Ni–Mo–O nanorod-derived composite catalysts for conversion <i>via</i> urea electrolysis

Energy and Environmental Science 11, 1890-1897 DOI: 10.1039/c8ee00521d

Citation Report

#	Article	IF	CITATIONS
4	Self-supported bimetallic Ni–Co compound electrodes for urea- and neutralization energy-assisted electrolytic hydrogen production. Nanoscale, 2018, 10, 21087-21095.	2.8	73
5	Recent Advances in the Electro-Oxidation of Urea for Direct Urea Fuel Cell and Urea Electrolysis. Topics in Current Chemistry, 2018, 376, 42.	3.0	140
6	Self-Assembly-Induced Mosslike Fe ₂ O ₃ and FeP on Electro-oxidized Carbon Paper for Low-Voltage-Driven Hydrogen Production Plus Hydrazine Degradation. ACS Sustainable Chemistry and Engineering, 2018, 6, 15727-15736.	3.2	28
7	Local Charge Distribution Engineered by Schottky Heterojunctions toward Urea Electrolysis. Advanced Energy Materials, 2018, 8, 1801775.	10.2	266
8	Colloidal Synthesis of NiWSe Nanosheets for Efficient Electrocatalytic Hydrogen Evolution Reaction in Alkaline Media. Chemistry - an Asian Journal, 2018, 13, 2040-2045.	1.7	17
9	The P/NiFe doped NiMoO4 micro-pillars arrays for highly active and durable hydrogen/oxygen evolution reaction towards overall water splitting. International Journal of Hydrogen Energy, 2019, 44, 24546-24558.	3.8	28
10	Morphology-Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation. Inorganic Chemistry, 2019, 58, 11449-11457.	1.9	69
11	Co3O4 arrays with tailored morphology as robust water oxidation and urea splitting catalyst. Journal of Alloys and Compounds, 2019, 809, 151821.	2.8	18
12	Tailoring the photoelectrochemistry of catalytic metal-insulator-semiconductor (MIS) photoanodes by a dissolution method. Nature Communications, 2019, 10, 3522.	5.8	49
13	Bimetallic NiPd Nanoparticle-Incorporated Ordered Mesoporous Carbon as Highly Efficient Electrocatalysts for Hydrogen Production via Overall Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 15526-15536.	3.2	44
14	Chemical Doped Ternary and Quaternary Transitionâ€Metalâ€Based Electrocatalysts for Hydrogen Evolution Reaction. ChemCatChem, 2019, 11, 4998-5012.	1.8	7
15	Defective NiFe ₂ O ₄ Nanoparticles for Efficient Urea Electroâ€oxidation. Chemistry - an Asian Journal, 2019, 14, 2796-2801.	1.7	14
16	Strongly Coupled 3D N-Doped MoO ₂ /Ni ₃ S ₂ Hybrid for High Current Density Hydrogen Evolution Electrocatalysis and Biomass Upgrading. ACS Applied Materials & Interfaces, 2019, 11, 27743-27750.	4.0	95
17	Synthesis of CoMoO4/Co9S8 network arrays on nickel foam as efficient urea oxidation and hydrogen evolution catalyst. International Journal of Hydrogen Energy, 2019, 44, 19595-19602.	3.8	18
18	Boosting Hydrogen Production by Electrooxidation of Urea over 3D Hierarchical Ni ₄ N/Cu ₃ N Nanotube Arrays. ACS Sustainable Chemistry and Engineering, 2019, 7, 13278-13285.	3.2	80
19	Ni-Co-Mo-O nanosheets decorated with NiCo nanoparticles as advanced electrocatalysts for highly efficient hydrogen evolution. Applied Catalysis B: Environmental, 2019, 258, 117953.	10.8	68
20	Highly active electrocatalysts of CeO2 modified NiMoO4 nanosheet arrays towards water and urea oxidation reactions. Electrochimica Acta, 2019, 320, 134608.	2.6	34
21	Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Applied Catalysis B: Environmental, 2019, 259, 118020.	10.8	108

#	Article	IF	CITATIONS
22	[MoS ₄] ^{2–} -Intercalated NiCo-Layered Double Hydroxide Nanospikes: An Efficiently Synergized Material for Urine To Direct H ₂ Generation. ACS Applied Materials & Interfaces, 2019, 11, 25917-25927.	4.0	23
23	Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy and Environmental Science, 2019, 12, 2569-2580.	15.6	137
24	Self-supported ternary (NixFey)2P nanoplates arrays as an efficient bifunctional electrocatalyst for overall water splitting. Electrochimica Acta, 2019, 319, 561-568.	2.6	18
25	Enhanced Hydrogen Evolution Reaction Performance of NiCo ₂ P by Filling Oxygen Vacancies by Phosphorus in Thin-Coating CeO ₂ . ACS Applied Materials & Interfaces, 2019, 11, 32460-32468.	4.0	46
26	Metal–Organic Frameworkâ€Đerived Fe/Coâ€based Bifunctional Electrode for H ₂ Production through Water and Urea Electrolysis. ChemSusChem, 2019, 12, 4810-4823.	3.6	64
27	Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 24712-24718.	3.8	45
28	Interconnected phosphorus-doped CoO-nanoparticles nanotube with three-dimensional accessible surface enables high-performance electrochemical oxidation. Nano Energy, 2019, 66, 104194.	8.2	35
29	Crystalline Ni(OH) ₂ /Amorphous NiMoO <i>_x</i> Mixed atalyst with Ptâ€Like Performance for Hydrogen Production. Advanced Energy Materials, 2019, 9, 1902703.	10.2	141
30	Boosting the activity of Prussian-blue analogue as efficient electrocatalyst for water and urea oxidation. Scientific Reports, 2019, 9, 15965.	1.6	51
31	Boosting Hydrogen Transfer during Volmer Reaction at Oxides/Metal Nanocomposites for Efficient Alkaline Hydrogen Evolution. ACS Energy Letters, 2019, 4, 3002-3010.	8.8	142
32	Dual-functional Co3O4@Co2P4O12 nanoneedles supported on nickel foams with enhanced electrochemical performance and excellent stability for overall urea splitting. International Journal of Hydrogen Energy, 2019, 44, 24705-24711.	3.8	11
33	NiCoP coated on NiCo2S4 nanoarrays as electrode materials for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2019, 44, 30910-30916.	3.8	15
34	0.2 V Electrolysis Voltage-Driven Alkaline Hydrogen Production with Nitrogen-Doped Carbon Nanobowl-Supported Ultrafine Rh Nanoparticles of 1.4 nm. ACS Applied Materials & Interfaces, 2019, 11, 35039-35049.	4.0	27
35	Preparation of Carbon- Based Composite NiO/MoO2/MoO3/C by Electrodeposition and Its Application in Microbial Electrolysis Cells. International Journal of Electrochemical Science, 2019, , 9231-9238.	0.5	5
36	NiO-rich Ni/NiO nanocrystals for efficient water-to‑hydrogen conversion via urea electro-oxidation. Applied Surface Science, 2019, 496, 143710.	3.1	41
37	A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions. Electrochimica Acta, 2019, 326, 134979.	2.6	32
38	Interface Engineering of MoS ₂ for Electrocatalytic Performance Optimization for Hydrogen Generation via Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 16577-16584.	3.2	70
39	Layer-by-layer assembly for photoelectrochemical nanoarchitectonics. Molecular Systems Design and Engineering, 2019, 4, 65-77.	1.7	25

#	Article	IF	CITATIONS
40	Layered and two dimensional metal oxides for electrochemical energy conversion. Energy and Environmental Science, 2019, 12, 41-58.	15.6	310
41	Ni-foam supported Co(OH)F and Co–P nanoarrays for energy-efficient hydrogen production <i>via</i> urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 3697-3703.	5.2	235
42	Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem, 2019, 6, 3214-3226.	1.7	187
43	Constructing Hierarchical Wire-on-Sheet Nanoarrays in Phase-Regulated Cerium-Doped Nickel Hydroxide for Promoted Urea Electro-oxidation. , 2019, 1, 103-110.		100
44	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie, 2019, 131, 11922-11926.	1.6	22
45	Unconventional CN vacancies suppress iron-leaching in Prussian blue analogue pre-catalyst for boosted oxygen evolution catalysis. Nature Communications, 2019, 10, 2799.	5.8	202
46	Negative Charging of Transitionâ€Metal Phosphides via Strong Electronic Coupling for Destabilization of Alkaline Water. Angewandte Chemie - International Edition, 2019, 58, 11796-11800.	7.2	155
47	Hierarchically heterostructured metal hydr(oxy)oxides for efficient overall water splitting. Nanoscale, 2019, 11, 11736-11743.	2.8	14
48	Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale, 2019, 11, 9319-9326.	2.8	97
49	Enhanced the Hydrogen Evolution Performance by Ruthenium Nanoparticles Doped into Cobalt Phosphide Nanocages. ACS Sustainable Chemistry and Engineering, 2019, 7, 9737-9742.	3.2	33
50	A Li–urine battery based on organic/aqueous hybrid electrolytes. Inorganic Chemistry Frontiers, 2019, 6, 1654-1659.	3.0	0
51	Bifunctional nickel oxide-based nanosheets for highly efficient overall urea splitting. Chemical Communications, 2019, 55, 6555-6558.	2.2	53
52	3D self-supported Ni nanoparticle@N-doped carbon nanotubes anchored on NiMoN pillars for the hydrogen evolution reaction with high activity and anti-oxidation ability. Journal of Materials Chemistry A, 2019, 7, 13671-13678.	5.2	71
53	Copper-incorporated hierarchical wire-on-sheet α-Ni(OH) ₂ nanoarrays as robust trifunctional catalysts for synergistic hydrogen generation and urea oxidation. Journal of Materials Chemistry A, 2019, 7, 13577-13584.	5.2	159
54	"Superaerophobic―Nickel Phosphide Nanoarray Catalyst for Efficient Hydrogen Evolution at Ultrahigh Current Densities. Journal of the American Chemical Society, 2019, 141, 7537-7543.	6.6	401
55	Rational Design of Metallic NiTe _{<i>x</i>} (<i>x</i> = 1 or 2) as Bifunctional Electrocatalysts for Efficient Urea Conversion. ACS Applied Energy Materials, 2019, 2, 3363-3372.	2.5	40
56	Investigation of the correlation between the phase structure and activity of Ni–Mo–O derived electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 10338-10345.	5.2	22
57	The construction of self-supported thorny leaf-like nickel-cobalt bimetal phosphides as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2019, 7, 9078-9085.	5.2	151

