Short-chain perfluoroalkyl acids: environmental concer under REACH

Environmental Sciences Europe 30, 9 DOI: 10.1186/s12302-018-0134-4

Citation Report

#	Article	IF	CITATIONS
1	A direct route from white phosphorus and fluorous alkyl and aryl iodides to the corresponding trialkyl- and triarylphosphines. Organic Chemistry Frontiers, 2018, 5, 3421-3429.	2.3	32
2	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	2.8	91
3	Per- and polyfluoroalkyl substances (PFASs) in drinking water: Current state of the science. Current Opinion in Environmental Science and Health, 2019, 7, 8-12.	2.1	34
4	An optimization model for the treatment of perfluorocarboxylic acids considering membrane preconcentration and BDD electrooxidation. Water Research, 2019, 164, 114954.	5.3	29
5	Legacy and alternative per- and polyfluoroalkyl substances in the U.S. general population: Paired serum-urine data from the 2013–2014 National Health and Nutrition Examination Survey. Environment International, 2019, 131, 105048.	4.8	108
6	A Review of Perfluoroalkyl Acids (PFAAs) in terms of Sources, Applications, Human Exposure, Dietary Intake, Toxicity, Legal Regulation, and Methods of Determination. Journal of Chemistry, 2019, 2019, 1-20.	0.9	78
7	Zirconium catalyzed amide formation without water scavenging. Applied Organometallic Chemistry, 2019, 33, e5062.	1.7	22
8	Screening of textile finishing agents available on the Chinese market: An important source of per- and polyfluoroalkyl substances to the environment. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	3.3	21
9	White-Tailed Eagle (<i>Haliaeetus albicilla</i>) Body Feathers Document Spatiotemporal Trends of Perfluoroalkyl Substances in the Northern Environment. Environmental Science & Technology, 2019, 53, 12744-12753.	4.6	45
10	Aqueous Film-Forming Foams (AFFFs) Are Very Toxic to Aquatic Microcrustaceans. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	12
11	Leachate emissions of short- and long-chain per- and polyfluoralkyl substances (PFASs) from various Norwegian landfills. Environmental Sciences: Processes and Impacts, 2019, 21, 1970-1979.	1.7	43
12	Environmental chemicals differentially affect epigenetic-related mechanisms in the zebrafish liver (ZF-L) cell line and in zebrafish embryos. Aquatic Toxicology, 2019, 215, 105272.	1.9	19
13	Assessing the contribution of atmospheric transport and tourism activities to the occurrence of perfluoroalkyl acids (PFAAs) in an Alpine Nature Reserve. Science of the Total Environment, 2019, 697, 133851.	3.9	9
14	Rapid Destruction and Defluorination of Perfluorooctanesulfonate by Alkaline Hydrothermal Reaction. Environmental Science and Technology Letters, 2019, 6, 630-636.	3.9	101
15	One-Step Aqueous Spraying Process for the Fabrication of Omniphobic Fabrics Free of Long Perfluoroalkyl Chains. ACS Omega, 2019, 4, 16660-16666.	1.6	14
16	Selection of High Flux Membrane for the Effective Removal of Short-Chain Perfluorocarboxylic Acids. Industrial & Engineering Chemistry Research, 2019, 58, 3329-3338.	1.8	44
17	Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environment International, 2019, 124, 482-492.	4.8	191
18	Co-exposure to environmental endocrine disruptors in the US population. Environmental Science and Pollution Research, 2019, 26, 7665-7676.	2.7	19

#	Article	IF	CITATIONS
19	Is the phase-out of long-chain PFASs measurable as fingerprint in a defined area? Comparison of global PFAS concentrations and a monitoring study performed in Hesse, Germany from 2014 to 2018. TrAC - Trends in Analytical Chemistry, 2019, 120, 115393.	5.8	29
20	The concept of essential use for determining when uses of PFASs can be phased out. Environmental Sciences: Processes and Impacts, 2019, 21, 1803-1815.	1.7	125
21	Perfluoroalkyl Acid Characterization in U.S. Municipal Organic Solid Waste Composts. Environmental Science and Technology Letters, 2019, 6, 372-377.	3.9	58
22	Removal of perfluoalkyl acids (PFAAs) through fluorochemical industrial and domestic wastewater treatment plants and bioaccumulation in aquatic plants in river and artificial wetland. Environment International, 2019, 129, 76-85.	4.8	52
23	Prenatal Exposure to Per- and Polyfluoroalkyl Substances (PFASs) and Association between the Placental Transfer Efficiencies and Dissociation Constant of Serum Proteins–PFAS Complexes. Environmental Science & Technology, 2019, 53, 6529-6538.	4.6	127
24	Waterproof and Breathable Electrospun Nanofibrous Membranes. Macromolecular Rapid Communications, 2019, 40, e1800931.	2.0	70
25	Preliminary assessment of exposure to persistent organic pollutants among pregnant women in Puerto Rico. International Journal of Hygiene and Environmental Health, 2019, 222, 327-331.	2.1	11
26	Cross-sectional study of the association between serum perfluorinated alkyl acid concentrations and dental caries among US adolescents (NHANES 1999–2012). BMJ Open, 2019, 9, e024189.	0.8	4
27	Comparative study of PFAS treatment by UV, UV/ozone, and fractionations with air and ozonated air. Environmental Science: Water Research and Technology, 2019, 5, 1897-1907.	1.2	37
28	Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant. Science of the Total Environment, 2019, 657, 111-123.	3.9	28
29	The overlooked short- and ultrashort-chain poly- and perfluorinated substances: A review. Chemosphere, 2019, 220, 866-882.	4.2	287
30	The occurrence of perfluoroalkyl acids in an important feed material (fishmeal) and its potential risk through the farm-to-fork pathway to humans. Journal of Hazardous Materials, 2019, 367, 559-567.	6.5	26
31	Perfluoroalkyl acids in drinking water of China in 2017: Distribution characteristics, influencing factors and potential risks. Environment International, 2019, 123, 87-95.	4.8	69
32	Variation in PFAA concentrations and egg parameters throughout the egg-laying sequence in a free-living songbird (the great tit, Parus major): Implications for biomonitoring studies. Environmental Pollution, 2019, 246, 237-248.	3.7	22
33	Overview of known plastic packaging-associated chemicals and their hazards. Science of the Total Environment, 2019, 651, 3253-3268.	3.9	478
34	Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. Journal of Hazardous Materials, 2020, 381, 120909.	6.5	109
35	Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with pre-contaminated soil and irrigation water. Science of the Total Environment, 2020, 708, 134766.	3.9	48
36	Formation of perfluorocarboxylic acids from 6:2 fluorotelomer sulfonate (6:2 FTS) in landfill leachate: Role of microbial communities. Environmental Pollution, 2020, 259, 113835.	3.7	34

