Universal Chimeric Antigen Receptors for Multiplexed a Responses

Cell 173, 1426-1438.e11 DOI: 10.1016/j.cell.2018.03.038

Citation Report

#	Article	IF	CITATIONS
1	Taking regulatory T-cell therapy one step further. Current Opinion in Organ Transplantation, 2018, 23, 509-515.	0.8	14
3	Making CAR T Cells a Solid Option for Solid Tumors. Frontiers in Immunology, 2018, 9, 2593.	2.2	147
4	Recent updates in cancer immunotherapy: a comprehensive review and perspective of the 2018 China Cancer Immunotherapy Workshop in Beijing. Journal of Hematology and Oncology, 2018, 11, 142.	6.9	95
5	Universal CARs, universal T cells, and universal CAR T cells. Journal of Hematology and Oncology, 2018, 11, 132.	6.9	184
6	Tumors evading CARs—the chase is on. Nature Medicine, 2018, 24, 1492-1493.	15.2	32
7	Towards therapeutic base editing. Nature Medicine, 2018, 24, 1493-1495.	15.2	6
8	Cytokine release syndrome: grading, modeling, and new therapy. Journal of Hematology and Oncology, 2018, 11, 121.	6.9	99
9	Genetically modified immune cells for cancer immunotherapy. Science China Life Sciences, 2018, 61, 1277-1279.	2.3	3
10	Potential advantages of CD1-restricted T cell immunotherapy in cancer. Molecular Immunology, 2018, 103, 200-208.	1.0	5
11	Chimeric antigen receptor modified Tâ€cells for cancer treatment. Chronic Diseases and Translational Medicine, 2018, 4, 225-243.	0.9	10
12	Synthetic immunology: T-cell engineering and adoptive immunotherapy. Synthetic and Systems Biotechnology, 2018, 3, 179-185.	1.8	23
14	Chimeric Antigen Receptor (CAR) Treg: A Promising Approach to Inducing Immunological Tolerance. Frontiers in Immunology, 2018, 9, 2359.	2.2	106
15	CAR-T Cells Based on Novel BCMA Monoclonal Antibody Block Multiple Myeloma Cell Growth. Cancers, 2018, 10, 323.	1.7	21
16	Increasing T Cell Versatility with SUPRA CARs. Cell, 2018, 173, 1316-1317.	13.5	29
17	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
18	Conjugated CAR T cell one step beyond conventional CAR T cell for a promising cancer immunotherapy. Cellular Immunology, 2019, 345, 103963.	1.4	9
19	Synthetic Biology Goes Cell-Free. BMC Biology, 2019, 17, 64.	1.7	79
21	Production of CAR T-cells by GMP-grade lentiviral vectors: latest advances and future prospects. Critical Reviews in Clinical Laboratory Sciences, 2019, 56, 393-419.	2.7	45

#	Article	IF	CITATIONS
22	Humanized anti-CD271 monoclonal antibody exerts an anti-tumor effect by depleting cancer stem cells. Cancer Letters, 2019, 461, 144-152.	3.2	18
23	A long way to the battlefront: CAR T cell therapy against solid cancers. Journal of Cancer, 2019, 10, 3112-3123.	1.2	26
24	CAR-T cells secreting BiTEs circumvent antigen escape without detectable toxicity. Nature Biotechnology, 2019, 37, 1049-1058.	9.4	347
25	Application of CAR T cells for the treatment of solid tumors. Progress in Molecular Biology and Translational Science, 2019, 164, 293-327.	0.9	15
26	CAR T cells for brain tumors: Lessons learned and road ahead. Immunological Reviews, 2019, 290, 60-84.	2.8	151
27	Synergistic combination of oncolytic virotherapy with CAR T-cell therapy. Progress in Molecular Biology and Translational Science, 2019, 164, 217-292.	0.9	15
28	Chimeric Antigen Receptor-T Cells for Targeting Solid Tumors: Current Challenges and Existing Strategies. BioDrugs, 2019, 33, 515-537.	2.2	42
29	Engineering switchable and programmable universal CARs for CAR T therapy. Journal of Hematology and Oncology, 2019, 12, 69.	6.9	65
30	Paving New Roads for CARs. Trends in Cancer, 2019, 5, 583-592.	3.8	24
31	An AND-Gated Drug and Photoactivatable Cre- <i>loxP</i> System for Spatiotemporal Control in Cell-Based Therapeutics. ACS Synthetic Biology, 2019, 8, 2359-2371.	1.9	26
32	Resistance Mechanisms to CAR T-Cell Therapy and Overcoming Strategy in B-Cell Hematologic Malignancies. International Journal of Molecular Sciences, 2019, 20, 5010.	1.8	35
33	Advances in Engineering Cells for Cancer Immunotherapy. Theranostics, 2019, 9, 7889-7905.	4.6	44
34	Sensitive and adaptable pharmacological control of CAR T cells through extracellular receptor dimerization. JCI Insight, 2019, 4, .	2.3	46
35	Next-generation regulatory T cell therapy. Nature Reviews Drug Discovery, 2019, 18, 749-769.	21.5	311
36	Engineering and Design of Chimeric Antigen Receptors. Molecular Therapy - Methods and Clinical Development, 2019, 12, 145-156.	1.8	281
37	Nature Biotechnology's academic spinouts of 2018. Nature Biotechnology, 2019, 37, 601-612.	9.4	6
38	Target selection for CAR-T therapy. Journal of Hematology and Oncology, 2019, 12, 62.	6.9	118
39	Retargeting CD19 Chimeric Antigen Receptor T Cells via Engineered CD19-Fusion Proteins. Molecular Pharmaceutics, 2019, 16, 3544-3558.	2.3	29

ARTICLE IF CITATIONS # CAR-T immunotherapies: Biotechnological strategies to improve safety, efficacy and clinical outcome 40 6.0 12 through CAR engineering. Biotechnology Advances, 2019, 37, 107411. The making and function of CAR cells. Immunology Letters, 2019, 212, 53-69. 1.1 19 Engineering cell–cell communication networks: programming multicellular behaviors. Current 42 2.8 51 Opinion in Chemical Biology, 2019, 52, 31-38. Gene editing for immune cell therapies. Nature Biotechnology, 2019, 37, 1425-1434. 9.4 Solid Tumors Challenges and New Insights of CAR T Cell Engineering. Stem Cell Reviews and Reports, 44 1.7 71 2019, 15, 619-636. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells, 2019, 8, 472. 1.8 NextGen cell-based immunotherapies in cancer and other immune disorders. Current Opinion in 46 2.4 15 Immunology, 2019, 59, 79-87. Switching on the green light for chimeric antigen receptor Tâ€cell therapy. Clinical and Translational 1.7 Immunology, 2019, 8, e1046. 48 A Metabolism Toolbox for CAR T Therapy. Frontiers in Oncology, 2019, 9, 322. 1.3 54 CAR T-cell bioengineering: Single variable domain of heavy chain antibody targeted CARs. Advanced 6.6 Drug Delivery Reviews, 2019, 141, 41-46. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. International Journal of 50 1.8 15 Molecular Sciences, 2019, 20, 1903. Novel approaches to promote CAR T-cell function in solid tumors. Expert Opinion on Biological 1.4 Therapy, 2019, 19, 789-799. When CAR Meets Stem Cells. International Journal of Molecular Sciences, 2019, 20, 1825. 52 1.8 7 Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal of Molecular 1.8 296 Sciences, 2019, 20, 1283. Combining the best of two worlds: highly flexible chimeric antigen receptor adaptor molecules 54 2.6 38 (CAR-adaptors) for the recruitment of chimeric antigen receptor T cells. MAbs, 2019, 11, 621-631. Engineering advanced cancer therapies with synthetic biology. Nature Reviews Cancer, 2019, 19, 187-195. The Emergence of Universal Immune Receptor T Cell Therapy for Cancer. Frontiers in Oncology, 2019, 9, 56 1.364 176. Genetic circuitry for personalized human cell therapy. Current Opinion in Biotechnology, 2019, 59, 3.3 31-38.