#	Article	IF	CITATIONS
58	Energy-saving hydrogen production coupling urea oxidation over a bifunctional nickel-molybdenum nanotube array. Nano Energy, 2019, 60, 894-902.	8.2	250
59	Copper–Nickel Nitride Nanosheets as Efficient Bifunctional Catalysts for Hydrazineâ€Assisted Electrolytic Hydrogen Production. Advanced Energy Materials, 2019, 9, 1900390.	10.2	243
60	Hierarchical microsphere of MoNi porous nanosheets as electrocatalyst and cocatalyst for hydrogen evolution reaction. Applied Catalysis B: Environmental, 2019, 249, 98-105.	10.8	98
61	Facile in-situ growth of Ni2P/Fe2P nanohybrids on Ni foam for highly efficient urea electrolysis. Journal of Colloid and Interface Science, 2019, 541, 279-286.	5.0	113
62	Hollow mesoporous nickel dendrites grown on porous nickel foam for electrochemical oxidation of urea. Electrochimica Acta, 2019, 304, 131-137.	2.6	27
63	A facile oxidation–dehydration reaction-driven robust porous copper oxide nanobelt coating on copper foam for an energy-saving and low-cost urea oxidization reaction. Chemical Communications, 2019, 55, 13562-13565.	2.2	19
64	Hole dynamic acceleration over CdSO nanoparticles for high-efficiency solar hydrogen production with urea photolysis. Journal of Materials Chemistry A, 2019, 7, 25650-25656.	5.2	6
65	Electronic modulation of composite electrocatalysts derived from layered NiFeMn triple hydroxide nanosheets for boosted overall water splitting. Nanoscale, 2019, 11, 20797-20808.	2.8	30
66	Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nature Communications, 2019, 10, 5335.	5.8	339
67	Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design. Chemical Society Reviews, 2019, 48, 5658-5716.	18.7	541
68	Ex-situ soft X-ray absorption spectroscopic investigation of NiCo2O4 annealed in different gases for hydrogen generation by electrolysis of urea. International Journal of Hydrogen Energy, 2019, 44, 15771-15778.	3.8	9
69	MoFeâ€Codoped Ni ₃ S ₂ /Ni(OH) ₂ Nanosheets with Large Sample Size toward Highâ€Performance Oxygen Evolution. Energy Technology, 2019, 7, 1801053.	1.8	5
70	Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Applied Catalysis B: Environmental, 2020, 260, 118154.	10.8	70
71	Coupling efficient biomass upgrading with H ₂ production <i>via</i> bifunctional Cu _x S@NiCo-LDH core–shell nanoarray electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 1138-1146.	5.2	132
72	Ni-Ni3P nanoparticles embedded into N, P-doped carbon on 3D graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Applied Catalysis B: Environmental, 2020, 261, 118147.	10.8	82
73	Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon, 2020, 157, 153-163.	5.4	30
74	Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Applied Catalysis B: Environmental, 2020, 268, 118393.	10.8	100
75	Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles. Chemical Reviews, 2020, 120, 851-918.	23.0	1,767

#	Article	IF	CITATIONS
76	Dealloying Generation of Oxygen Vacancies in the Amorphous Nanoporous Ni–Mo–O for Superior Electrocatalytic Hydrogen Generation. ACS Applied Energy Materials, 2020, 3, 1319-1327.	2.5	28
77	Ir-Doped Ni-based metal–organic framework ultrathin nanosheets on Ni foam for enhanced urea electro-oxidation. Chemical Communications, 2020, 56, 2151-2154.	2.2	101
78	Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction. Small, 2020, 16, e1906133.	5.2	328
79	Electrocatalytic hydrogen evolution reaction studies of NiW1â^'xMoxO4 (x = 0.0, 0.5 and 1.0) nanoparticles in both acid and alkaline electrolytes. Journal of Materials Science: Materials in Electronics, 2020, 31, 2378-2387.	1.1	12
80	A one-pot "shielding-to-etching―strategy to synthesize amorphous MoS ₂ modified CoS/Co _{0.85} Se heterostructured nanotube arrays for boosted energy-saving H ₂ generation. Nanoscale, 2020, 12, 991-1001.	2.8	33
81	A 3D hierarchical dual-metal–organic framework heterostructure up-regulating the pre-concentration effect for ultrasensitive fluorescence detection of tetracycline antibiotics. Journal of Materials Chemistry C, 2020, 8, 2054-2064.	2.7	95
82	Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Applied Catalysis B: Environmental, 2020, 265, 118567.	10.8	89
83	Overall water splitting on Ni0.19WO4 nanowires as highly efficient and durable bifunctional non-precious metal electrocatalysts. Electrochimica Acta, 2020, 333, 135554.	2.6	13
84	Low-Cost Ni ₂ P/Ni _{0.96} S Heterostructured Bifunctional Electrocatalyst toward Highly Efficient Overall Urea-Water Electrolysis. ACS Applied Materials & Interfaces, 2020, 12, 2225-2233.	4.0	93
85	Efficient hydrogen production via urea electrolysis with cobalt doped nickel hydroxide-riched hybrid films: Cobalt doping effect and mechanism aspect. Journal of Catalysis, 2020, 381, 454-461.	3.1	62
86	Interlaced rosette-like MoS2/Ni3S2/NiFe-LDH grown on nickel foam: A bifunctional electrocatalyst for hydrogen production by urea-assisted electrolysis. International Journal of Hydrogen Energy, 2020, 45, 23-35.	3.8	61
87	Transition Metal Selenides for Electrocatalytic Hydrogen Evolution Reaction. ChemElectroChem, 2020, 7, 31-54.	1.7	103
88	Monomeric MoS ₄ ^{2–} -Derived Polymeric Chains with Active Molecular Units for Efficient Hydrogen Evolution Reaction. ACS Catalysis, 2020, 10, 652-662.	5.5	37
89	Activity Origins and Design Principles of Nickel-Based Catalysts for Nucleophile Electrooxidation. CheM, 2020, 6, 2974-2993.	5.8	302
90	Pulsed electrodeposition of well-ordered nanoporous Cu-doped Ni arrays promotes high-efficiency overall hydrazine splitting. Journal of Materials Chemistry A, 2020, 8, 21084-21093.	5.2	36
91	Nanosheet-Derived Ultrafine CoRuOx@NC Nanoparticles with a Core@Shell Structure as Bifunctional Electrocatalysts for Electrochemical Water Splitting with High Current Density or Low Power Input. ACS Sustainable Chemistry and Engineering, 2020, 8, 12089-12099.	3.2	20
92	NiMoO4 nanoparticles embedded in nanoporous carbon nanosheets derived from peanut shells: Efficient electrocatalysts for urea oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 604, 125276.	2.3	9
93	Single-Crystalline Mo-Nanowire-Mediated Directional Growth of High-Index-Faceted MoNi Electrocatalyst for Ultralong-Term Alkaline Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 36259-36267.	4.0	18

#	Article	IF	CITATIONS
94	Synthesis of non-noble NiMoO4–Ni(OH)2/NF bifunctional electrocatalyst and its application in water-urea electrolysis. International Journal of Hydrogen Energy, 2020, 45, 21040-21050.	3.8	31
95	Constructing multifunctional â€~Nanoplatelet-on-Nanoarray' electrocatalyst with unprecedented activity towards novel selective organic oxidation reactions to boost hydrogen production. Applied Catalysis B: Environmental, 2020, 278, 119339.	10.8	93
96	Realizing optimal hydrogen evolution reaction properties via tuning phosphorous and transition metal interactions. Green Energy and Environment, 2020, 5, 506-512.	4.7	19
97	Oxygen Vacancyâ€rich Ni/NiO@NC Nanosheets with Schottky Heterointerface for Efficient Urea Oxidation Reaction. ChemSusChem, 2020, 13, 5004-5014.	3.6	95
98	Engineering of Amorphous Structures and Sulfur Defects into Ultrathin FeS Nanosheets to Achieve Superior Electrocatalytic Alkaline Oxygen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 51846-51853.	4.0	45
99	Low-cost valence-rich copper–iron–sulfur–oxygen porous nanocluster that drives an exceptional energy-saving carbohydrazide oxidization reaction in alkali and near-neutral electrolytes. Journal of Materials Chemistry A, 2020, 8, 24419-24427.	5.2	4
100	Defect Engineering of Molybdenum-Based Materials for Electrocatalysis. Catalysts, 2020, 10, 1301.	1.6	21
101	A heterogeneous interface on NiS@Ni ₃ S ₂ /NiMoO ₄ heterostructures for efficient urea electrolysis. Journal of Materials Chemistry A, 2020, 8, 18055-18063.	5.2	134
102	Novel Bifunctional V ₂ O ₃ Nanosheets Coupled with N-Doped-Carbon Encapsulated Ni Heterostructure for Enhanced Electrocatalytic Oxidation of Urea-Rich Wastewater. ACS Applied Materials & Interfaces, 2020, 12, 38061-38069.	4.0	47
103	Phase-Dependent Reactivity of Nickel Molybdates for Electrocatalytic Urea Oxidation. ACS Applied Energy Materials, 2020, 3, 7535-7542.	2.5	41
104	Suppressed Jahn–Teller Distortion in MnCo ₂ O ₄ @Ni ₂ P Heterostructures to Promote the Overall Water Splitting. Small, 2020, 16, e2001856.	5.2	59
105	Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation. Dalton Transactions, 2020, 49, 13962-13969.	1.6	28
106	Non-precious-metal catalysts for alkaline water electrolysis: <i>operando</i> characterizations, theoretical calculations, and recent advances. Chemical Society Reviews, 2020, 49, 9154-9196.	18.7	448
107	Partially exposed RuP ₂ surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis. Science Advances, 2020, 6, .	4.7	168
108	Nickel doped MoS2 nanoparticles as precious-metal free bifunctional electrocatalysts for glucose assisted electrolytic H2 generation. International Journal of Hydrogen Energy, 2020, 45, 32940-32948.	3.8	21
109	<i>In Situ</i> Formed Bimetallic Carbide Ni ₆ Mo ₆ C Nanodots and NiMoO <i>_x</i> Nanosheet Array Hybrids Anchored on Carbon Cloth: Efficient and Flexible Self-Supported Catalysts for Hydrogen Evolution. ACS Catalysis, 2020, 10, 11634-11642.	5.5	63
110	Insights into the Mo-Doping Effect on the Electrocatalytic Performance of Hierarchical Co _{<i>x</i>} Mo _{<i>y</i>} S Nanosheet Arrays for Hydrogen Generation and Urea Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 40194-40203.	4.0	85
111	Engineering CoN/Ni(OH)2 heterostructures with improved intrinsic interfacial charge transfer toward simultaneous hydrogen generation and urea-rich wastewater purification. Journal of Power Sources, 2020, 480, 229151.	4.0	29

ARTICLE IF CITATIONS Ultrafast formation of an FeOOH electrocatalyst on Ni for efficient alkaline water and urea 112 2.2 65 oxidation. Chemical Communications, 2020, 56, 14713-14716. Complete Reconstruction of Hydrate Pre-Catalysts for Ultrastable Water Electrolysis in 2.8 Industrial-Concentration Alkali Media. Cell Reports Physical Science, 2020, 1, 100241. Photoelectrochemical water splitting: a road from stable metal oxides to protected thin film solar 114 5.2162 cells. Journal of Materials Chemistry A, 2020, 8, 10625-10669. Tailorable Electrocatalytic 5-Hydroxymethylfurfural Oxidation and H₂ Production: Architecture–Performance Ŕelatiónship in Bifunctional Multilayer Electrodes. ACS Nano, 2020, 14, 6812-6822. Urea Electrooxidation: Current Development and Understanding of Niâ€Based Catalysts. 116 1.7 101 ChemElectroChem, 2020, 7, 3211-3228. Integrating H2 generation with sewage disposal by an efficient anti-poisoning bifunctional electrocatalyst. Applied Catalysis B: Environmental, 2020, 277, 119175. 10.8 Defect-engineered CoMoO4 ultrathin nanosheet array and promoted urea oxidation reaction. Applied 118 2.2 32 Catalysis Ă: General, 2020, 602, 117670. Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water 119 10.8 151 splitting. Applied Catalysis B: Environmental, 2020, 270, 118880. Efficient bifunctional catalysts synthesized from three-dimensional Ni/Fe bimetallic organic 120 1.6 36 frameworks for overall urea electrolysis. Dalton Transactions, 2020, 49, 5646-5652. Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Journal of Colloid and Interface Science, 2020, 571, 48-54. Prussian blue analogue-derived porous bimetallic oxides Fe3O4–NiO/NF as urea oxidation 122 12 1.0 electrocatalysis. Chemical Papers, 2020, 74, 4473-4480. Improved hydrogen generation via a urea-assisted method over 3D hierarchical NiMo-based composite 2.8 46 microrod arrays. Journal of Alloys and Compounds, 2020, 844, 155382. Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustainable 124 3.2 15 Chemistry and Engineering, 0, , . 0.03 V Electrolysis Voltage Driven Hydrazine Assisted Hydrogen Generation on NiCo phosphide 1.7 Nanowires Supported NiČoHydroxide Nanosheets. ChemElectroChem, 2020, 7, 3089-3097. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Applied Catalysis B: Environmental, 2020, 126 10.8 94 269, 118803. Largeâ€Size, Porous, Ultrathin NiCoP Nanosheets for Efficient Electro/Photocatalytic Water Splitting. 127 134 Advanced Functional Materials, 2020, 30, 1910830. Bimetal Schottky Heterojunction Boosting Energyâ€Saving Hydrogen Production from Alkaline Water 128 7.8 216 via Urea Electrocatalysis. Advanced Functional Materials, 2020, 30, 2000556. <i>In Situ</i> Growth of Porous Ultrathin Ni(OH)₂ Nanostructures on Nickel Foam: An 129 Efficient and Durable Catalysts for Urea Electrolysis. ACS Applied Energy Materials, 2020, 3, 2996-3004.

