Solvent ontrolled Synthesis of Highly Luminescent Gamut and Narrowed Emission Peak Widths

Small 14, e1800612 DOI: 10.1002/smll.201800612

Citation Report

#	Article	IF	CITATIONS
1	Facile Synthesis of Cu–In–S/ZnS Core/Shell Quantum Dots in 1-Dodecanethiol for Efficient Light-Emitting Diodes with an External Quantum Efficiency of 7.8%. Chemistry of Materials, 2018, 30, 8939-8947.	3.2	70
2	Exploration of the synthesis of three types of multicolor carbon dot originating from isomers. Chemical Communications, 2018, 54, 11312-11315.	2.2	42
3	Synthesis of Highly Fluorescent Yellowâ€Green Nâ€Doped Carbon Nanorings for pH Variation Detection and Bioimaging. Particle and Particle Systems Characterization, 2018, 35, 1800276.	1.2	10
4	Excitation-dependent carbon dots powders based on dehydration condensation by microwave–hydrothermal method. Journal of Materials Science, 2018, 53, 15907-15914.	1.7	24
5	Microwave-assisted synthesis of cyclen functional carbon dots to construct a ratiometric fluorescent probe for tetracycline detection. Journal of Materials Chemistry C, 2018, 6, 9636-9641.	2.7	107
6	Nonâ€Metalâ€Heteroatomâ€Doped Carbon Dots: Synthesis and Properties. Chemistry - A European Journal, 2019, 25, 1165-1176.	1.7	122
7	Carbon dots: advances in nanocarbon applications. Nanoscale, 2019, 11, 19214-19224.	2.8	267
8	Nucleolus-Targeted Red Emissive Carbon Dots with Polarity-Sensitive and Excitation-Independent Fluorescence Emission: High-Resolution Cell Imaging and in Vivo Tracking. ACS Applied Materials & Interfaces, 2019, 11, 32647-32658.	4.0	163
9	Carbonized Polymer Dots: A Brand New Perspective to Recognize Luminescent Carbon-Based Nanomaterials. Journal of Physical Chemistry Letters, 2019, 10, 5182-5188.	2.1	197
10	Tailoring the Photoluminescence Excitation Dependence of the Carbon Dots via an Alkali Treatment. Journal of Physical Chemistry Letters, 2019, 10, 4596-4602.	2.1	26
11	Solvent-controlled synthesis of multicolor photoluminescent carbon dots for bioimaging. RSC Advances, 2019, 9, 24057-24065.	1.7	24
12	Near-infrared emissive carbon dots with 33.96% emission in aqueous solution for cellular sensing and light-emitting diodes. Science Bulletin, 2019, 64, 1285-1292.	4.3	240
13	Efficient Red/Nearâ€Infraredâ€Emissive Carbon Nanodots with Multiphoton Excited Upconversion Fluorescence. Advanced Science, 2019, 6, 1900766.	5.6	121
14	Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019, 7, 9709-9718.	2.7	71
15	Wash-induced multicolor tuning of carbon nano-dot/micro-belt hybrids with full recyclability and stable color convertibility. Nanoscale, 2019, 11, 14592-14597.	2.8	3
16	Design, Synthesis, and Functionalization Strategies of Tailored Carbon Nanodots. Accounts of Chemical Research, 2019, 52, 2070-2079.	7.6	172
17	The fluorescence mechanismÂof carbon dots, and methods for tuning their emission color: a review. Mikrochimica Acta, 2019, 186, 583.	2.5	278
18	Influence of Electron Acceptor and Electron Donor on the Photophysical Properties of Carbon Dots: A Comparative Investigation at the Bulkâ€State and Singleâ€Particle Level. Advanced Functional Materials, 2019, 29, 1902466.	7.8	57

ARTICLE IF CITATIONS # Orangeâ€Emissive Carbon Quantum Dots: Toward Application in Wound pH Monitoring Based on 19 5.2 142 Colorimetric and Fluorescent Changing. Small, 2019, 15, e1902823. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Advanced 5.6 Science, 2019, 6, 1901316. New multicolored AIE photoluminescent polymers prepared by controlling the pH value. Journal of 21 2.7 54 Materials Chemistry C, 2019, 7, 387-393. Fluorescence Solvatochromism of Carbon Dot Dispersions Prepared from Phenylenediamine and Optimization of Red Emission. Langmuir, 2019, 35, 15257-15266. Synthesis of Multicolor Carbon Dots Based on Solvent Control and Its Application in the Detection 23 1.9 32 of Crystal Violet. Nanomaterials, 2019, 9, 1556. Thermally Activated Upconversion Nearâ€Infrared Photoluminescence from Carbon Dots Synthesized 5.2 via Microwave Assisted Exfoliation. Small, 2019, 15, e1905050. Highly Yellow-Emitting Photoluminescent Carbon Dots Derived from Dendrimer Toward Fluorescent 25 0.5 4 Nanocomposites and White LEDs. Nano, 2019, 14, 1950091. Regulating the properties of carbon dots via a solvent-involved molecule fusion strategy for 26 2.6 21 improved sensing selectivity. Analytica Chimica Acta, 2019, 1088, 107-115. Preparation, functionalization and characterization of engineered carbon nanodots. Nature 27 5.5 96 Protocols, 2019, 14, 2931-2953. Fingerprint identification of copper ions with absorption and emission dual-mode responses by N,S 1.4 co-doped red carbon dots. New Journal of Chemistry, 2019, 43, 168-174. Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices 29 1.4 57 and water detection. New Journal of Chemistry, 2019, 43, 3050-3058. Study of chromatographic fractions from carbon dots isolated by column chromatography and a 1.3 binary gradient elution <i>via</i> RP-HPLC. Analytical Methods, 2019, 11, 760-766. Highly efficient and ultra-narrow bandwidth orange emissive carbon dots for microcavity lasers. $\mathbf{31}$ 2.8 66 Nanoścale, 2019, 11, 11577-11583. Origins of Efficient Multiemission Luminescence in Carbon Dots. Chemistry of Materials, 2019, 31, 3.2 4732-4742. 2,4-Dinitrobenzenesulfonate-functionalized carbon dots as a turn-on fluorescent probe for imaging 33 2.525 of biothiols in living cells. Mikrochimica Acta, 2019, 186, 402. Pressure-triggered aggregation-induced emission enhancement in red emissive amorphous carbon dots. Nanoscale Horizons, 2019, 4, 1227-1231. Retrosynthesis of Tunable Fluorescent Carbon Dots for Precise Longâ€Term Mitochondrial Tracking. 35 5.2103 Small, 2019, 15, e1901517. Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO₂. ACS Applied Materials & amp; Interfaces, 2019, 11, 22851-22857.

#	Article	IF	CITATIONS
37	Farâ€Red to Nearâ€Infrared Carbon Dots: Preparation and Applications in Biotechnology. Small, 2019, 15, e1901507.	5.2	169
38	Red carbon dots: Optical property regulations and applications. Materials Today, 2019, 30, 52-79.	8.3	221
39	Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchemical Journal, 2019, 149, 103981.	2.3	46
40	Water Dispersible Red Fluorescent Carbon Nanoparticles via Carbonization of Resorcinol. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	7
41	Realization of the Photostable Intrinsic Core Emission from Carbon Dots through Surface Deoxidation by Ultraviolet Irradiation. Journal of Physical Chemistry Letters, 2019, 10, 3094-3100.	2.1	50
42	Connecting the Dots of Carbon Nanodots: Excitation (In)dependency and White-Light Emission in One-Step. Journal of Physical Chemistry C, 2019, 123, 20502-20511.	1.5	23
43	Carbon quantum dots: an emerging material for optoelectronic applications. Journal of Materials Chemistry C, 2019, 7, 6820-6835.	2.7	225
44	Microwave synthesis of amphiphilic carbon dots from xylose and construction of luminescent composites with shape recovery performance. Journal of Luminescence, 2019, 213, 474-481.	1.5	20
45	Multi-color fluorescent carbon dots with single wavelength excitation for white light-emitting diodes. Journal of Alloys and Compounds, 2019, 793, 613-619.	2.8	51
46	Color-tunable carbon dots via control the degree of self-assembly in solution at different concentration. Journal of Luminescence, 2019, 212, 69-75.	1.5	14
47	Recent Advances in Synthesis, Optical Properties, and Biomedical Applications of Carbon Dots. ACS Applied Bio Materials, 2019, 2, 2317-2338.	2.3	226
48	The One-Step Preparation of Green-Emissioned Carbon Dots through Hydrothermal Route and Its Application. Journal of Nanomaterials, 2019, 2019, 1-10.	1.5	6
49	Carbon Dots: A Small Conundrum. Trends in Chemistry, 2019, 1, 235-246.	4.4	232
50	Formation of N-heterocyclic carbon quantum dots and their energy- and electron-transfer properties in photocatalysis. Materials Research Express, 2019, 6, 065023.	0.8	3
51	Multi-color carbon dots for white light-emitting diodes. RSC Advances, 2019, 9, 9700-9708.	1.7	22
52	Facet-Dependent Interfacial Charge Transfer in TiO2/Nitrogen-Doped Graphene Quantum Dots Heterojunctions for Visible-Light Driven Photocatalysis. Catalysts, 2019, 9, 345.	1.6	33
53	A quadruple-channel fluorescent sensor array based on label-free carbon dots for sensitive detection of tetracyclines. Analyst, The, 2019, 144, 3307-3313.	1.7	48
54	Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion. Analytica Chimica Acta, 2019, 1068, 52-59.	2.6	43

