Recent advances in chitin based materials constructed

Progress in Polymer Science 82, 1-33 DOI: 10.1016/j.progpolymsci.2018.04.001

Citation Report

#	Article	IF	CITATIONS
1	On-Demand Dissolvable Self-Healing Hydrogel Based on Carboxymethyl Chitosan and Cellulose Nanocrystal for Deep Partial Thickness Burn Wound Healing. ACS Applied Materials & Interfaces, 2018, 10, 41076-41088.	4.0	351
2	Preparation Method of Porous Dressing Materials Based on Butyric-Acetic Chitin Co-Polyesters. Materials, 2018, 11, 2359.	1.3	9
3	Triple-Helix Conformation of a Polysaccharide Determined with Light Scattering, AFM, and Molecular Dynamics Simulation. Macromolecules, 2018, 51, 10150-10159.	2.2	48
4	Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale, 2018, 10, 14719-14725.	2.8	42
5	Chitin Nanofibrils to Stabilize Long-Life Pickering Foams and Their Application for Lightweight Porous Materials. ACS Sustainable Chemistry and Engineering, 2018, 6, 10552-10561.	3.2	61
6	The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. Journal of Materials Chemistry B, 2019, 7, 5510-5519.	2.9	22
7	Self-healable and pH-sensitive high-strength water-soluble chitosan/chemically cross-linked polyvinyl alcohol semi-IPN hydrogel. International Journal of Biological Macromolecules, 2019, 138, 667-672.	3.6	24
8	Hierarchical microspheres with macropores fabricated from chitin as 3D cell culture. Journal of Materials Chemistry B, 2019, 7, 5190-5198.	2.9	22
9	Self-assembly of chitosan and cellulose chains into a 3D porous polysaccharide alloy films: Co-dissolving, structure and biological properties. Applied Surface Science, 2019, 493, 1032-1041.	3.1	14
10	Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. Carbohydrate Polymers, 2019, 225, 115230.	5.1	33
11	Study on harmonic characteristics and optimization of multi-stage magnetic valve controllable reactor. Journal of Physics: Conference Series, 2019, 1311, 012015.	0.3	1
12	Customizable Multidimensional Self-Wrinkling Structure Constructed via Modulus Gradient in Chitosan Hydrogels. Chemistry of Materials, 2019, 31, 10032-10039.	3.2	55
13	Polymer Science and Engineering Using Deep Eutectic Solvents. Polymers, 2019, 11, 912.	2.0	86
14	β-Chitin nanofiber hydrogel as a scaffold to in situ fabricate monodispersed ultra-small silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 574, 36-43.	2.3	27
15	Preparation of the Catalytic Chitin/Zn Composite by Combined Ionic Liquid–Inorganic Salt Aqueous Solution from Shrimp Shells. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
16	Preparation and properties of nanocomposites composed of a water-soluble nylon and chitin nanofibers. Journal of Polymer Research, 2019, 26, 1.	1.2	3
17	Catalytic Conversion of Chitosan to Glucosaminic Acid by Tandem Hydrolysis and Oxidation. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
18	2D ultrathin carbon nanosheets with rich N/O content constructed by stripping bulk chitin for high-performance sodium ion batteries. Nanoscale, 2019, 11, 12626-12636.	2.8	53

#	Article	IF	CITATIONS
19	Recent developments in the synthesis of poly(hydroxybutyrate) based biocomposites. Biotechnology Progress, 2019, 35, e2855.	1.3	20
20	Choline chloride-zinc chloride deep eutectic solvent mediated preparation of partial O-acetylation of chitin nanocrystal in one step reaction. Carbohydrate Polymers, 2019, 220, 211-218.	5.1	46
21	Controllable Wrinkling Patterns on Chitosan Microspheres Generated from Self-Assembling Metal Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 22824-22833.	4.0	20
22	Polypyrroleâ€decorated, milled carbon fibersâ€inserted chitin nanofibers/multiwalled carbon nanotubes flexible freeâ€standing film for supercapacitors. Polymer Composites, 2019, 40, 4311-4320.	2.3	8
23	Insect Cuticle-Mimetic Hydrogels with High Mechanical Properties Achieved via the Combination of Chitin Nanofiber and Gelatin. Journal of Agricultural and Food Chemistry, 2019, 67, 5571-5578.	2.4	47
24	Self-Assembled Networks of Short and Long Chitin Nanoparticles for Oil/Water Interfacial Superstabilization. ACS Sustainable Chemistry and Engineering, 2019, 7, 6497-6511.	3.2	97
25	Cellulose/Chitosan Composite Multifilament Fibers with Two-Switch Shape Memory Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 6981-6990.	3.2	62
26	Antibacterial Porous Microcarriers with a Pathological State Responsive Switch for Wound Healing. ACS Applied Bio Materials, 2019, 2, 2155-2161.	2.3	14
27	Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications. , 0, , .		27
28	Ultrahigh Tough, Super Clear, and Highly Anisotropic Nanofiber-Structured Regenerated Cellulose Films. ACS Nano, 2019, 13, 4843-4853.	7.3	174
29	Efficient enzymatic hydrolysis of ionic liquid pretreated chitin and its dissolution mechanism. Carbohydrate Polymers, 2019, 211, 329-335.	5.1	38
30	Mechanically Strong Chitin Fibers with Nanofibril Structure, Biocompatibility, and Biodegradability. Chemistry of Materials, 2019, 31, 2078-2087.	3.2	66
31	Advances in Functional Chitin Materials: A Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 6444-6457.	3.2	185
32	Robust chitin films with good biocompatibility and breathable properties. Carbohydrate Polymers, 2019, 212, 361-367.	5.1	46
33	The influence of the combined impact of shear stress and cavitation on the structure and sorption properties of chitin. Carbohydrate Polymers, 2019, 209, 320-327.	5.1	15
34	Elucidation of molecular pathways responsible for the accelerated wound healing induced by a novel fibrous chitin dressing. Biomaterials Science, 2019, 7, 5247-5257.	2.6	17
35	Development of a novel bio-inspired "cotton-like―collagen aggregate/chitin based biomaterial with a biomimetic 3D microstructure for efficient hemostasis and tissue repair. Journal of Materials Chemistry B, 2019, 7, 7338-7350.	2.9	26
36	Cross-Linked Cellulose Membranes with Robust Mechanical Property, Self-Adaptive Breathability, and Excellent Biocompatibility. ACS Sustainable Chemistry and Engineering, 2019, 7, 19799-19806.	3.2	29