#	Article	IF	CITATIONS
58	The Cellular Immunotherapy Revolution: Arming the Immune System for Precision Therapy. Trends in Immunology, 2019, 40, 292-309.	2.9	61
59	CAR T Cells Generated Using <i>Sleeping Beauty</i> Transposon Vectors and Expanded with an EBV-Transformed Lymphoblastoid Cell Line Display Antitumor Activity <i>In Vitro</i> and <i>In Vivo</i> . Human Gene Therapy, 2019, 30, 511-522.	1.4	23
60	Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. Journal of Hematology and Oncology, 2019, 12, 17.	6.9	80
61	Chimeric Antigen Receptor T Cell Therapy for Solid Tumors: Current Status, Obstacles and Future Strategies. Cancers, 2019, 11, 191.	1.7	33
62	Engineered Cell-Based Therapeutics: Synthetic Biology Meets Immunology. Frontiers in Bioengineering and Biotechnology, 2019, 7, 43.	2.0	61
63	On-target restoration of a split T cell-engaging antibody for precision immunotherapy. Nature Communications, 2019, 10, 5387.	5.8	38
64	Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers, 2019, 11, 1826.	1.7	132
65	CAR T Cell Therapy for Hematological Malignancies. Current Medical Science, 2019, 39, 874-882.	0.7	22
66	T-cell receptor and chimeric antigen receptor in solid cancers: current landscape, preclinical data and insight into future developments. Current Opinion in Oncology, 2019, 31, 430-438.	1.1	6
67	CARâ€T Cells: Future Perspectives. HemaSphere, 2019, 3, e188.	1.2	43
68	Mechanisms of failure of chimeric antigen receptor T-cell therapy. Current Opinion in Hematology, 2019, 26, 427-433.	1.2	30
69	A generic cell surface ligand system for studying cell–cell recognition. PLoS Biology, 2019, 17, e3000549.	2.6	11
70	Immunotherapy – Strategies for Expanding Its Role in the Treatment of All Major Tumor Sites. Cureus, 2019, 11, e5938.	0.2	9
71	Understanding the Mechanisms of Resistance to CAR T-Cell Therapy in Malignancies. Frontiers in Oncology, 2019, 9, 1237.	1.3	106
72	Synthetic Biology: Engineering Mammalian Cells To Control Cellâ€ŧoâ€Cell Communication at Will. ChemBioChem, 2019, 20, 994-1002.	1.3	17
73	Teaching an old dog new tricks: next-generation CAR T cells. British Journal of Cancer, 2019, 120, 26-37.	2.9	240
74	UpdateÂon the current revolution in cancer immunotherapy. Immunotherapy, 2019, 11, 15-20.	1.0	12
75	Lymphocytes in Cellular Therapy: Functional Regulation of CAR T Cells. Frontiers in Immunology, 2018, 9, 3180.	2.2	46

#	Article	IF	CITATIONS
76	Advances in cellular and humoral immunotherapy – implications for the treatment of poor risk childhood, adolescent, and young adult Bâ€cell nonâ€Hodgkin lymphoma. British Journal of Haematology, 2019, 185, 1055-1070.	1.2	16
77	Towards control of cellular decision-making networks in the epithelial-to-mesenchymal transition. Physical Biology, 2019, 16, 031002.	0.8	44
78	T-cells "à la CAR-T(e)―– Genetically engineering T-cell response against cancer. Advanced Drug Delivery Reviews, 2019, 141, 23-40.	6.6	17
79	Use of chimeric antigen receptor T cells in allogeneic hematopoietic stem cell transplantation. Immunotherapy, 2019, 11, 37-44.	1.0	6
80	Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 151-167.	12.5	1,093
81	The Role of Protein Engineering in Biomedical Applications of Mammalian Synthetic Biology. Small, 2020, 16, e1903093.	5.2	12
82	Site-specific bioconjugation and self-assembly technologies for multi-functional biologics: on the road to the clinic. Drug Discovery Today, 2020, 25, 168-176.	3.2	13
83	Future prospects of chimeric antigen receptor Tâ€cell therapy for multiple myeloma. Advances in Cell and Gene Therapy, 2020, 3, e72.	0.6	0
84	Determinants of response and resistance to CAR T cell therapy. Seminars in Cancer Biology, 2020, 65, 80-90.	4.3	59
85	CART manufacturing process and reasons for academy-pharma collaboration. Immunology Letters, 2020, 217, 39-48.	1.1	9
86	The Evolving Protein Engineering in the Design of Chimeric Antigen Receptor T Cells. International Journal of Molecular Sciences, 2020, 21, 204.	1.8	28
87	Data-driven analysis of a mechanistic model of CAR T cell signaling predicts effects of cell-to-cell heterogeneity. Journal of Theoretical Biology, 2020, 489, 110125.	0.8	28
88	Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nature Reviews Clinical Oncology, 2020, 17, 147-167.	12.5	786
89	PD-1 disrupted CAR-T cells in the treatment of solid tumors: Promises and challenges. Biomedicine and Pharmacotherapy, 2020, 121, 109625.	2.5	92
90	The therapeutic landscape for cells engineered with chimeric antigen receptors. Nature Biotechnology, 2020, 38, 233-244.	9.4	147
91	A tunable orthogonal coiled-coil interaction toolbox for engineering mammalian cells. Nature Chemical Biology, 2020, 16, 513-519.	3.9	89
92	Artificial signaling in mammalian cells enabled by prokaryotic two-component system. Nature Chemical Biology, 2020, 16, 179-187.	3.9	24
93	CRISPR-Cas9 genome editing for cancer immunotherapy: opportunities and challenges. Briefings in Functional Genomics, 2020, 19, 183-190.	1.3	4