#	Article	IF	CITATIONS
37	Catching the elusive persistent and mobile organic compounds: Novel sample preparation and advanced analytical techniques. Trends in Environmental Analytical Chemistry, 2020, 25, e00078.	5.3	17
38	Occurrence and trophic transfer of per- and polyfluoroalkyl substances in an Antarctic ecosystem. Environmental Pollution, 2020, 257, 113383.	3.7	46
39	Causal inference for the effect of environmental chemicals on chronic kidney disease. Computational and Structural Biotechnology Journal, 2020, 18, 93-99.	1.9	17
40	Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research, 2020, 171, 115381.	5.3	479
41	Model-based analysis of the uptake of perfluoroalkyl acids (PFAAs) from soil into plants. Chemosphere, 2020, 244, 125534.	4.2	19
42	Subacute dermal toxicity of perfluoroalkyl carboxylic acids: comparison with different carbon-chain lengths in human skin equivalents and systemic effects of perfluoroheptanoic acid in Sprague Dawley rats. Archives of Toxicology, 2020, 94, 523-539.	1.9	19
43	Determination of perfluoroalkyl substances (PFASs) in fats and oils by QuEChERS/micro-HPLC-MS/MS. Food Research International, 2020, 137, 109583.	2.9	13
44	Ski wax use contributes to environmental contamination by per- and polyfluoroalkyl substances. Chemosphere, 2020, 261, 128078.	4.2	15
45	Fluorinated Precursor Compounds in Sediments as a Source of Perfluorinated Alkyl Acids (PFAA) to Biota. Environmental Science & Technology, 2020, 54, 13077-13089.	4.6	51
46	UV-degradable perfluoroalkyl bridged bonding with tetrafluoro-λ6-sulfanyl. Chemical Papers, 2020, 74, 4125-4133.	1.0	1
47	A Pillar[5]arene Conjugated Polymer for Removal of Low-Molecular-Weight Organic Acids, Amines, and Alcohols from Water. ACS Applied Polymer Materials, 2020, 2, 5566-5573.	2.0	18
48	What's in a Name: Persistent, Mobile, and Toxic (PMT) and Very Persistent and Very Mobile (vPvM) Substances. Environmental Science & Technology, 2020, 54, 14790-14792.	4.6	41
49	A Review of the Applications, Environmental Release, and Remediation Technologies of Per- and Polyfluoroalkyl Substances. International Journal of Environmental Research and Public Health, 2020, 17, 8117.	1.2	77
50	Per- and polyfluoroalkyl substances in the German environment – Levels and patterns in different matrices. Science of the Total Environment, 2020, 740, 140116.	3.9	32
51	SiO2/Ladder-Like Polysilsesquioxanes Nanocomposite Coatings: Playing with the Hybrid Interface for Tuning Thermal Properties and Wettability. Coatings, 2020, 10, 913.	1.2	13
52	Perfluoroalkyl acids and sulfonamides and dietary, biological and ecological associations in peregrine falcons from the Laurentian Great Lakes Basin, Canada. Environmental Research, 2020, 191, 110151.	3.7	13
53	Diet as an Exposure Source and Mediator of Per- and Polyfluoroalkyl Substance (PFAS) Toxicity. Frontiers in Toxicology, 2020, 2, 601149.	1.6	29
54	Kinetic Analysis as an Optimization Tool for Catalytic Esterification with a Moisture-Tolerant Zirconium Complex. Journal of Organic Chemistry, 2020, 85, 6959-6969.	1.7	12

#	Article	IF	Citations
55	Serum concentrations of perfluoroalkyl substances and their association with osteoporosis in a population in Jeddah, Saudi Arabia. Environmental Research, 2020, 187, 109676.	3.7	30
56	Per- and polyfluoroalkyl substances (PFASs) in blood of captive Siberian tigers in China: Occurrence and associations with biochemical parameters. Environmental Pollution, 2020, 265, 114805.	3.7	20
57	Short-chain and long-chain fluorosurfactants in firefighting foam: a review. Environmental Chemistry Letters, 2020, 18, 1277-1300.	8.3	31
58	PFAS in Food Packaging: A Hot, Greasy Exposure. Environmental Health Perspectives, 2020, 128, 54002.	2.8	16
59	Strategies for grouping per- and polyfluoroalkyl substances (PFAS) to protect human and environmental health. Environmental Sciences: Processes and Impacts, 2020, 22, 1444-1460.	1.7	126
60	Bioaccumulation of perfluoroalkyl substances in greenhouse vegetables with long-term groundwater irrigation near fluorochemical plants in Fuxin, China. Environmental Research, 2020, 188, 109751.	3.7	44
61	Does Low Maternal Exposure to Per- and Polyfluoroalkyl Substances Elevate the Risk of Spontaneous Preterm Birth? A Nested Case–Control Study in China. Environmental Science & Technology, 2020, 54, 8259-8268.	4.6	55
62	Per- and Polyfluoroalkyl Substances (PFAS) Neurotoxicity in Sentinel and Non-Traditional Laboratory Model Systems: Potential Utility in Predicting Adverse Outcomes in Human Health. Toxics, 2020, 8, 42.	1.6	36
63	Gender differences in pharmacokinetics of perfluoropentanoic acid using non-linear mixed-effect modeling in rats. Archives of Toxicology, 2020, 94, 1601-1612.	1.9	5
64	Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications. Science of the Total Environment, 2020, 720, 137333.	3.9	42
65	Chemicals of emerging concern in marine specimens of the German Environmental Specimen Bank. Environmental Sciences Europe, 2020, 32, .	2.6	14
66	Scientific Basis for Managing PFAS as a Chemical Class. Environmental Science and Technology Letters, 2020, 7, 532-543.	3.9	278
67	Thermal desorption as aÂhigh removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs). PLoS ONE, 2020, 15, e0234476.	1.1	43
68	The phase out of and restrictions on per-and polyfluoroalkyl substances: Time for a rethink. Chemosphere, 2020, 251, 126313.	4.2	8
69	Poly- and perfluoroalkyl substances in maternal serum: Method development and application in Pilot Study of the Japan Environment and Children's Study. Journal of Chromatography A, 2020, 1618, 460933.	1.8	17
70	Determinants of serum concentrations of perfluoroalkyl acids (PFAAs) in school children and the contribution of low-level PFAA-contaminated drinking water. Environmental Sciences: Processes and Impacts, 2020, 22, 930-944.	1.7	21
71	Effects of perfluorooctanoic acid (PFOA) on the thyroid status, vitellogenin, and oxidant–antioxidant balance in the Murray River rainbowfish. Ecotoxicology, 2020, 29, 163-174.	1.1	10
72	LC-MS screening of poly- and perfluoroalkyl substances in contaminated soil by Kendrick mass analysis. Analytical and Bioanalytical Chemistry, 2020, 412, 4797-4805.	1.9	57

