcane bagasse into value-added products: a review. Environmental Science and Pollution Research, 2022, 29, 62785-62806.	5. 3	17
367	Impact of different pretreatments on the anaerobic digestion performance of cucumber vine. Environmental Science and Pollution Research, 2022, 29, 88507-88518.	5. 3	3
368	Pretreatment techniques for agricultural waste. Case Studies in Chemical and Environmental Engineering, 2022, 6, 100229.	6.1	29
369	Modeling and Optimization of Biodiesel Production from Croton macrostachyus Leaves Oil. Applied Biochemistry and Biotechnology, 2022, 194, 6037-6052.	2.9	1
370	Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 2023, 8, 10-114.	8.7	151
371	Multidisciplinary Pretreatment Approaches to Improve the Bio-methane Production from Lignocellulosic Biomass. Bioenergy Research, 2023, 16, 228-247.	3.9	7
372	Efficient lipid production from herbal extraction residue hydrolysate by the oleaginous yeast Cutaneotrichosporon oleaginosum for biodiesel production. Biomass Conversion and Biorefinery, 0, ,	4.6	2
373	Alkaline hydrolysis for yield of glucose and kraft lignin from de-oiled Jatropha curcas waste: multiresponse optimization using response surface methodology. Biomass Conversion and Biorefinery, 0, , .	4.6	4
374	An overview on thermochemical conversion and potential evaluation of biofuels derived from agricultural wastes. Energy Nexus, 2022, 7, 100125.	7.7	33
375	Multienzymatic conversion of monosaccharides from birch biomass after pretreatment. Environmental Technology and Innovation, 2022, 28, 102874.	6.1	5
376	Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochemical Engineering Journal, 2022, 187, 108587.	3.6	23

#	Article	IF	CITATIONS
377	Review on valorization of lignocellulosic biomass for green plastics production: Sustainable and cleaner approaches. Sustainable Energy Technologies and Assessments, 2022, 53, 102698.	2.7	4
378	Wastes recycling of non-sterile cellulosic ethanol production from low-temperature pilot-scale enzymatic saccharification of alkali-treated sugarcane bagasse. Journal of Cleaner Production, 2022, 374, 134019.	9.3	4
379	Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. Environmental Research, 2022, 215, 114291.	7.5	12
380	Biochemical Conversion of Cellulose. , 2022, , 35-67.		1
381	Algal biomass pretreatment and developments for better biofuel production., 2022,, 149-186.		0
382	Recalcitrance of Lignocellulosic Biomass and Pretreatment Technologies: A Comprehensive Insight. Clean Energy Production Technologies, 2022, , 13-52.	0.5	1
383	Selection of Low-Cost Protic Ionic Liquids for the Improved Production of Butanol from Rice Straw. SSRN Electronic Journal, 0, , .	0.4	0
384	Balancing a Trade-Off between Chemical and Biological Catalyst to Reduce Ethanol Cost Using Steam Exploded Rice Straw. SSRN Electronic Journal, 0, , .	0.4	O
385	Understanding Biomass Recalcitrance: Conventional Physical, Chemical, and Biological Pretreatment Methods for Overcoming Biomass Recalcitrance. Clean Energy Production Technologies, 2022, , 53-78.	0.5	2
386	Processing of lignocellulosic biomass for enhanced products. , 2022, , 311-322.		0
387	Furfural Influences Hydrogen Evolution and Energy Conversion in Photo-Fermentation by Rhodobacter capsulatus. Catalysts, 2022, 12, 979.	3.5	4
388	Recent Advances in the Bioconversion of Waste Straw Biomass with Steam Explosion Technique: A Comprehensive Review. Processes, 2022, 10, 1959.	2.8	12
389	Biomass pre-treatment techniques for the production of biofuels using thermal conversion methods – A review. Energy Conversion and Management, 2022, 270, 116271.	9.2	49
390	Novel Feedstocks for Biofuels: Current Scenario and Recent Advancements. Clean Energy Production Technologies, 2022, , 17-37.	0.5	0
391	Diversity and Use of Genetically Modified Microorganisms for Second-Generation Ethanol Production. Biofuel and Biorefinery Technologies, 2022, , 187-207.	0.3	0
392	Pretreatment Technologies for Second-Generation Bioethanol Production. Biofuel and Biorefinery Technologies, 2022, , 209-241.	0.3	1