	Сітатіо	n Report	
#	Article	IF	Citations
94	Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, 2020, , .	0.4	2
95	Autoimmunity as a target for chimeric immune receptor therapy: A new vision to therapeutic potential. Blood Reviews, 2020, 41, 100645.	2.8	21
96	Chimeric Antigen Receptor Therapies. , 2020, , 349-359.		0
97	Modular Chimeric Antigen Receptor Systems for Universal CAR T Cell Retargeting. International Journal of Molecular Sciences, 2020, 21, 7222.	1.8	28
98	Intelligent cell-based therapies for cancer and autoimmune disorders. Current Opinion in Biotechnology, 2020, 66, 207-216.	3.3	8
99	When de novo-designed protein logics meet CAR-T therapies. Cell Research, 2020, 30, 946-947.	5.7	1
100	Exploiting noise to engineer adaptability in synthetic multicellular systems. Current Opinion in Biomedical Engineering, 2020, 16, 52-60.	1.8	5
101	Improving the therapeutic index in adoptive cell therapy: key factors that impact efficacy. , 2020, 8, e001619.		14
102	Building a CAR-Treg: Going from the basic to the luxury model. Cellular Immunology, 2020, 358, 104220.	1.4	47
103	CAR-T in solid tumors: Blazing a new trail through the brambles. Life Sciences, 2020, 260, 118300.	2.0	10
104	A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chemical Biology, 2020, 15, 2299-2310.	1.6	27
105	Development and characterisation of NKp44â€based chimeric antigen receptors that confer T cells with NK cellâ€like specificity. Clinical and Translational Immunology, 2020, 9, e1147.	1.7	7
106	Utilization of CRISPR/Cas9 gene editing in cellular therapies for lymphoid malignancies. Immunology Letters, 2020, 226, 71-82.	1.1	9
107	Engineering Next-Generation CAR-T Cells for Better Toxicity Management. International Journal of Molecular Sciences, 2020, 21, 8620.	1.8	38
108	<p>Emerging Role of Immunotherapy for Colorectal Cancer with Liver Metastasis</p> . OncoTargets and Therapy, 2020, Volume 13, 11645-11658.	1.0	21
109	Adoptive T cell therapy: Boosting the immune system to fight cancer. Seminars in Immunology, 2020, 49, 101437.	2.7	22
110	A giant step forward: chimeric antigen receptor T-cell therapy for lymphoma. Frontiers of Medicine, 2020, 14, 711-725.	1.5	8
111	Chimeric antigen receptor T-cell therapy in glioblastoma: charging the T cells to fight. Journal of Translational Medicine, 2020, 18, 428.	1.8	51

		CITATION RE	PORT	
#	Article		IF	CITATIONS
112	The Most Logical Approach to Improve CAR T Cell Therapy. Cell Systems, 2020, 11, 421	-423.	2.9	1
113	PD-L1 chimeric costimulatory receptor improves the efficacy of CAR-T cells for PD-L1-pc tumors and reduces toxicity in vivo. Biomarker Research, 2020, 8, 57.	sitive solid	2.8	13
114	Cancer Stem Cells—Origins and Biomarkers: Perspectives for Targeted Personalized T Frontiers in Immunology, 2020, 11, 1280.	herapies.	2.2	444
115	Chimeric antigen receptor T-cell therapy beyond cancer: current practice and future pro Immunotherapy, 2020, 12, 1021-1034.	spects.	1.0	3
116	Targeted Cellular Micropharmacies: Cells Engineered for Localized Drug Delivery. Cance 2175.	rs, 2020, 12,	1.7	17
117	CRISPR/Cas systems to overcome challenges in developing the next generation of T cell therapy. Advanced Drug Delivery Reviews, 2020, 158, 17-35.	s for cancer	6.6	14
118	Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell, 2020, 38, 47	3-488.	7.7	342
119	CAR-T design: Elements and their synergistic function. EBioMedicine, 2020, 58, 102931		2.7	144
120	Identification of Targets to Redirect CAR T Cells in Glioblastoma and Colorectal Cancer: Venture. Frontiers in Immunology, 2020, 11, 565631.	An Arduous	2.2	24
121	Efficacy of anti-CD147 chimeric antigen receptors targeting hepatocellular carcinoma. I Communications, 2020, 11, 4810.	Nature	5.8	95
122	Externally-Controlled Systems for Immunotherapy: From Bench to Bedside. Frontiers in 2020, 11, 2044.	Immunology,	2.2	18
123	Designed protein logic to target cells with precise combinations of surface antigens. Sc 369, 1637-1643.	ience, 2020,	6.0	117
124	Engineering AvidCARs for combinatorial antigen recognition and reversible control of C Nature Communications, 2020, 11, 4166.	AR function.	5.8	53
125	An IMiD-inducible degron provides reversible regulation for chimeric antigen receptor exactivity. Cell Chemical Biology, 2021, 28, 802-812.e6.	kpression and	2.5	25
126	Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mecl Underlying of Immune Checkpoint Blockade Therapy. Cancers, 2020, 12, 3729.	nanisms	1.7	55
127	Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatr Landscape and Progress. Frontiers in Immunology, 2020, 11, 604915.	nent: Current	2.2	9
128	Precision Tools in Immuno-Oncology: Synthetic Gene Circuits for Cancer Immunotherap 2020, 8, 732.	vy. Vaccines,	2.1	4
129	Gene modification strategies for next-generation CAR T cells against solid cancers. Jour Hematology and Oncology, 2020, 13, 54.	nal of	6.9	98

#	Article	IF	CITATIONS
130	Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. Journal of Experimental and Clinical Cancer Research, 2020, 39, 77.	3.5	23
131	Innovative synthetic signaling technologies for immunotherapy. Current Opinion in Biomedical Engineering, 2020, 16, 1-8.	1.8	1
132	A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers. Cancers, 2020, 12, 1333.	1.7	9
133	Impact of Ligand Size and Conjugation Chemistry on the Performance of Universal Chimeric Antigen Receptor T-Cells for Tumor Killing. Bioconjugate Chemistry, 2020, 31, 1775-1783.	1.8	12
134	Building sophisticated sensors of extracellular cues that enable mammalian cells to work as "doctors―in the body. Cellular and Molecular Life Sciences, 2020, 77, 3567-3581.	2.4	26
135	Emerging Approaches for Regulation and Control of CAR T Cells: A Mini Review. Frontiers in Immunology, 2020, 11, 326.	2.2	70
136	Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. Annual Review of Cancer Biology, 2020, 4, 121-139.	2.3	13
137	Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. Journal of the American Chemical Society, 2020, 142, 6554-6568.	6.6	36
138	You Have Got a Fast CAR: Chimeric Antigen Receptor NK Cells in Cancer Therapy. Cancers, 2020, 12, 706.	1.7	73
139	Tumor Microenvironment. Cancer Treatment and Research, 2020, , .	0.2	12
140	Chimeric Antigen Receptor Cell Therapy: Overcoming Obstacles to Battle Cancer. Cancers, 2020, 12, 842.	1.7	21
141	<p>Highly Efficient Targeting of EGFR-Expressing Tumor Cells with UniCAR T Cells via Target Modules Based on Cetuximab[®]</p> . OncoTargets and Therapy, 2020, Volume 13, 5515-5527.	1.0	17
142	Recent advances in CAR-T cell engineering. Journal of Hematology and Oncology, 2020, 13, 86.	6.9	192
143	Power to the protein: enhancing and combining activities using the Spy toolbox. Chemical Science, 2020, 11, 7281-7291.	3.7	109
144	T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells, 2020, 9, 1588.	1.8	20
145	Versatile chimeric antigen receptor platform for controllable and combinatorial T cell therapy. Oncolmmunology, 2020, 9, 1785608.	2.1	35
146	Current Clinical Evidence and Potential Solutions to Increase Benefit of CAR T-Cell Therapy for Patients with Solid Tumors. Oncolmmunology, 2020, 9, 1777064.	2.1	25
147	Engineering light-controllable CAR T cells for cancer immunotherapy. Science Advances, 2020, 6, eaay9209.	4.7	97