#	Article	IF	CITATIONS
73	Removal of perfluoroalkanesulfonic acids (PFSAs) from synthetic and natural groundwater by electrocoagulation. Chemosphere, 2020, 248, 125951.	4.2	27
74	Perfluoroalkyl substances (PFASs) in white whales (Delphinapterus leucas) from Svalbard – A comparison of concentrations in plasma sampled 15 years apart. Environmental Pollution, 2020, 263, 114497.	3.7	6
75	lce Core Record of Persistent Shortâ€Chain Fluorinated Alkyl Acids: Evidence of the Impact From Global Environmental Regulations. Geophysical Research Letters, 2020, 47, e2020GL087535.	1.5	43
76	Risk Assessment of Per―and Polyfluoroalkyl Substance Mixtures: A Relative Potency Factor Approach. Environmental Toxicology and Chemistry, 2021, 40, 859-870.	2.2	59
77	Per―and Polyfluoroalkyl Substances in Ducks and the Relationship with Concentrations in Water, Sediment, and Soil. Environmental Toxicology and Chemistry, 2021, 40, 846-858.	2.2	17
78	What is specific in adsorption of perfluoroalkyl acids on carbon materials?. Chemosphere, 2021, 273, 128520.	4.2	25
79	Perfluoroalkyl substances (PFAS) in surface water and sediments from two urban watersheds in Nevada, USA. Science of the Total Environment, 2021, 751, 141622.	3.9	122
80	Perfluoroalkyl acid (PFAA) profile and concentrations in two co-occurring tit species: distinct differences indicate non-generalizable results across passerines. Science of the Total Environment, 2021, 761, 143301.	3.9	7
81	Combined leaching and plant uptake simulations of PFOA and PFOS under field conditions. Environmental Science and Pollution Research, 2021, 28, 2097-2107.	2.7	8
82	Emerging investigator series: electrochemically-mediated remediation of GenX using redox-copolymers. Environmental Science: Water Research and Technology, 2021, 7, 2231-2240.	1.2	9
83	Urine concentrations of perfluoroalkyl acids in children and contributions of dietary factors: a cross-sectional study from Shanghai, China. Environmental Science and Pollution Research, 2021, 28, 20440-20450.	2.7	5
84	Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, CO2 Utilization, and Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment. , 2021, , 1-64.		0
85	Development of Per and Polyfluoroalkyl Substances Ecological Riskâ€Based Screening Levels. Environmental Toxicology and Chemistry, 2021, 40, 921-936.	2.2	14
86	Regulating PFAS as a Chemical Class under the California Safer Consumer Products Program. Environmental Health Perspectives, 2021, 129, 25001.	2.8	37
87	Per―and polyfluoroalkyl substances and their alternatives in paper food packaging. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 2596-2625.	5.9	55
88	Distribution behavior and risk assessment of emerging perfluoroalkyl acids in multiple environmental media at Luoma Lake, East China. Environmental Research, 2021, 194, 110733.	3.7	17
89	Sorption of Hexafluoropropylene Oxide Dimer Acid to Sediments: Biogeochemical Implications and Analytical Considerations. ACS Earth and Space Chemistry, 2021, 5, 580-587.	1.2	13
90	Perfluoroalkyl Chemicals and Male Reproductive Health: Do PFOA and PFOS Increase Risk for Male Infertility?. International Journal of Environmental Research and Public Health, 2021, 18, 3794.	1.2	63