#	Article	IF	CITATIONS
55	Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials, 2019, 9, 529.	1.9	70
56	Highly fluorescent near-infrared emitting carbon dots derived from lemon juice and its bioimaging application. Journal of Luminescence, 2019, 211, 298-304.	1.5	82
57	Amphipathic carbon dots with solvent-dependent optical properties and sensing application. Optical Materials, 2019, 89, 224-230.	1.7	52
58	Crosslinking induced photoluminescence quenching in polyvinyl alcohol-carbon quantum dot composite. Materials Today Chemistry, 2019, 12, 166-172.	1.7	28
59	Facile synthesis and photoluminescence mechanism of green emitting xylose-derived carbon dots for anti-counterfeit printing. Carbon, 2019, 146, 636-649.	5.4	68
60	Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale, 2019, 11, 22387-22397.	2.8	83
61	High-activity Mo, S co-doped carbon quantum dot nanozyme-based cascade colorimetric biosensor for sensitive detection of cholesterol. Journal of Materials Chemistry B, 2019, 7, 7042-7051.	2.9	98
62	Synthesis, applications and potential photoluminescence mechanism of spectrally tunable carbon dots. Nanoscale, 2019, 11, 20411-20428.	2.8	96
63	Facile Synthesis of Nitrogen-Doped Carbon Dots from Lignocellulosic Waste. Nanomaterials, 2019, 9, 1500.	1.9	54
64	Designing Highly Luminescent Cellulose Nanocrystals with Modulated Morphology for Multifunctional Bioimaging Materials. ACS Applied Materials & Interfaces, 2019, 11, 48192-48201.	4.0	39
65	One-step synthesis of red-emitting carbon dots <i>via</i> a solvothermal method and its application in the detection of methylene blue. RSC Advances, 2019, 9, 29533-29540.	1.7	43
66	Fluorescent metal-doped carbon dots for neuronal manipulations. Ultrasonics Sonochemistry, 2019, 52, 205-213.	3.8	70
67	Graphitic Nitrogen and Highâ€Crystalline Triggered Strong Photoluminescence and Roomâ€Temperature Ferromagnetism in Carbonized Polymer Dots. Advanced Science, 2019, 6, 1801192.	5.6	98
68	Fluorescent Self-Healing Carbon Dot/Polymer Gels. ACS Nano, 2019, 13, 1433-1442.	7.3	73
69	Controllable synthesis highly efficient red, yellow and blue carbon nanodots for photo-luminescent light-emitting devices. Chemical Engineering Journal, 2020, 380, 122503.	6.6	38
70	Dual-colored carbon dots-based ratiometric fluorescent sensor for high-precision detection of alkaline phosphatase activity. Talanta, 2020, 208, 120460.	2.9	19
71	Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch. Chinese Journal of Chemical Engineering, 2020, 28, 584-592.	1.7	27
72	Recent Advances and Sensing Applications of Carbon Dots. Small Methods, 2020, 4, 1900387.	4.6	145

#	Article	IF	CITATIONS
73	Aphen-derived N-doped white-emitting carbon dots with room temperature phosphorescence for versatile applications. Sensors and Actuators B: Chemical, 2020, 304, 127344.	4.0	26
74	Spontaneous formation of core-shell silver-copper oxide by carbon dot-mediated reduction for enhanced oxygen electrocatalysis. Electrochimica Acta, 2020, 329, 135172.	2.6	14
75	pH-induced aggregation of hydrophilic carbon dots for fluorescence detection of acidic amino acid and intracellular pH imaging. Materials Science and Engineering C, 2020, 108, 110401.	3.8	28
76	Oxygen/nitrogen-related surface states controlled carbon nanodots with tunable full-color luminescence: Mechanism and bio-imaging. Carbon, 2020, 160, 298-306.	5.4	49
77	Carbon Dots Doped with N and S towards Controlling Emitting. Journal of Fluorescence, 2020, 30, 81-89.	1.3	15
78	<i>In situ</i> synthesis of stretchable and highly stable multi-color carbon-dots/polyurethane composite films for light-emitting devices. RSC Advances, 2020, 10, 1281-1286.	1.7	9
79	A solvent-governed surface state strategy for rational synthesis of N and S co-doped carbon dots with multicolour fluorescence. Molecular Physics, 2020, 118, e1710609.	0.8	5
80	Green Synthesis of Carbon Dots toward Anti-Counterfeiting. ACS Sustainable Chemistry and Engineering, 2020, 8, 1566-1572.	3.2	114
81	Bright tricolor ultrabroad-band emission carbon dots for white light-emitting diodes with a 96.5 high color rendering index. Journal of Materials Chemistry C, 2020, 8, 1286-1291.	2.7	45
82	Rational synthesis of highly efficient ultra-narrow red-emitting carbon quantum dots for NIR-II two-photon bioimaging. Nanoscale, 2020, 12, 1589-1601.	2.8	89
83	Carbon dots: a booming material for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 821-836.	3.2	150
84	Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 2020, 386, 123913.	6.6	64
85	Multicolor emissive sulfur, nitrogen co-doped carbon dots and their application in ion detection and solid lighting. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 229, 117859.	2.0	18
86	The formation mechanism and fluorophores of carbon dots synthesized <i>via</i> a bottom-up route. Materials Chemistry Frontiers, 2020, 4, 400-420.	3.2	166
87	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie, 2020, 132, 3123-3129.	1.6	11
88	Bright high-colour-purity deep-blue carbon dot light-emitting diodes via efficient edge amination. Nature Photonics, 2020, 14, 171-176.	15.6	303
89	Rapid and Largeâ€Scale Production of Multiâ€Fluorescence Carbon Dots by a Magnetic Hyperthermia Method. Angewandte Chemie - International Edition, 2020, 59, 3099-3105.	7.2	97
90	Preparation and application of carbon dots with tunable luminescence by controlling surface functionalization. Optical Materials, 2020, 108, 110450.	1.7	14