#	Article	IF	CITATIONS
148	All systems go: converging synthetic biology and combinatorial treatment for CAR-T cell therapy. Current Opinion in Biotechnology, 2020, 65, 75-87.	3.3	33
149	Recent Advances in Allogeneic CAR-T Cells. Biomolecules, 2020, 10, 263.	1.8	68
150	Applications and explorations of CRISPR/Cas9 in CAR T-cell therapy. Briefings in Functional Genomics, 2020, 19, 175-182.	1.3	59
151	Engineering T cells for immunotherapy of primary human hepatocellular carcinoma. Journal of Genetics and Genomics, 2020, 47, 1-15.	1.7	15
152	New directions in chimeric antigen receptor T cell [CARâ€ᠯ] therapy and related flow cytometry. Cytometry Part B - Clinical Cytometry, 2020, 98, 299-327.	0.7	28
153	The Emerging Landscape of Immune Cell Therapies. Cell, 2020, 181, 46-62.	13.5	247
154	Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood, 2020, 135, 713-723.	0.6	123
155	In vitro elimination of autoreactive B cells from rheumatoid arthritis patients by universal chimeric antigen receptor T cells. Annals of the Rheumatic Diseases, 2021, 80, 176-184.	0.5	44
156	T-cell–engaging Therapy for Solid Tumors. Clinical Cancer Research, 2021, 27, 1595-1603.	3.2	21
157	Recent Advances in Hyperthermia Therapyâ€Based Synergistic Immunotherapy. Advanced Materials, 2021, 33, e2004788.	11.1	233
158	CRISPR technology: The engine that drives cancer therapy. Biomedicine and Pharmacotherapy, 2021, 133, 111007.	2.5	30
159	Engineering precision therapies: lessons and motivations from the clinic. Synthetic Biology, 2021, 6, ysaa024.	1.2	5
160	Emerging Immunotherapies in the Treatment of Brain Metastases. Oncologist, 2021, 26, 231-241.	1.9	29
161	Human immunology and immunotherapy: main achievements and challenges. Cellular and Molecular Immunology, 2021, 18, 805-828.	4.8	96
162	Generation of CAR-T Cells by Lentiviral Transduction. Methods in Molecular Biology, 2021, 2312, 3-14.	0.4	6
163	Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nature Reviews Cancer, 2021, 21, 145-161.	12.8	436
164	A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia, 2021, 35, 2243-2257.	3.3	24
165	Chimeric antigen receptor-T cells immunotherapy for targeting breast cancer. Research in Pharmaceutical Sciences, 2021, 16, 447.	0.6	5

#	Article	IF	CITATIONS
168	Engineering advanced logic and distributed computing in human CAR immune cells. Nature Communications, 2021, 12, 792.	5.8	68
169	Immunogenicity of CAR T cells in cancer therapy. Nature Reviews Clinical Oncology, 2021, 18, 379-393.	12.5	128
170	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell, 2021, 184, 881-898.	13.5	56
171	Delivery Techniques for Enhancing CAR T Cell Therapy against Solid Tumors. Advanced Functional Materials, 2021, 31, 2009489.	7.8	29
172	Realizing Innate Potential: CAR-NK Cell Therapies for Acute Myeloid Leukemia. Cancers, 2021, 13, 1568.	1.7	21
173	Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Frontiers in Immunology, 2021, 12, 640082.	2.2	64
174	Future trends in synthetic biology in Asia. Genetics & Genomics Next, 2021, 2, e10038.	0.8	10
175	Targeting loss of heterozygosity for cancer-specific immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	39
176	The Targeting Effect of Cetuximab Combined with PD-L1 Blockade against EGFR-Expressing Tumors in a Tailored CD16-CAR T-Cell Reporter System. Cancer Investigation, 2021, 39, 1-12.	0.6	5
177	How Do We Meet the Challenge of Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors?. Cancer Journal (Sudbury, Mass), 2021, 27, 134-142.	1.0	1
178	CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cellular Oncology (Dordrecht), 2021, 44, 495-523.	2.1	32
179	Pharmacologic Control of CAR T Cells. International Journal of Molecular Sciences, 2021, 22, 4320.	1.8	9
180	Tumor-tagging by oncolytic viruses: A novel strategy for CAR-T therapy against solid tumors. Cancer Letters, 2021, 503, 69-74.	3.2	9
181	Chimeric Antigen Receptor–Modified T Cells and T Cell–Engaging Bispecific Antibodies: Different Tools for the Same Job. Current Hematologic Malignancy Reports, 2021, 16, 218-233.	1.2	4
182	Interfacing Biomaterials with Synthetic T Cell Immunity. Advanced Healthcare Materials, 2021, 10, e2100157.	3.9	4
183	A nonviral, nonintegrating DNA nanovector platform for the safe, rapid, and persistent manufacture of recombinant T cells. Science Advances, 2021, 7, .	4.7	43
184	Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 2021, 372, .	6.0	297
185	CAR-T Cell Therapy for Acute Myeloid Leukemia: Preclinical Rationale, Current Clinical Progress, and Barriers to Success. BioDrugs, 2021, 35, 281-302.	2.2	30