#	Article	IF	CITATIONS
91	Comparison of currently available PFAS remediation technologies in water: A review. Journal of Environmental Management, 2021, 283, 111977.	3.8	97
92	Efficient Removal of Per- and Polyfluoroalkyl Substances from Water with Zirconium-Based Metal–Organic Frameworks. Chemistry of Materials, 2021, 33, 3276-3285.	3.2	79
93	Risks posed by per―and polyfluoroalkyl substances (PFAS) on the African continent, emphasizing aquatic ecosystems. Integrated Environmental Assessment and Management, 2021, 17, 726-732.	1.6	16
94	Studies on the formation and stability of perfluorodecalin nanoemulsions by ultrasound emulsification using novel surfactant systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126315.	2.3	7
95	A rapid method for the detection and quantification of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in bird feathers using UPLC-MS/MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1172, 122653.	1.2	23
96	Per- and Polyfluoroalkyl Substances (PFAS) in Breast Milk: Concerning Trends for Current-Use PFAS. Environmental Science & Technology, 2021, 55, 7510-7520.	4.6	124
97	PFAS removal by ion exchange resins: A review. Chemosphere, 2021, 272, 129777.	4.2	144
98	High Concentrations of Perfluoroalkyl Acids in Arctic Seawater Driven by Early Thawing Sea Ice. Environmental Science & Technology, 2021, 55, 11049-11059.	4.6	11
99	A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Research, 2021, 199, 117187.	5.3	233
100	Electrochemical degradation of per- and poly-fluoroalkyl substances using boron-doped diamond electrodes. Journal of Environmental Management, 2021, 290, 112573.	3.8	40
101	Reductive defluorination of Perfluorooctanesulfonic acid (PFOS) by hydrated electrons generated upon UV irradiation of 3-Indole-acetic-acid in 12-Aminolauric-Modified montmorillonite. Water Research, 2021, 200, 117221.	5.3	29
102	Maternal Perfluoroalkyl Substances, Thyroid Hormones, and <i>DIO</i> Genes: A Spanish Cross-sectional Study. Environmental Science & Technology, 2021, 55, 11144-11154.	4.6	7
103	Per- and polyfluoroalkyl substances (PFAS) in sediments collected from the Pensacola Bay System watershed. Environmental Advances, 2021, 5, 100088.	2.2	8
104	Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS). Science of the Total Environment, 2021, 778, 146192.	3.9	22
105	Nitric oxide mediates disruption of human placental trophoblast invasion induced by perfluorobutane sulfonate. Environmental Pollution, 2021, 283, 117137.	3.7	6
106	Detection of ultrashort-chain and other per- and polyfluoroalkyl substances (PFAS) in U.S. bottled water. Water Research, 2021, 201, 117292.	5.3	46
107	First Evidence of In Vitro Effects of C6O4—A Substitute of PFOA—On Haemocytes of the Clam Ruditapes philippinarum. Toxics, 2021, 9, 191.	1.6	4
108	Exploring unknown per- and polyfluoroalkyl substances in the German environment – The total oxidizable precursor assay as helpful tool in research and regulation. Science of the Total Environment, 2021, 782, 146825.	3.9	39

#	ARTICLE	IF	CITATIONS
109	Prenatal perfluoroalkyl substance exposure and neuropsychological development throughout childhood: The INMA Project. Journal of Hazardous Materials, 2021, 416, 125185.	6.5	33
110	Endocrine-Disrupting Chemicals and Child Health. Annual Review of Pharmacology and Toxicology, 2022, 62, 573-594.	4.2	34
111	Granular activated carbonâ€based treatment and mobility of per―and polyfluoroalkyl substances in potable reuse for aquifer recharge. AWWA Water Science, 2021, 3, e1247.	1.0	12
112	Addressing Urgent Questions for PFAS in the 21st Century. Environmental Science & Technology, 2021, 55, 12755-12765.	4.6	17
113	Early-Life Exposure to Per- and Poly-Fluorinated Alkyl Substances and Growth, Adiposity, and Puberty in Children: A Systematic Review. Frontiers in Endocrinology, 2021, 12, 683297.	1.5	38
114	Can't touch this: Highly omniphobic coatings based on self-textured C6-fluoroponytailed polyvinylimidazolium monoliths. Journal of Fluorine Chemistry, 2021, 249, 109839.	0.9	3
115	The occurrence of per- and polyfluoroalkyl substances (PFASs) in fluoropolymer raw materials and products made in China. Journal of Environmental Sciences, 2021, 107, 77-86.	3.2	17
116	Perfluoroalkylated acids (PFAAs) accumulate in field-exposed snails (Cepaea sp.) and affect their oxidative status. Science of the Total Environment, 2021, 790, 148059.	3.9	3
117	Distribution, partitioning behavior and potential source of legacy and alternative per- and polyfluoroalkyl substances (PFASs) in water and sediments from a subtropical Gulf, South China Sea. Environmental Research, 2021, 201, 111485.	3.7	29
118	Legacy and emerging per- and polyfluoroalkyl substances (PFAS) in the Bohai Sea and its inflow rivers. Environment International, 2021, 156, 106735.	4.8	45
119	Per- and poly-fluoroalkyl substance remediation from soil and sorbents: A review of adsorption behaviour and ultrasonic treatment. Chemosphere, 2021, 282, 131025.	4.2	35
120	Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresource Technology, 2021, 341, 125808.	4.8	46
121	Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. Environment International, 2021, 157, 106876.	4.8	27
122	Efficient adsorptive removal of short-chain perfluoroalkyl acids using reed straw-derived biochar (RESCA). Science of the Total Environment, 2021, 798, 149191.	3.9	33
123	Determination of 56 per- and polyfluoroalkyl substances in top predators and their prey from Northern Europe by LC-MS/MS. Chemosphere, 2022, 287, 131775.	4.2	40
124	Assessment of per- and polyfluoroalkyl substances in Biscayne Bay surface waters and tap waters from South Florida. Science of the Total Environment, 2022, 806, 150393.	3.9	19
125	Use of glioma to assess the distribution patterns of perfluoroalkyl and polyfluoroalkyl substances in human brain. Environmental Research, 2022, 204, 112011.	3.7	12
126	A graphene-based hydrogel monolith with tailored surface chemistry for PFAS passive sampling. Environmental Science: Nano, 2021, 8, 2894-2907.	2.2	16

