Lithoautotrophical oxidation of elemental sulfur by fun isolated from sandstone Angkor temples

International Biodeterioration and Biodegradation 126, 95-102 DOI: 10.1016/j.ibiod.2017.10.005

Citation Report

#	Article	lF	CITATIONS
1	Wind-driven rain as a bioclimatic factor affecting the biological colonization at the archaeological site of Pompeii, Italy. International Biodeterioration and Biodegradation, 2018, 134, 31-38.	3.9	24
2	Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. International Biodeterioration and Biodegradation, 2019, 143, 104723.	3.9	67
4	Filamentous fungi associated with Brazilian stone samples: structure of the fungal community, diversity indexes, and ecological analysis. Mycological Progress, 2019, 18, 565-576.	1.4	4
5	Ecological implications of recently discovered and poorly studied sources of energy for the growth of true fungi especially in extreme environments. Fungal Ecology, 2019, 39, 380-387.	1.6	11
6	Combined effects of salt, cyclic wetting and drying cycles on the physical and mechanical properties of sandstone. Engineering Geology, 2019, 248, 70-79.	6.3	84
7	Hydrocarbonoclastic Ascomycetes to enhance co-composting of total petroleum hydrocarbon (TPH) contaminated dredged sediments and lignocellulosic matrices. New Biotechnology, 2019, 50, 27-36.	4.4	35
8	Nutrient cycling potential within microbial communities on culturally important stoneworks. Environmental Microbiology Reports, 2019, 11, 147-154.	2.4	22
9	A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. Applied Sciences (Switzerland), 2020, 10, 8099.	2.5	20
10	Microbial deterioration and sustainable conservation of stone monuments and buildings. Nature Sustainability, 2020, 3, 991-1004.	23.7	136
11	Microbiome and nitrate removal processes by microorganisms on the ancient Preah Vihear temple of Cambodia revealed by metagenomics and N-15 isotope analyses. Applied Microbiology and Biotechnology, 2020, 104, 9823-9837.	3.6	21
12	Deterioration of sandstones: Insights from experimental weathering in acidic, neutral and biotic solutions with Acidithiobacillus thiooxidans. Construction and Building Materials, 2020, 246, 118474.	7.2	13
13	Analysis of fungal deterioration phenomena in the first Portuguese King tomb using a multi-analytical approach. International Biodeterioration and Biodegradation, 2020, 149, 104933.	3.9	28
14	The active microbes and biochemical processes contributing to deterioration of Angkor sandstone monuments under the tropical climate in Cambodia – A review. Journal of Cultural Heritage, 2021, 47, 218-226.	3.3	26
15	Fungal Carbonyl Sulfide Hydrolase of <i>Trichoderma harzianum</i> Strain THIF08 and Its Relationship with Clade D 1²-Carbonic Anhydrases. Microbes and Environments, 2021, 36, n/a.	1.6	4
16	Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection. , 2021, , 37-58.		3
17	Fungal communities in the biofilms colonizing the basalt sculptures of the Leizhou Stone Dogs and assessment of a conservation measure. Heritage Science, 2021, 9, .	2.3	14
18	Sulfur-oxidizing bacteria involved in the blackening of basalt sculptures of the Leizhou Stone Dog. International Biodeterioration and Biodegradation, 2021, 159, 105207.	3.9	10
19	Transformation of organic and inorganic sulfur– adding perspectives to new players in soil and rhizosphere. Soil Biology and Biochemistry, 2021, 160, 108306.	8.8	16

#	Article	IF	CITATIONS
20	Biochar inhibits ginseng root rot pathogens and increases soil microbiome diversity. Applied Soil Ecology, 2022, 169, 104229.	4.3	10
21	A more accurate definition of water characteristics in stone materials for an improved understanding and effective protection of cultural heritage from biodeterioration. International Biodeterioration and Biodegradation, 2022, 166, 105338.	3.9	27
22	Oxic and Anoxic Organic Polymer Degradation Potential of Endophytic Fungi From the Marine Macroalga, Ecklonia radiata. Frontiers in Microbiology, 2021, 12, 726138.	3.5	10
23	The role of fungi in the biogeochemical cycling of supergene gold and satellite transition metals: A potential new exploration tool. Ore Geology Reviews, 2022, 140, 104595.	2.7	4
24	Biodeterioration of stone and metal — Fundamental microbial cycling processes with spatial and temporal scale differences. Science of the Total Environment, 2022, 823, 153193.	8.0	18
25	Endolithic microbes of rocks, their community, function and survival strategies. International Biodeterioration and Biodegradation, 2022, 169, 105387.	3.9	12
26	Organic Amendments and Elemental Sulfur Stimulate Microbial Biomass and Sulfur Oxidation in Alkaline Subtropical Soils. Agronomy, 2021, 11, 2514.	3.0	17
27	Dry reforming of methane for catalytic valorization of biogas. , 2022, , 207-248.		3
28	Biofilms on stone monuments: biodeterioration or bioprotection?. Trends in Microbiology, 2022, 30, 816-819.	7.7	23
29	Characterization of sulfur-oxidizing bacteria isolated from mustard (<i>Brassica juncea</i> L.) rhizosphere having the capability of improving sulfur and nitrogen uptake. Journal of Applied Microbiology, 2022, 133, 2814-2825.	3.1	10
30	De-calcification as an important mechanism in (bio)deterioration of sandstone of Angkor monuments in Cambodia. International Biodeterioration and Biodegradation, 2022, 174, 105470.	3.9	1
31	Mechanism of Microbial Biodegradation: Secrets of Biodegradation. , 2022, , 1-15.		0
32	Low cost and renewable H ₂ S-biofilter inoculated with <i>Trichoderma harzianum</i> . Environmental Technology (United Kingdom), 2024, 45, 1508-1521.	2.2	0
33	Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiological Research, 2023, 271, 127340.	5.3	24
34	Community structures and biodeterioration processes of epilithic biofilms imply the significance of micro-environments. Science of the Total Environment, 2023, 876, 162665.	8.0	4
35	Diversity and Composition of Culturable Microorganisms and Their Biodeterioration Potentials in the Sandstone of Beishiku Temple, China. Microorganisms, 2023, 11, 429.	3.6	10
36	Mechanism of Microbial Biodegradation: Secrets of Biodegradation. , 2023, , 179-193.		1
37	Potential utilization of fungi in biomining as biological engines for the alteration of sulfide and carbon matrices. Reviews in Environmental Science and Biotechnology, 2023, 22, 591-623.	8.1	2

#	Article	IF	CITATIONS
38	Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments. Science of the Total Environment, 2023, 896, 165265.	8.0	3
39	Hydrochemistry process and microweathering behaviour of sandstone heritages in the Nankan Grotto, China: Insights from field micro-observations and water–rock interaction experiments. Bulletin of Engineering Geology and the Environment, 2023, 82, .	3.5	2
40	Unraveling the microbiotas and key genetic contexts identified on stone heritage using illumina and nanopore sequencing platforms. International Biodeterioration and Biodegradation, 2023, 185, 105688.	3.9	0
41	Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. Science of the Total Environment, 2024, 912, 168846.	8.0	0
42	Fungal biodeterioration and preservation of cultural heritage, artwork, and historical artifacts: extremophily and adaptation. Microbiology and Molecular Biology Reviews, 2024, 88, .	6.6	1

CITATION REPORT