#	Article	IF	CITATIONS
91	Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS Applied Materials & Interfaces, 2020, 12, 36628-36638.	4.0	112
92	Acetone-derived luminescent polymer dots: a facile and low-cost synthesis leads to remarkable photophysical properties. RSC Advances, 2020, 10, 38437-38445.	1.7	7
93	Exploring Solvent-Related Reactions and Corresponding Band Gap Tuning Strategies for Carbon Nanodots Based on Solvothermal Synthesis. Journal of Physical Chemistry Letters, 2020, 11, 10439-10445.	2.1	9
94	Sustainable Development of Enhanced Luminescence Polymer-Carbon Dots Composite Film for Rapid Cd2+ Removal from Wastewater. Molecules, 2020, 25, 3541.	1.7	19
95	Carbonized Polymer Dots with Tunable Room-Temperature Phosphorescence Lifetime and Wavelength. ACS Applied Materials & Interfaces, 2020, 12, 38593-38601.	4.0	90
96	Optimization of Ionic Liquid-Mediated Red-Emission Carbon Dots and Their Imaging Application in Living Cells. ACS Sustainable Chemistry and Engineering, 2020, 8, 16979-16989.	3.2	25
97	Optoelectronic and photocatalytic properties of l–Ill–VI QDs: Bridging between traditional and emerging new QDs. Journal of Semiconductors, 2020, 41, 091701.	2.0	13
98	Multicolor nitrogen dots for rapid detection of thiram and chlorpyrifos in fruit and vegetable samples. Analytica Chimica Acta, 2020, 1136, 72-81.	2.6	18
99	Selfâ€Assembly/Sacrificial Synthesis of Highly Capacitive Hierarchical Porous Carbon from Longan Pulp Biomass. ChemElectroChem, 2020, 7, 4606-4613.	1.7	11
100	Carbon Dots Induce Epithelialâ€Mesenchymal Transition for Promoting Cutaneous Wound Healing via Activation of TGFâ€Î²/p38/Snail Pathway. Advanced Functional Materials, 2020, 30, 2004886.	7.8	19
101	A "Polymer Template―Strategy for Carbonized Polymer Dots with Controllable Properties. Chemistry - A European Journal, 2020, 26, 14754-14764.	1.7	6
102	Multicenter-Emitting Carbon Dots: Color Tunable Fluorescence and Dynamics Monitoring Oxidative Stress In Vivo. Chemistry of Materials, 2020, 32, 8146-8157.	3.2	33
103	Fluorescent nanoprobe array based on carbon nanodots for qualitative and quantitative de de de de de de de de d determination of biogenic polyamine. Mikrochimica Acta, 2020, 187, 522.	2.5	5
104	Aggregation-Induced Emission Behavior of Dual-NIR-Emissive Zinc-Doped Carbon Nanosheets for Ratiometric Anthrax Biomarker Detection. ACS Applied Bio Materials, 2020, 3, 9031-9042.	2.3	9
105	Facile fabrication of a CD/PVA composite polymer to access light-responsive shape-memory effects. Journal of Materials Chemistry C, 2020, 8, 8935-8941.	2.7	22
106	Direct carbonization of organic solvents toward graphene quantum dots. Nanoscale, 2020, 12, 10956-10963.	2.8	24
107	Role of alkan-1-ol solvents in the synthesis of yellow luminescent carbon quantum dots (CQDs): van der Waals force-caused aggregation and agglomeration. RSC Advances, 2020, 10, 14396-14402.	1.7	7
108	Earth abundant colloidal carbon quantum dots for luminescent solar concentrators. Materials Advances, 2020, 1, 119-138.	2.6	37

#	ARTICLE	IF	CITATIONS
109	Surface states of carbon dots and their influences on luminescence. Journal of Applied Physics, 2020, 127, .	1.1	180
110	Amphiphilic Carbon Dots with Excitationâ€Independent Doubleâ€Emissions. Particle and Particle Systems Characterization, 2020, 37, 2000146.	1.2	13
111	Recent Advances in Energy Conversion Applications of Carbon Dots: From Optoelectronic Devices to Electrocatalysis. Small, 2020, 16, e2001295.	5.2	113
112	Carbon dots with red/near-infrared emissions and their intrinsic merits for biomedical applications. Carbon, 2020, 167, 322-344.	5.4	164
113	Deep Red Emissive Carbonized Polymer Dots with Unprecedented Narrow Full Width at Half Maximum. Advanced Materials, 2020, 32, e1906641.	11.1	271
114	Oneâ€pot synthesis of carbon dots@ZrO 2 nanoparticles with tunable solidâ€state fluorescence. Polymers for Advanced Technologies, 2020, 31, 1744-1751.	1.6	6
115	Preparation and Biomedical Applications of Multicolor Carbon Dots: Recent Advances and Future Challenges. Particle and Particle Systems Characterization, 2020, 37, 1900489.	1.2	27
116	Multiâ€Color Fluorescent Carbon Dots: Graphitized sp ² Conjugated Domains and Surface State Energy Level Coâ€Modulate Band Gap Rather Than Size Effects. Chemistry - A European Journal, 2020, 26, 8129-8136.	1.7	68
117	Facile Access to Solid-State Carbon Dots with High Luminescence Efficiency and Excellent Formability via Cellulose Derivative Coatings. ACS Sustainable Chemistry and Engineering, 2020, 8, 5937-5945.	3.2	45
118	High-performance thermoplastic polyurethane elastomer/carbon dots bulk nanocomposites with strong luminescence. High Performance Polymers, 2020, 32, 857-867.	0.8	14
119	Carbon dots with tunable dual emissions: from the mechanism to the specific imaging of endoplasmic reticulum polarity. Nanoscale, 2020, 12, 6852-6860.	2.8	50
120	Photo‣timulated Polychromatic Room Temperature Phosphorescence of Carbon Dots. Small, 2020, 16, e2001909.	5.2	125
121	Biomass-Based Polymer Nanoparticles With Aggregation-Induced Fluorescence Emission for Cell Imaging and Detection of Fe3+ Ions. Frontiers in Chemistry, 2020, 8, 563.	1.8	6
122	Carbon Dots and [FeFe] Hydrogenase Biohybrid Assemblies for Efficient Light-Driven Hydrogen Evolution. ACS Catalysis, 2020, 10, 9943-9952.	5.5	46
123	Rapid conversion from common precursors to carbon dots in large scale: Spectral controls, optical sensing, cellular imaging and LEDs application. Journal of Colloid and Interface Science, 2020, 580, 88-98.	5.0	31
124	Nitrogen/sulfur Co-doping strategy to synthesis green-yellow emitting carbon dots derived from xylose: Toward application in pH sensing. Journal of Luminescence, 2020, 227, 117489.	1.5	11
125	Carbon dots incorporated metal–organic framework for enhancing fluorescence detection performance. Journal of Materials Science, 2020, 55, 14153-14165.	1.7	19
126	Porphin-Based Carbon Dots for "Turn Off–On―Phosphate Sensing and Cell Imaging. Nanomaterials, 2020, 10, 326.	1.9	28

#	Article	IF	CITATIONS
127	Facile synthesis of yellow emissive carbon dots with high quantum yield and their application in construction of fluorescence-labeled shape memory nanocomposite. Journal of Alloys and Compounds, 2020, 834, 154399.	2.8	39
128	Promoting Chlorella photosynthesis and bioresource production using directionally prepared carbon dots with tunable emission. Journal of Colloid and Interface Science, 2020, 569, 195-203.	5.0	36
129	One-Step Facile Synthesis of Fluorescent Carbon Dots via Magnetic Hyperthermia Method. Industrial & Engineering Chemistry Research, 2020, 59, 4968-4976.	1.8	15
130	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie - International Edition, 2020, 59, 9826-9840.	7.2	169
131	Crosslinkâ€Enhanced Emission Effect on Luminescence in Polymers: Advances and Perspectives. Angewandte Chemie, 2020, 132, 9910-9924.	1.6	36
132	Surface modification strategy for fluorescence solvatochromism of carbon dots prepared from <i>p</i> -phenylenediamine. Chemical Communications, 2020, 56, 2174-2177.	2.2	44
133	Surface Roughness: A Crucial Factor To Robust Electric Double Layer Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 5786-5792.	4.0	40
134	Carbon Nanolights in Piezopolymers are Selfâ€Organizing Toward Color Tunable Luminous Hybrids for Kinetic Energy Harvesting. Small, 2020, 16, e1905703.	5.2	13
135	Facile, gram-scale and eco-friendly synthesis of multi-color graphene quantum dots by thermal-driven advanced oxidation process. Chemical Engineering Journal, 2020, 388, 124285.	6.6	57
136	Effect of Solvent-Derived Highly Luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection. Langmuir, 2020, 36, 5287-5295.	1.6	74
137	Study of the Optical and Luminescent Properties of Carbon Nanoparticles Using the Microphotoluminescence Method. Inorganic Materials: Applied Research, 2020, 11, 243-256.	0.1	6
138	Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence, 2020, 35, 989-997.	1.5	32
139	Cross-Linked Polyamide Chains Enhanced the Fluorescence of Polymer Carbon Dots. ACS Omega, 2020, 5, 8219-8229.	1.6	9
140	Multifunctional Mesoporous CDQs/BMMs with Strong Fluorescent Property and Sustained Drug Releasing Performance. ChemistrySelect, 2020, 5, 4786-4792.	0.7	1
141	15 Years of <i>Small</i> : Research Trends in Nanosafety. Small, 2020, 16, e2000980.	5.2	37
142	Far-Red Carbon Dots as Efficient Light-Harvesting Agents for Enhanced Photosynthesis. ACS Applied Materials & Interfaces, 2020, 12, 21009-21019.	4.0	102
143	Fluorescence mechanism of xylan-derived carbon dots: Toward investigation on excitation-related emission behaviors. Journal of Luminescence, 2020, 223, 117199.	1.5	14
144	A two-photon fluorescence, carbonized polymer dot (CPD)-based, wide range pH nanosensor: a view from the surface state. Nanoscale, 2020, 12, 9094-9103.	2.8	22