#	Article	IF	CITATIONS
127	Thyroid Disrupting Effects of Old and New Generation PFAS. Frontiers in Endocrinology, 2020, 11, 612320.	1.5	89
128	Applicability of mixed-mode chromatography for the simultaneous analysis of C1-C18 perfluoroalkylated substances. Analytical and Bioanalytical Chemistry, 2020, 412, 4849-4856.	1.9	14
129	Recent advances in the analysis of per- and polyfluoroalkyl substances (PFAS)—A review. Environmental Technology and Innovation, 2020, 19, 100879.	3.0	109
130	Adsorption of short-chain perfluoroalkyl acids (PFAAs) from water/wastewater. Environmental Science: Water Research and Technology, 2020, 6, 2958-2972.	1.2	23
131	Per and polyfluoroalkyl substances scientific literature review: water exposure, impact on human health, and implications for regulatory reform. Reviews on Environmental Health, 2021, 36, 235-259.	1.1	30
132	Reversible adsorption and desorption of PFAS on inexpensive graphite adsorbents <i>via</i> alternating electric field. RSC Advances, 2021, 11, 34652-34659.	1.7	10
133	Trends in the Regulation of Per- and Polyfluoroalkyl Substances (PFAS): A Scoping Review. International Journal of Environmental Research and Public Health, 2021, 18, 10900.	1.2	86
134	Critical review on PFOA, kidney cancer, and testicular cancer. Journal of the Air and Waste Management Association, 2021, 71, 1265-1276.	0.9	4
135	A review of emerging PFAS contaminants: sources, fate, health risks, and a comprehensive assortment of recent sorbents for PFAS treatment by evaluating their mechanism. Research on Chemical Intermediates, 2021, 47, 4879-4914.	1.3	27
136	PFAS treatment with granular activated carbon and ion exchange resin: Comparing chain length, empty bed contact time, and cost. Journal of Water Process Engineering, 2021, 44, 102342.	2.6	33
138	食å"åŒè£çš" PFAS 暴露. Environmental Health Perspectives (Chinese), 2020, 128, 034002.	0.0	0
139	Investigation of levels of perfluoroalkyl substances in freshwater fishes collected in a contaminated area of Veneto Region, Italy. Environmental Science and Pollution Research, 2021, , 1.	2.7	4
140	Impairment of human dopaminergic neurons at different developmental stages by perfluoro-octanoic acid (PFOA) and differential human brain areas accumulation of perfluoroalkyl chemicals. Environment International, 2022, 158, 106982.	4.8	32
141	Electrokinetic remediation for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated soil. Chemosphere, 2022, 291, 133041.	4.2	14
142	Change in global PFAS cycling as a response of permafrost degradation to climate change. Journal of Hazardous Materials Advances, 2022, 5, 100039.	1.2	4
143	Absorption and elimination of per and poly-fluoroalkyl substances substitutes in salmonid species after pre-fertilization exposure. Science of the Total Environment, 2022, 814, 152547.	3.9	1
144	Trophic Magnification of Short-Chain Per- and Polyfluoroalkyl Substances in a Terrestrial Food Chain from the Tibetan Plateau. Environmental Science and Technology Letters, 2022, 9, 147-152.	3.9	37
145	The impact of legacy and novel perfluoroalkyl substances on human cytochrome P450: An in vitro study on the inhibitory potential and underlying mechanisms. Toxicology, 2022, 468, 153116.	2.0	19

#	Article	IF	CITATIONS
146	Degradation of OBS (Sodium <i>p</i> -Perfluorous Nonenoxybenzenesulfonate) as a Novel Per- and Polyfluoroalkyl Substance by UV/Persulfate and UV/Sulfite: Fluorinated Intermediates and Treatability in Fluoroprotein Foam. Environmental Science & Technology, 2022, 56, 6201-6211.	4.6	22
147	Sulfonamide functional head on short-chain perfluorinated substance drives developmental toxicity. IScience, 2022, 25, 103789.	1.9	20
148	Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand. Journal of Hazardous Materials, 2022, 428, 128257.	6.5	24
149	Method development and evaluation for the determination of perfluoroalkyl and polyfluoroalkyl substances in multiple food matrices. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2022, 39, 752-776.	1.1	3
150	Development of a PFAS reaction library: identifying plausible transformation pathways in environmental and biological systems. Environmental Sciences: Processes and Impacts, 2022, 24, 689-753.	1.7	10
151	Early Warnings by Liver Organoids on Short- and Long-Chain PFAS Toxicity. Toxics, 2022, 10, 91.	1.6	14
152	A Review of Treatment Techniques for Short-Chain Perfluoroalkyl Substances. Applied Sciences (Switzerland), 2022, 12, 1941.	1.3	8
153	An Outdoor Aging Study to Investigate the Release of Per- And Polyfluoroalkyl Substances (PFAS) from Functional Textiles. Environmental Science & Technology, 2022, 56, 3471-3479.	4.6	51
154	Assessment of Reed Grasses (Phragmites australis) Performance in PFAS Removal from Water: A Phytoremediation Pilot Plant Study. Water (Switzerland), 2022, 14, 946.	1.2	4
155	Assessment of the Emerging Threat Posed by Perfluoroalkyl and Polyfluoroalkyl Substances to Male Reproduction in Humans. Frontiers in Endocrinology, 2021, 12, 799043.	1.5	7
156	Microbial Defluorination of Unsaturated Per- and Polyfluorinated Carboxylic Acids under Anaerobic and Aerobic Conditions: A Structure Specificity Study. Environmental Science & Technology, 2022, 56, 4894-4904.	4.6	32
157	Assessing explicit models of per- and polyfluoroalkyl substances adsorption on anion exchange resins by rapid small-scale column tests. Chemosphere, 2022, 300, 134547.	4.2	5
158	Leydig cell function in adult male rats is disrupted by perfluorotetradecanoic acid through increasing oxidative stress and apoptosis. Environmental Toxicology, 2022, 37, 1790-1802.	2.1	6
159	Emerging technologies for PFOS/PFOA degradation and removal: A review. Science of the Total Environment, 2022, 827, 153669.	3.9	83
160	A Review of Per- and Polyfluorinated Alkyl Substance Impairment of Reproduction. Frontiers in Toxicology, 2021, 3, 732436.	1.6	48
161	Effective Breaking of the Fluorocarbon Chain by the Interface Bi ₂ O ₂ X··PFOA Complex Strategy via Coordinated Se on Construction of the Internal Photogenerated Carrier Pathway. ACS Applied Materials & Interfaces, 2022, 14, 654-667.	4.0	13
162	Using Passive Samplers to Track per and Polyfluoroalkyl Substances (PFAS) Emissions From the Paper Industry: Laboratory Calibration and Field Verification. Frontiers in Environmental Science, 2021, 9, .	1.5	9
163	Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust. Current Environmental Health Reports, 2021, 8, 323-335.	3.2	25