393	Energy Production from Waste: Biomass Energy. Contributions To Economics, 2022, , 215-230.	0.3	0
394	Production of Butyric Acid from Hydrolysate of Rice Husk Treated by Alkali and Enzymes in Immobilized Fermentation by Clostridium tyrobutyricum Ctl̂ "pta. Fermentation, 2022, 8, 531.	3.0	0

#	Article	IF	CITATIONS
396	Engineering the xylose metabolism in Schizochytrium sp. to improve the utilization of lignocellulose, , 2022, 15 , .		5
397	Lignocellulose biohydrogen towards net zero emission: A review on recent developments. Bioresource Technology, 2022, 364, 128084.	9.6	12
398	A green pretreatment strategy using CO2 and acidogenesis liquid digestate as reagents for biomethane enhancement from corn stover. Industrial Crops and Products, 2022, 189, 115844.	5.2	2
399	Selection of protic ionic liquids for the improved production of butanol from rice straw. Fuel, 2023, 333, 126386.	6.4	4
400	A critical review on pretreatment and detoxification techniques required for biofuel production from the organic fraction of municipal solid waste. Bioresource Technology, 2023, 368, 128316.	9.6	10
401	Valorization of apple pomace for biogas production: a leading anaerobic biorefinery approach for a circular bioeconomy. Biomass Conversion and Biorefinery, 0, , .	4.6	4
402	Phenol Liquefaction of Waste Sawdust Pretreated by Sodium Hydroxide: Optimization of Parameters Using Response Surface Methodology. Molecules, 2022, 27, 7880.	3.8	1
403	Review of chemical pretreatment of lignocellulosic biomass using low-liquid and low-chemical catalysts for effective bioconversion. Bioresource Technology, 2023, 368, 128339.	9.6	15
404	Immobilization of Recombinant Endoglucanase (CelA) from Clostridium thermocellum on Modified Regenerated Cellulose Membrane. Catalysts, 2022, 12, 1356.	3.5	8
405	High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology – An overview. Bioresource Technology, 2023, 369, 128334.	9.6	15
406	Biofuel: A prime eco-innovation for sustainability. , 2023, , 267-284.		2
407	Effect of physical and thermal pretreatment of lignocellulosic biomass on biohydrogen production by thermochemical route: A critical review. Bioresource Technology, 2023, 369, 128458.	9.6	13
408	Pretreatments of lignocellulosic and algal biomasses for sustainable biohydrogen production: Recent progress, carbon neutrality, and circular economy. Bioresource Technology, 2023, 369, 128380.	9.6	7
409	Nature-inspired pretreatment of lignocellulose – Perspective and development. Bioresource Technology, 2023, 369, 128456.	9.6	4
410	Extraction of coir fibers by different methods. , 2022, , 19-42.		1
411	Biorefinery of Brewery Spent Grain by Solid-State Fermentation and Ionic Liquids. Foods, 2022, 11, 3711.	4.3	4
412	Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality. Energies, 2022, 15, 8987.	3.1	4
413	Sustainable Pistachio Dehulling Waste Management and Its Valorization Approaches: A Review. Current Pollution Reports, 0, , .	6.6	1

#	Article	IF	Citations
414	Construction of anhydrous two-step organosolv pretreatment of lignocellulosic biomass for efficient lignin membrane-extraction and solvent recovery. JPhys Energy, 2023, 5, 014015.	5.3	9
415	Deciphering biomarkers of the plant cell-wall recalcitrance: towards enhanced delignification and saccharification. Biomass Conversion and Biorefinery, 0, , .	4.6	0
416	Definition of the Thermodynamic Cycle of a Biomass-Fueled Internal Combustion Engine. Energies, 2023, 16, 896.	3.1	0
417	Investigation of a robust pretreatment technique based on ultrasound-assisted, cost-effective ionic liquid for enhancing saccharification and bioethanol production from wheat straw. Scientific Reports, 2023, 13, .	3.3	7
418	Pulses Waste to Biofuels. Clean Energy Production Technologies, 2023, , 1-26.	0.5	0
419	Enhanced enzymolysis and bioethanol yield from tobacco stem waste based on mild synergistic pretreatment. Frontiers in Energy Research, 0, 10, .	2.3	3
420	Waste Processes to Obtain Biogas and Bioethanol. , 2023, , 483-531.		0