#	Article	IF	CITATIONS
37	Shrimp Shell-Inspired Antifouling Chitin Nanofibrous Membrane for Efficient Oil/Water Emulsion Separation with In Situ Removal of Heavy Metal Ions. ACS Sustainable Chemistry and Engineering, 2019, 7, 2064-2072.	3.2	73
38	Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Applied Microbiology and Biotechnology, 2019, 103, 1989-2006.	1.7	97
39	Colloidal aspects of digestion of Pickering emulsions: Experiments and theoretical models of lipid digestion kinetics. Advances in Colloid and Interface Science, 2019, 263, 195-211.	7.0	131
40	Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohydrate Polymers, 2019, 207, 411-417.	5.1	43
41	Pd/TiO ₂ @ Carbon Microspheres Derived from Chitin for Highly Efficient Photocatalytic Degradation of Volatile Organic Compounds. ACS Sustainable Chemistry and Engineering, 2019, 7, 1658-1666.	3.2	34
42	Facile Synthesis of Hierarchical Iron Phosphide/Biomass Carbon Composites for Binderâ€Free Sodiumâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 144-152.	2.4	21
43	Versatile synthesis, characterization and properties of \hat{l}^2 -chitin derivatives from aqueous KOH/urea solution. Carbohydrate Polymers, 2020, 227, 115345.	5.1	7
44	Construction of β-FeOOH@tunicate cellulose nanocomposite hydrogels and their highly efficient photocatalytic properties. Carbohydrate Polymers, 2020, 229, 115470.	5.1	39
45	Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chemical Engineering Journal, 2020, 383, 123147.	6.6	70
46	Recent advances in soft functional materials: preparation, functions and applications. Nanoscale, 2020, 12, 1281-1306.	2.8	56
47	Preparation of cellulose nanocrystal from tobacco-stem and its application in ethyl cellulose film as a reinforcing agent. Cellulose, 2020, 27, 1393-1406.	2.4	32
48	Dual Play of Chitinâ€Derived Nâ€Doped Carbon Nanosheets Enabling Highâ€Performance Naâ€SeS ₂ Half/Full Cells. Batteries and Supercaps, 2020, 3, 165-173.	2.4	16
49	Ultrasmall Ru nanoparticles supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis. Chinese Chemical Letters, 2020, 31, 2019-2022.	4.8	52
50	Preparation and properties of micro- and nanocomposites composed of a water-soluble nylon and aramid fibers. Polymer Bulletin, 2021, 78, 6291-6304.	1.7	1
51	Ultralight and robust aerogels based on nanochitin towards water-resistant thermal insulators. Carbohydrate Polymers, 2020, 248, 116755.	5.1	28
52	Chitin and chitosan: origin, properties, and applications. , 2020, , 1-33.		19
53	Chitin and chitosan-based aerogels. , 2020, , 285-334.		4
54	Large scale preparation of single chitin oligomers by the combination of homogeneous acid hydrolysis and reversed phase preparative chromatography. Carbohydrate Polymer Technologies and Applications, 2020, 1, 100016.	1.6	2