#	Article	IF	CITATIONS
164	Phytoremediation prospects of per- and polyfluoroalkyl substances: A review. Environmental Research, 2022, 212, 113311.	3.7	20
165	Composition and contamination of source separated food waste from different sources and regulatory environments. Journal of Environmental Management, 2022, 314, 115043.	3.8	6
166	Electrochemical oxidation processes for PFAS removal from contaminated water and wastewater: fundamentals, gaps and opportunities towards practical implementation. Journal of Hazardous Materials, 2022, 434, 128886.	6.5	28
167	Effectiveness of Non-Thermal Plasma Induced Degradation of Per- and Polyfluoroalkyl Substances from Water. Water (Switzerland), 2022, 14, 1408.	1.2	5
168	Early breakthrough of shortâ€chain perfluoroalkyl substances in adsorptive media treatment. Remediation, 2022, 32, 177-193.	1.1	2
169	Poly- and Perfluoroalkyl Substances in Municipal Wastewater Treatment Plants in the United States: Seasonal Patterns and Meta-Analysis of Long-Term Trends and Average Concentrations. ACS ES&T Water, 2022, 2, 690-700.	2.3	43
170	Long-Chain PFASs-Free Omniphobic Membranes for Sustained Membrane Distillation. ACS Applied Materials & Interfaces, 2022, 14, 23808-23816.	4.0	14
171	Ultra-Short-Chain PFASs in the Sources of German Drinking Water: Prevalent, Overlooked, Difficult to Remove, and Unregulated. Environmental Science & Technology, 2022, 56, 6380-6390.	4.6	46
172	Current and future federal and state sampling guidance for per- and polyfluoroalkyl substances in environmental matrices. Science of the Total Environment, 2022, 836, 155523.	3.9	5
173	Induction of aggression and anxiety-like responses by perfluorooctanoic acid is accompanied by modulation of cholinergic- and purinergic signaling-related parameters in adult zebrafish. Ecotoxicology and Environmental Safety, 2022, 239, 113635.	2.9	4
174	Biochar from Biomass: A Strategy for Carbon Dioxide Sequestration, Soil Amendment, Power Generation, CO2 Utilization, and Removal of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) in the Environment. , 2022, , 1023-1085.		3
175	<i>Pseudomonas</i> sp. Strain 273 Incorporates Organofluorine into the Lipid Bilayer during Growth with Fluorinated Alkanes. Environmental Science & Technology, 2022, 56, 8155-8166.	4.6	10
176	Plasma-Assisted Degradation of Short-Chain Poly- and Perfluoroalkyl Substances (Pfas): Perfluorobutane Sulfonate (Pfbs). SSRN Electronic Journal, 0, , .	0.4	1
177	Wild Boar Livers as Indicators of Different Sources of Contamination by Per- and Polyfluoroalkyl Substances (Pfas) – Comprehensive Target Analysis and Top Assay. SSRN Electronic Journal, O, , .	0.4	0
178	GenX induces fibroinflammatory gene expression in primary human hepatocytes. Toxicology, 2022, 477, 153259.	2.0	13
179	The PFAS-Tox Database: A systematic evidence map of health studies on 29 per- and polyfluoroalkyl substances. Environment International, 2022, 167, 107408.	4.8	22
180	Dietary Perfluorohexanoic Acid (PFHxA) Exposures in Juvenile Zebrafish Produce Subtle Behavioral Effects across Generations. Toxics, 2022, 10, 372.	1.6	6
181	Towards Solving the PFAS Problem: The Potential Role of Metalâ€Organic Frameworks. ChemSusChem, 2022, 15, .	3.6	3

#	Article	IF	CITATIONS
182	Occurrence and Fate of Ultrashort-Chain and Other Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater Treatment Plants. ACS ES&T Water, 2022, 2, 1380-1390.	2.3	14
183	Increasing Accumulation of Perfluorocarboxylate Contaminants Revealed in an Antarctic Firn Core (1958–2017). Environmental Science & Technology, 2022, 56, 11246-11255.	4.6	9
184	Using large amounts of firefighting foams releases per- and polyfluoroalkyl substances (PFAS) into estuarine environments: A baseline study in Latin America. Marine Pollution Bulletin, 2022, 182, 113938.	2.3	8
185	Occurrence and Distribution of Per- and Polyfluoroalkyl Substances from Multi-Industry Sources to Water, Sediments and Plants along Nairobi River Basin, Kenya. International Journal of Environmental Research and Public Health, 2022, 19, 8980.	1.2	6
186	Too advanced for assessment? Advanced materials, nanomedicine and the environment. Environmental Sciences Europe, 2022, 34, .	2.6	2
187	Review of Capillary Rise Experiments for Surface-Active Solutes in the Subsurface. Geotechnics, 2022, 2, 706-730.	1.2	4
188	Occurrence and distribution of per-and polyfluoroalkyl substances (PFAS) in surface and groundwaters in an urbanized and agricultural area, Southern Brazil. Environmental Science and Pollution Research, 2023, 30, 6159-6169.	2.7	3
189	Do PFAS changes in landfill leachate treatment systems correlate with changes in physical chemical parameters?. Waste Management, 2022, 151, 49-59.	3.7	17
190	Simultaneous removal of multiple PFAS from contaminated groundwater around a fluorochemical facility by the periodically reversing electrocoagulation technique. Chemosphere, 2022, 307, 135874.	4.2	2
191	Chronic toxicity of PFAS-free AFFF alternatives in terrestrial plant Brassica rapa. Science of the Total Environment, 2022, 850, 158100.	3.9	5
192	Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology, 2022, 480, 153312.	2.0	21
193	Super-omniphobic surface prepared from a multicomponent coating of fluoro-containing polymer and silica nanoparticles. Progress in Organic Coatings, 2022, 173, 107174.	1.9	3
194	Per- and poly-fluoroalkyl substances (PFASs) in water and wastewater. , 2022, , 299-333.		0
195	Per- and poly-fluoralkyl substances (PFASs) in drinking water and related health effects. , 2022, , 71-103.		Ο
196	Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers. Biomarkers in Disease, 2022, , 1-28.	0.0	0
198	A recent overview of per- and polyfluoroalkyl substances (PFAS) removal by functional framework materials. Chemical Engineering Journal, 2023, 452, 139202.	6.6	13
199	Occurrence, spatial heterogeneity, and risk assessment of perfluoroalkyl acids (PFAAs) in the major rivers of the Tibetan Plateau. Science of the Total Environment, 2023, 856, 159026.	3.9	4
200	Comparative investigation of PFAS adsorption onto activated carbon and anion exchange resins during long-term operation of a pilot treatment plant. Water Research, 2022, 226, 119198.	5.3	24