421	Indexing energy and cost of the pretreatment for economically efficient bioenergy generation. Frontiers in Energy Research, 0, 10 , .	2.3	3
422	Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy. Molecules, 2023, 28, 874.	3.8	1
423	A review on optimistic biorefinery products: Biofuel and bioproducts from algae biomass. Fuel, 2023, 338, 127378.	6.4	18
424	The impact of alkaline/hydrogen peroxide pretreatment on hydrogen and methane production from biomasses of different origin: The case of willow sawdust and date palm fibers. Sustainable Chemistry and Pharmacy, 2023, 32, 100971.	3.3	0
425	Synthesis of H2-enriched syngas using waste pterospermum acerifolium fruits: Comparative analysis of oxidizing agents and their concentration. International Journal of Hydrogen Energy, 2022, , .	7.1	1
426	Improving the Quality of Rice Husk Biochar Through Combined Pretreatment of Rice Husk and Copyrolysis with LDPE. Journal of the Institution of Engineers (India): Series E, 2023, 104, 119-128.	0.9	2
427	Extraction of Corn Bract Cellulose by the Ammonia-Coordinated Bio-Enzymatic Method. Polymers, 2023, 15, 206.	4.5	5
428	Integrated biorefineries for the co-production of biofuels and high-value products., 2023,, 513-541.		0
429	Enzymes from basidiomycetes—peculiar and efficient tools for biotechnology. , 2023, , 129-164.		1
430	Microbial-Mediated Synthesis of Nanoparticles and Their Role in Bioethanol Production. Clean Energy Production Technologies, 2023, , 169-210.	0.5	0
431	Optimum pretreatment of corn stover ash as an alternative supplementary cementitious material. Cement, 2023, 12, 100066.	2.7	1

#	Article	IF	CITATIONS
432	Bioethanol production from agricultural residues as lignocellulosic biomass feedstock's waste valorization approach: A comprehensive review. Science of the Total Environment, 2023, 879, 163158.	8.0	29
433	Biological pretreatment for algal biomass feedstock for biofuel production. Journal of Environmental Chemical Engineering, 2023, 11, 109870.	6.7	19
434	Pretreatment of herbal waste using sonication. Bioresource Technology, 2023, 377, 128932.	9.6	1
435	The crystalline structure transition and hydrogen bonds shift determining enhanced enzymatic digestibility of cellulose treated by ultrasonication. Science of the Total Environment, 2023, 876, 162631.	8.0	4
436	An insight into omics analysis and metabolic pathway engineering of lignin-degrading enzymes for enhanced lignin valorization. Bioresource Technology, 2023, 379, 129045.	9.6	9
437	Application of baby corn husk as a biological sustainable feedstock for the production of cellulase and xylanase by Lentinus squarrosulus Mont Bioresource Technology Reports, 2023, 21, 101341.	2.7	0
438	Lignocellulose Biomass Liquefaction: Process and Applications Development as Polyurethane Foams. Polymers, 2023, 15, 563.	4.5	6
439	Valorization of Hemp-Based Packaging Waste with One-Pot Ionic Liquid Technology. Molecules, 2023, 28, 1427.	3.8	1
440	The role of microbes and enzymes for bioelectricity generation: a belief toward global sustainability., 2023,, 709-751.		0
441	Efficient Fractionation of Green Bamboo Using an Integrated Hydrothermal–Deep Eutectic Solvent Pretreatment for Its Valorization. Applied Sciences (Switzerland), 2023, 13, 2429.	2.5	4
442	Phosphoric acid pretreatment of poplar to optimize fermentable sugars production based on orthogonal experimental design. Frontiers in Chemistry, 0, 11 , .	3.6	2
443	Enzymatic Co-Fermentation of Onion Waste for Bioethanol Production Using Saccharomyces cerevisiae and Pichia pastoris. Energies, 2023, 16, 2181.	3.1	2
444	Genetic modification of plants to increase the saccharification of lignocellulose., 2023,, 39-53.		0
445	Pretreatment and catalytic conversion of lignocellulosic and algal biomass into biofuels by metal organic frameworks. Molecular Catalysis, 2023, 539, 112893.	2.0	7
446	Current Approaches for Polyurethane Production from Lignin. , 2023, , 153-202.		0
447	A critical review of the transformation of biomass into commodity chemicals: Prominence of pretreatments. Environmental Challenges, 2023, 11, 100700.	4.2	2