#	Article	IF	CITATIONS
55	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	1.7	19
56	A Review of Chitin Solvents and Their Dissolution Mechanisms. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1047-1060.	2.0	40
57	Controlled enzymatic hydrolysis and synthesis of lignin cross-linked chitosan functional hydrogels. International Journal of Biological Macromolecules, 2020, 161, 1440-1446.	3.6	16
58	Facile preparation of palygorskite/chitin nanofibers hybrids nanomaterial with remarkable adsorption capacity. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 262, 114725.	1.7	21
59	Bioactive functional ingredients from aquatic origin: a review of recent progress in marine-derived nutraceuticals. Critical Reviews in Food Science and Nutrition, 2022, 62, 1242-1269.	5.4	33
60	Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces. Materials Horizons, 2020, 7, 2651-2661.	6.4	127
61	Green and Sustainable Layered Chitin–Vitrimer Composite with Enhanced Modulus, Reprocessability, and Smart Actuator Function. ACS Sustainable Chemistry and Engineering, 2020, 8, 15168-15178.	3.2	15
62	Chitin of Araneae origin: structural features and biomimetic applications: a review. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	10
63	Preparation of a Chitin/Clay Hybrid Film by a Mechanochemical Method. ACS Applied Polymer Materials, 2020, 2, 4733-4738.	2.0	4
64	Zinc Metal–Organic Framework@Chitin Composite Sponge for Rapid Hemostasis and Antibacterial Infection. ACS Sustainable Chemistry and Engineering, 2020, 8, 18915-18925.	3.2	34
65	Temperature and time-dependent self-assembly and gelation behavior of chitin in aqueous KOH/urea solution. Giant, 2020, 4, 100038.	2.5	15
66	Facile Construction of a Highly Dispersed Pt Nanocatalyst Anchored on Biomass-Derived N/O-Doped Carbon Nanofibrous Microspheres and Its Catalytic Hydrogenation. ACS Applied Materials & Interfaces, 2020, 12, 51459-51467.	4.0	23
67	Chirality from Cryo-Electron Tomograms of Nanocrystals Obtained by Lateral Disassembly and Surface Etching of Never-Dried Chitin. ACS Nano, 2020, 14, 6921-6930.	7.3	30
68	Chitin/MoS ₂ Nanosheet Dielectric Composite Films with Significantly Enhanced Discharge Energy Density and Efficiency. Biomacromolecules, 2020, 21, 2929-2937.	2.6	40
69	A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydrate Polymers, 2020, 245, 116493.	5.1	48
70	Rationally exfoliating chitin into 2D hierarchical porous carbon nanosheets for high-rate energy storage. Nano Research, 2020, 13, 1604-1613.	5.8	21
71	The effect of form of carboxymethyl-chitosan dressings on biological properties in wound healing. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111191.	2.5	51
72	Functionalization of 3D Chitinous Skeletal Scaffolds of Sponge Origin Using Silver Nanoparticles and Their Antibacterial Properties. Marine Drugs, 2020, 18, 304.	2.2	12

#	Article	IF	CITATIONS
73	Addressing the challenge of fabricating a high content regenerated cellulose/nanomaterial composite: the magical effect of urea. Green Chemistry, 2020, 22, 4121-4127.	4.6	7
74	Functional Nanofibrous Biomaterials of Tailored Structures for Drug Delivery—A Critical Review. Pharmaceutics, 2020, 12, 522.	2.0	27
75	Nanochitin-based composite films as a disposable ethanol sensor. Journal of Environmental Chemical Engineering, 2020, 8, 104163.	3.3	13
76	<scp>Highâ€&trength</scp> and Tough Crystalline <scp>Polysaccharideâ€&ased</scp> Materials ^{â€} . Chinese Journal of Chemistry, 2020, 38, 761-771.	2.6	12
77	Two-Dimensional Wrinkled N-Rich Carbon Nanosheets Fabricated from Chitin via Fast Pyrolysis as Optimized Electrocatalyst. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
78	A novel bacterial β-N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities. Biotechnology for Biofuels, 2020, 13, 115.	6.2	13
79	Modern scaffolding strategies based on naturally pre-fabricated 3D biomaterials of poriferan origin. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	40
80	Alternative methods for chitin and chitosan preparation, characterization, and application. , 2020, , 225-246.		1
81	3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Marine Drugs, 2020, 18, 123.	2.2	36
82	Conductive hybrid filaments of carbon nanotubes, chitin nanocrystals and cellulose nanofibers formed by interfacial nanoparticle complexation. Materials and Design, 2020, 191, 108594.	3.3	17
83	Preparation and surface modification of crab nanochitin for organogels based on thiol-ene click cross-linking. International Journal of Biological Macromolecules, 2020, 150, 756-764.	3.6	10
84	3D porous chitin sponge with high absorbency, rapid shape recovery, and excellent antibacterial activities for noncompressible wound. Chemical Engineering Journal, 2020, 388, 124169.	6.6	114
85	Extraction and Physicochemical Characterization of Chitin Derived from the Asian Hornet, Vespa velutina Lepeletier 1836 (Hym.: Vespidae). Molecules, 2020, 25, 384.	1.7	22
86	<i>In Situ</i> Synthesis of Ag–Fe ₃ O ₄ Nanoparticles Immobilized on Pure Cellulose Microspheres as Recyclable and Biodegradable Catalysts. ACS Omega, 2020, 5, 8839-8846.	1.6	23
87	Direct ionization and solubility of chitosan in aqueous solutions with acetic acid. Polymer Bulletin, 2021, 78, 1465-1488.	1.7	15
88	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	16.0	35
89	Progress in chitin analytics. Carbohydrate Polymers, 2021, 252, 117204.	5.1	110
90	Food hydrocolloids: Application as functional ingredients to control lipid digestion and bioavailability. Food Hydrocolloids, 2021, 111, 106404.	5.6	63