#	Article	IF	CITATIONS
130	Boosting water electrolysis with anodic glucose oxidation reaction over engineered cobalt nickel hydroxide nanosheet on carbon cloth. Journal of Electroanalytical Chemistry, 2020, 861, 113946.	1.9	18
131	Decorating CoNi layered double hydroxides nanosheet arrays with fullerene quantum dot anchored on Ni foam for efficient electrocatalytic water splitting and urea electrolysis. Chemical Engineering Journal, 2020, 390, 124525.	6.6	118
132	Highly disordered cobalt oxide nanostructure induced by sulfur incorporation for efficient overall water splitting. Nano Energy, 2020, 71, 104652.	8.2	105
133	Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nature Communications, 2020, 11, 265.	5.8	280
134	Agaric-derived N-doped carbon nanorod arrays@nanosheet networks coupled with molybdenum carbide nanoparticles as highly efficient pH-universal hydrogen evolution electrocatalysts. Nanoscale, 2020, 12, 5159-5169.	2.8	26
135	Amorphous Ni–Fe–Mo Suboxides Coupled with Ni Network as Porous Nanoplate Array on Nickel Foam: A Highly Efficient and Durable Bifunctional Electrode for Overall Water Splitting. Advanced Science, 2020, 7, 1902034.	5.6	94
136	In situ Grown Ni phosphate@Ni ₁₂ P ₅ Nanorod Arrays as a Unique Core–Shell Architecture: Competitive Bifunctional Electrocatalysts for Urea Electrolysis at Large Current Densities. ACS Sustainable Chemistry and Engineering, 2020, 8, 7463-7471.	3.2	75
137	Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam. Nanoscale, 2020, 12, 11526-11535.	2.8	37
138	Design and Synthesis of Highly Performing Bifunctional Ni-NiO-MoNi Hybrid Catalysts for Enhanced Urea Oxidation and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 7174-7181.	3.2	63
139	Ti-Mesh supported porous CoS ₂ nanosheet self-interconnected networks with high oxidation states for efficient hydrogen production <i>via</i> urea electrolysis. Nanoscale, 2020, 12, 11573-11581.	2.8	47
140	Controllable synthesis of a mesoporous NiO/Ni nanorod as an excellent catalyst for urea electro-oxidation. Inorganic Chemistry Frontiers, 2020, 7, 2089-2096.	3.0	54
141	Three-dimensional self-supporting NiFe-X (X = OH, O, P) nanosheet arrays for high-efficiency overall water splitting. 2D Materials, 2020, 7, 035016.	2.0	14
142	Ultrathin nickel terephthalate nanosheet three-dimensional aggregates with disordered layers for highly efficient overall urea electrolysis. Chemical Engineering Journal, 2020, 395, 125166.	6.6	60
143	The Role of Phosphate Group in Doped Cobalt Molybdate: Improved Electrocatalytic Hydrogen Evolution Performance. Advanced Science, 2020, 7, 1903674.	5.6	73
144	Manganeseâ€Modulated Cobaltâ€Based Layered Double Hydroxide Grown on Nickel Foam with 1D–2D–3D Heterostructure for Highly Efficient Oxygen Evolution Reaction and Urea Oxidation Reaction. Chemistry - A European Journal, 2020, 26, 9382-9388.	1.7	34
145	Strongly coupled carbon encapsulated Ni-WO2 hybrids as efficient catalysts for water-to-hydrogen conversion via urea electro-oxidation. Journal of Power Sources, 2020, 458, 228014.	4.0	54
146	Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production. Nature Communications, 2020, 11, 1853.	5.8	229
147	Significant recycled efficiency of multifunctional nickel molybdenum oxide nanorods in photo-catalysis, electrochemical glucose sensing and asymmetric supercapacitors. Materials Characterization, 2021, 171, 110741.	1.9	27

#	Article	IF	CITATIONS
148	Carbon–based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting. Journal of Alloys and Compounds, 2021, 852, 156810.	2.8	58
149	Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Applied Catalysis B: Environmental, 2021, 284, 119740.	10.8	302
150	Integrating NiMoO wafer as a heterogeneous â€~turbo' for engineering robust Ru-based electrocatalyst for overall water splitting. Chemical Engineering Journal, 2021, 420, 127686.	6.6	24
151	Tungstate-modulated Ni/Ni(OH) ₂ interface for efficient hydrogen evolution reaction in neutral media. Journal of Materials Chemistry A, 2021, 9, 1456-1462.	5.2	57
152	Enabling the full exposure of Fe2P@NixP heterostructures in tree-branch-like nanoarrays for promoted urea electrolysis at high current densities. Chemical Engineering Journal, 2021, 417, 128067.	6.6	66
153	Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie, 2021, 133, 19702-19723.	1.6	114
154	Recent advances in innovative strategies for the CO ₂ electroreduction reaction. Energy and Environmental Science, 2021, 14, 765-780.	15.6	188
155	Beyond traditional water splitting for energy-efficient waste-to-hydrogen conversion with an inorganic–carbon hybrid nanosheet electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 5364-5373.	5.2	5
156	Hybrid water electrolysis: Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond. Materials Reports Energy, 2021, 1, 100004.	1.7	27
157	Boosting hydrogen generation by anodic oxidation of iodide over Ni–Co(OH) ₂ nanosheet arrays. Nanoscale Advances, 2021, 3, 604-610.	2.2	22
158	A branch-like Mo-doped Ni ₃ S ₂ nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 3418-3426.	5.2	93
159	CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy, 2021, 80, 105530.	8.2	76
160	Nanovilli electrode boosts hydrogen evolution: A surface with superaerophobicity and superhydrophilicity. Nano Research, 2021, 14, 961-968.	5.8	24
161	Electro-synthesis of tungsten carbide containing catalysts in molten salt for efficiently electrolytic hydrogen generation assisted by urea oxidation. International Journal of Hydrogen Energy, 2021, 46, 14932-14943.	3.8	23
162	Nitrogen dopants in nickel nanoparticles embedded carbon nanotubes promote overall urea oxidation. Applied Catalysis B: Environmental, 2021, 280, 119436.	10.8	151
163	Electrocatalytic Hydrogen Production Trilogy. Angewandte Chemie - International Edition, 2021, 60, 19550-19571.	7.2	220

165	Superassembly of NiCoO _x solid solution hybrids with a 2D/3D porous polyhedron-on-sheet structure for multi-functional electrocatalytic oxidation. Journal of Materials Chemistry A, 2021, 9, 8576-8585.	5.2	14
-----	---	-----	----

#	Article	IF	CITATIONS
166	Promoting urea oxidation and water oxidation through interface construction on a CeO ₂ @CoFe ₂ O ₄ heterostructure. Dalton Transactions, 2021, 50, 12301-12307.	1.6	108
167	Porous and amorphous cobalt hydroxysulfide core–shell nanoneedles on Ti-mesh as a bifunctional electrocatalyst for energy-efficient hydrogen production <i>via</i> urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 5664-5674.	5.2	27
168	A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/Nickel Foam catalyst. Materials Advances, 2021, 2, 2104-2111.	2.6	15
169	Magnetron sputtering enabled sustainable synthesis of nanomaterials for energy electrocatalysis. Green Chemistry, 2021, 23, 2834-2867.	4.6	96
170	Discovering ultrahigh loading of single-metal-atoms <i>via</i> surface tensile-strain for unprecedented urea electrolysis. Energy and Environmental Science, 2021, 14, 6494-6505.	15.6	79
171	Advances in hydrogen production from electrocatalytic seawater splitting. Nanoscale, 2021, 13, 7897-7912.	2.8	101
172	A three-dimensional nanostructure of NiFe(OH) _X nanoparticles/nickel foam as an efficient electrocatalyst for urea oxidation. RSC Advances, 2021, 11, 17352-17359.	1.7	11
173	Heterostructured Ni/NiO Nanoparticles on 1D Porous MoO _{<i>x</i>} for Hydrolysis of Ammonia Borane. ACS Applied Energy Materials, 2021, 4, 1208-1217.	2.5	17
174	Lanthanum-incorporated β-Ni(OH) ₂ nanoarrays for robust urea electro-oxidation. Chemical Communications, 2021, 57, 2029-2032.	2.2	21
175	3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis. Journal of Materials Chemistry A, 2021, 9, 4159-4166.	5.2	89
176	Construction of a hierarchically structured, NiCo–Cu-based trifunctional electrocatalyst for efficient overall water splitting and 5-hydroxymethylfurfural oxidation. Sustainable Energy and Fuels, 2021, 5, 4023-4031.	2.5	27
177	Self-Supported Nickel Phosphide Electrode for Efficient Alkaline Water-to-Hydrogen Conversion via Urea Electrolysis. Industrial & Engineering Chemistry Research, 2021, 60, 1185-1193.	1.8	36
178	Electrochemical oxidation of biomass derived 5-hydroxymethylfurfural (HMF): pathway, mechanism, catalysts and coupling reactions. Green Chemistry, 2021, 23, 4228-4254.	4.6	191
179	Nickel borate with a 3D hierarchical structure as a robust and efficient electrocatalyst for urea oxidation. Environmental Science: Nano, 2021, 8, 1326-1335.	2.2	17
180	Highly Efficient Urea Oxidation via Nesting Nano-Nickel Oxide in Eggshell Membrane-Derived Carbon. ACS Sustainable Chemistry and Engineering, 2021, 9, 1703-1713.	3.2	85
181	Synthesis of an <i>in situ</i> core–shell interlink ultrathin-nanosheet Fe@Fe _x NiO/Ni@Ni _y CoP nanohybrid by scalable layer-to-layer assembly strategy as an ultra-highly efficient bifunctional electrocatalyst for alkaline/neutral water reduction/oxidation, lournal of Materials Chemistry A, 2021, 9, 5833-5847.	5.2	17
182	Construction of self-supporting, hierarchically structured caterpillar-like NiCo ₂ S ₄ arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis. Nanoscale, 2021, 13, 1680-1688.	2.8	63
183	Advances in noble metal (Ru, Rh, and Ir) doping for boosting water splitting electrocatalysis. Journal of Materials Chemistry A, 2021, 9, 13459-13470.	5.2	172