448	TRANSFORMATION OF SOLID WASTE INTO RENEWABLE ENERGY: PERSPECTIVES FOR THE PRODUCTION OF 2G BIOFUELS. Engenharia Agricola, 2023, 43, .	0.7	0
449	Application of nanomaterials for biofuel production from lignocellulosic biomass., 2023,, 189-212.		0

#	Article	IF	CITATIONS
450	A multiplatform metabolomics/reactomics approach as a powerful strategy to identify reaction compounds generated during hemicellulose hydrothermal extraction from agro-food biomasses. Food Chemistry, 2023, 421, 136150.	8.2	2
451	Low-temperature highly selective water delignification based on geopolymer materials. Bioresource Technology, 2023, 380, 129079.	9.6	0
452	Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. Chemosphere, 2023, 331, 138680.	8.2	23
453	An insight into microbial sources, classification, and industrial applications of xylanases: A rapid review. Biotechnology and Applied Biochemistry, 2023, 70, 1489-1503.	3.1	4
454	Fungal Enzymes in the Production of Biofuels. , 2023, , 399-434.		0
455	Combined dilute sulfuric acid and Tween 80 pretreatment of corn stover significantly improves the enzyme digestibility: Synergistic removal of hemicellulose and lignin. Bioresource Technology, 2023, 382, 129218.	9.6	7
456	Sources and techniques for biofuel generation. , 2023, , 311-323.		1
457	Effective assessment of biopolymer-based multifunctional sorbents for the remediation of environmentally hazardous contaminants from aqueous solutions. Chemosphere, 2023, 329, 138552.	8.2	14
458	Integrated biorefineries: The path forward. , 2023, , 267-304.		0
459	Lignocellulosic biofuel production: Insight into microbial factories. , 2023, , 203-228.		0
460	Changing the role of lignin in enzymatic hydrolysis for a sustainable and efficient sugar platform. Renewable and Sustainable Energy Reviews, 2023, 183, 113445.	16.4	12
461	Toughening effect and mechanism of rice straw Fiber-reinforced lime soil. Construction and Building Materials, 2023, 393, 132133.	7.2	5
462	Biogas starter from genome-scale data for methanogenic bioprocessing of protein waste. Systems Microbiology and Biomanufacturing, 0, , .	2.9	2
463	The good, the bad, the advantage of washing pretreatment in reducing slagging and fouling index during the torrefaction process. Chemical Engineering Research and Design, 2023, 176, 852-866.	5.6	3
464	Agricultural waste to fuels and chemicals. , 2023, , 87-98.		1
466	Recent Advances of Triglyceride Catalytic Pyrolysis via Heterogenous Dolomite Catalyst for Upgrading Biofuel Quality: A Review. Nanomaterials, 2023, 13, 1947.	4.1	2
467	Steam explosion as sustainable biomass pretreatment technique for biofuel production: Characteristics and challenges. Bioresource Technology, 2023, 385, 129398.	9.6	22
468	Recent Developments in Pretreatment Strategies on Annual Plant Residues for Bioethanol Production: Technological Progress and Challenges. Composites Science and Technology, 2023, , 69-89.	0.6	0

#	Article	IF	CITATIONS
469	Hazelnut ($<$ i>Corylus avellana $<$ i>L.) shells as a potential source of dietary fibre: impact of hydrothermal treatment temperature on fibre structure and degradation compounds. Journal of the Science of Food and Agriculture, 0, , .	3.5	1
470	Recent Advancements in Thermochemical Conversion of Biomass and Technologies Used to Eliminate the Tar Formation. Lecture Notes in Mechanical Engineering, 2023, , 585-599.	0.4	0
471	Enhancing tolerance of Kluyveromyces marxianus to lignocellulose-derived inhibitors and its ethanol production from corn cob via overexpression of a nitroreductase gene. Industrial Crops and Products, 2023, 203, 117136.	5. 2	2
472	The potential of walnut shells for production of oligosaccharides by liquid hot water treatment. Biomass Conversion and Biorefinery, 0, , .	4.6	0
473	Quantitative understanding of the impact of stress factors on xylose fermentation at different high solid biomass loads. Industrial Crops and Products, 2023, 203, 117134.	5.2	1