#	Article	IF	CITATIONS
91	Extraction and characterization of fungal chitin nanofibers from Mucor indicus cultured in optimized medium conditions. International Journal of Biological Macromolecules, 2021, 167, 1126-1134.	3.6	11
92	Surface chain engineering of chitin nanocrystals towards tailoring the nucleating capacities for poly(β-hydroxybutyrate). International Journal of Biological Macromolecules, 2021, 166, 967-976.	3.6	13
93	Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydrate Polymers, 2021, 251, 117020.	5.1	20
94	Green Fabrication of Chitin/Chitosan Composite Hydrogels and Their Potential Applications. Macromolecular Bioscience, 2021, 21, e2000389.	2.1	13
95	Bioplastics from Biopolymers: An Eco-Friendly and Sustainable Solution of Plastic Pollution. Polymer Science - Series C, 2021, 63, 47-63.	0.8	31
96	Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Materials Horizons, 2021, 8, 2503-2512.	6.4	57
97	Dissolution studies of α-chitin fibers in freezing NaOH(aq). Cellulose, 2021, 28, 1885-1891.	2.4	1
98	Chitosan-based membranes preparation and applications: Challenges and opportunities. Journal of the Indian Chemical Society, 2021, 98, 100017.	1.3	42
99	Pickering Emulsions <i>via</i> Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. ACS Applied Materials & Interfaces, 2021, 13, 12581-12593.	4.0	37
100	Injectable chitin hydrogels with self-healing property and biodegradability as stem cell carriers. Carbohydrate Polymers, 2021, 256, 117574.	5.1	32
101	Physicochemical properties and film formation of the chitin hydrocolloid fabricated by a novel green process. Journal of Applied Polymer Science, 2021, 138, 50762.	1.3	3
102	Natural Rubber Latex Reinforced by Graphene Oxide/Zwitterionic Chitin Nanocrystal Hybrids for High-Performance Elastomers without Sulfur Vulcanization. ACS Sustainable Chemistry and Engineering, 2021, 9, 6470-6478.	3.2	13
103	Chitin nanocrystals based complex fluids: A green nanotechnology. Carbohydrate Polymers, 2021, 257, 117619.	5.1	18
104	Platform molecule from sustainable raw materials; case study succinic acid. Brazilian Journal of Chemical Engineering, 2021, 38, 215-239.	0.7	8
105	Chitin Nanofiber-Reinforced Waterborne Polyurethane Nanocomposite Films with Enhanced Thermal and Mechanical Performance. Carbohydrate Polymers, 2021, 258, 117728.	5.1	16
106	The science of plantâ€based foods: Constructing nextâ€generation meat, fish, milk, and egg analogs. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 4049-4100.	5.9	198
107	Review of chitosan composite as a heavy metal adsorbent: Material preparation and properties. Carbohydrate Polymers, 2021, 259, 117613.	5.1	95
108	Fabrication and characterization of biodegradable KH560 crosslinked chitin hydrogels with high toughness and good biocompatibility. Carbohydrate Polymers, 2021, 259, 117707.	5.1	41

#	Article	IF	CITATIONS
109	Recovery of Pd(II) from Aqueous Solution by Polyethylenimine-Crosslinked Chitin Biosorbent. Coatings, 2021, 11, 593.	1.2	3
110	Construction of chitin functional materials based on a "green―alkali/urea solvent and their applications in biomedicine: Recent advance. Applied Materials Today, 2021, 23, 101030.	2.3	13
111	Continuous Pilotâ€Scale Wetâ€Spinning of Biocompatible Chitin/Chitosan Multifilaments from an Aqueous KOH/Urea Solution. Macromolecular Rapid Communications, 2021, 42, e2100252.	2.0	8
112	Marine polysaccharide-based composite hydrogels containing fucoidan: Preparation, physicochemical characterization, and biocompatible evaluation. International Journal of Biological Macromolecules, 2021, 183, 1978-1986.	3.6	47
113	Ultrabroad-spectrum, multidrug resistant bacteria-killing, and biocompatible quaternized chitin derivative for infected wound healing. Materials Science and Engineering C, 2021, 126, 112177.	3.8	16
114	Superâ€Strong and Superâ€Stiff Chitosan Filaments with Highly Ordered Hierarchical Structure. Advanced Functional Materials, 2021, 31, 2104368.	7.8	39
115	Magnetic porous nano arbon catalysts supported silver nanoparticles derived from chitin and their application in catalytic reduction reactions. Journal of Applied Polymer Science, 2021, 138, 51439.	1.3	2
116	Carbohydrate Nanomaterials Addition to Starchâ€Based Packaging: A Review about Fundamentals and Application. Starch/Staerke, 2021, 73, 2100057.	1.1	3
117	Film-like chitin/polyethylenimine biosorbent for highly efficient removal of uranyl-carbonate compounds from water. Journal of Environmental Chemical Engineering, 2021, 9, 105340.	3.3	11
118	Recyclable palladium based nano-catalytic laborer encaged within bio-granules for dye degradation. Surfaces and Interfaces, 2021, 25, 101175.	1.5	19
119	Using an SGB Decision Tree Approach to Estimate the Properties of CRM Made by Biomass Pretreated with Ionic Liquids. International Journal of Chemical Engineering, 2021, 2021, 1-9.	1.4	5
120	An optimized preparation of nanofiber hydrogels derived from natural carbohydrate polymers and their drug release capacity under different pH surroundings. Carbohydrate Polymers, 2021, 265, 118008.	5.1	29
121	Efficient conversion of carbohydrates and biomass into furan compounds by chitin/Ag co-modified H3PW12O40 catalysts. Journal of Cleaner Production, 2021, 316, 128243.	4.6	12
122	Dual-confined SiO encapsulated in PVA derived carbon layer and chitin derived N-doped carbon nanosheets for high-performance lithium storage. Chemical Engineering Journal, 2021, 420, 129754.	6.6	24
123	Simultaneous toughening and strengthening of chitin-based composites via tensile-induced orientation and hydrogen bond reconstruction. Carbohydrate Polymers, 2022, 275, 118713.	5.1	5
124	Eco-friendly isolation and characterization of nanochitin from different origins by microwave irradiation: Optimization using response surface methodology. International Journal of Biological Macromolecules, 2021, 186, 218-226.	3.6	17
125	Re-dispersible dry sunflower oil emulsions enabled by regenerated chitin. LWT - Food Science and Technology, 2021, 149, 111892.	2.5	1
126	A rapid, green method for the preparation of cellulosic self-reinforcing composites from wood and bamboo pulp. Industrial Crops and Products, 2021, 169, 113658.	2.5	27