ARTICLE IF CITATIONS The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. 145 7.2 88 Angewandte Chemie - International Edition, 2021, 60, 8585-8595. The Rapid and Largeâ€Scale Production of Carbon Quantum Dots and their Integration with Polymers. 146 1.6 9 Angewandte Chemie, 2021, 133, 8668-8678. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon 147 5.0 76 dots. Journal of Colloid and Interface Science, 2021, 584, 505-519. Efficient one step synthesis of green carbon quantum dots catalyzed by tin oxide. Materials Today 148 0.9 Communications, 2021, 26, 101762. Conjugate area-controlled synthesis of multiple-color carbon dots and application in sensors and 149 4.0 28 optoelectronic devices. Sensors and Actuators B: Chemical, 2021, 329, 129263. Rational Design of Multiâ€Colorâ€Emissive Carbon Dots in a Single Reaction System by Hydrothermal. 5.6 194 Advanced Science, 2021, 8, 2001453. Facile synthesis of phosphorusâ€nitrogen doped carbon quantum dots from cyanobacteria for 151 0.9 20 bioimaging. Canadian Journal of Chemical Engineering, 2021, 99, 1926-1939. One-step synthesis of N, P Co-doped orange carbon quantum dots with novel optical properties for bio-imaging. Optical Materials, 2021, 111, 110618. 1.7 Application of carbon dots in nucleolus imaging to distinguish cancerous cells from normal cells. 153 4.0 15 Sensors and Actuators B: Chemical, 2021, 329, 129156. Novel yellow solid-state fluorescent-emitting carbon dots with high quantum yield for white 154 light-emitting diodes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119340 Recent Advance in Carbon Dots: From Properties to Applications. Chinese Journal of Chemistry, 2021, 155 2.6 24 39, 1364-1388. Insights into photoluminescence mechanisms of carbon dots: advances and perspectives. Science 4.3 288 Bulletin, 2021, 66, 839-856. Review of long wavelength luminescent carbon-based nanomaterials: preparation, biomedical 157 1.7 16 application and future challenges. Journal of Materials Science, 2021, 56, 2814-2837. Absorption and emission of light in red emissive carbon nanodots. Chemical Science, 2021, 12, 3615-3626. 159 Carbon Nanodots With Nearly Unity Fluorescent Efficiency Realized via Localized Excitons. SSRN 160 0.4 1 Electronic Journal, 0, , . Eu-doped ZnO quantum dots with solid-state fluorescence and dual emission for high-performance luminescent solar concentrators. Materials Chemistry Frontiers, 2021, 5, 4746-4755. Manganese-Doped Carbon Dots with Redshifted Orange Emission for Enhanced Fluorescence and 162 2.336 Magnetic Resonance Imaging. ACS Applied Bio Materials, 2021, 4, 1969-1975. Fluorescent Carbon Dots: Fantastic Electroluminescent Materials for Lightâ€Emitting Diodes. Advanced 141 Science, 2021, 8, 2001977.

#	Article	IF	Citations
164	Design and Synthesis of Nanosensor Based on Unsaturated Double Bond Functional Carbon Dots for Phenylephrine Detection Using Bromine As a Bridge. Analytical Chemistry, 2021, 93, 5145-5150.	3.2	21
165	Recyclable Magnetic Fluorescent Fe ₃ O ₄ @SiO ₂ Core–Shell Nanoparticles Decorated with Carbon Dots for Fluoride Ion Removal. ACS Applied Nano Materials, 2021, 4, 3062-3074.	2.4	14
166	Shedding New Lights Into STED Microscopy: Emerging Nanoprobes for Imaging. Frontiers in Chemistry, 2021, 9, 641330.	1.8	7
167	Regulation of fluorescence emission of carbon dots via hydrogen bonding assembly. Inorganic Chemistry Communication, 2021, 126, 108500.	1.8	4
168	Controlling the up-conversion photoluminescence property of carbon quantum dots (CQDs) by modifying its surface functional groups for enhanced photocatalytic performance of CQDs/BiVO4 under a broad-spectrum irradiation. Research on Chemical Intermediates, 2021, 47, 3469-3485.	1.3	18
169	Blue-to-green manipulation of carbon dots from fluorescence to ultralong room-temperature phosphorescence for high-level anti-counterfeiting. Chinese Chemical Letters, 2021, 32, 3907-3910.	4.8	27
170	Green-emissive carbon quantum dots with high fluorescence quantum yield: Preparation and cell imaging. Frontiers of Materials Science, 2021, 15, 253-265.	1.1	24
171	Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules, 2021, 26, 3085.	1.7	39
172	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie, 2021, 133, 14210-14218.	1.6	37
173	Multicolor carbon dots: Induced by sp2-sp3 hybridized domains and their application in ion detection and WLED. Optical Materials, 2021, 115, 111064.	1.7	10
174	Combinations of Superior Inorganic Phosphors for Levelâ€Tunable Information Hiding and Encoding. Advanced Optical Materials, 2021, 9, 2100281.	3.6	37
175	A Review of Fluorescent Carbon Dots, Their Synthesis, Physical and Chemical Characteristics, and Applications. Nanomaterials, 2021, 11, 1448.	1.9	73
176	Photoluminescent Carbon Quantum Dots: Synthetic Approaches and Photophysical Properties. Chemistry - A European Journal, 2021, 27, 9466-9481.	1.7	25
177	Rational Design of Multicolorâ€Emitting Chiral Carbonized Polymer Dots for Fullâ€Color and White Circularly Polarized Luminescence. Angewandte Chemie - International Edition, 2021, 60, 14091-14099.	7.2	168
178	Subcellular imaging and diagnosis of cancer using engineered nanoparticles. Current Pharmaceutical Design, 2021, 27, .	0.9	4
179	Synthesizing Red Fluorescent Carbon Dots from Rigid Polycyclic Conjugated Molecules: Dualâ€Mode Sensing and Bioimaging in Biochemical Applications. Particle and Particle Systems Characterization, 2021, 38, 2100076.	1.2	9
180	Red-emitting, self-oxidizing carbon dots for the preparation of white LEDs with super-high color rendering index. Science China Chemistry, 2021, 64, 1547-1553.	4.2	103
181	Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. Journal of Colloid and Interface Science, 2021, 591, 334-342.	5.0	29

#	Article	IF	CITATIONS
182	Ethanol-derived white emissive carbon dots: the formation process investigation and multi-color/white LEDs preparation. Nano Research, 2022, 15, 942-949.	5.8	91
183	Fe-Coordinated Carbon Nanozyme Dots as Peroxidase-Like Nanozymes and Magnetic Resonance Imaging Contrast Agents. ACS Applied Bio Materials, 2021, 4, 5520-5528.	2.3	21
184	Facile Synthesis of Water-Stable Multicolor Carbonized Polymer Dots from a Single Unconjugated Glucose for Engineering White Light-Emitting Diodes with a High Color Rendering Index. ACS Applied Materials & Interfaces, 2021, 13, 30098-30105.	4.0	53
185	Perception on aggregation induced multicolor emission and emission centers in carbon nanodots using successive dilution, anion exchange chromatography, and multi-way statistics. Scientific Reports, 2021, 11, 13996.	1.6	2
186	Composite Nanospheres Comprising Luminescent Carbon Dots Incorporated into a Polyhedral Oligomeric Silsesquioxane Matrix. Journal of Physical Chemistry C, 2021, 125, 15094-15102.	1.5	4
187	Precursor-dependent structural diversity in luminescent carbonized polymer dots (CPDs): the nomenclature. Light: Science and Applications, 2021, 10, 142.	7.7	104
188	Generalized synthesis of biomolecule-derived and functionalized fluorescent carbon nanoparticle. Bulletin of Materials Science, 2021, 44, 1.	0.8	2
189	Efficient Full-Color Boron Nitride Quantum Dots for Thermostable Flexible Displays. ACS Nano, 2021, 15, 14610-14617.	7.3	32
190	Multifunctional red-emission graphene quantum dots with tunable light emissions for trace water sensing, WLEDs and information encryption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 622, 126593.	2.3	18
191	Promoting Room Temperature Phosphorescence through Electron Transfer from Carbon Dots to Promethazine. ACS Applied Materials & amp; Interfaces, 2021, 13, 41238-41248.	4.0	31
192	Red Emission Carbon Dots Prepared by 1,4-Diaminonaphthalene for Light-Emitting Diode Application and Metal Ion Detection. Materials, 2021, 14, 4716.	1.3	10
193	Optical Properties of Carbon Dots in the Deepâ€Red to Nearâ€Infrared Region Are Attractive for Biomedical Applications. Small, 2021, 17, e2102325.	5.2	93
194	Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 623, 126673.	2.3	22
195	Yttriumâ€mediated red fluorescent carbon dots for sensitive and selective detection of calcium ions. Luminescence, 2021, 36, 1969-1976.	1.5	8
196	High Quantum Yield Fluorescent Chitosan-Based Carbon Dots for the Turn-On-Off-On Detection of Cr(VI) and H ₂ O ₂ . Nano, 2021, 16, .	0.5	4
197	The development of carbon dots: From the perspective of materials chemistry. Materials Today, 2021, 51, 188-207.	8.3	213
198	Carbon quantum dots derived from waste acorn cups and its application as an ultraviolet absorbent for polyvinyl alcohol film. Applied Surface Science, 2021, 556, 149774.	3.1	45
199	Two-dimensional quantum dots for biological applications. Nano Research, 2021, 14, 3820-3839.	5.8	50