#	Article	IF	CITATIONS
201	Presence and inputs of legacy and novel per- and polyfluoroalkyl substances from rivers and drainage outlets to Liaodong Bay, China. Regional Studies in Marine Science, 2022, 56, 102684.	0.4	0
202	Deconstruction and valorisation of a mixture of personal protective equipment using hydrothermal processing. Journal of Industrial and Engineering Chemistry, 2022, 115, 583-593.	2.9	1
203	High-Temperature Pyrolysis for Elimination of Per- and Polyfluoroalkyl Substances (PFAS) from Biosolids. Processes, 2022, 10, 2187.	1.3	10
204	Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angewandte Chemie - International Edition, 2022, 61, .	7.2	19
205	Removing per- and polyfluoroalkyl substances (PFAS) in water by foam fractionation. Chemosphere, 2023, 311, 137004.	4.2	9
206	Efficient Removal of Perfluorinated Chemicals from Contaminated Water Sources Using Magnetic Fluorinated Polymer Sorbents. Angewandte Chemie, 2022, 134, .	1.6	2
207	Predicting the occurrence of short-chain PFAS in groundwater using machine-learned Bayesian networks. Frontiers in Environmental Science, 0, 10, .	1.5	2
208	Legacy and emerging airborne per- and polyfluoroalkyl substances (PFAS) collected on PM _{2.5} filters in close proximity to a fluoropolymer manufacturing facility. Environmental Sciences: Processes and Impacts, 2022, 24, 2272-2283.	1.7	3
209	Brominated flame retardants (PBDEs and HBCDs) and perfluoroalkyl substances (PFASs) in wild boars (Sus scrofa) from Central Italy. Science of the Total Environment, 2023, 858, 159745.	3.9	0
210	Fast and Sensitive Analysis of Short- and Long-Chain Perfluoroalkyl Substances in Foods of Animal Origin. Molecules, 2022, 27, 7899.	1.7	5
211	PFAS accumulation in several terrestrial plant and invertebrate species reveals species-specific differences. Environmental Science and Pollution Research, 2023, 30, 23820-23835.	2.7	9
212	Perfluoropropionic Acid-Driven Nucleation of Atmospheric Molecules under Ambient Conditions. Journal of Physical Chemistry A, 2022, 126, 8449-8458.	1.1	4
213	Per- and polyfluoroalkyl substances (PFAS)-free aqueous film forming foam formulations: Chemical composition and biodegradation in an aerobic environment. Journal of Environmental Chemical Engineering, 2022, 10, 108953.	3.3	4
214	The vitamin D receptor as a potential target for the toxic effects of per- and polyfluoroalkyl substances (PFASs): An in-silico study. Environmental Research, 2023, 217, 114832.	3.7	4
215	The Pediatrician's Role in Protecting Children from Environmental Hazards. Pediatric Clinics of North America, 2023, 70, 137-150.	0.9	2
216	Behavioural, developmental and reproductive toxicological impacts of perfluorobutanoic acid (PFBA) in Caenorhabditis elegans. Environmental Challenges, 2023, 10, 100662.	2.0	2
217	Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water – a critical review. Environmental Science: Water Research and Technology, 0, , .	1.2	2
218	Systemic toxicity induced by topical application of perfluoroheptanoic acid (PFHpA), perfluorohexanoic acid (PFHxA), and perfluoropentanoic acid (PFPeA) in a murine model. Food and Chemical Toxicology, 2023, 171, 113515.	1.8	7

#	Article	IF	CITATIONS
219	Influence of roughness and coating on the rebound of droplets on fabrics. Surfaces and Interfaces, 2023, 36, 102524.	1.5	2
220	Targeted Per- and Polyfluoroalkyl substances (PFAS) assessments for high throughput screening: Analytical and testing considerations to inform a PFAS stock quality evaluation framework. Toxicology and Applied Pharmacology, 2023, 459, 116355.	1.3	9
221	Quantitative relationships of perfluoroalkyl acids in drinking water associated with serum concentrations above background in adults living near contamination hotspots in Sweden. Environmental Research, 2023, 219, 115024.	3.7	5
222	Sorptive removal of per- and polyfluoroalkyl substances from aqueous solution: Enhanced sorption, challenges and perspectives. Science of the Total Environment, 2023, 861, 160647.	3.9	12
223	Migration mechanism and risk assessment of per- and polyfluoroalkyl substances in the Ya'Er Lake oxidation pond area, China. Journal of Environmental Sciences, 2024, 136, 301-312.	3.2	1
224	Mechanism of Corrosion of Cast Aluminum-Silicon Alloys in Seawater. Part 2: Characterization and Field Testing of Sol-Gel-Coated Alloys in the Adriatic Sea. Corrosion, 2023, 79, 213-229.	0.5	2
225	In silico analysis decodes transthyretin (TTR) binding and thyroid disrupting effects of per- and polyfluoroalkyl substances (PFAS). Archives of Toxicology, 2023, 97, 755-768.	1.9	7
226	Evaluation of per- and polyfluoroalkyl substances (PFAS) in leachate, gas condensate, stormwater and groundwater at landfills. Chemosphere, 2023, 318, 137903.	4.2	3
227	Trace Analysis Method Based on UPLC–MS/MS for the Determination of (C2–C18) Per-and Polyfluoroalkyl Substances and Its Application to Tap Water and Bottled Water. Analytical Chemistry, 0, , .	3.2	0
228	Bioavailability, phytotoxicity and plant uptake of per-and polyfluoroalkyl substances (PFAS): A review. Journal of Hazardous Materials, 2023, 447, 130805.	6.5	27
229	EOF and target PFAS analysis in surface waters affected by sewage treatment effluents in Berlin, Germany. Analytical and Bioanalytical Chemistry, 2023, 415, 1195-1204.	1.9	4
230	Automated and fast online method for simultaneously determining a broad spectrum of per- and polyfluoroalkyl substances in a small volume of cerebrospinal fluid. Analytical and Bioanalytical Chemistry, 2023, 415, 1221-1233.	1.9	1
231	Pre- and Postapplication Thermal Treatment Strategies for Sorption Enhancement and Reactivation of Biochars for Removal of Per- and Polyfluoroalkyl Substances from Water. ACS ES&T Engineering, 2023, 3, 193-200.	3.7	8
232	Per- and polyfluoroalkyl substances (PFAS) inhibit cytochrome P450 CYP3A7 through direct coordination to the heme iron and water displacement. Journal of Inorganic Biochemistry, 2023, 240, 112120.	1.5	5
233	Per- and Polyfluoroalkyl Substances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers. Biomarkers in Disease, 2023, , 989-1016.	0.0	1
234	Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment. Science of the Total Environment, 2023, 871, 162028.	3.9	9
236	Per- and Polyfluoroalkyl Substances and Outcomes Related to Metabolic Syndrome: A Review of the Literature and Current Recommendations for Clinicians. American Journal of Lifestyle Medicine, 0, , 155982762311628.	0.8	4
237	Cluster and multivariate analysis to study the diffuse contamination of emerging per- and polyfluoroalkyl substances (PFAS) in the Veneto Region plain (North-eastern Italy). Chemosphere, 2023, 319, 137916.	4.2	2