#	Article	IF	CITATIONS
127	In situ exfoliated silk fibroin nanoribbons enhanced chitin hydrogel for bile duct restoration. Chemical Engineering Journal, 2021, 422, 130088.	6.6	9
128	Enhancing the solubility of α-chitin in NaOH/urea aqueous solution by synergistic pretreatment of mechanical activation and metal salt. Journal of Molecular Liquids, 2021, 339, 116756.	2.3	3
129	Development and mechanical properties of soy protein isolate-chitin nanofibers complex gel: The role of high-pressure homogenization. LWT - Food Science and Technology, 2021, 150, 112090.	2.5	11
130	Conversion of chitin biomass into 5-hydroxymethylfurfural: A review. Renewable and Sustainable Energy Reviews, 2021, 150, 111452.	8.2	32
131	Chitosan nanoparticles fabricated through host-guest interaction for enhancing the immunostimulatory effect of CpG oligodeoxynucleotide. Carbohydrate Polymers, 2021, 271, 118417.	5.1	5
132	Insight into morphological, physicochemical and spectroscopic properties of β-chitin nanocrystalline structures. Carbohydrate Polymers, 2021, 273, 118563.	5.1	5
133	Preparation of SiO @TiO2@N-doped carbon composite using chitin as carbon precursor for high-performance lithium storage. Journal of Alloys and Compounds, 2022, 891, 162076.	2.8	11
134	Exploiting nanofibrous chitin microspheres as heterogeneous photocatalysts for high throughput PET-RAFT polymerization and bioconjugation. Chemical Engineering Journal, 2022, 429, 132120.	6.6	17
135	Combination of Starch and Nano hitin Whiskers for Surface Treatment of Cellulosic Paper. Starch/Staerke, 2021, 73, 2000219.	1.1	2
136	Effect of the Degree of Acetylation of Chitin Nonwoven Fabrics for Promoting Wound Healing. ACS Applied Bio Materials, 2021, 4, 1833-1842.	2.3	17
137	Chitin blends, interpenetrating polymer networks, gels, composites, and nanocomposites for adsorption systems: environmental remediation and protein purification. , 2020, , 135-175.		1
138	Recent progress in development and chemical modification of poly(hydroxybutyrate)-based blends for potential medical applications. International Journal of Biological Macromolecules, 2020, 160, 77-100.	3.6	62
139	Preparation of new biocoagulants by shrimp waste and its application in coagulation-flocculation processes. Journal of Cleaner Production, 2020, 269, 122397.	4.6	17
140	A novel dual crosslinked polysaccharide hydrogel with self-healing and stretchable properties. Polymer Chemistry, 2021, 12, 6134-6144.	1.9	11
141	Recent advances in materials for hemostatic management. Biomaterials Science, 2021, 9, 7343-7378.	2.6	40
142	Homogeneous modification of chitin and chitosan based on an alkali/urea soluble system and their applications in biomedical engineering. Green Chemistry, 2021, 23, 9318-9333.	4.6	17
143	Liquid and Solid Functional Bio-Based Coatings. Polymers, 2021, 13, 3640.	2.0	17
144	Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. International Journal of Biological Macromolecules, 2021, 192, 771-819.	3.6	74