#	Article	IF	Citations
186	Programmable protein circuit design. Cell, 2021, 184, 2284-2301.	13.5	50
187	Approaches for refining and furthering the development of CAR-based T cell therapies for solid malignancies. Expert Opinion on Drug Discovery, 2021, 16, 1105-1117.	2.5	3
188	Obstacles and Coping Strategies of CAR-T Cell Immunotherapy in Solid Tumors. Frontiers in Immunology, 2021, 12, 687822.	2.2	33
189	CAR T Cell-Based Immunotherapy for the Treatment of Glioblastoma. Frontiers in Neuroscience, 2021, 15, 662064.	1.4	80
190	The antigenâ€binding moiety in the driver's seat of CARs. Medicinal Research Reviews, 2022, 42, 306-342.	5.0	21
191	Navigating CAR-T cells through the solid-tumour microenvironment. Nature Reviews Drug Discovery, 2021, 20, 531-550.	21.5	236
192	Reprogramming Extracellular Vesicles for Protein Therapeutics Delivery. Pharmaceutics, 2021, 13, 768.	2.0	18
193	Are chimeric antigen receptor T cells (CAR-T cells) the future in immunotherapy for autoimmune diseases?. Inflammation Research, 2021, 70, 651-663.	1.6	7
194	How Can We Engineer CAR T Cells to Overcome Resistance?. Biologics: Targets and Therapy, 2021, Volume 15, 175-198.	3.0	8
195	Cellular based treatment modalities for unresectable hepatocellular carcinoma. World Journal of Clinical Oncology, 2021, 12, 290-308.	0.9	4
196	Circularly permuted LOV2 as a modular photoswitch for optogenetic engineering. Nature Chemical Biology, 2021, 17, 915-923.	3.9	48
197	Symphony of nanomaterials and immunotherapy based on the cancer–immunity cycle. Acta Pharmaceutica Sinica B, 2022, 12, 107-134.	5.7	70
198	CAR T-cell therapy in mature lymphoid malignancies: clinical opportunities and challenges. Annals of Translational Medicine, 2021, 9, 1036-1036.	0.7	3
199	Strategies to improve the safety profile of CAR-T therapy. Postępy Polskiej Medycyny I Farmacji, 2021, 8, 48-60.	0.0	0
200	AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer Journal, 2021, 11, 119.	2.8	46
201	Theranostic cells: emerging clinical applications of synthetic biology. Nature Reviews Genetics, 2021, 22, 730-746.	7.7	49
202	Reliably Engineering and Controlling Stable Optogenetic Gene Circuits in Mammalian Cells. Journal of Visualized Experiments, 2021, , .	0.2	1
203	Cytokine Release Syndrome Associated with T-Cell-Based Therapies for Hematological Malignancies: Pathophysiology, Clinical Presentation, and Treatment. International Journal of Molecular Sciences, 2021, 22, 7652.	1.8	33

#	Article	IF	CITATIONS
204	The latest trends in improving CAR-T cell therapy: from leukemia to solid malignant tumors. Russian Journal of Pediatric Hematology and Oncology, 2021, 8, 84-95.	0.1	3
205	Safety switches for adoptive cell therapy. Current Opinion in Immunology, 2022, 74, 190-198.	2.4	12
207	Adoptive cell therapy for solid tumors: Chimeric antigen receptor T cells and beyond. Current Opinion in Pharmacology, 2021, 59, 70-84.	1.7	18
208	Control of the activity of CAR-T cells within tumours via focused ultrasound. Nature Biomedical Engineering, 2021, 5, 1336-1347.	11.6	82
209	Engineering genetic devices for in vivo control of therapeutic T cell activity triggered by the dietary molecule resveratrol. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
210	Application of Immunotherapy in Hepatocellular Carcinoma. Frontiers in Oncology, 2021, 11, 699060.	1.3	8
211	Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nature Communications, 2021, 12, 5271.	5.8	17
212	Chimeric antigen receptor (CAR) immunotherapy: basic principles, current advances, and future prospects in neuro-oncology. Immunologic Research, 2021, 69, 471-486.	1.3	8
213	Homogeneously high expression of CD32b makes it a potential target for CAR-T therapy for chronic lymphocytic leukemia. Journal of Hematology and Oncology, 2021, 14, 149.	6.9	7
214	Therapeutic cell engineering: designing programmable synthetic genetic circuits in mammalian cells. Protein and Cell, 2022, 13, 476-489.	4.8	23
215	Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Human Gene Therapy, 2021, 32, 1011-1028.	1.4	14
216	Self-driving armored CAR-T cells overcome a suppressive milieu and eradicate CD19+ Raji lymphoma in preclinical models. Molecular Therapy, 2021, 29, 2691-2706.	3.7	18
217	Advances in engineering and synthetic biology toward improved therapeutic immune cells. Current Opinion in Biomedical Engineering, 2021, 20, 100342.	1.8	2
218	Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Translational Oncology, 2021, 14, 101227.	1.7	2
219	Design and development of engineered receptors for cell and tissue engineering. Current Opinion in Systems Biology, 2021, 28, 100363.	1.3	8
220	Multi-input biocomputer gene circuits for therapeutic application. Current Opinion in Systems Biology, 2021, 28, 100371.	1.3	1
221	Engineering solutions to design CAR-T cells. , 2022, , 1-31.		0
222	Synthetic receptors for logic gated T cell recognition and function. Current Opinion in Immunology, 2022, 74, 9-17.	2.4	7

#	Article	IF	CITATIONS
223	Exploiting the CRISPRâ€Cas9 geneâ€editing system for human cancers and immunotherapy. Clinical and Translational Immunology, 2021, 10, e1286.	1.7	11
224	Reversible ON- and OFF-switch chimeric antigen receptors controlled by lenalidomide. Science Translational Medicine, 2021, 13, .	5.8	132
225	Preclinical Chimeric Antibody Chimeric Antigen Receptor T Cell Progress in Digestive System Cancers. Cancer Biotherapy and Radiopharmaceuticals, 2021, 36, 307-315.	0.7	1
226	Overcoming target epitope masking resistance that can occur on low-antigen-expresser AML blasts after IL-1RAP chimeric antigen receptor T cell therapy using the inducible caspase 9 suicide gene safety switch. Cancer Gene Therapy, 2021, 28, 1365-1375.	2.2	18
227	T Cell Reprogramming Against Cancer. Methods in Molecular Biology, 2020, 2097, 3-44.	0.4	20
228	CAR T Cell Therapy Progress and Challenges for Solid Tumors. Cancer Treatment and Research, 2020, 180, 297-326.	0.2	23
229	Programmable and multi-targeted CARs: a new breakthrough in cancer CAR-T cell therapy. Clinical and Translational Oncology, 2021, 23, 1003-1019.	1.2	26
230	Synthetic receptors to understand and control cellular functions. Methods in Enzymology, 2020, 633, 143-167.	0.4	11
231	Adenovirus-mediated specific tumor tagging facilitates CAR-T therapy against antigen-mismatched solid tumors. Cancer Letters, 2020, 487, 1-9.	3.2	22
232	A computationally designed chimeric antigen receptor provides a small-molecule safety switch for T-cell therapy. Nature Biotechnology, 2020, 38, 426-432.	9.4	100
233	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	0.6	59
239	A rational mouse model to detect on-target, off-tumor CAR T cell toxicity. JCI Insight, 2020, 5, .	2.3	56
240	CAR T-cell therapy of solid tumors: promising approaches to modulating antitumor activity of CAR T cells. Bulletin of Russian State Medical University, 2019, , 5-12.	0.3	1
241	A brief history of CAR-T cells: from laboratory to the bedside. Acta Haematologica Polonica, 2020, 51, 2-5.	0.1	32
242	Adaptor CAR Platforms—Next Generation of T Cell-Based Cancer Immunotherapy. Cancers, 2020, 12, 1302.	1.7	45
243	Advances in Universal CAR-T Cell Therapy. Frontiers in Immunology, 2021, 12, 744823.	2.2	78
244	NK cellâ€based therapies for HIV infection: Investigating current advances and future possibilities. Journal of Leukocyte Biology, 2021, , .	1.5	4
245	Engineering living therapeutics with synthetic biology. Nature Reviews Drug Discovery, 2021, 20, 941-960.	21.5	142