#	Article	IF	Citations
184	Rapid Synthesis of Various Electrocatalysts on Ni Foam Using a Universal and Facile Induction Heating Method for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2009580.	7.8	63
185	An (Mn,Ni)O(OH) turing structural nanoscale film driving highly efficient urea oxidization reaction in alkali water, seawater and waste water. Surface and Coatings Technology, 2021, 408, 126799.	2.2	2
186	Ultrathin NiMn-LDH nanosheet structured electrocatalyst for enhanced electrocatalytic urea oxidation. Applied Catalysis A: General, 2021, 614, 118049.	2.2	36
187	Heterogeneous Synergetic Effect of Metal–Oxide Interfaces for Efficient Hydrogen Evolution in Alkaline Solutions. ACS Applied Materials & Interfaces, 2021, 13, 13838-13847.	4.0	26
188	Superhydrophilic Niâ€based Multicomponent Nanorodâ€Confinedâ€Nanoflake Array Electrode Achieves Wasteâ€Batteryâ€Driven Hydrogen Evolution and Hydrazine Oxidation. Small, 2021, 17, e2008148.	5.2	30
189	Nitrogen-doped-carbon coated FeCo modified CoFe2O4 nanoflowers heterostructure with robust stability for oxygen evolution and urea oxidation. Electrochimica Acta, 2021, 371, 137817.	2.6	23
190	Two-dimensional bimetallic coordination polymers as bifunctional evolved electrocatalysts for enhanced oxygen evolution reaction and urea oxidation reaction. Journal of Energy Chemistry, 2021, 63, 230-238.	7.1	29
191	Fe3+-mediated coal-assisted water electrolysis for hydrogen production: Roles of mineral matter and oxygen-containing functional groups in coal. Energy, 2021, 220, 119677.	4.5	19
192	Accelerating H ₂ Evolution by Anodic Semiâ€dehydrogenation of Tetrahydroisoquinolines in Water over Co ₃ O ₄ Nanoribbon Arrays Decorated Nickel Foam. Chemistry - A European Journal, 2021, 27, 7502-7506.	1.7	11
193	Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis. Chemical Engineering Journal, 2021, 409, 128240.	6.6	94
194	Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 9190-9199.	1.5	25
195	Hornwort-like hollow porous MoO3/NiF2 heterogeneous nanowires as high-performance electrocatalysts for efficient water oxidation. Electrochimica Acta, 2021, 379, 138146.	2.6	16
196	Catalyst Design and Progresses for Urea Oxidation Electrolysis in Alkaline Media. Topics in Catalysis, 2021, 64, 532-558.	1.3	19
197	Synergistic Interfacial and Doping Engineering of Heterostructured NiCo(OH)x-CoyW as an Efficient Alkaline Hydrogen Evolution Electrocatalyst. Nano-Micro Letters, 2021, 13, 120.	14.4	28
198	Co(OH) ₂ Nanosheets Array Doped by Cu ²⁺ Ions with Optimal Electronic Structure for Ureaâ€Assisted Electrolytic Hydrogen Generation. ChemElectroChem, 2021, 8, 1881-1891.	1.7	10
199	Hydrophobic POM Electrocatalyst Achieves Low Voltage "Charge―in Znâ€Air Battery Coupled with Bisphenol A Degradation. Chemistry - A European Journal, 2021, 27, 8774-8781.	1.7	5
200	Ultrasmall Pt Nanoparticles-Loaded Crystalline MoO ₂ /Amorphous Ni(OH) ₂ Hybrid Nanofilms with Enhanced Water Dissociation and Sufficient Hydrogen Spillover for Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2021, 9, 8257-8269.	3.2	18
201	Progress and Perspectives in Photo―and Electrochemicalâ€Oxidation of Biomass for Sustainable Chemicals and Hydrogen Production. Advanced Energy Materials, 2021, 11, 2101180.	10.2	200

	Сітаті	on Report	
#	Article	IF	CITATIONS
202	Enhanced electro-oxidation of urea using Ni-NiS debris via confinement in carbon derived from glucose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 618, 126425.	2.3	9
203	Hairy sphere-like Ni9S8/CuS/Cu2O composites grown on nickel foam as bifunctional electrocatalysts for hydrogen evolution and urea electrooxidation. International Journal of Hydrogen Energy, 2021, 46, 20950-20960.	3.8	44
204	Ultrathin One-Dimensional Ni-MIL-77 Nanobelts for High-Performance Electrocatalytic Urea Evolution. Crystal Growth and Design, 2021, 21, 3639-3644.	1.4	9
205	Realizing the Synergy of Interface Engineering and Chemical Substitution for Ni ₃ N Enables its Bifunctionality Toward Hydrazine Oxidation Assisted Energyâ€Saving Hydrogen Production. Advanced Functional Materials, 2021, 31, 2103673.	7.8	99
206	Heterostructured Ni ₃ S ₂ –Ni ₃ P/NF as a Bifunctional Catalyst for Overall Urea–Water Electrolysis for Hydrogen Generation. ACS Applied Materials & Interfaces, 2021, 13, 26948-26959.	4.0	62
207	Clean and Affordable Hydrogen Fuel from Alkaline Water Splitting: Past, Recent Progress, and Future Prospects. Advanced Materials, 2021, 33, e2007100.	11.1	781
208	Solar-driven hydrogen generation coupled with urea electrolysis by an oxygen vacancy-rich catalyst. Chemical Engineering Journal, 2021, 414, 128753.	6.6	32
209	Achieving low-energy consumption water-to-hydrogen conversion via urea electrolysis over a bifunctional electrode of hierarchical cuprous sulfide@nickel selenide nanoarrays. Journal of Colloid and Interface Science, 2021, 592, 13-21.	5.0	33
210	Hierarchical multi-component nanosheet array electrode with abundant NiCo/MoNi4 heterostructure interfaces enables superior bifunctionality towards hydrazine oxidation assisted energy-saving hydrogen generation. Chemical Engineering Journal, 2021, 414, 128818.	6.6	47
211	Ni3N-V2O3 enables highly efficient 5-(Hydroxymethyl) furfural oxidation enabling membrane free hydrogen production. Chemical Engineering Journal, 2021, 415, 128864.	6.6	27
212	Oxygenâ€Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Ureaâ€Assisted Energyâ€Saving Hydrogen Production in Alkaline Electrolyte. Advanced Functional Materials, 2021, 31, 2104951.	7.8	247
213	Bifunctional Electrolyzation for Simultaneous Organic Pollutant Degradation and Hydrogen Generation. ACS ES&T Engineering, 2021, 1, 1360-1368.	3.7	16
214	Amorphous Nickel Oxide as Efficient Electrocatalyst for Urea Oxidation Reaction. Journal of the Electrochemical Society, 2021, 168, 076502.	1.3	3
215	Facile synthesis of Ni doped CoWO4 nanoarrays grown on nickel foam substrates for efficient urea oxidation. International Journal of Hydrogen Energy, 2021, 46, 25114-25120.	3.8	15
216	Electrochemical tuning of nickel molybdate nanorod arrays towards promoted electrocatalytic urea oxidization. Applied Catalysis A: General, 2021, 622, 118220.	2.2	11
217	Costâ€Efficient Photovoltaicâ€Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron–Molybdenum Oxides for Potential Large cale Hydrogen Production. Small, 2021, 17, e2102222.	5.2	16
218	Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. CheM, 2021, 7, 2101-2117.	5.8	42
219	Ultrathin nanosheet metal–organic framework@NiO/Ni nanorod composites. Chemical Engineering Journal, 2021, 417, 129201.	6.6	37

		CITATION RE	PORT	
#	Article		IF	CITATIONS
220	Recent decoupling and coupling strategies for water splitting. Nano Futures, 2021, 5,	042001.	1.0	8
221	3D Cross-Linked Structure of Manganese Nickel Phosphide Ultrathin Nanosheets: Elec Structure Optimization for Efficient Bifunctional Electrocatalysts. ACS Applied Energy 2021, 4, 8563-8571.		2.5	24
222	Lanthanum-doped α-Ni(OH)2 1D-2D-3D hierarchical nanostructures for robust bifunct electro-oxidation. Particuology, 2021, 57, 104-111.	tional	2.0	32
223	Hierarchical NiFe Hydroxide/Ni ₃ N Nanosheet-on-Nanosheet Heterostruct Bifunctional Oxygen Evolution and Urea Oxidation Reactions. ACS Sustainable Chemis Engineering, 2021, 9, 12584-12590.		3.2	35
224	Boosting hydrogen production via urea electrolysis on anÂamorphous nickel phosphid hybrid structure. Journal of Materials Science, 2021, 56, 17709-17720.	e/graphene	1.7	21
225	Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Con Advanced Materials, 2021, 33, e2008376.	version.	11.1	114
226	Nickel ferrocyanide as a high-performance urea oxidation electrocatalyst. Nature Energ 904-912.	зу, 2021, 6,	19.8	305
227	Coupling Glucoseâ€Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Produc Materials, 2021, 33, e2104791.	tion. Advanced	11.1	126
228	Catalysis of hydrogen evolution reaction by in situ electrodeposited amorphous molyb at soft interfaces. Materials Today Energy, 2021, 21, 100742.	odenum sulfide	2.5	9
229	Methanol electroreforming coupled to green hydrogen production over bifunctional N metal-organic framework nanosheet arrays. Applied Catalysis B: Environmental, 2022,	ilr-based 300, 120753.	10.8	81
230	A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electroca overall water splitting. Nano Research, 2022, 15, 965-971.	talysts for	5.8	41
231	Ethylene Glycol Electrochemical Reforming Using Ruthenium Nanoparticle-Decorated Phosphide Ultrathin Nanosheets. ACS Applied Materials & 201; 13, 4		4.0	15
232	NiCo bimetal organic frames derived well-matched electrocatalyst pair for highly efficie urea solution electrolysis. Journal of Alloys and Compounds, 2021, 874, 159945.	ent overall	2.8	16
233	Modulation of dual centers on cobalt-molybdenum oxides featuring synergistic effect activation and radical mediator for electrocatalytic urea splitting. Nano Energy, 2021,	of intermediate 87, 106217.	8.2	54
234	Comprehensive and Highâ€ŧhroughput Electrolysis of Water and Urea by 3–5 n Coordination Polymers. Chemistry - an Asian Journal, 2021, 16, 3444-3452.	m Nickel and Copper	1.7	7
235	Facile fabrication of bifunctional SnO–NiO heteromixture for efficient electrocatalyt water oxidation in urea-rich waste water. Environmental Research, 2021, 201, 111589		3.7	16
236	Palladium cobalt alloy encapsulated in carbon nanofibers as bifunctional electrocataly high-efficiency overall hydrazine splitting. Journal of Colloid and Interface Science, 202	st for ?1, 601, 495-504.	5.0	12
237	Interfacial heteroâ€phase construction in nickel/molybdenum selenide hybrids to pron splitting performance. Applied Materials Today, 2021, 25, 101175.	note the water	2.3	12