#	Article	IF	CITATIONS
145	Preliminary Study on the Effect of Accessibility on the Deacetylation Efficiency of Chitin. Bioprocess, 2019, 09, 1-8.	0.1	0
146	Solvent Mediating the <i>in Situ</i> Self-Assembly of Polysaccharides for 3D Printing Biomimetic Tissue Scaffolds. ACS Nano, 2021, 15, 17790-17803.	7.3	25
147	Naturally prefabricated 3D chitinous skeletal scaffold of marine demosponge origin, biomineralized ex vivo as a functional biomaterial. Carbohydrate Polymers, 2022, 275, 118750.	5.1	12
148	Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydrate Polymers, 2022, 276, 118736.	5.1	9
149	Nanostructured and Advanced Designs from Biomass and Mineral Residues: Multifunctional Biopolymer Hydrogels and Hybrid Films Reinforced with Exfoliated Mica Nanosheets. ACS Applied Materials & Interfaces, 2021, 13, 57841-57850.	4.0	4
150	Cellulose or chitin nanofibril-stabilized latex for medical adhesion via tailoring colloidal interactions. Carbohydrate Polymers, 2022, 278, 118916.	5.1	3
151	Fabrication and properties of novel chitosan/ZnO composite bioplastic. Cellulose, 2022, 29, 233-243.	2.4	15
152	Modification of carbohydrates of food raw materials in the process of thermoplastic extrusion (review). Agricultural Science Euro-North-East, 2021, 22, 795-803.	0.2	3
153	Investigations on chitin and coconut fiber reinforcements on mechanical and moisture absorption properties of corn starch bioplastics. Materials Today: Proceedings, 2022, 58, 65-70.	0.9	6
154	Influence of Chitin Nanocrystals on the Crystallinity and Mechanical Properties of Poly(hydroxybutyrate) Biopolymer. Polymers, 2022, 14, 562.	2.0	11
155	Antifatigue Hydration-Induced Polysaccharide Hydrogel Actuators Inspired by Crab Joint Wrinkles. ACS Applied Materials & Interfaces, 2022, 14, 6251-6260.	4.0	11
156	Evaluation of Antibacterial and Antifungal Properties of Low Molecular Weight Chitosan Extracted from Hermetia illucens Relative to Crab Chitosan. Molecules, 2022, 27, 577.	1.7	11
157	Applications of deep eutectic solvents in the extraction, dissolution, and functional materials of chitin: research progress and prospects. Green Chemistry, 2022, 24, 552-564.	4.6	41
158	Polysaccharides in Agro-Industrial Biomass Residues. Polysaccharides, 2022, 3, 95-120.	2.1	22
159	Microfibrillated cellulose-enhanced carboxymethyl chitosan/oxidized starch sponge for chronic diabetic wound repair. Materials Science and Engineering C, 2022, 135, 112669.	3.8	11
160	Fabrication and characterization of transparent underwater superoleophobic coatings based chitin nanofibers and polyvinyl alcohol. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
161	Remediation and resource utilization of chromium(III)-containing tannery effluent based on chitosan-sodium alginate hydrogel. Carbohydrate Polymers, 2022, 284, 119179.	5.1	29
162	Chitin/egg shell membrane@Fe ₃ O ₄ nanocomposite hydrogel for efficient removal of Pb ²⁺ from aqueous solution. RSC Advances, 2022, 12, 4417-4427.	1.7	4

#	Article	IF	CITATIONS
163	Quaternized Polysaccharideâ€Based Cationic Micelles as a Macromolecular Approach to Eradicate Multidrugâ€Resistant Bacterial Infections while Mitigating Antimicrobial Resistance. Small, 2022, 18, e2104885.	5.2	15
164	Anisotropic Hybrid Hydrogels Constructed via the Noncovalent Assembly for Biomimetic Tissue Scaffold. Advanced Functional Materials, 2022, 32, .	7.8	32
165	Single-Chain Mechanical Properties of Gelatin: A Single-Molecule Study. Polymers, 2022, 14, 869.	2.0	2
166	Fungal Mycelium Conversion into Ultrananocrystalline Diamond via Microwave Plasma Pyrolysis. ACS Sustainable Chemistry and Engineering, 2022, 10, 3211-3218.	3.2	3
167	Quantifying the Contribution of the Dispersion Interaction and Hydrogen Bonding to the Anisotropic Elastic Properties of Chitin and Chitosan. Biomacromolecules, 2022, 23, 1633-1642.	2.6	7
168	Nucleation roles of cellulose nanocrystals and chitin nanocrystals in poly(ε-caprolactone) nanocomposites. International Journal of Biological Macromolecules, 2022, 205, 587-594.	3.6	14
169	Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing. Carbohydrate Polymers, 2022, 290, 119444.	5.1	42
170	Facile fabrication of highly dispersed Pd catalyst on nanoporous chitosan and its application in environmental catalysis. Carbohydrate Polymers, 2022, 286, 119313.	5.1	13
171	Biodegradable carboxymethyl chitin-based hemostatic sponges with high strength and shape memory for non-compressible hemorrhage. Carbohydrate Polymers, 2022, 288, 119369.	5.1	22
172	Towards the Efficient Catalytic Valorization of Chitin to N-Acylethanolamine over Ni/CeO2 Catalyst: Exploring the Shape-Selective Reactivity. Catalysts, 2022, 12, 460.	1.6	2
173	Properties and Functionality of Plant-Based Ingredients. , 2022, , 23-88.		2
174	Strong, Water-Resistant, and Ionic Conductive All-Chitosan Film with a Self-Locking Structure. ACS Applied Materials & amp; Interfaces, 2022, 14, 23797-23807.	4.0	5
175	High-performance triboelectric nanogenerator based on chitin for mechanical-energy harvesting and self-powered sensing. Carbohydrate Polymers, 2022, 291, 119586.	5.1	23
176	Hemostatic Performance of É'â€Chitin/Gelatin Composite Sponges with Directional Pore Structure. Macromolecular Bioscience, 2022, 22, e2200020.	2.1	6
177	Recent advances in extraction and processing of chitin using deep eutectic solvents. Chemical Engineering Journal, 2022, 446, 136953.	6.6	11
178	Nanochitin and poly(N-isopropylacrylamide) interpenetrating network hydrogels for temperature sensor applications. Carbohydrate Polymers, 2022, 291, 119544.	5.1	21
179	Modelling and optimization for methylene blue adsorption using graphene oxide/chitosan composites via artificial neural network-particle swarm optimization. Materials Today Chemistry, 2022, 24, 100946.	1.7	17
180	Facile route to tri-carboxyl chitin nanocrystals from di-aldehyde chitin modified by selective periodate oxidation. International Journal of Biological Macromolecules, 2022, 211, 281-288.	3.6	5