#	Article	IF	CITATIONS
246	Protein engineering: a driving force toward synthetic immunology. Trends in Biotechnology, 2022, 40, 509-521.	4.9	1
248	CAR T cell therapy in solid tumors; with an extensive focus on obstacles and strategies to overcome the challenges. International Immunopharmacology, 2021, 101, 108260.	1.7	3
249	Engineered T Cells for glioblastoma therapy. Glioma (Mumbai, India), 2018, 1, 125.	0.0	1
250	Souped-up T cells home in on cancer. Nature, 2018, 557, 8-8.	13.7	0
251	Chimeric antigen receptor T-cells for glioblastoma: The journey ahead. Glioma (Mumbai, India), 2019, 2, 88.	0.0	0
254	CAR-T Cells for Cancer Treatment: Current Design and Next Frontiers. Methods in Molecular Biology, 2020, 2086, 1-10.	0.4	4
255	Implementing Logic Gates for Safer Immunotherapy of Cancer. Frontiers in Immunology, 2021, 12, 780399.	2.2	16
256	A New Safety Approach Allowing Reversible Control of CAR T Cell Responses. Molecular Therapy, 2020, 28, 1563-1566.	3.7	0
257	Clinical determinants of relapse following CAR-T therapy for hematologic malignancies: Coupling active strategies to overcome therapeutic limitations. Current Research in Translational Medicine, 2022, 70, 103320.	1.2	9
259	Emerging Approaches for Solid Tumor Treatment Using CAR-T Cell Therapy. International Journal of Molecular Sciences, 2021, 22, 12126.	1.8	8
260	Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. Journal of Neuro-Oncology, 2022, 156, 81-96.	1.4	9
261	A synthetic distributed genetic multi-bit counter. IScience, 2021, 24, 103526.	1.9	6
262	T Cell Engaging Immunotherapies, Highlighting Chimeric Antigen Receptor (CAR) T Cell Therapy. Cancers, 2021, 13, 6067.	1.7	9
263	Novel adapter CAR-T cell technology for precisely controllable multiplex cancer targeting. Oncolmmunology, 2021, 10, .	2.1	16
264	D2HGDH-mediated D2HG catabolism enhances the anti-tumor activities of CAR-T cells in an immunosuppressive microenvironment. Molecular Therapy, 2022, 30, 1188-1200.	3.7	19
265	Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Current Opinion in Hematology, 2022, 29, 74-83.	1.2	14
267	The evolution of synthetic receptor systems. Nature Chemical Biology, 2022, 18, 244-255.	3.9	42
269	Synthetic Biology in Chimeric Antigen Receptor T (CAR T) Cell Engineering. ACS Synthetic Biology, 2022, 11, 1-15	1.9	14

#	Article	IF	CITATIONS
270	Therapeutic roles of CAR T cells in infectious diseases: Clinical lessons learnt from cancer. Reviews in Medical Virology, 2022, 32, e2325.	3.9	6
271	Engineering cell-based therapies. , 2022, , 271-285.		0
272	Chimeric antigen receptorâ€engineered adoptive cell therapy for AML: Current status and future perspectives. Immunomedicine, 2022, 2, .	0.7	0
273	TCR-T Immunotherapy: The Challenges and Solutions. Frontiers in Oncology, 2021, 11, 794183.	1.3	36
274	Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Annals of the New York Academy of Sciences, 2022, 1510, 18-35.	1.8	3
275	The next wave of cellular immunotherapies in pancreatic cancer. Molecular Therapy - Oncolytics, 2022, 24, 561-576.	2.0	34
276	Engineering CAR T cells for enhanced efficacy and safety. APL Bioengineering, 2022, 6, 011502.	3.3	14
277	iNKT: A new avenue for CAR-based cancer immunotherapy. Translational Oncology, 2022, 17, 101342.	1.7	14
278	Preclinical testing of CAR T cells in zebrafish xenografts. Methods in Cell Biology, 2022, 167, 133-147.	0.5	1
279	Lightâ€Controllable Binary Switch Activation of CAR T Cells. ChemMedChem, 2022, 17, .	1.6	5
280	Synthetic Biology-based Optimization of T cell Immunotherapies for Cancer. Current Opinion in Biomedical Engineering, 2022, 22, 100372.	1.8	0
281	A novel chimeric antigen receptor (CAR) system using anÂexogenous protease, in which activation of TÂcells is controlled by expression patterns of cellâ€'surface proteins on target cells. International Journal of Molecular Medicine, 2022, 49, .	1.8	2
282	Better by design: What to expect from novel CAR-engineered cell therapies?. Biotechnology Advances, 2022, 58, 107917.	6.0	12
283	Adoptive T-cell Immunotherapy: Perfecting Self-Defenses. Experientia Supplementum (2012), 2022, 113, 253-294.	0.5	1
284	CAR T Cell Immunotherapy Beyond Haematological Malignancy. Immune Network, 2022, 22, e6.	1.6	11
285	Progress of CAR-T Therapy in Gastric Cancer. Advances in Clinical Medicine, 2022, 12, 2500-2509.	0.0	0
286	Emerging CAR T Cell Strategies for the Treatment of AML. Cancers, 2022, 14, 1241.	1.7	24
287	Engineering Antibodies Targeting p16 MHC-Peptide Complexes. ACS Chemical Biology, 2022, 17, 545-555.	1.6	3