#	Article	IF	CITATIONS
238	Two-dimensional hetero-nanostructured electrocatalyst of Ni/NiFe-layered double oxide for highly efficient hydrogen evolution reaction in alkaline medium. Chemical Engineering Journal, 2021, 426, 131827.	6.6	42
239	Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization. Fuel, 2021, 306, 121751.	3.4	28
240	Interfacial engineering of the NiSe2/FeSe2 p-p heterojunction for promoting oxygen evolution reaction and electrocatalytic urea oxidation. Applied Catalysis B: Environmental, 2021, 299, 120638.	10.8	181
241	Multifunctional electrocatalyst of NiCo-NiCoP nanoparticles embedded into P-doped carbon nanotubes for Energy-Saving hydrogen production and upgraded conversion of formaldehyde. Chemical Engineering Journal, 2021, 426, 129214.	6.6	25
242	Modulation of the crystalline/amorphous interface engineering on Ni-P-O-based catalysts for boosting urea electrolysis at large current densities. Chemical Engineering Journal, 2021, 425, 130514.	6.6	65
243	High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. Journal of Energy Chemistry, 2022, 66, 483-492.	7.1	158
244	Engineering NiF3/Ni2P heterojunction as efficient electrocatalysts for urea oxidation and splitting. Chemical Engineering Journal, 2022, 427, 130865.	6.6	41
245	Phosphorus doping and phosphates coating for nickel molybdate/nickel molybdate hydrate enabling efficient overall water splitting. Journal of Colloid and Interface Science, 2022, 606, 384-392.	5.0	30
246	NiCo-BDC nanosheets coated with amorphous Ni-S thin film for high-efficiency oxygen evolution reaction. FlatChem, 2021, 25, 100222.	2.8	18
247	Highâ€efficiency electrolysis of biomass and its derivatives: Advances in anodic oxidation reaction mechanism and transition metalâ€based electrocatalysts. Nano Select, 2021, 2, 847-864.	1.9	12
248	Anode co-valorization for scalable and sustainable electrolysis. Green Chemistry, 2021, 23, 7917-7936.	4.6	16
249	Coaxial Ni–S@N-Doped Carbon Nanofibers Derived Hierarchical Electrodes for Efficient H ₂ Production <i>via</i> Urea Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 3937-3948.	4.0	45
250	Coal-Assisted Water Electrolysis for Hydrogen Production: Evolution of Carbon Structure in Different-Rank Coal. Energy & Fuels, 2021, 35, 3512-3520.	2.5	10
251	A "Superaerophobic―Se-Doped CoS2 Porous Nanowires Array for Cost-Saving Hydrogen Evolution. Catalysts, 2021, 11, 169.	1.6	5
252	Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H ₂ production. Journal of Materials Chemistry A, 2021, 9, 10893-10908.	5.2	56
253	A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting. Journal of Materials Chemistry A, 2021, 9, 7606-7616.	5.2	17
254	Large-current-stable bifunctional nanoporous Fe-rich nitride electrocatalysts for highly efficient overall water and urea splitting. Journal of Materials Chemistry A, 2021, 9, 10199-10207.	5.2	87
255	Enhanced urea oxidization electrocatalysis on spinel cobalt oxide nanowires <i>via</i> on-site electrochemical defect engineering. Materials Chemistry Frontiers, 2021, 5, 3717-3724.	3.2	16

#	Article	IF	CITATIONS
256	Efficient hydrogen production by saline water electrolysis at high current densities without the interfering chlorine evolution. Journal of Materials Chemistry A, 2021, 9, 22248-22253.	5.2	35
257	Selfâ€Supporting Niâ€M (M = Mo, Ge, Sn) Alloy Nanosheets via Topotactic Transformation of Oxometallate Intercalated Layered Nickel Hydroxide Salts: Synthesis and Application for Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials Interfaces, 2020, 7, 1901949.	1.9	13
258	Valence-engineered MoNi4/MoOx@NF as a Bi-functional electrocatalyst compelling for urea-assisted water splitting reaction. Electrochimica Acta, 2020, 350, 136382.	2.6	20
259	Active nickel derived from coordination complex with weak inter/intra-molecular interactions for efficient hydrogen evolution via a tandem mechanism. Journal of Catalysis, 2020, 389, 29-37.	3.1	7
260	POM derived UOR and HER bifunctional NiS/MoS2 composite for overall water splitting. Journal of Solid State Chemistry, 2020, 292, 121644.	1.4	26
261	Recent progress with electrocatalysts for urea electrolysis in alkaline media for energy-saving hydrogen production. Catalysis Science and Technology, 2020, 10, 1567-1581.	2.1	136
262	Trimetallic NiCoMo/graphene multifunctional electrocatalysts with moderate structural/electronic effects for highly efficient alkaline urea oxidation reaction. Chemical Communications, 2020, 56, 6503-6506.	2.2	32
263	MoP@NiCo-LDH on nickel foam as bifunctional electrocatalyst for high efficiency water and urea–water electrolysis. Journal of Materials Chemistry A, 2020, 8, 18106-18116.	5.2	106
264	In situ evolved NiMo/NiMoO ₄ nanorods as a bifunctional catalyst for overall water splitting. Nanotechnology, 2020, 31, 495404.	1.3	14
265	MOF-derived Zn–Co–Ni sulfides with hollow nanosword arrays for high-efficiency overall water and urea electrolysis. Green Energy and Environment, 2023, 8, 798-811.	4.7	11
266	NiCoP with Dandelion-like Arrays Anchored on Nanowires for Electrocatalytic Overall Water Splitting. ACS Omega, 2021, 6, 26822-26828.	1.6	8
267	Synthesis of hierarchical nickel sulfide nanotubes for highly efficient electrocatalytic urea oxidation. Applied Surface Science, 2022, 575, 151708.	3.1	40
268	Metallic NiFe as Bifunctional Electrocatalysts for Efficient Urea Conversion. International Journal of Electrochemical Science, 0, , 12420-12427.	0.5	0
269	Deep eutectic solvents derived carbon-based efficient electrocatalyst for boosting H2 production coupled with glucose oxidation. Chemical Engineering Journal, 2022, 430, 132783.	6.6	22
270	Modulating electronic structure of ternary NiMoV LDH nanosheet array induced by doping engineering to promote urea oxidation reaction. Chemical Engineering Journal, 2022, 430, 133100.	6.6	57
271	Integrated 3D Open Network of Interconnected Bismuthene Arrays for Energyâ€Efficient and Electrosynthesisâ€Assisted Electrocatalytic CO ₂ Reduction. Small, 2022, 18, e2105246.	5.2	36
272	Optimizing local charge distribution of metal nodes in bimetallic metal–organic frameworks for efficient urea oxidation reaction. Chemical Engineering Journal, 2022, 433, 133515.	6.6	34
273	In Situ Construction of Nickel Sulfide Nano-Heterostructures for Highly Efficient Overall Urea Electrolysis. ACS Sustainable Chemistry and Engineering, 2021, 9, 15582-15590.	3.2	17

#	Article	IF	CITATIONS
274	Ni–Fe phosphide deposited carbon felt as free-standing bifunctional catalyst electrode for urea electrolysis. Scientific Reports, 2021, 11, 22003.	1.6	20
275	Urea Electro-Oxidation Catalyzed by an Efficient and Highly Stable Ni–Bi Bimetallic Nanoparticles. ACS Applied Energy Materials, 2021, 4, 13172-13182.	2.5	21
276	Electrocatalyst based on Ni2P nanoparticles and NiCoP nanosheets for efficient hydrogen evolution from urea wastewater. Journal of Colloid and Interface Science, 2022, 608, 2932-2941.	5.0	28
277	Lignin-Assisted Water Electrolysis for Energy-Saving Hydrogen Production With Ti/PbO2 as the Anode. Frontiers in Energy Research, 2021, 9, .	1.2	6
278	Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Current Opinion in Electrochemistry, 2022, 31, 100888.	2.5	18
279	Enhanced electrocatalytic activity of a layered triple hydroxide (LTH) by modulating the electronic structure and active sites for efficient and stable urea electrolysis. Sustainable Energy and Fuels, 2022, 6, 474-483.	2.5	36
280	Boosting Hydrogen Evolution through the Interface Effects of Amorphous NiMoO ₄ –MoO ₂ and Crystalline Cu. ACS Omega, 2022, 7, 2244-2251.	1.6	5
281	Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions. Chemical Communications, 2022, 58, 2430-2442.	2.2	71
282	Fe-doping induced electronic structure reconstruction in Ni-based metal-organic framework for improved energy-saving hydrogen production via urea degradation. Journal of Power Sources, 2022, 520, 230882.	4.0	44
283	Flower-like CuCoMoOx nanosheets decorated with CoCu nanoparticles as bifunctional electrocatalysts for hydrogen evolution reaction and water splitting. Electrochimica Acta, 2022, 404, 139748.	2.6	23
284	Low-temperature and anhydrous preparation of NixFey-LDHs as an efficient electrocatalyst for water and urea electrolysis. Catalysis Communications, 2022, 162, 106390.	1.6	11
285	Surface gradient diffusion S doping of CuCo2O4 microflowers by an in situ topotactic engineering strategy for CO2 photoreduction. Catalysis Communications, 2022, 162, 106388.	1.6	2
286	Metallic Co and crystalline Co-Mo oxides supported on graphite felt for bifunctional electrocatalytic hydrogen evolution and urea oxidation. Journal of Colloid and Interface Science, 2022, 612, 413-423.	5.0	30
287	Efficient ammonia electrosynthesis by coupling to concurrent methanol oxidation. Chem Catalysis, 2022, 2, 358-371.	2.9	11
288	The controlled synthesis of nitrogen and iron co-doped Ni ₃ S ₂ @NiP ₂ heterostructures for the oxygen evolution reaction and urea oxidation reaction. Dalton Transactions, 2022, 51, 2444-2451.	1.6	24
289	Steering the Glycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie, 2022, 134, .	1.6	6
290	Heterogeneity in a metal–organic framework <i>in situ</i> guides engineering Co@CoO heterojunction for electrocatalytic H ₂ production in tandem with glucose oxidation. Journal of Materials Chemistry A, 2022, 10, 4791-4799.	5.2	35
291	Polyaniline grafted mesoporous zinc sulfide nanoparticles for hydrogen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 6067-6077.	3.8	11