#	Article	IF	CITATIONS
200	Fluorescent sensor array constructed by functionalized carbon nanodots for qualitative and quantitative analysis of urinary organic acids biomarkers. Sensors and Actuators B: Chemical, 2022, 350, 130825.	4.0	11
201	Red emissive two-photon carbon dots: Photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon, 2021, 182, 155-166.	5.4	40
202	Recent advances in the rational synthesis of red-emissive carbon dots for nanomedicine applications: A review. FlatChem, 2021, 29, 100271.	2.8	24
203	Mild bottom-up synthesis of carbon dots with temperature-dependent fluorescence. Journal of Luminescence, 2021, 238, 118311.	1.5	9
204	Competition of the roles of π-conjugated domain between emission center and quenching origin in the photoluminescence of carbon dots depending on the interparticle separation. Carbon, 2021, 183, 560-570.	5.4	28
205	Carbon dots-based red fluorescence nanoprobe for caspase-1 activity assay and living cell imaging. Sensors and Actuators B: Chemical, 2021, 344, 130285.	4.0	6
206	Fluorescent thermochromic wood-based composite phase change materials based on aggregation-induced emission carbon dots for visual solar-thermal energy conversion and storage. Chemical Engineering Journal, 2021, 424, 130426.	6.6	47
207	Achieving room temperature phosphorescence in aqueous phase through rigidifying the triplet state and information encryption. Applied Surface Science, 2021, 566, 150726.	3.1	18
208	Synthesis and modulation of multicolor fluorescent carbon dots from p-phenylenediamine and dansyl derivative for white light emitting diodes. Optical Materials, 2021, 121, 111502.	1.7	13
209	Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. Journal of Hazardous Materials, 2022, 422, 126881.	6.5	56
210	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	2.2	37
211	Applications of carbon dots on tumour theranostics. View, 2021, 2, 20200061.	2.7	30
212	The influence of thermal treatment conditions (solvothermal <i>versus</i> microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale, 2021, 13, 3070-3078.	2.8	22
213	A universal strategy for preparing carbon quantum dot-based composites with blue and green afterglow luminescence. Materials Chemistry Frontiers, 2021, 5, 8161-8170.	3.2	10
214	Polyethylene glycol (PEG) derived carbon dots: Preparation and applications. Applied Materials Today, 2020, 20, 100677.	2.3	69
215	Carbon Dots in Solar-to-Hydrogen Conversion. Trends in Chemistry, 2020, 2, 623-637.	4.4	47
216	Enhanced Near-Infrared Emission from Carbon Dots by Surface Deprotonation. Journal of Physical Chemistry Letters, 2021, 12, 604-611.	2.1	34
217	Citric Acid Derived Carbon Dots, the Challenge of Understanding the Synthesis-Structure Relationship. Journal of Carbon Research, 2021, 7, 2.	1.4	38

#	Article	IF	CITATIONS
218	Surface Charge Alteration in Carbon Dots Governs the Interfacial Electron Transfer and Transport. Journal of Physical Chemistry C, 2021, 125, 23398-23408.	1.5	16
219	¹⁹ F-Grafted Fluorescent Carbonized Polymer Dots for Dual-Mode Imaging. Analytical Chemistry, 2021, 93, 13880-13885.	3.2	9
220	Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method. Nano Research, 2022, 15, 3548-3555.	5.8	68
221	Synthesis, solution and solid-state fluorescence of nitrogen self-doped carbon dots derived from Chlorella pyrenoidosa. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127741.	2.3	11
222	The Investigation of the Dependence of Optical, Luminescent, and Emission Properties of Carbon Nanoparticles on pH of the Medium. Inorganic Materials: Applied Research, 2020, 11, 1025-1040.	0.1	1
223	Generating longâ€wavelength absorption bands with enhanced deep red fluorescence and photothermal performance in fused carbon dots aggregates. Aggregate, 2021, 2, e139.	5.2	28
224	Luminescent lanthanide single atom composite materials: Tunable full-color single phosphor and applications in white LEDs. Chemical Engineering Journal, 2022, 430, 132782.	6.6	18
225	Rapid and sensitive screening of multiple polycyclic aromatic hydrocarbons by a reusable fluorescent sensor array. Journal of Hazardous Materials, 2022, 424, 127694.	6.5	12
226	Recent progress in the development of carbon quantum dots for cell imaging. Oxford Open Materials Science, 2020, 1, .	0.5	1
227	Synthesis of color-tunable tannic acid-based carbon dots for multicolor/white light-emitting diodes. New Journal of Chemistry, 2021, 45, 22559-22563.	1.4	9
228	Fluorescent Egg White-Based Carbon Dots as a High-Sensitivity Iron Chelator for the Therapy of Nonalcoholic Fatty Liver Disease by Iron Overload in Zebrafish. ACS Applied Materials & Interfaces, 2021, 13, 54677-54689.	4.0	19
229	Regulating the photoluminescence of carbon dots <i>via</i> a green fluorine-doping-derived surface-state-controlling strategy. Journal of Materials Chemistry C, 2021, 9, 17357-17364.	2.7	11
230	Rapid Synthesis of Rare-Earth-Element-Free Yellow-Emissive Carbon Quantum Ring-Based Crystals in a Large Scale for White Light-Emitting Diodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 1195-1204.	3.2	8
231	Harnessing versatile dynamic carbon precursors for multi-color emissive carbon dots. Journal of Materials Chemistry C, 2022, 10, 1932-1967.	2.7	21
232	Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. Journal of Colloid and Interface Science, 2022, 609, 54-64.	5.0	24
233	pH-induced highly sensitive fluorescence detection of urea and urease based on carbon dots-based nanohybrids. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 269, 120705.	2.0	1
234	Aggregation and luminescence in carbonized polymer dots. Aggregate, 2022, 3, e169.	5.2	77
235	A novel facile one-pot synthesis of photothermally responsive carbon polymer dots as promising drug nanocarriers. Chemical Communications, 2022, 58, 3126-3129.	2.2	13