#	Article	IF	CITATIONS
288	Competitive Displacement of <i>De Novo</i> Designed HeteroDimers Can Reversibly Control Protein–Protein Interactions and Implement Feedback in Synthetic Circuits. , 2022, 1, 91-100.		4
289	Site-Specific Dinitrophenylation of Single-Chain Antibody Fragments for Redirecting a Universal CAR-T Cell against Cancer Antigens. Journal of Molecular Biology, 2022, 434, 167513.	2.0	6
290	Overcoming barriers to widespread use of <scp>CARâ€Treg</scp> therapy in organ transplant recipients. Hla, 2022, 99, 565-572.	0.4	2
291	Special Chimeric Antigen Receptor (CAR) Modifications of T Cells: A Review. Frontiers in Oncology, 2022, 12, 832765.	1.3	18
292	Harnessing the chemokine system to home CAR-T cells into solid tumors. Cell Reports Medicine, 2022, 3, 100543.	3.3	24
293	CRISPR activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T cell-mediated cytotoxicity. Nature Communications, 2022, 13, 1606.	5.8	40
294	In situ antigen modification-based target-redirected universal chimeric antigen receptor T (TRUE) Tj ETQq0 0 0 rg	BT /Overlo 6.9	ck 10 Tf 50 5
295	CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. Journal of Experimental and Clinical Cancer Research, 2022, 41, 119.	3.5	167
296	To go or not to go? Biological logic gating engineered T cells. , 2022, 10, e004185.		18
297	A genome-scale gain-of-function CRISPR screen in CD8 TÂcells identifies proline metabolism as a means to enhance CAR-T therapy. Cell Metabolism, 2022, 34, 595-614.e14.	7.2	70
298	A quantitative view of strategies to engineer cell-selective ligand binding. Integrative Biology (United) Tj ETQqO O	0 rgBT /O	verlock 10 Tf
300	CAR T-cell immunotherapy: a powerful weapon for fighting hematological B-cell malignancies. Frontiers of Medicine, 2021, 15, 783-804.	1.5	3
301	CAR-NK Cells for Cancer Therapy: Molecular Redesign of the Innate Antineoplastic Response. Current Gene Therapy, 2021, 22, .	0.9	11
302	CAR-NK Cells: From Natural Basis to Design for Kill. Frontiers in Immunology, 2021, 12, 707542.	2.2	50
303	An AAV gene therapy computes over multiple cellular inputs to enable precise targeting of multifocal hepatocellular carcinoma in mice. Science Translational Medicine, 2021, 13, eabh4456.	5.8	3
304	Current Limitations and Perspectives of Chimeric Antigen Receptor-T-Cells in Acute Myeloid Leukemia. Cancers, 2021, 13, 6157.	1.7	12
306	SALSA, a genetically encoded biosensor for spatiotemporal quantification of Notch signal transduction inÂvivo. Developmental Cell, 2022, 57, 930-944.e6.	3.1	6
307	Development of CAR T Cell Therapy in Children—A Comprehensive Overview. Journal of Clinical Medicine, 2022, 11, 2158.	1.0	12

#	Article	IF	CITATIONS
308	Off-the-Shelf Chimeric Antigen Receptor Immune Cells from Human Pluripotent Stem Cells. Cancer Treatment and Research, 2022, 183, 255-274.	0.2	0
309	Nanotechnology-enabled immunoengineering approaches to advance therapeutic applications. Nano Convergence, 2022, 9, 19.	6.3	12
310	Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell, 2022, 185, 1745-1763.e22.	13.5	88
312	嵌å•̂抗原å⊷ä¼2"Tç»†èƒžç——æ³•åœ¨æ²»ç——æ¶æ€§å®žä¼2"è,¿ç~¤çš,,ä,´åºŠç"ç©¶èį›å±•. Zhejiang Da Xue	Xue Bao \	′i Xœe Ban ⇒
313	Advances in modular control of CAR-T therapy with adapter-mediated CARs. Advanced Drug Delivery Reviews, 2022, 187, 114358.	6.6	3
314	Overcoming resistance to antiâ€CD19 CAR Tâ€cell therapy in Bâ€cell malignancies. Hematological Oncology, 2022, 40, 821-834.	0.8	3
316	Engineering the next generation of cell-based therapeutics. Nature Reviews Drug Discovery, 2022, 21, 655-675.	21.5	93
317	Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Frontiers in Immunology, 0, 13, .	2.2	7
318	CARâ€T Therapy in Clinical Practice: Technical Advances and Current Challenges. Advanced Biology, 2022, 6, .	1.4	2
320	B cell targeting in CAR T cell therapy: Side effect or driver of CAR T cell function?. Science Translational Medicine, 2022, 14, .	5.8	4
321	Advances in HIV-1-specific chimeric antigen receptor cells to target the HIV-1 reservoir. Journal of Virus Eradication, 2022, 8, 100073.	0.3	2
322	Alternative CAR Therapies: Recent Approaches in Engineering Chimeric Antigen Receptor Immune Cells to Combat Cancer. Biomedicines, 2022, 10, 1493.	1.4	14
323	Synthetic Immunotherapy: Programming Immune Cells with Novel and Sophisticated Logic Capabilities. Transplantation and Cellular Therapy, 2022, 28, 560-571.	0.6	4
324	Engineering Next-Generation CAR-T Cells: Overcoming Tumor Hypoxia and Metabolism. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 193-216.	3.3	15
325	Antibody-based redirection of universal Fabrack-CAR T cells selectively kill antigen bearing tumor cells. , 2022, 10, e003752.		4
326	Application and Design of Switches Used in CAR. Cells, 2022, 11, 1910.	1.8	4
327	Engineering off-the-shelf universal CAR T cells: A silver lining in the cloud. Cytokine, 2022, 156, 155920.	1.4	4
328	A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T cell for Precise Cancer Cell Targeting. Angewandte Chemie, 0, , .	1.6	2

#	Article	IF	CITATIONS
329	A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T Cells for Precise Cancer Cell Targeting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
330	Mapping CAR T-Cell Design Space Using Agent-Based Models. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9
331	Multiple-Aptamer-Integrated DNA-Origami-Based Chemical Nose Sensors for Accurate Identification of Cancer Cells. Analytical Chemistry, 2022, 94, 10192-10197.	3.2	8
332	ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene, 2022, 41, 4104-4114.	2.6	12
333	Current progress in CAR‑T cell therapy for tumor treatment (Review). Oncology Letters, 2022, 24, .	0.8	7
334	Immunotherapy and immunoengineering for breast cancer; a comprehensive insight into CAR-T cell therapy advancements, challenges and prospects. Cellular Oncology (Dordrecht), 2022, 45, 755-777.	2.1	5
335	Relapse Mechanism and Treatment Strategy After Chimeric Antigen Receptor T-Cell Therapy in Treating B-Cell Hematological Malignancies. Technology in Cancer Research and Treatment, 2022, 21, 153303382211184.	0.8	2
336	Emerging approaches for preventing cytokine release syndrome in CAR-T cell therapy. Journal of Materials Chemistry B, 2022, 10, 7491-7511.	2.9	8
337	Rethinking cancer targeting strategies in the era of smart cell therapeutics. Nature Reviews Cancer, 2022, 22, 693-702.	12.8	21
338	Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Human Vaccines and Immunotherapeutics, 2022, 18, .	1.4	21
339	Paving the road to make chimeric antigen receptorâ€īâ€cell therapy effective against solid tumors. Cancer Science, 2022, 113, 4020-4029.	1.7	2
340	Chimeric antigen receptor engineered cells and their clinical application in infectious disease. Clinical and Translational Discovery, 2022, 2, .	0.2	0
341	Synthetic Biology Technologies And Genetically Engineering Strategies For Enhanced Cell Therapeutics. Stem Cell Reviews and Reports, 2023, 19, 309-321.	1.7	2
342	BCMA-targeting chimeric antigen receptor T-cell therapy for multiple myeloma. Cancer Letters, 2023, 553, 215949.	3.2	11
343	Novel technologies for improving the safety and efficacy of CAR-T cell therapy. International Journal of Hematology, 2023, 117, 647-651.	0.7	4
344	Chimeric antigen receptor T cells applied to solid tumors. Frontiers in Immunology, 0, 13, .	2.2	9
345	Tumor buster - where will the CAR-T cell therapy â€~missile' go?. Molecular Cancer, 2022, 21, .	7.9	23
346	Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nature Communications, 2022, 13, .	5.8	31