#	Article	IF	CITATIONS
292	Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. Journal of Materials Chemistry A, 2022, 10, 3296-3313.	5.2	80
293	Nitrogen vacancies enriched Ce-doped Ni3N hierarchical nanosheets triggering highly-efficient urea oxidation reaction in urea-assisted energy-saving electrolysis. Journal of Energy Chemistry, 2022, 69, 506-515.	7.1	97
294	Steering the Clycerol Electroâ€Reforming Selectivity via Cation–Intermediate Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
295	Porous hetero-structured nickel oxide/nickel phosphide nanosheets as bifunctional electrocatalyst for hydrogen production via urea electrolysis. Journal of Colloid and Interface Science, 2022, 615, 163-172.	5.0	27
296	Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Applied Catalysis B: Environmental, 2022, 307, 121170.	10.8	75
297	Electrodeposition of mesoporous Ni–Mo–O composite films for hydrogen evolution reaction. Vacuum, 2022, 198, 110888.	1.6	9
298	Self-supported MoO2-MoO3/Ni2P hybrids as a bifunctional electrocatalyst for energy-saving hydrogen generation via urea–water electrolysis. Journal of Colloid and Interface Science, 2022, 614, 337-344.	5.0	18
299	Three-dimensional crystalline-Ni5P4@amorphous-NiOx core–shell nanosheets as bifunctional electrode for urea electro-oxidation and hydrogen evolution. Fuel, 2022, 315, 123279.	3.4	24
300	Rose-like Cu-doped Ni3S2 nanoflowers decorated with thin NiFe LDH nanosheets for high-efficiency overall water and urea electrolysis. Applied Surface Science, 2022, 584, 152622.	3.1	41
301	Interconnected Mn-Doped Ni(OH) ₂ Nanosheet Layer for Bifunctional Urea Oxidation and Hydrogen Evolution: The Relation between Current Drop and Urea Concentration during the Long-Term Operation. ACS ES&T Engineering, 2022, 2, 853-862.	3.7	16
302	Controlled synthesis of three-dimensional branched Mo–NiCoP@NiCoP/NiXCoYH2PO2 core/shell nanorod heterostructures for high-performance water and urea electrolysis. International Journal of Hydrogen Energy, 2022, 47, 10825-10836.	3.8	11
303	Nitrogen doped carbon encapsulated hierarchical NiMoN as highly active and durable HER electrode for repeated ON/OFF water electrolysis. Chemical Engineering Journal, 2022, 436, 134931.	6.6	23
304	Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition. Nano-Micro Letters, 2022, 14, 20.	14.4	97
305	Room-temperature chemical looping hydrogen production mediated by electrochemically induced heterogeneous Cu(l)/Cu(ll) redox. Chem Catalysis, 2021, 1, 1493-1504.	2.9	20
306	Controlled Synthesis of M Doped N-Ni3s2 (M=Cu, Fe, Co and CE) on Ni Foam as Efficient Electrocatalyst for Urea Oxidation Reaction and Oxygen Evolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
307	Robust Ru-N Metal-Support Interaction to Promote Self-Powered H2 Production Assisted by Hydrazine Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
308	Boosting Cathodic Hydrogen Evolution Via Using Furfuryl Alcohol Oxidation as the Anodic Half-Reaction for Hybrid Water Splitting. SSRN Electronic Journal, 0, , .	0.4	0
309	Tensile Strain of Feni Alloy Coupled with Pyridinic-N Doping Carbon Layers for Activating Water and Urea Oxidation. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
310	Near-Infrared-Driven Photoelectrocatalytic Oxidation of Urea on La-Ni-Based Perovskites. SSRN Electronic Journal, 0, , .	0.4	0
311	Tailoring the Oxygen Vacancies and Electronic Structures of Hex-Wo3 (100) Crystal Plane with Heteroatoms Toward Highly Efficient Hydrogen Evolution. SSRN Electronic Journal, 0, , .	0.4	0
312	Solar-assisted urea oxidation at silicon photoanodes promoted by an amorphous and optically adaptive Ni–Mo–O catalytic layer. Journal of Materials Chemistry A, 2022, 10, 19769-19776.	5.2	14
313	Advanced Nickel-Based Catalysts for Urea Oxidation Reaction: Challenges and Developments. Catalysts, 2022, 12, 337.	1.6	34
314	Efficient and Long-term Photoelectrochemical Hydrogen Liberation from Hydrazine Hydrate on CdS Nanorod Arrays. Journal of Electronic Materials, 0, , 1.	1.0	2
315	Electrochemical Urea Oxidation in Different Environment: From Mechanism to Devices. ChemCatChem, 2022, 14, .	1.8	21
316	Investigation of the electrocatalytic mechanisms of urea oxidation reaction on the surface of transition metal oxides. Journal of Colloid and Interface Science, 2022, 620, 442-453.	5.0	22
317	Sea urchin-like NiMoO4 nanorod arrays as highly efficient bifunctional catalysts for electrocatalytic/photovoltage-driven urea electrolysis. Chinese Journal of Catalysis, 2022, 43, 1267-1276.	6.9	25
318	Phase and crystallinity regulations of Ni(OH)2 by vanadium doping boost electrocatalytic urea oxidation reaction. Journal of Colloid and Interface Science, 2022, 618, 411-418.	5.0	33
319	PEO-PPO-PEO induced holey NiFe-LDH nanosheets on Ni foam for efficient overall water-splitting and urea electrolysis. Journal of Colloid and Interface Science, 2022, 618, 141-148.	5.0	21
320	Interface engineering of S-doped Co2P@Ni2P core–shell heterostructures for efficient and energy-saving water splitting. Chemical Engineering Journal, 2022, 439, 135743.	6.6	86
321	Evolution of coal molecular structure during constant current electro-oxidation of coal–water slurry in alkaline media. Fuel, 2022, 321, 123921.	3.4	0
322	Ni single atoms anchored on N-doped carbon nanosheets as bifunctional electrocatalysts for Urea-assisted rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2022, 310, 121352.	10.8	71
323	Carbon Coated Nickel Cobalt Phosphide with Sea Urchin-Like Structure by Low Temperature Plasma Processing for Hydrogen Evolution and Urea Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
324	Electrochemical Hydrogen Generation by Oxygen Evolution Reactionâ€Alternative Anodic Oxidation Reactions. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34
325	Phaseâ€6elective Synthesis of Ruthenium Phosphide in Hybrid Structure Enables Efficient Hybrid Water Electrolysis Under pHâ€Universal Conditions. Small, 2022, 18, e2200242.	5.2	24
326	Controlled synthesis of NiCo2O4@Ni-MOF on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 17252-17262.	3.8	30
327	Promotion of Phenol Electro-oxidation by Oxygen Evolution Reaction on an Active Electrode for Efficient Pollution Control and Hydrogen Evolution. Environmental Science & Technology, 2022, 56, 5753-5762.	4.6	22

#	Article	IF	CITATIONS
328	NiS/MoS2 Mott-Schottky heterojunction-induced local charge redistribution for high-efficiency urea-assisted energy-saving hydrogen production. Chemical Engineering Journal, 2022, 443, 136321.	6.6	58
329	Amorphous Ni(â¢)-based sulfides as bifunctional water and urea oxidation anode electrocatalysts for hydrogen generation from urea-containing water. Applied Catalysis B: Environmental, 2022, 312, 121389.	10.8	76
330	Role of Ce in the enhanced performance of the water oxidation reaction and urea oxidation reaction for NiFe layered double hydroxides. Dalton Transactions, 2022, 51, 8240-8248.	1.6	6
331	Regulating the Heterostructure of Metal/Oxide toward the Enhanced Hydrogen Evolution Reaction. ACS Applied Energy Materials, 2022, 5, 5644-5651.	2.5	16
332	MOF-Derived Porous Fe ₃ O ₄ /RuO ₂ -C Composite for Efficient Alkaline Overall Water Splitting. ACS Applied Energy Materials, 2022, 5, 6059-6069.	2.5	20
333	Enhancing hydrogen evolution through urea electrolysis over Co-doped Ni-P-O film on nickel foam. Journal of Alloys and Compounds, 2022, 914, 165362.	2.8	21
334	CoP Nanoparticle Confined in P, N Coâ€Doped Porous Carbon Anchored on Pâ€Doped Carbonized Wood Fibers with Tailored Electronic Structure for Efficient Urea Electroâ€Oxidation. Small, 2022, 18, e2200950.	5.2	48
335	Efficient Self‣upported Bifunctional NiMo Alloy Electrocatalysts for Water Splitting in Alkaline Environment. ChemistrySelect, 2022, 7, .	0.7	3
336	Concentrating photo-thermo-organized single-atom and 2D-raft Cu catalyst for full-spectrum solar harmonic conversion of aqueous urea and urine into hydrogen. Applied Catalysis B: Environmental, 2022, 315, 121493.	10.8	7
337	Critical insights from alloys and composites of Ni-based electrocatalysts for HER on NaCl electrolyte. Journal of Alloys and Compounds, 2022, 915, 165352.	2.8	11
338	Ultrathin two-dimensional nickel-organic framework nanosheets for efficient electrocatalytic urea oxidation. Materials Today Energy, 2022, 27, 101024.	2.5	6
339	Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation. Green Energy and Environment, 2024, 9, 684-694.	4.7	6
340	The novel dual-category active sites of NiCoP/CoP as high-performance electrocatalyst for urea electrolysis and synergistic hydrogen production. Materials Chemistry Frontiers, 2022, 6, 1681-1689.	3.2	14
341	NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosensors and Bioelectronics, 2022, 211, 114380.	5.3	19
342	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	116
343	Pure hydrogen and sulfur production from H ₂ S by an electrochemical approach using a NiCu–MoS ₂ catalyst. Journal of Materials Chemistry A, 2022, 10, 13031-13041.	5.2	13
344	Electrochemical reactions towards the formation of heteroatomic bonds beyond CO ₂ and N ₂ reduction. Sustainable Energy and Fuels, 2022, 6, 3283-3303.	2.5	7
345	Cu-Doping Effect on the Electrocatalytic Properties of Self-Supported Cu-Doped Ni ₃ S ₂ Nanosheets for Hydrogen Production via Efficient Urea Oxidation. Industrial & Engineering Chemistry Research, 2022, 61, 7777-7786.	1.8	23

#	Article	IF	CITATIONS
346	Near-infrared-driven photoelectrocatalytic oxidation of urea on La-Ni-based perovskites. Chemical Engineering Journal, 2022, 446, 137240.	6.6	13
347	Activating Lattice Oxygen in Layered Lithium Oxides through Cation Vacancies for Enhanced Urea Electrolysis. Angewandte Chemie, 2022, 134, .	1.6	10
348	Sulfurization-functionalized 2D metal-organic frameworks for high-performance urea fuel cell. Applied Catalysis B: Environmental, 2022, 315, 121586.	10.8	39
349	Controlled synthesis of M doped N-Ni3S2 (M = Cu, Fe, Co and Ce) on Ni foam as efficient electrocatalyst for urea oxidation reaction and oxygen evolution reaction. Journal of Alloys and Compounds, 2022, 918, 165739.	2.8	11
350	Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials, 2022, 12, 1916.	1.9	33
351	Co, Mn co-doped Fe ₉ S ₁₁ @Ni ₉ S ₈ supported on nickel foam as a high efficiency electrocatalyst for the oxygen evolution reaction and urea oxidation reaction. Dalton Transactions, 2022, 51, 10249-10256.	1.6	10
352	Carbon Coated Nickel Cobalt Phosphide with Sea Urchin-Like Structure by Low Temperature Plasma Processing for Hydrogen Evolution and Urea Oxidation. SSRN Electronic Journal, 0, , .	0.4	0
353	Engineering self-supported ruthenium-titanium alloy oxide on 3D web-like titania as iodide oxidation reaction electrocatalyst to boost hydrogen production. Applied Catalysis B: Environmental, 2022, 316, 121608.	10.8	16
354	Electrochemically activated Ni@Ni(OH)2 heterostructure as efficient hydrogen evolution reaction electrocatalyst for anion exchange membrane water electrolysis. Materials Today Chemistry, 2022, 24, 100994.	1.7	4
355	Robust Ru-N metal-support interaction to promote self-powered H2 production assisted by hydrazine oxidation. Nano Energy, 2022, 100, 107467.	8.2	35
356	Silver decorated nickel–cobalt (oxy)hydroxides fabricated <i>via</i> surface reconstruction engineering for boosted electrocatalytic oxygen evolution and urea oxidation. Dalton Transactions, 2022, 51, 11814-11822.	1.6	2
357	A nano-structured nickel trithiocarbonate complex supported on g-C ₃ N ₄ as an efficient electrocatalyst for urea electro-oxidation. Materials Advances, 2022, 3, 6831-6841.	2.6	6
358	Pt doping and strong metal–support interaction as a strategy for NiMo-based electrocatalysts to boost the hydrogen evolution reaction in alkaline solution. Journal of Materials Chemistry A, 2022, 10, 15395-15401.	5.2	19
359	Reduction-induced interface reconstruction to fabricate MoNi4-based hollow nanorods for hydrazine oxidation assisted energy-saving hydrogen production in seawater. Nano Research, 2022, 15, 8846-8856.	5.8	31
360	Tensile strained PdNi bimetallene for energy-efficient hydrogen production integrated with formate oxidation. Chemical Engineering Journal, 2022, 450, 137995.	6.6	13
361	Plasmonic MoO2 coupled with sulfur-incorporated NiMoO4 as multifunctional heterostructures for solar thermoelectric self-powered urea electrolysis. Applied Surface Science, 2022, 600, 154116.	3.1	13
362	Energy-efficient electrolytic H2 production and high-value added H2-acid-base co-electrosynthesis modes enabled by a Ni2P catalyst in a diaphragm cell. Applied Catalysis B: Environmental, 2022, 317, 121726.	10.8	10
363	Deciphering the active origin for urea oxidation reaction over nitrogen penetrated nickel nanoparticles embedded in carbon nanotubes. Journal of Colloid and Interface Science, 2022, 626, 740-751.	5.0	7