#	Article	IF	CITATIONS
236	Carbon Dots with Intrinsic Bioactivities for Photothermal Optical Coherence Tomography, Tumor‣pecific Therapy and Postoperative Wound Management. Advanced Healthcare Materials, 2022, 11, e2101448.	3.9	29
237	The light of carbon dots: From mechanism to applications. Matter, 2022, 5, 110-149.	5.0	374
238	Self-carbonization synthesis of highly-bright red/near-infrared carbon dots by solvent-free method. Journal of Materials Chemistry C, 2022, 10, 3153-3162.	2.7	32
239	Dual-Emissive Near-Infrared Carbon Dot-Based Ratiometric Fluorescence Sensor for Lysozyme. ACS Applied Nano Materials, 2022, 5, 1656-1663.	2.4	29
240	Orange emissive N-doped carbon dots and their application in detection of water in organic solvents and the polyurethane composites. Optical Materials, 2022, 123, 111927.	1.7	2
241	Ionic Liquidâ€Assisted Fast Synthesis of Carbon Dots with Strong Fluorescence and Their Tunable Multicolor Emission. Small, 2022, 18, e2106683.	5.2	60
242	Narrowâ€bandwidth emissive carbon dots: A rising star in the fluorescent material family. , 2022, 4, 88-114.		49
243	Multi-omics analyses revealed key factors involved in fluorescent carbon-dots-regulated secondary metabolism in Tetrastigma hemsleyanum. Journal of Nanobiotechnology, 2022, 20, 63.	4.2	4
244	Redox-initiated polymerization of N-vinylcarbazole based on carbon dots for modification and beyond. Polymer, 2022, 242, 124601.	1.8	4
245	Carbon dots and Methylene blue facilitated photometric quantification of Hemoglobin. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271, 120906.	2.0	6
246	Solution-processable carbon dots with efficient solid-state red/near-infrared emission. Journal of Colloid and Interface Science, 2022, 613, 547-553.	5.0	21
247	Orange-red to NIR emissive carbon dots for antimicrobial, bioimaging and bacteria diagnosis. Journal of Materials Chemistry B, 2022, 10, 1250-1264.	2.9	32
248	Orange/red dual-emissive boron- and nitrogen-codoped carbon dots for wash-free and selective staining of lipid droplets in live cells. Carbon, 2022, 191, 636-645.	5.4	28
249	Yellowâ€Emissive Carbon Dots with High Solidâ€State Photoluminescence. Advanced Functional Materials, 2022, 32, .	7.8	84
250	New prospects on solvothermal carbonisation assisted by organic solvents, ionic liquids and eutectic mixtures – A critical review. Progress in Materials Science, 2022, 126, 100932.	16.0	18
251	Highly crystalline N and S co-doped carbon dots as a selective turn off–on sensor for Cr(<scp>vi</scp>) and ascorbic acid and a turn off sensor for metanil yellow. Sensors & Diagnostics, 2022, 1, 516-524.	1.9	7
252	High reaction activity enables carbon dots to construct multicomponent nanocomposites with superior catalytic performance. Inorganic Chemistry Frontiers, 2022, 9, 1761-1769.	3.0	5
253	Recent progress of carbon dots in targeted bioimaging and cancer therapy. Theranostics, 2022, 12, 2860-2893.	4.6	44

#	Article	lF	CITATIONS
254	Sensitive and Selective Detection of Clenbuterol in Meat Samples by a Graphene Quantum Dot Fluorescent Probe Based on Cationic-Etherified Starch. Nanomaterials, 2022, 12, 691.	1.9	8
255	A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 2022, 17, 112-130.	15.6	370
256	Dual Role of MoS ₂ Quantum Dots in a Cross-Dehydrogenative Coupling Reaction. ACS Organic & Inorganic Au, 2022, 2, 205-213.	1.9	21
257	Simple One-step Solid-state Synthesis of Highly Crystalline N Doped Carbon Dots As Selective Turn Off-sensor for Picric Acid and Metanil Yellow. Journal of Fluorescence, 2022, 32, 1239-1246.	1.3	8
258	A Facile Preparation of Multicolor Carbon Dots. Nanoscale Research Letters, 2022, 17, 32.	3.1	24
259	Fluorescent Mechanism in Zero-Dimensional Carbon Nanomaterials: A Review. Journal of Fluorescence, 2022, 32, 887-906.	1.3	12
260	Confined-domain crosslink-enhanced emission effect in carbonized polymer dots. Light: Science and Applications, 2022, 11, 56.	7.7	60
261	Variation in the Optical Properties of Carbon Dots Fabricated by a Green and Facile Strategy for Solar-Blind UV Detection. Journal of Physical Chemistry C, 2022, 126, 5711-5721.	1.5	6
262	Mulberryâ€Leavesâ€Derived Redâ€Emissive Carbon Dots for Feeding Silkworms to Produce Brightly Fluorescent Silk. Advanced Materials, 2022, 34, e2200152.	11.1	79
263	Rational Synthesis of Solidâ€5tate Ultraviolet B Emitting Carbon Dots via Acetic Acidâ€Promoted Fractions of sp ³ Bonding Strategy. Advanced Materials, 2022, 34, e2200011.	11.1	46
264	Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-Staphylococcus aureus Biofilm. International Journal of Nanomedicine, 2022, Volume 17, 937-952.	3.3	16
265	Wood-cellulose photoluminescence material based on carbon quantum dot for light conversion. Carbohydrate Polymers, 2022, 290, 119429.	5.1	26
266	Carbon dots as Reactive Nitrogen Species nanosensors. Analytica Chimica Acta, 2022, 1202, 339654.	2.6	6
267	Solvent-dependent red emissive carbon dots and their applications in sensing and solid-state luminescence. Sensors and Actuators B: Chemical, 2022, 360, 131645.	4.0	33
268	Carbon nano-dot for cancer studies as dual nano-sensor for imaging intracellular temperature or pH variation. Scientific Reports, 2021, 11, 24341.	1.6	7
269	Development of Red-Emissive Carbon Dots for Bioimaging through a Building Block Approach: Fundamental and Applied Studies. Bioconjugate Chemistry, 2022, 33, 226-237.	1.8	11
270	Tunable multimodal printable up-/down-conversion nanomaterials for gradient information encryption. Nanoscale, 2022, 14, 7137-7145.	2.8	7
271	Solvatochromic Effects in Absorption and Luminescence Spectra and Stability of the Emission Quantum Yield of Carbon Nanoparticles: Part I. Inorganic Materials: Applied Research, 2022, 13, 247-262.	0.1	1

#	ARTICLE	IF	CITATIONS
272	Solvatochromic Effects in Absorption and Luminescence Spectra and Stability of the Emission Quantum Yield of Carbon Nanoparticles: Part II. Inorganic Materials: Applied Research, 2022, 13, 263-276.	0.1	0
274	Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8441-8458.	2.7	17
275	Polymer Carbon Nanodots: A Novel Electrochemiluminophore for Dual Mode Detection of Ferric Ions. Analytical Chemistry, 2022, 94, 6695-6702.	3.2	31
276	Solvent Assisted Synthesis of Nitrogen and Sulfur Doped Blue and Yellow Emissive Carbon Dots and Their Applications as a Selective Cr(VI) Sensor and Patterning Agent. ChemistrySelect, 2022, 7, .	0.7	1
277	Green Switching and Light-Harvesting Abilities of Red-Emissive Carbon Nanodot. Journal of Physical Chemistry C, 2022, 126, 9143-9153.	1.5	4
278	Effects of elemental doping, acid treatment, and passivation on the fluorescence intensity and emission behavior of yellow fluorescence carbon dots. Optical Materials, 2022, 128, 112471.	1.7	12
279	Wet chemistry-based processing of tunable polychromatic carbon quantum dots for multicolor bioimaging and enhanced NIR-triggered photothermal bactericidal efficacy. Applied Surface Science, 2022, 597, 153630.	3.1	14
280	Semiconductor catalysts based on surface-modified nanomaterials (SMNs) for sensors. , 2022, , 197-222.		0
281	Surface-Modified Carbon Dots with Improved Photoluminescence Quantum Yield for Color Conversion in White-Light-Emitting Diodes. ACS Applied Nano Materials, 2022, 5, 7664-7669.	2.4	19
282	Controlled Emission of Carbon Quantum Dots Derived from Waste Silk Sericin. Particle and Particle Systems Characterization, 2022, 39, .	1.2	4
283	Toward Strong Nearâ€Infrared Absorption/Emission from Carbon Dots in Aqueous Media through Solvothermal Fusion of Large Conjugated Perylene Derivatives with Post‧urface Engineering. Advanced Science, 2022, 9, .	5.6	48
284	Preparation and luminescent modulation of yellow carbon dots for electroluminescent device. Journal of Luminescence, 2022, 249, 119036.	1.5	5
285	Carbon dot/inorganic nanomaterial composites. Journal of Materials Chemistry A, 2022, 10, 14709-14731.	5.2	42
286	Construction of Carbon Dots with Color-Tunable Electrochemiluminescence and Enhanced Efficiency Enabled by Shadow Trapping States and Intramolecular Charge Transfer. SSRN Electronic Journal, 0, , .	0.4	0
287	Sensor heavy metal from natural resources for a green environment: A review relation between synthesis method and luminescence properties of carbon dots. Luminescence, 0, , .	1.5	2
288	Blood-brain barrier penetrating carbon dots with intrinsic anti-inflammatory and drug-loading properties. , 2022, 139, 212995.		5
289	A universal strategy for green and <i>in situ</i> synthesis of carbon dot-based pickling solution. Green Chemistry, 2022, 24, 5842-5855.	4.6	11
290	Violet Phosphorus Quantum Dots as Distinguishable Environmental Biosensors. Advanced Materials Interfaces, 2022, 9, .	1.9	11