474	Assessment of Pretreatment Strategies for Valorization of Lignocellulosic Biomass: Path Forwarding Towards Lignocellulosic Biorefinery. Waste and Biomass Valorization, 2024, 15, 1-36.	3.4	3
475	Kraft lignin recovery from de-oiled Jatropha curcas seed by potassium hydroxide pretreatment and optimization using response surface methodology. Bioresource Technology Reports, 2023, 23, 101572.	2.7	2
476	Motivations to produce biofuels from rice bran: An overview involving a recent panorama. Industrial Crops and Products, 2023, 203, 117170.	5.2	5
477	lonic liquid and diluted sulfuric acid combinatorial pretreatment for efficient sugarcane bagasse conversion to L-lactic acid. Industrial Crops and Products, 2023, 204, 117272.	5.2	1
478	Feedstock Conditioning and Pretreatment of Lignocellulose Biomass. Green Energy and Technology, 2023, , 47-68.	0.6	O
479	Nitrate Adsorption Using Spent Coffee Ground: Kinetics, Isotherm, and Thermodynamic Studies. Green Energy and Technology, 2023, , 199-210.	0.6	0
480	Coproduction of xylooligosaccharides, glucose, and less-condensed lignin from sugarcane bagasse using syringic acid pretreatment. Bioresource Technology, 2023, 386, 129527.	9.6	5
481	Analytical Pyrolysis of Pinus radiata and Eucalyptus globulus: Effects of Microwave Pretreatment on Pyrolytic Vapours Composition. Polymers, 2023, 15, 3790.	4.5	0
482	The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing. Energies, 2023, 16, 7003.	3.1	4
483	Structural characterization of modified coconut husk lignin via steam explosion pretreatment as a renewable phenol substitutes. International Journal of Biological Macromolecules, 2023, 253, 127210.	7.5	1
484	Lignocellulose biomass pretreatment for efficient hydrolysis and biofuel production. , 2024, , 1-19.		0
485	Recent developments and future outlooks of hydrodynamic cavitation as an intensification technology for renewable biofuels production. Journal of Environmental Chemical Engineering, 2023, 11, 110819.	6.7	2
487	Sugar fermentation: C4 platforms. , 2024, , 125-156.		0

#	Article	IF	CITATIONS
488	Corn for Biofuel: Status, Prospects and Implications. , 0, , .		0
489	High-Titer Bioethanol Production from Steam-Exploded Corn Stover Using an Engineering Saccharomyces cerevisiae Strain with High Inhibitor Tolerance. Fermentation, 2023, 9, 906.	3.0	2
490	A waste-free biorefinery pathway to the valorisation of Chinese hickory shell through alkaline hydrogen peroxide pretreatment. Chemical Engineering Journal, 2023, 476, 146657.	12.7	1
492	Free-Radical Homopolymerization Kinetics of Biobased Dibutyl Itaconate. ACS Applied Polymer Materials, 0, , .	4.4	0
493	Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids – A review. Journal of Environmental Management, 2024, 349, 119028.	7.8	0
494	Innovations and advances in enzymatic deconstruction of biomass and their sustainability analysis: A review. Renewable and Sustainable Energy Reviews, 2024, 189, 113958.	16.4	1
495	Tween 80 reversed adverse effects of combined autohydrolysis and p-toluenesulfonic acid pretreatment on enzymatic hydrolysis of poplar. Bioresource Technology, 2024, 393, 130056.	9.6	0
496	Sustainable production of advanced biofuel and platform chemicals from woody biomass. , 2024, , 163-194.		O
498	Pretreatment strategies for woody biomass. , 2024, , 65-79.		0
499	Highly-efficient lipid production from hydrolysate of Radix paeoniae alba residue by oleaginous yeast Cutaneotrichosporon oleaginosum. Bioresource Technology, 2024, 391, 129990.	9.6	0
500	Techno-economic Analysis and Life Cycle Assessment of Value-added Products from Agri-food Waste., 2023,, 284-311.		0
501	Microwaves and Ultrasound as Emerging Techniques for Lignocellulosic Materials. Materials, 2023, 16, 7351.	2.9	0
502	Progress in agricultural waste derived biochar as adsorbents for wastewater treatment. Applied Surface Science Advances, 2023, 18, 100518.	6.8	0
503	Releasing and Assessing the Toxicity of Polycyclic Aromatic Hydrocarbons from Biochar Loaded with Iron. ACS Omega, 0, , .	3.5	0
504	Metabolic engineering of a stable haploid strain derived from lignocellulosic inhibitor tolerant Saccharomyces cerevisiae natural isolate YB-2625., 2023, 16,.		0