#	Article	IF	CITATIONS
364	Construction of NiS/Ni3S4 heteronanorod arrays in graphitized carbonized wood frameworks as versatile catalysts for efficient urea-assisted water splitting. Journal of Colloid and Interface Science, 2022, 626, 848-857.	5.0	21
365	Upgrading of benzofuran to hydrocarbons by hydrodeoxygenation over nickel–molybdenum carbide catalysts supported inside multi-wall carbon nanotubes. Fuel Processing Technology, 2022, 236, 107416.	3.7	6
366	Interfacing nickel with molybdenum oxides as monolithic catalyst to accelerate alkaline hydrogen electrocatalysis with robust stability. Applied Catalysis B: Environmental, 2022, 317, 121786.	10.8	19
367	Carbon coated nickel cobalt phosphide with sea urchin-like structure by low temperature plasma processing for hydrogen evolution and urea oxidation. Chemical Engineering Journal, 2022, 450, 138225.	6.6	21
368	One-Step Synthesis of Fe-Mn Bifunctional ElectrocatalystsÂForÂEfficient Oxygen Evolution and Urea Oxidation Reactions. SSRN Electronic Journal, 0, , .	0.4	0
369	Co-doped Ni–Mo oxides: highly efficient and robust electrocatalysts for urea electrooxidation assisted hydrogen production. Journal of Materials Chemistry A, 2022, 10, 16825-16833.	5.2	30
371	Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation. Journal of Colloid and Interface Science, 2023, 629, 33-43.	5.0	12
372	Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide. Science Bulletin, 2022, 67, 1763-1775.	4.3	63
373	Design principle of electrocatalysts for the electrooxidation of organics. CheM, 2022, 8, 2594-2629.	5.8	44
374	Anion-modulation in CoMoO4 electrocatalyst for urea-assisted energy-saving hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 33167-33176.	3.8	15
375	Interfacing or doping? Role of Ce in water oxidation reaction and urea oxidation reaction of N-Ni3S2. Journal of Alloys and Compounds, 2022, 925, 166662.	2.8	4
376	Self-supported molybdenum nickel oxide catalytic electrode designed via molecular cluster-mediated electroplating and electrochemical activation for an efficient and durable oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 628, 607-618.	5.0	9
377	Innovative electrolytic cell of sulfur-doped MnO2 nanorods: Synergistic hydrogen production and formaldehyde degradation at an ultra-low electric energy consumption. Journal of Alloys and Compounds, 2022, 925, 166748.	2.8	9
378	The synthesis of CoS/MnCo2O4-MnO2 nanocomposites for supercapacitors and energy-saving H2 production. Journal of Colloid and Interface Science, 2022, 628, 179-192.	5.0	15
379	Construction of hierarchical nanostructures and NiO nanosheets@nanorods for efficient urea electrooxidation. Chinese Chemical Letters, 2023, 34, 107831.	4.8	0
380	Value-added formate production from selective ethylene glycol oxidation based on cost-effective self-supported MOF nanosheet arrays. Rare Metals, 2022, 41, 3654-3661.	3.6	24
381	Controlled synthesis of Fe doped NiCoM (M=O, P, S and Se) as robust electrocatalyst for urea electrolysis. Journal of Alloys and Compounds, 2022, 928, 167094.	2.8	19
382	Low power consumed PV-electrolysis with CoFeP nanowires for hydrazine-assisted hydrogen production. Applied Surface Science, 2022, 606, 154951.	3.1	7

#	Article	IF	CITATIONS
383	Infrared photoelectrochemical sensing of urea with silicon photoanodes. Biosensors and Bioelectronics: X, 2022, 12, 100221.	0.9	0
384	Pt/C as a bifunctional ORR/iodide oxidation reaction (IOR) catalyst for Zn-air batteries with unprecedentedly high energy efficiency of 76.5%. Applied Catalysis B: Environmental, 2023, 320, 121992.	10.8	31
385	The polyoxometalates mediated preparation of phosphate-modified NiMoO4â^'x with abundant O-vacancies for H2 production via urea electrolysis. Journal of Colloid and Interface Science, 2023, 629, 297-309.	5.0	35
386	Enhancing the surface polarization effect via Ni/NiMoOx heterojunction architecture for urea-assisted hydrogen generation. Journal of Colloid and Interface Science, 2023, 629, 1012-1020.	5.0	11
387	Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting. Journal of Colloid and Interface Science, 2023, 629, 501-510.	5.0	10
388	Superimposed OER and UOR performances by the interaction of each component in an Fe–Mn electrocatalyst. Dalton Transactions, 2022, 51, 16605-16611.	1.6	4
389	Hierarchical Ni-Mo-P Nanoarrays Grown on Carbon Paper Toward Highly Efficient Urea Oxidation Reaction. SSRN Electronic Journal, 0, , .	0.4	0
390	Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading. Green Chemistry, 2022, 24, 6544-6555.	4.6	20
391	Stabilizing the Unstable: Chromium Coating on NiMo Electrode for Enhanced Stability in Intermittent Water Electrolysis. ACS Applied Materials & Interfaces, 2022, 14, 40822-40833.	4.0	8
392	Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution. Nanomaterials, 2022, 12, 2970.	1.9	16
393	Efficient H ₂ Evolution Coupled with Anodic Oxidation of Iodide over Defective Carbon-Supported Single-Atom Mo-N ₄ Electrocatalyst. Nano Letters, 2022, 22, 7311-7317.	4.5	13
395	Edgeâ€oriented Nâ€Doped WS ₂ Nanoparticles on Porous Co ₃ N Nanosheets for Efficient Alkaline Hydrogen Evolution and Nitrogenous Nucleophile Electrooxidation. Small, 2022, 18,	5.2	32
396	Recent Advances in Upgrading of Lowâ€Cost Oxidants to Valueâ€Added Products by Electrocatalytic Reduction Reaction. Advanced Functional Materials, 2022, 32, .	7.8	20
397	Insights into the synergistic effect between nickel and molybdenum for catalyzing urea electrooxidation. , 2022, 1, 267-276.		3
398	1D@2D Hierarchical Structures of Co(OH) _x Nanosheets on NiMoO _x Nanorods Can Mediate Alkaline Hydrogen Evolution with Industry‣evel Current Density and Stability. Small Methods, 2022, 6, .	4.6	7
399	Magnetic Fieldâ€Assisted Construction and Enhancement of Electrocatalysts. ChemSusChem, 2022, 15, .	3.6	18
400	Crystalline–Amorphous Ni ₃ S ₂ –NiMoO ₄ Heterostructure for Durable Urea Electrolysis-Assisted Hydrogen Production at High Current Density. ACS Applied Materials & Interfaces, 2022, 14, 46481-46490.	4.0	28
401	Coordination Effect-Promoted Durable Ni(OH)2 for Energy-Saving Hydrogen Evolution from Water/Methanol Co-Electrocatalysis. Nano-Micro Letters, 2022, 14, .	14.4	35

#	Article	IF	CITATIONS
402	Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angewandte Chemie - International Edition, 2022, 61, .	7.2	105
403	Progress in Hydrogen Production Coupled with Electrochemical Oxidation of Small Molecules. Angewandte Chemie, 2022, 134, .	1.6	4
404	Coupling NixSy-Ni2P heterostructure nanoarrays on Ni foam as environmentally friendly electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2022, 47, 38939-38950.	3.8	2
405	Electrochemical hydrogen production coupled with oxygen evolution, organic synthesis, and waste reforming. Nano Energy, 2022, 104, 107875.	8.2	62
406	Stable and highly efficient Co–Bi nanoalloy decorated on reduced graphene oxide (Co–Bi@rGO) anode for formaldehyde and urea oxidation reactions. Materials Chemistry and Physics, 2022, 292, 126843.	2.0	1
407	Cu-induced NiCu-P and NiCu-Pi with multilayered nanostructures as highly efficient electrodes for hydrogen production <i>via</i> urea electrolysis. Nanoscale, 2022, 14, 16490-16501.	2.8	6
408	Hierarchical Ni–Mo–P nanoarrays toward efficient urea oxidation reaction. Dalton Transactions, 2022, 51, 18059-18067.	1.6	5
409	Activity engineering to transition metal phosphides as bifunctional electrocatalysts for efficient water-splitting. International Journal of Hydrogen Energy, 2022, 47, 38983-39000.	3.8	21
410	Ni2P Nanoparticle-Inserted Porous Layered NiO Hetero-Structured Nanosheets as a Durable Catalyst for the Electro-Oxidation of Urea. Nanomaterials, 2022, 12, 3633.	1.9	2
411	Porous NiO Nanosheet Bifunctional Electrodes Modified with Ultrafine Ni ₃ S ₂ Quantum Dots for Green Hydrogen Production via Urea Electrolysis. Journal of Physical Chemistry C, 2022, 126, 18067-18077.	1.5	0
412	High-Valent Ni Species Induced by Inactive MoO ₂ for Efficient Urea Oxidation Reaction. Inorganic Chemistry, 2022, 61, 18318-18324.	1.9	16
413	Nest-like Ag-doped NiMoO4/NF with rich oxygen vacancies as robust catalysts for highly efficient oxygen evolution. Journal of Industrial and Engineering Chemistry, 2023, 118, 70-77.	2.9	6
414	Controlled synthesis of M doped Co3O4 (MÂ=ÂCe, Ni and Fe) on Ni foam as robust electrocatalyst for oxygen evolution reaction and urea oxidation reaction. Journal of Colloid and Interface Science, 2023, 630, 512-524.	5.0	15
415	Hetero-structured NiMoO4/Ni3S4/MoS2 pompons decorated nickel foam electrode for high-efficient urea and urine electrolysis. Applied Surface Science, 2023, 608, 155166.	3.1	14
416	Hierarchically nanostructured Ni(Mo,Co)-WOx electrocatalysts for highly efficient urea electrolysis. Applied Surface Science, 2023, 610, 155520.	3.1	3
417	Surface reconstruction and charge distribution enabling Ni/W5N4 Mott-Schottky heterojunction bifunctional electrocatalyst for efficient urea-assisted water electrolysis at a large current density. Applied Catalysis B: Environmental, 2023, 323, 122168.	10.8	38
418	Recent advances in hybrid water electrolysis for energy-saving hydrogen production. Green Chemical Engineering, 2023, 4, 17-29.	3.3	7
419	Ligand-free monophasic CuPd alloys endow boosted reaction kinetics toward energy-efficient hydrogen fuel production paired with hydrazine oxidation. Journal of Materials Science and Technology, 2023, 143, 20-29.	5.6	24