		EPORT	
#	Article	IF	CITATIONS
181	Chitosan: a multipurpose polymer in food industry. Polymer Bulletin, 2023, 80, 3547-3569.	1.7	11
182	Insight into different roles of chitin nanocrystals and cellulose nanocrystals towards stabilizing Pickering emulsions. Food Hydrocolloids, 2022, 131, 107808.	5.6	14
183	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
184	Biotextile-based adsorbents for medical applications. , 2022, , 117-135.		0
185	Progress in Catalytic Conversion of Renewable Chitin Biomass to Furan-Derived Platform Compounds. Catalysts, 2022, 12, 653.	1.6	9
186	Roles of Ionic Liquids in Adjusting Nature of Ionogels: A Mini Review. Advanced Functional Materials, 2022, 32, .	7.8	71
187	Gold@Halloysite nanotubes-chitin composite hydrogel with antibacterial and hemostatic activity for wound healing. Bioactive Materials, 2023, 20, 355-367.	8.6	57
188	Tradeoff between Amino Group and Crystallinity of Chitin Nanocrystals as a Functional Component in Fluorescent Nail Coatings. ACS Sustainable Chemistry and Engineering, 2022, 10, 10327-10338.	3.2	2
189	Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 2022, 13, .	5.8	39
190	Polydopamine-based polysaccharide materials for water treatment. Cellulose, 2022, 29, 8025-8064.	2.4	17
191	Blood compatible chitin composite nanofibrous microspheres as efficient adsorbents for removal of blood ammonia in hyperammonemia. Microporous and Mesoporous Materials, 2022, 343, 112137.	2.2	2
192	Transparent and anti-fingerprint coating prepared with chitin nanofibers and surface modification via vapor deposition. Progress in Organic Coatings, 2022, 172, 107126.	1.9	1
193	Tuning liquid aggregation of zwitterionic chitin nanocrystals by graphene oxide planar catchers via electrostatic regulation. Journal of Colloid and Interface Science, 2022, 628, 566-572.	5.0	3
194	Progress in the application of sustained-release drug microspheres in tissue engineering. Materials Today Bio, 2022, 16, 100394.	2.6	22
195	Silver loaded biodegradable carboxymethyl chitin films with long-lasting antibacterial activity for infected wound healing. Biomaterials Science, 2022, 10, 5900-5911.	2.6	1
196	Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomaterials Science, 2022, 10, 5888-5899.	2.6	10
197	Heteroaggregation effects on Pickering stabilization using oppositely charged cellulose nanocrystal and nanochitin. Carbohydrate Polymers, 2023, 299, 120154.	5.1	15
198	High strength chitin nanocrystal/alginate filament prepared by wet-spinning in "green―coagulating bath. Cellulose, 2022, 29, 8611-8621.	2.4	1