#	ARTICLE	IF	CITATIONS
238	Enhanced adsorption of short-chain perfluorobutanoic acid by functionalized periodic mesoporous organosilica: Performance and mechanisms. Journal of Hazardous Materials, 2023, 449, 131047.	6.5	8
239	Relationships between per- and polyfluoroalkyl substances (PFAS) and physical-chemical parameters in aqueous landfill samples. Chemosphere, 2023, 329, 138541.	4.2	2
240	Nonlethal detection of PFAS bioaccumulation and biomagnification within fishes in an urban- and wastewater-dominant Great Lakes watershed. Environmental Pollution, 2023, 321, 121123.	3.7	5
241	Fractionation of perfluoroalkyl acids (PFAAs) along the aquatic food chain promoted by competitive effects between longer and shorter chain PFAAs. Chemosphere, 2023, 318, 137931.	4.2	2
242	Computational Investigation of Structure–Function Relationship in Fluorine-Functionalized MOFs for PFOA Capture from Water. Journal of Physical Chemistry C, 2023, 127, 3204-3216.	1.5	9
243	Phytoscreening for Per- and Polyfluoroalkyl Substances at a Contaminated Site in Germany. Environmental Science & Technology, 2023, 57, 4122-4132.	4.6	3
244	Occurrence of per- and polyfluoroalkyl substances (PFAS) in soil: Sources, fate, and remediation. , 2023, 1, 100004.		15
245	Human exposure to per- and polyfluoroalkyl substances and other emerging contaminants in drinking water. Npj Clean Water, 2023, 6, .	3.1	8
246	Per- and Polyfluoroalkylsubstances (PFAS) and Their Toxicology as Evidenced Through Disease and Biomarkers. Biomarkers in Disease, 2023, , 1-28.	0.0	0
247	Uptake of Ultrashort Chain, Emerging, and Legacy Per- and Polyfluoroalkyl Substances (PFAS) in Edible Mushrooms (<i>Agaricus spp</i> .) Grown in a Polluted Substrate. Journal of Agricultural and Food Chemistry, 2023, 71, 4458-4465.	2.4	2
248	Molecular Characterization of the Thermal Degradation of Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams via Temperature-Programmed Thermal Desorption–Pyrolysis–Direct Analysis in Real Time–Mass Spectrometry. Environmental Science and Technology Letters, 2023, 10, 308-315.	3.9	3
249	Modernizing persistence–bioaccumulation–toxicity (PBT) assessment with high throughput animal-free methods. Archives of Toxicology, 2023, 97, 1267-1283.	1.9	3
250	Impact of Salinity and Temperature on Removal of PFAS Species from Water by Aeration in the Absence of Additional Surfactants: A Novel Application of Green Chemistry Using Adsorptive Bubble Fractionation. Industrial & Engineering Chemistry Research, 2023, 62, 5635-5645.	1.8	8
251	Legacy and novel PFASs in wastewater, natural water, and drinking water: Occurrence in Western Countries vs China. Emerging Contaminants, 2023, 9, 100228.	2.2	3
252	Sucralose and Predicted De Facto Wastewater Reuse Levels Correlate with PFAS Levels in Surface Waters. Environmental Science and Technology Letters, 2023, 10, 431-438.	3.9	3
264	Recent Advances in the Analytical Techniques for PFASs and Corresponding Intermediates During Their Chemical Decomposition. Chemical Research in Chinese Universities, 2023, 39, 361-369.	1.3	0
267	Sunrise of PFAS Replacements: A Perspective on Fluorine-Free Foams. ACS Sustainable Chemistry and Engineering, 2023, 11, 7986-7996.	3.2	3
282	The regulation of endocrine-disrupting chemicals to minimize their impact on health. Nature Reviews Endocrinology, 2023, 19, 600-614.	4.3	5

	Сітатіс	n Report		
#	Article	IF	CITATIONS	
296	PFAS in PMs might be the escalating hazard to the lung health. Nano Research, 2023, 16, 13113-13133.	5.8	0	
304	The effect of environmental cultural school (ECS) on the environmental attitude and behavior of school citizen in senior high schools of Malang Regency. AIP Conference Proceedings, 2023, , .	0.3	0	
320	The potential of phytoremediation technology as a panacea for per- and poly-fluoroalkyl substances-contaminated soil. Chemical Papers, 2024, 78, 2079-2099.	1.0	0	
330	PFAS occurrence and distribution in yard waste compost indicate potential volatile loss, downward migration, and transformation. Environmental Sciences: Processes and Impacts, 0, , .	1.7	0	
341	PFAS in Soil and Groundwater: Comprehensive Challenges and Progress in Regulation and Management in Germany. International Yearbook of Soil Law and Policy, 2024, , 285-304.	0.2	0	