#	Article	IF	CITATIONS
420	Sheeted NiCo Double Phosphate In Situ Grown on Nickel Foam Toward Bifunctional Water and Urea Oxidation. Electrocatalysis, 2023, 14, 247-258.	1.5	3
421	Self-assembled ZnO microspheres coated with carbon dot-doped CoNi LDH wrinkled films as electrochemical sensors for highly sensitive detection of hydrazine. Analytical Methods, 0, , .	1.3	2
422	Electronic distribution tuning of vanadium-cobalt bimetallic MOFs for highly efficient hydrazine-assisted energy-saving hydrogen production. Electrochimica Acta, 2023, 439, 141682.	2.6	5
423	Construction of nickel sulfide phase-heterostructure for alkaline hydrogen evolution reaction. Journal of Colloid and Interface Science, 2023, 633, 640-648.	5.0	8
424	Facile preparation of amorphous NiFe hydroxide by corrosion engineering for electrocatalytic water and urea oxidation. Journal of Alloys and Compounds, 2023, 936, 168271.	2.8	2
425	Revealing the Reactant Mediation Role of Lowâ€Valence Mo for Accelerated Ureaâ€Assisted Water Splitting. Advanced Functional Materials, 2023, 33, .	7.8	27
426	Oxygen vacancies in α-Ni(OH)2 porous nanoflowers promote urea oxidation. International Journal of Hydrogen Energy, 2023, 48, 9155-9162.	3.8	8
427	Boosting cathodic hydrogen evolution with furfuryl alcohol oxidation as the anodic half-reaction for hybrid water splitting. Electrochimica Acta, 2023, 441, 141736.	2.6	1
428	Power management and system optimization for high efficiency self-powered electrolytic hydrogen and formic acid production. Nano Energy, 2023, 107, 108124.	8.2	9
429	Heterogeneous bimetallic FeP4/NiP2 nanosheets as efficient electrocatalyst for alkaline oxygen evolution reaction. International Journal of Hydrogen Energy, 2024, 52, 248-256.	3.8	0
430	Nickel Phosphide Clusters Sensitized TiO ₂ Nanotube Arrays as Highly Efficient Photoanode for Photoelectrocatalytic Urea Oxidation. Advanced Functional Materials, 2023, 33, .	7.8	31
431	Hierarchical Ni ₂ P/Zn–Ni–P nanosheet array for efficient energy-saving hydrogen evolution and hydrazine oxidation. Journal of Materials Chemistry A, 2023, 11, 2191-2202.	5.2	12
432	Controlled synthesis of W–Co3S4@Co3O4 as an environmentally friendly and low cost electrocatalyst for overall water splitting. International Journal of Hydrogen Energy, 2023, 48, 12739-12752.	3.8	10
433	Energy-efficient hydrogen production coupled with methanol oxidation using NiFe LDH@NiMo alloy heterostructure. Materials Today Chemistry, 2023, 27, 101338.	1.7	5
434	Electrocatalytic sulfion recycling assisted energy-saving hydrogen production using CuCo-based nanosheet arrays. Journal of Materials Chemistry A, 2023, 11, 2218-2224.	5.2	9
435	Double role of CTAB as a surfactant and carbon source in Ni-Mo2C/GA composite: As a highly active electrocatalyst for hydrogen evolution reaction. Electrochimica Acta, 2023, 441, 141861.	2.6	3
436	Atomically dispersed Pt single sites and nanoengineered structural defects enable a high electrocatalytic activity and durability for hydrogen evolution reaction and overall urea electrolysis. Journal of Power Sources, 2023, 558, 232563.	4.0	10
437	Structure-catalytic functionality of size-facet-performance in pentlandite nanoparticles. Journal of Energy Chemistry, 2023, 78, 438-446.	7.1	9

#	Article	IF	CITATIONS
438	Regulating isomerization of gasoline-alkanes in aqueous-phase hydrodeoxygenation of sorbitol using regenerable Ni@MoOx catalysts. Fuel Processing Technology, 2023, 242, 107647.	3.7	2
439	Tailoring the oxygen vacancies and electronic structures of the hex-WO3 (1 0 0) crystal plane with heteroatoms for enhanced hydrogen evolution performance. Applied Surface Science, 2023, 615, 156321.	3.1	7
440	Engineering cobalt molybdate nanosheet arrays with phosphorus-modified nickel as heterogeneous electrodes for highly-active energy-saving water splitting. Journal of Colloid and Interface Science, 2023, 636, 425-434.	5.0	17
441	Innovating Rechargeable Zn-Air Batteries for Low Charging Voltage and High Energy Efficiency. Energy & Fuels, 2023, 37, 1414-1420.	2.5	3
442	UV-Visible-Near-Infrared-Driven Photoelectrocatalytic Urea Oxidation and Photocatalytic Urea Fuel Cells Based on Ruddlensden–Popper-Type Perovskite Oxide La2NiO4. Catalysts, 2023, 13, 53.	1.6	1
443	Molybdenum carbide/Ni nanoparticles-incorporated carbon nanofibers as effective non-precious catalyst for urea electrooxidation reaction. Scientific Reports, 2022, 12, .	1.6	3
444	Coupling of NiFe Layered Double Hydroxides with Sulfides for Highly Efficient Urea Electrolysis and Hydrogen Evolution. Energies, 2023, 16, 1092.	1.6	5
445	Energy-saving cathodic H2 production enabled by non-oxygen evolution anodic reactions: A critical review on fundamental principles and applications. International Journal of Hydrogen Energy, 2023, 48, 15748-15770.	3.8	10
446	Constructing Fe/Ni atomic interfaces in Fe-doped Ni(OH) ₂ with single-phase structures for efficient oxygen evolution. Journal of Materials Chemistry A, 2023, 11, 5841-5850.	5.2	10
447	Construction of Nitrogenâ€Doped Biphasic Transitionâ€Metal Sulfide Nanosheet Electrode for Energyâ€Efficient Hydrogen Production via Urea Electrolysis. Small, 2023, 19, .	5.2	24
448	Interfacial Chemical Bond Modulation of Co ₃ (PO ₄) ₂ -MoO _{3–<i>x</i>} Heterostructures for Alkaline Water/Seawater Splitting. Inorganic Chemistry, 2023, 62, 2838-2847.	1.9	7
449	Inverse â€~intra-lattice' charge transfer in nickel–molybdenum dual electrocatalysts regulated by under-coordinating the molybdenum center. Chemical Science, 2023, 14, 3056-3069.	3.7	0
450	Divalent Oxidation State Ni as an Active Intermediate in Prussian Blue Analogues for Electrocatalytic Urea Oxidation. Inorganic Chemistry, 2023, 62, 3637-3645.	1.9	3
451	Controlled synthesis of N–CuCo2S4@Ni3S2 nanoarrays as promising urea oxidation electrocatalyst. International Journal of Hydrogen Energy, 2023, 48, 27231-27241.	3.8	1
452	Superwettable and photothermal all-in-one electrocatalyst for boosting water/urea electrolysis. Journal of Colloid and Interface Science, 2023, 644, 134-145.	5.0	1
453	Enhanced electrocatalytic activity of sulfur and tungsten co-doped nickel hydroxide nanosheets for urea oxidation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665, 131226.	2.3	5
454	Pt single atom captured by oxygen vacancy-rich NiCo layered double hydroxides for coupling hydrogen evolution with selective oxidation of glycerol to formate. Applied Catalysis B: Environmental, 2023, 330, 122617.	10.8	32
455	Ultrasonic-assisted synthesis of nickel metal-organic framework for efficient urea removal and water splitting applications. Synthetic Metals, 2023, 294, 117309.	2.1	15

	Citation R	CITATION REPORT		
Article		IF	CITATIONS	
Surface reconstructing hierarchical structures as robust sulfion oxidation catalysts to hydrogen with ultralow energy consumption. Inorganic Chemistry Frontiers, 2023, 10,		3.0	16	
Bi-functional Ni3S2@MoS2 heterostructure with strong built-in field as highly-efficient catalyst. Journal of Electroanalytical Chemistry, 2023, 931, 117185.	: electrolytic	1.9	2	
Amorphous nickel tungstate nanocatalyst boosts urea electrooxidation. Chemical Eng Journal, 2023, 460, 141826.	ineering	6.6	9	
Role of Hydrogen Spillover in Electrocatalytic Hydrogen Evolution from Water Splitting Symposium Series, 0, , 147-168.	g. ACS	0.5	0	
Pulse-reverse electrodeposition of Ni–Mo–S nanosheets for energy saving electro production assisted by urea oxidation. International Journal of Hydrogen Energy, 2023		3.8	6	
In situ rapid and deep self-reconstruction of Fe-doped hydrate NiMoO4 for stable wate high current densities. Chemical Engineering Journal, 2023, 461, 142081.	r oxidation at	6.6	10	
Ligand vacancy channels in pillared inorganic-organic hybrids for electrocatalytic organ with enzyme-like activities. Nature Communications, 2023, 14, .	nic oxidation	5.8	1	
Interfacial Engineering of Ni/Ni _{0.2} Mo _{0.8} N Heterostructured Realizes Efficient 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Evolution. L 39, 3762-3769.	Nanorods angmuir, 2023,	1.6	4	
Baby diaper's super absorbent polymer derived carbon templated NiCuP@NiCu nanost green hydrogen production. International Journal of Hydrogen Energy, 2024, 52, 401-4		3.8	2	
High-Density NiCu Bimetallic Phosphide Nanosheet Clusters Constructed by Cu-Induce Total Urea Hydrolysis for Hydrogen Production. Inorganic Chemistry, 2023, 62, 4648-4		1.9	5	
Supercritical Hydrothermal Synthesis of Spinel-Type Nonstoichiometric Cobalt Gallate and Their Magnetic Properties. Crystal Growth and Design, 2023, 23, 2511-2521.	Nanoparticles	1.4	2	
Directed Ureaâ€ŧoâ€Nitrite Electrooxidation via Tuning Intermediate Adsorption on Co Sites. Advanced Functional Materials, 2023, 33, .	o, Ge Coâ€Đoped Ni	7.8	21	
NiMo-MOF-Derived Carbon-Armored Ni ₄ Mo Alloy of an Interwoven Nanos as an Outstanding pH-Universal Catalyst for Hydrogen Evolution Reaction at High Curr ACS Applied Materials & Interfaces, 2023, 15, 20130-20140.		4.0	11	
Dualâ€Atom Support Boosts Nickel atalyzed Urea Electrooxidation. Angewandte C	hemie, 2023, 135, .	1.6	0	
Dualâ€Atom Support Boosts Nickel atalyzed Urea Electrooxidation. Angewandte C Edition, 2023, 62, .	hemie - International	7.2	66	

471	CoO–Co Heterojunction Covered with Carbon Enables Highly Efficient Integration of Hydrogen Evolution and 5-Hydroxymethylfurfural Oxidation. Molecules, 2023, 28, 3040.	1.7	0
472	Self-Healing LiquidÂMetal Magnetic Hydrogels for Smart Feedback Sensors and High-Performance Electromagnetic Shielding. Nano-Micro Letters, 2023, 15, .	14.4	58
473	Strong electronic coupling of CoNi and Nâ€dopedâ€carbon for efficient ureaâ€assisted H ₂ production at a large current density. , 2023, 5, .		19

#

456

458

460

462

464

466

468

#	Article	IF	CITATIONS
474	Highly efficient and stable oxygen evolution from seawater enabled by a hierarchical NiMoS _{<i>x</i>} microcolumn@NiFe-layered double hydroxide nanosheet array. Inorganic Chemistry Frontiers, 2023, 10, 2766-2775.	3.0	67
475	Recent progress and perspective on molybdenum-based electrocatalysts for water electrolysis. International Journal of Hydrogen Energy, 2023, 48, 26084-26106.	3.8	13
476	Accelerating charge transfer for Ni(OH) ₂ through chlorine-anion decoration in the urea electrooxidation reaction. New Journal of Chemistry, 2023, 47, 9483-9491.	1.4	2
478	Recent advances in interface engineering of Fe/Co/Ni-based heterostructure electrocatalysts for water splitting. Materials Horizons, 2023, 10, 2312-2342.	6.4	13
500	Critical Role of Interface Design in Acceleration of Overall Water Splitting and Hybrid Electrolysis Process: State of the Art and Perspectives. Energy & Fuels, 2023, 37, 7603-7633.	2.5	5
507	Urea electrooxidation: Research progress and application of supported nickel-based catalysts. Ionics, 2023, 29, 2969-2987.	1.2	0
525	<i>In situ</i> grown high-valence Mo-doped NiCo Prussian blue analogue for enhanced urea electrooxidation. Chemical Communications, 2023, 59, 12152-12155.	2.2	0
540	Screening potential anodic chemistry in lieu of the oxygen evolution reaction in electrolysis systems: the road to practical application. Energy and Environmental Science, 0, , .	15.6	0
568	Urea catalytic oxidation for energy and environmental applications. Chemical Society Reviews, 2024, 53, 1552-1591.	18.7	2