505	Agricultural wastes: A practical and potential source for the isolation and preparation of cellulose and application in agriculture and different industries. Industrial Crops and Products, 2024, 208, 117904.	5.2	3
506	Coupled pretreatment of rice straw with dairy wastewater and ultrasonication for biofuel production using mixed microbial source. Bioresource Technology Reports, 2024, 25, 101738.	2.7	0
507	Nanobiotechnological Routes in Lignocellulosic Waste Pre-treatment for Bio-renewables Production. Springer Proceedings in Energy, 2023, , 23-34.	0.3	0

#	Article	IF	CITATIONS
508	A Critical Review of the Sustainable Production and Application of Methanol as a Biochemical and Bioenergy Carrier. Reactions, 2024, 5, 1-19.	2.1	1
509	Catalytic hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over Pd-Co bimetallic catalysts supported on MoCx. Fuel, 2024, 361, 130682.	6.4	0
510	Recent advancement in production of bioethanol from waste biomass: a review. Clean Technologies and Environmental Policy, $0, \dots$	4.1	0
511	Current Progress on Biomass Pretreatment: The Key for Its Valorization. Green Energy and Technology, 2024, , 1-17.	0.6	0
512	Valorization of Paddy Straw Waste for Sustainable Development of Biofuels. Clean Energy Production Technologies, 2024, , 71-85.	0.5	0
513	Improvement of biohydrogen production from rice straw hydrolysate by green-self-prepared nano-silica. Fuel, 2024, 363, 130887.	6.4	2
514	A Review on Cellulose Degrading Microbes and its Applications. Industrial Biotechnology, 2024, 20, 26-39.	0.8	0
515	Transcriptomic and metabolomic analysis reveals the influence of carbohydrates on lignin degradation mediated by Bacillus amyloliquefaciens. Frontiers in Microbiology, 0, 15 , .	3.5	0
516	Sulfomethylation reactivity enhanced the Fenton oxidation pretreatment of bamboo residues for enzymatic digestibility and ethanol production. Frontiers in Bioengineering and Biotechnology, 0, 12, .	4.1	0
517	Valorization of lignocellulosic biomass through biorefinery concepts. , 2024, , 461-503.		0
519	Biohydrogen production from co-digestion of sugarcane vinasse and bagasse using anaerobic dark fermentation. Bioresource Technology Reports, 2024, 25, 101793.	2.7	0
520	Carbonaceous catalysts (biochar and activated carbon) from agricultural residues and their application in production of biodiesel: A review. Chemical Engineering Research and Design, 2024, 203, 759-788.	5.6	0
521	Valorization of crop residues and animal wastes: Anaerobic co-digestion technology. Heliyon, 2024, 10, e26440.	3.2	0
522	Comparative Analysis of Acidic and Alkaline Pretreatment Techniques for Bioethanol Production from Perennial Grasses. Energies, 2024, 17, 1048.	3.1	0
523	Life Cycle Assessment of Empty Fruit Bunch Torrefaction on Greenhouse Gases Emission., 2024,,.		0
524	A comprehensive review on technical lignin, lignin hydrogels, properties, preparation, applications & amp; challenges in lab to market transition. Industrial Crops and Products, 2024, 211, 118262.	5.2	0
525	Frontier in dark fermentative biohydrogen production from lignocellulosic biomass: Challenges and future prospects. Fuel, 2024, 366, 131187.	6.4	0
526	Microwave-assisted sequential green liquor-inorganic salt pretreatment for enhanced sugar recovery from sorghum leaves towards bioethanol and biohydrogen production. Renewable Energy, 2024, 225, 120225.	8.9	0

#	Article	IF	CITATIONS
527	Valorisation of Sugarcane Bagasse for the Sustainable Production of Polyhydroxyalkanoates. Sustainability, 2024, 16, 2200.	3.2	0
528	Novel Advanced Oxidation Processes (AOPs) as Lignocellulosic Biomass Pretreatment Approaches and Their Sustainability Assessment: A Review. Current Pollution Reports, 0, , .	6.6	0
529	Potentials of organic waste to provide bioenergy. , 2024, , 179-218.		0
530	Biomass-based energy potential from the oil palm agroindustry in Colombia: A path to low carbon energy transition. Journal of Cleaner Production, 2024, 449, 141808.	9.3	O