ARTICLE IF CITATIONS # Facile Synthesis of Multi-Emission Nitrogen/Boron Co-Doped Carbon Dots from Lignin for 291 2.0 11 Anti-Counterfeiting Printing. Polymers, 2022, 14, 2779. Fluorescent aptasensor for detection of live foodborne pathogens based on multicolor perovskite-quantum-dot-encoded DNA probes and dual-stirring-bar-assisted signal amplification. 2.4 journal of Pharmaceutical Analysis, 2022, 12, 913-922. Synthesis strategies, luminescence mechanisms, and biomedical applications of near-infrared 293 9.5 64 fluorescent carbon dots. Coordination Chemistry Reviews, 2022, 470, 214703. Multi-emissive silicon quantum dots: synthesis, characteristics and their biological and analytical 294 0.8 relevance. Bulletin of Materials Science, 2022, 45, . Photobleaching and Recovery Kinetics of a Palette of Carbon Nanodots Probed by In Situ Optical 295 4.0 3 Spectroscopy. ACS Applied Materials & amp; Interfaces, 2022, 14, 36038-36051. Mild Acidolysis-Assisted Hydrothermal Carbonization of Lignin for Simultaneous Preparation of Green and Blue Fluorescent Carbon Quantum Dots. ACS Sustainable Chemistry and Engineering, 2022, 3.2 10, 9888-9898. Green Synthesis of Surface-Group-Tunable Red Emissive Carbon Dots and Their Applications for Fe3+ 297 0.4 0 and Pyrophosphate Detection. SSRN Electronic Journal, 0, , . Nanoparticleâ€based single molecule fluorescent probes. Luminescence, 2022, 37, 1808-1821. 298 1.5 Confining carbon dots in amino-functionalized mesoporous silica: nâ†'Ĩ€* interaction triggered deep-red 299 5.8 7 solid-state fluorescence. Nano Research, 2023, 16, 4170-4177. Spectrally tunable humic acid–based carbon dots: a simple platform for metronidazole and ornidazole sensing in multiple real samples. Analytical and Bioanalytical Chemistry, 2023, 415, 1.9 4221-4232. Solvothermal synthesis and applications of micro/nano carbons: A review. Chemical Engineering 301 41 6.6 Journal, 2023, 451, 138572. Combination of carbon dots for the design of superhydrophobic fluorescent materials with bioinspired micro-nano multiscale hierarchical structure. Colloids and Surfaces A: Physicochemical 2.3 and Engineering Aspects, 2022, 654, 130063. Acid treatment to tune the optical properties of carbon quantum dots. Applied Surface Science, 2022, 303 3.1 11 605, 154690. Near-infrared I/II emission and absorption carbon dots via constructing localized excited/charge transfer state for multiphoton imaging and photothermal therapy. Chemical Engineering Journal, 304 6.6 23 2023, 452, 139231. Characterization of carbon dots., 2023, , 43-58. 305 1 Polar engineering regulates photoluminescence-tunable carbon dots for microalgal lipid imaging. 306 Materials Advances, 2022, 3, 7854-7864. Synthesis, optical properties and applications of red/near-infrared carbon dots. Journal of Materials 307 2.7 22 Chemistry C, 2022, 10, 11827-11847. Nickel-doped carbon dots with enhanced and tunable multicolor fluorescence emission for 5.4 24 multicolor light-emitting diodes. Carbon, 2023, 201, 796-804.

#	Article	IF	CITATIONS
309	Fluorescent carbon dot as an optical amplifier in modern agriculture. Sustainable Materials and Technologies, 2022, 34, e00493.	1.7	2
310	Green Synthesis of Carbon Dots and Their Integration into Nylon-11 Nanofibers for Enhanced Mechanical Strength and Biocompatibility. Nanomaterials, 2022, 12, 3347.	1.9	5
311	From Small Molecules to Zero-Dimensional Carbon Nanodots: Chasing the Stepwise Transformations During Carbonization. Journal of Physical Chemistry C, 2022, 126, 16377-16386.	1.5	9
312	Preparing Colour-Tunable Tannic Acid-Based Carbon Dots by Changing the pH Value of the Reaction System. Nanomaterials, 2022, 12, 3062.	1.9	4
313	Investigation on synthesis and luminescent properties of red-emitting carbon dots chemically functionalized by branched-polyethylenimine. Journal of Materials Science: Materials in Electronics, 0, , .	1.1	0
314	Multicolor Luminescent Carbon Dots: Tunable Photoluminescence, Excellent Stability, and Their Application in Light-Emitting Diodes. Nanomaterials, 2022, 12, 3132.	1.9	5
315	Facile and scalable preparation of carbon dots with Schiff base structures toward an efficient corrosion inhibitor. Diamond and Related Materials, 2022, 130, 109401.	1.8	6
316	Formation and fluorescent mechanism of red emissive carbon dots from o-phenylenediamine and catechol system. Light: Science and Applications, 2022, 11, .	7.7	63
317	Effect of Synthesis Process, Synthesis Temperature, and Reaction Time on Chemical, Morphological, and Quantum Properties of Carbon Dots Derived from Loblolly Pine. Biomass, 2022, 2, 250-263.	1.2	5
318	A comprehensive review of the importance of thermal activation in the production of carbon dots and the potential for their use in the bioenergy industry. Journal of Thermal Analysis and Calorimetry, 2023, 148, 505-516.	2.0	1
319	Controlled Synthesis of Multicolor Carbon Dots Assisted by Machine Learning. Advanced Functional Materials, 2023, 33, .	7.8	16
320	Green synthesis of surface-group-tunable red emissive carbon dots and their applications for Fe3+ and pyrophosphate detection. Microchemical Journal, 2022, 183, 108123.	2.3	6
321	The Emerging Development of Multicolor Carbon Dots. Small, 2022, 18, .	5.2	82
322	Improved citric acid-derived carbon dots synthesis through microwave-based heating in a hydrothermal pressure vessel. RSC Advances, 2022, 12, 32401-32414.	1.7	2
323	Construction of Carbon Dots with Wavelength-Tunable Electrochemiluminescence and Enhanced Efficiency. Analytical Chemistry, 2022, 94, 16510-16518.	3.2	10
324	Exceeding 67.35% Efficient and Color Temperature Tunable White Light from Carbon Dots with Quadruple-Channel Fluorescence–Phosphorescence Emission. ACS Sustainable Chemistry and Engineering, 2022, 10, 15599-15607.	3.2	15
325	Regulating photochemical properties of carbon dots for theranostic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2023, 15, .	3.3	10
326	Structure–Property–Activity Relationships in Carbon Dots. Journal of Physical Chemistry B, 2022, 126, 10777-10796.	1.2	8