#	Article	IF	CITATIONS
199	Physical and mechanical properties of a dental resin adhesive containing hydrophobic chitin nanocrystals. Dental Materials, 2022, 38, 1855-1865.	1.6	5
200	Chitin and its derivatives: Functional biopolymers for developing bioproducts for sustainable agriculture—A reality?. Carbohydrate Polymers, 2023, 299, 120196.	5.1	7
201	Sustainable, High-Performance, and Biodegradable Plastics Made from Chitin. ACS Applied Materials & Interfaces, 2022, 14, 46980-46993.	4.0	18
202	Mechanically strong all-chitin filaments: Wet-spinning of β-chitin nanofibers in aqueous NaOH. International Journal of Biological Macromolecules, 2022, 222, 3243-3249.	3.6	2
203	Recent advances in the construction of biocomposites based on fungal mycelia. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	6
204	Study of polydopamine-modified β-chitin nanofiber hydrogels for full-thickness wound healing. European Polymer Journal, 2023, 183, 111758.	2.6	4
205	Controlled delivery of aspirin from nanocellulose-sodium alginate interpenetrating network hydrogels. Industrial Crops and Products, 2023, 192, 116081.	2.5	15
206	Fabrication of an exosome-loaded thermosensitive chitin-based hydrogel for dental pulp regeneration. Journal of Materials Chemistry B, 2023, 11, 1580-1590.	2.9	7
207	Carboxymethyl chitosan/sodium carboxymethyl cellulose/agarose hydrogel dressings containing silk fibroin/polydopamine nanoparticles for antibiotic delivery. Journal of Drug Delivery Science and Technology, 2023, 80, 104134.	1.4	7
208	Bioleaching and immobilizing of copper and zinc using endophytes coupled with biochar-hydroxyapatite: Bipolar remediation for heavy metals contaminated mining soils. Chemosphere, 2023, 315, 137730.	4.2	10
209	Acid hydrolysis of chitin in calcium chloride solutions. Green Chemistry, 2023, 25, 2596-2607.	4.6	12
210	Phosphorus-modified cobalt single-atom catalysts loaded on crosslinked carbon nanosheets for efficient alkaline hydrogen evolution reaction. Nanoscale, 2023, 15, 3550-3559.	2.8	51
211	Biopolymers for Hygroscopic Material Development. Advanced Materials, 0, , .	11.1	4
212	Development and mechanical properties of soy protein fibrils-chitin nanowhiskers complex gel. Food Hydrocolloids, 2023, 139, 108513.	5.6	8
213	A review on extraction of polysaccharides from crustacean wastes and their environmental applications. Environmental Research, 2023, 221, 115306.	3.7	9
214	Advances in the Food Packaging Production from Agri-Food Waste and By-Products: Market Trends for a Sustainable Development. Sustainability, 2023, 15, 6153.	1.6	8
215	Modification of graphene with nitrogen and oxygen via radical reactions with simple mechanical treatment. Diamond and Related Materials, 2023, 135, 109857.	1.8	0
216	Effect of milling intensity on the properties of chitin, chitosan and chitosan films obtained from grasshopper. International Journal of Biological Macromolecules, 2023, 239, 124249.	3.6	4

#	Article	IF	CITATIONS
217	Facile preparation of a novel iminodisuccinate modified chitin and its excellent properties as a silver bioadsorbent and antibacterial agent. Carbohydrate Polymers, 2023, 312, 120793.	5.1	4
218	Effect of chitin nanocrystals on stereocomplexation of poly(-lactide)/poly(-lactide) blends. International Journal of Biological Macromolecules, 2023, 239, 124372.	3.6	2
219	Advances in chitin-based nanoparticle use in biodegradable polymers: A review. Carbohydrate Polymers, 2023, 312, 120789.	5.1	10
220	"Smart―Stimuliâ€responsive Injectable Gels for Bone Tissue Engineering Application. Macromolecular Bioscience, 2023, 23, .	2.1	7
221	Impact of the Amylose/Amylopectin Ratio of Starch-Based Foams on Foaming Behavior, Mechanical Properties, and Thermal Insulation Performance. ACS Sustainable Chemistry and Engineering, 2023, 11, 2968-2977.	3.2	8
222	Assembly of Nanowires into Macroscopic One-Dimensional Fibers in Liquid State. Advanced Fiber Materials, 0, , .	7.9	0
223	Hydrogels: From Design to Applications in Forensic Investigations. ChemistrySelect, 2023, 8, .	0.7	1
224	Anti-Inflammatory Salidroside Delivery from Chitin Hydrogels for NIR-II Image-Guided Therapy of Atopic Dermatitis. Journal of Functional Biomaterials, 2023, 14, 150.	1.8	0
225	High-tensile chitin films regenerated from cryogenic aqueous phosphoric acid. Carbohydrate Polymers, 2023, 312, 120826.	5.1	2
226	Hierarchical biopolymerâ€based materials and composites. Journal of Polymer Science, 2023, 61, 2585-2632.	2.0	2
227	Multifunctional edible chitin nanofibers/ferulic acid composite coating for fruit preservation. Journal of Polymer Science, 2024, 62, 338-352.	2.0	4
228	Engineered Injectable Cell-Laden Chitin/Chitosan Hydrogel with Adhesion and Biodegradability for Calvarial Defect Regeneration. ACS Applied Materials & Interfaces, 2023, 15, 20761-20773.	4.0	2
229	Recent application progress and key challenges of biomass-derived carbons in resistive strain/pressure sensor. Science China Materials, 2023, 66, 1702-1718.	3.5	5
232	The role of nanochitin in biologically-active matrices for tissue engineering-where do we stand?. Journal of Materials Chemistry B, 2023, 11, 5630-5649.	2.9	2
238	Chitin/Chitosan Based Superabsorbent Polymers. Engineering Materials, 2023, , 77-91.	0.3	0
263	Recent advances in biopolymers-based carbon materials for supercapacitors. RSC Advances, 2023, 13, 33318-33335.	1.7	2
269	Nanochitin for sustainable and advanced manufacturing. Nanoscale, 2024, 16, 3269-3292.	2.8	0