#	Article	IF	CITATIONS
347	Application of GeneCloudOmics: Transcriptomic Data Analytics for Synthetic Biology. Methods in Molecular Biology, 2023, , 221-263.	0.4	0
348	CAR T Cell Immunotherapy That Revolutionary Breakthrough in Human Oncology Treatment: A Review. Pharmacology & Pharmacy, 2022, 13, 483-515.	0.2	0
349	CARs: a new approach for the treatment of autoimmune diseases. Science China Life Sciences, 2023, 66, 711-728.	2.3	3
350	Switchable targeting of solid tumors by BsCAR T cells. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	13
351	Let's turn the CAR-T cells ON and OFF precisely. Cancer Cell, 2022, 40, 1264-1266.	7.7	0
352	Recent progress of gene circuit designs in immune cell therapies. Cell Systems, 2022, 13, 864-873.	2.9	9
353	Current and Future Perspectives for Chimeric Antigen Receptor T Cells Development in Poland. Biomedicines, 2022, 10, 2912.	1.4	2
354	Recent Innovative Approaches to Intensify the Efficacy and Safety of CAR-T Cell Therapy in Cancers. , 2023, , 117-155.		1
355	Nano-Biohybrid DNA Engager That Reprograms the T-Cell Receptor. Journal of the American Chemical Society, 2022, 144, 22458-22469.	6.6	5
356	The application of mechanobiotechnology for immuno-engineering and cancer immunotherapy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	0
357	Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nature Reviews Clinical Oncology, 2023, 20, 49-62.	12.5	74
358	Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science, 2022, 378, 1227-1234.	6.0	53
359	CAR T-cell therapies in China: rapid evolution and a bright future. Lancet Haematology,the, 2022, 9, e930-e941.	2.2	15
360	Engineering chimeric antigen receptor T cells for solid tumour therapy. Clinical and Translational Medicine, 2022, 12, .	1.7	13
361	CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers, 2023, 15, 117.	1.7	7
362	Cancer immunotherapy with CAR T cells: well-trodden paths and journey along lesser-known routes. Radiology and Oncology, 2022, 56, 409-419.	0.6	2
363	From DNA-protein interactions to the genetic circuit design using CRISPR-dCas systems. Frontiers in Molecular Biosciences, 0, 9, .	1.6	1
364	A modifiable universal cotinine-chimeric antigen system of NK cells with multiple targets. Frontiers in Immunology, 0, 13, .	2.2	0

#	Article	IF	CITATIONS
366	Cancer Immunotherapy Elicited by Immunogenic Cell Death Based on Smart Nanomaterials. Small Methods, 2023, 7, .	4.6	8
367	Barnase-barstar Specific Interaction Regulates Car-T Cells Cytotoxic Activity toward Malignancy. Doklady Biochemistry and Biophysics, 0, , .	0.3	1
368	What Can De Novo Protein Design Bring to the Treatment of Hematological Disorders?. Biology, 2023, 12, 166.	1.3	2
369	CAR T cells: engineered immune cells to treat brain cancers and beyond. Molecular Cancer, 2023, 22, .	7.9	7
370	Emerging Challenges to Cellular Therapy of Cancer. Cancer Journal (Sudbury, Mass), 2023, 29, 20-27.	1.0	2
371	Treatment of pemphigus beyond rituximab: chimeric autoantibody receptor T cell (CAAR-T cell) therapy. Mucosa, 0, , 1-9.	0.3	0
373	Advancing CAR T cell therapy through the use of multidimensional omics data. Nature Reviews Clinical Oncology, 2023, 20, 211-228.	12.5	30
374	Solid tumours: Building bridges to CARâ€ī success. Clinical and Translational Discovery, 2023, 3, .	0.2	2
375	Programming CAR T Cell Tumor Recognition: Tuned Antigen Sensing and Logic Gating. Cancer Discovery, 2023, 13, 829-843.	7.7	23
376	Chimeric Antigen Receptor T-cell Therapy in Cancer: A Critical Review. Current Drug Research Reviews, 2023, 15, 241-261.	0.7	2
377	Current progress in chimeric antigen receptor-modified T cells for the treatment of metastatic breast cancer. Biomedicine and Pharmacotherapy, 2023, 162, 114648.	2.5	1
379	Single-cell mapping of combinatorial target antigens for CAR switches using logic gates. Nature Biotechnology, 2023, 41, 1593-1605.	9.4	6
380	CAR immune cells: design principles, resistance and the next generation. Nature, 2023, 614, 635-648.	13.7	96
381	Chimeric antigen receptor T cells therapy in solid tumors. Clinical and Translational Oncology, 2023, 25, 2279-2296.	1.2	2
382	Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature, 2023, 615, 507-516.	13.7	60
383	Advances in CAR-T Cell Therapy in Head and Neck Squamous Cell Carcinoma. Journal of Clinical Medicine, 2023, 12, 2173.	1.0	6
384	Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. Journal of Translational Medicine, 2023, 21, .	1.8	5
385	The current landscape of CAR T-cell therapy for solid tumors: Mechanisms, research progress, challenges, and counterstrategies. Frontiers in Immunology, 0, 14, .	2.2	23

#	Article	IF	CITATIONS
386	Remote control of cellular immunotherapy. , 2023, 1, 440-455.		4
387	Coiled Coils as Versatile Modules for Mammalian Cell Regulation. , 2023, 1, 1-10.		1
388	Segmentation strategy of de novo designed four-helical bundles expands protein oligomerization modalities for cell regulation. Nature Communications, 2023, 14, .	5.8	1
389	Specific and safe targeting of glioblastoma using switchable and logic-gated RevCAR T cells. Frontiers in Immunology, 0, 14, .	2.2	3
390	Engineering T Cell Development for the Next Generation of Stem Cell-Derived Immunotherapies. , 2023, 2, 106-119.		3
404	Immunotherapy for Meningiomas. Advances in Experimental Medicine and Biology, 2023, , 225-234.	0.8	Ο
422	CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nature Reviews Clinical Oncology, 2024, 21, 47-66.	12.5	14
438	Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduction and Targeted Therapy, 2024, 9, .	7.1	1
447	Coiled-Coil Interaction Toolbox for Engineering Mammalian Cells. Methods in Molecular Biology, 2024, , 31-41.	0.4	0