#	Article	IF	CITATIONS
327	Rational synthesis of silane-functionalized carbon dots with high-efficiency full-color solid-state fluorescence for light emitting diodes. Carbon, 2023, 203, 1-10.	5.4	41
328	The preparation, optical properties and applications of carbon dots derived from phenylenediamine. Microchemical Journal, 2023, 185, 108299.	2.3	9
329	Recent advances of solvent-engineered carbon dots: A review. Carbon, 2023, 204, 76-93.	5.4	33
330	Dual emissive carbon dots: Synthesis strategies, properties and its ratiometric sensing applications. Nano Structures Nano Objects, 2023, 33, 100931.	1.9	9
331	Intramolecular hydrogen bond-tuned thermal-responsive carbon dots and their application to abnormal body temperature imaging. Journal of Colloid and Interface Science, 2023, 634, 221-230.	5.0	6
332	Aggregation in carbon dots. Aggregate, 2022, 3, .	5.2	40
334	Timeâ€Dependent Polychrome Stereoscopic Luminescence Triggered by Resonance Energy Transfer between Carbon Dotsâ€inâ€Zeolite Composites and Fluorescence Quantum Dots. Advanced Materials, 2023, 35, .	11.1	18
335	Applications of Carbon Dots for the Treatment of Alzheimer's Disease. International Journal of Nanomedicine, 0, Volume 17, 6621-6638.	3.3	4
336	Red emission B, N, S-co-doped carbon dots with pH-responsive functionality for colorimetric and fluorescent dual-mode detection of Ag+ ions. Journal of Materials Science, 2022, 57, 21693-21708.	1.7	2
337	Carbonized Polymer Dots with Controllable N, O Functional Groups as Electrolyte Additives to Achieve Stable Li Metal Batteries. Small, 2023, 19, .	5.2	4
338	Disulfide <scp>Crosslinkingâ€Induced</scp> Aggregation: Towards <scp>Solidâ€5tate</scp> Fluorescent Carbon Dots with Vastly Different Emission Colors ^{â€} . Chinese Journal of Chemistry, 2023, 41, 1007-1014.	2.6	42
339	Facile synthesis of graphene quantum dots with red emission and high quantum yield. New Journal of Chemistry, 2023, 47, 2221-2229.	1.4	2
340	Multicolor-Emissive Carbon Dots for White-Light-Emitting Diodes and Room-Temperature Phosphorescence. ACS Applied Nano Materials, 2023, 6, 918-929.	2.4	15
341	F, N co-doped carbon nanomaterials for multi-level information encryption: Room-temperature phosphorescence and solid-state fluorescence. Journal of Alloys and Compounds, 2023, 942, 168910.	2.8	1
342	Versatile Red-Emissive Carbon Dots for Smart Textiles and Fluorescence Sensing. ACS Applied Nano Materials, 2023, 6, 1379-1385.	2.4	4
343	The Formation Process and Mechanism of Carbon Dots Prepared from Aromatic Compounds as Precursors: A Review. Small, 2023, 19, .	5.2	27
344	Multiple Stimuliâ€Response Polychromatic Carbon Dots for Advanced Information Encryption and Safety. Small, 2023, 19, .	5.2	22
345	Synthesis of trichromatic carbon dots from a single precursor by solvent effect and its versatile applications. Arabian Journal of Chemistry, 2023, 16, 104576.	2.3	Ο

#	Article	IF	CITATIONS
346	Multifunctional Integrated Superhydrophobic Coatings with Unique Fluorescence and Micro/Micro/Nano-Hierarchical Structures Enabled by In Situ Self-Assembly. ACS Applied Materials & Interfaces, 2023, 15, 7442-7453.	4.0	11
347	Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from <i>o</i> -phenylenediamine. Beilstein Journal of Nanotechnology, 0, 14, 165-174.	1.5	6
348	Light-emitting diode application of carbon quantum dots. , 2023, , 159-181.		0
349	Preparation of panchromatic carbon dots by drug function preservation strategy and its intracellular application for cancer diagnosis and therapeutics. Applied Surface Science, 2023, 618, 156564.	3.1	5
350	One-pot synthesis of multicolor carbon quantum dots: One as pH sensor, one with ultra-narrow emission as fluorescent sensor for uric acid. Dyes and Pigments, 2023, 213, 111201.	2.0	3
351	Red emissive carbon dots-based probe for rapid identification and continuous tracking of Gram-positive bacteria in tumor cells. Materials Letters, 2023, 341, 134233.	1.3	2
352	Carbon quantum dots for fluorescent detection of nitrite: A review. Food Chemistry, 2023, 415, 135749.	4.2	14
353	Multiple-color room-temperature phosphorescence regulated by graphitization and carbonyls. Chemical Engineering Journal, 2023, 459, 141635.	6.6	2
354	Reaction Time-Controlled Synthesis of Multicolor Carbon Dots for White Light-Emitting Diodes. ACS Applied Nano Materials, 2023, 6, 2478-2490.	2.4	15
355	Dual functions of nitrogen and phosphorus co-doped carbon dots for drug-targeted delivery and two-photon cell imaging. Arabian Journal of Chemistry, 2023, 16, 104671.	2.3	2
356	Preparation and performance study of dye-based carbon quantum dots. Inorganic Chemistry Communication, 2023, 150, 110541.	1.8	3
357	Orange-Emissive Carbon Dots with High Photostability for Mitochondrial Dynamics Tracking in Living Cells. ACS Sensors, 2023, 8, 1161-1172.	4.0	14
358	Bright and multicolor emissive carbon dots/organosilicon composite for highly efficient tandem luminescent solar concentrators. Carbon, 2023, 207, 77-85.	5.4	17
360	Centralized Excited States and Fast Radiation Transitions Reduce Laser Threshold in Carbon Dots. Small, 0, , 2207983.	5.2	6
361	Biomass-derived Carbon dots and their coated surface as a potential antimicrobial agent. Biomass Conversion and Biorefinery, 0, , .	2.9	1
362	Ionic liquid capped white luminescent carbon dots: application in sensing and bioimaging. Materials Today Chemistry, 2023, 29, 101437.	1.7	3
363	Determination of Co2+ ions in blood samples: A multi-way sensing based on NH2-rich carbon quantum dots. Dyes and Pigments, 2023, 215, 111253.	2.0	4
364	Fluorescent Silk Obtained by Feeding Silkworms with Fluorescent Materials ^{â€} . Chinese Journal of Chemistry, 2023, 41, 2035-2046.	2.6	1

#	Article	IF	CITATIONS
365	Highly efficient regulation strategy of fluorescence emission wavelength via designing the structure of carbon dots. Advanced Composites and Hybrid Materials, 2023, 6, .	9.9	11
366	Carbon dots (CDs): basics, recent potential biomedical applications, challenges, and future perspectives. Journal of Nanoparticle Research, 2023, 25, .	0.8	10
367	Construction of carbon nitride-based heterojunction as photocatalyst for peroxymonosulfate activation: Important role of carbon dots in enhancing photocatalytic activity. Chemical Engineering Journal, 2023, 464, 142724.	6.6	8
368	Solvent-free synthesis of photoluminescent carbon nanoparticles from lignin-derived monomers as feedstock. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	1
369	The Classification of Carbon Dots and the Relationship between Synthesis Methods and Properties. Chinese Journal of Chemistry, 2023, 41, 2206-2216.	2.6	2
370	Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chemical Engineering Journal, 2023, 465, 143010.	6.6	22
371	Biosynthesis of the Narrowband Deep-Red Emissive Carbon Nanodots from Eggshells. ACS Sustainable Chemistry and Engineering, 2023, 11, 6535-6544.	3.2	4
372	Recent advances in nanostructured materials: A look at the applications in optical chemical sensing. Materials Today Nano, 2023, 22, 100345.	2.3	4
373	Formation and Band Gap Tuning Mechanism of Multicolor Emissive Carbon Dots from <i>m</i> â€Hydroxybenzaldehyde. Advanced Science, 2023, 10, .	5.6	12
374	Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400.		0
374 375			0
	Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation. ,	6.4	
375	Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation. , 2023, , 275-304. Molecularly or atomically precise nanostructures for bio-applications: how far have we come?.	6.4	0
375 379	 Photo-Driven Biocatalytic Seawater Splitting., 2023, 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation., 2023, 275-304. Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances 		0
375 379 393	 Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation. , 2023, , 275-304. Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, . Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135. Red emissive carbon dots: a promising next-generation material with intracellular applicability. 	2.9	0 0 3
375 379 393 402	 Photo-Driven Biocatalytic Seawater Splitting., 2023, 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation., 2023, 275-304. Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135. Red emissive carbon dots: a promising next-generation material with intracellular applicability. Journal of Materials Chemistry B, 2023, 11, 8848-8865. Comprehensive advances in the synthesis, fluorescence mechanism and multifunctional applications 	2.9 2.9	0 0 3 5
375 379 393 402 403	 Photo-Driven Biocatalytic Seawater Splitting. , 2023, , 329-400. Carbon quantum dots: A fluorescent nanomaterial with huge impact on environmental remediation. , 2023, , 275-304. Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , . Synthetic strategies, properties and sensing application of multicolor carbon dots: recent advances and future challenges. Journal of Materials Chemistry B, 2023, 11, 8117-8135. Red emissive carbon dots: a promising next-generation material with intracellular applicability. Journal of Materials Chemistry B, 2023, 5, 5717-5765. 	2.9 2.9	0 0 3 5 1

#	Article	IF	CITATIONS
428	Graphene quantum dots and carbon nanodots: modeling of zero-dimensional carbon nanomaterials. , 2024, , 411-482.		1