Oxygen vacancy engineering of Bi2O3/Bi2O2CO3 hetero interfacial charge transfer, NO adsorption and removal

Applied Catalysis B: Environmental 231, 357-367 DOI: 10.1016/j.apcatb.2018.01.008

Citation Report

#	Article	IF	CITATIONS
1	Ag2CO3 Decorating BiOCOOH Microspheres with Enhanced Full-Spectrum Photocatalytic Activity for the Degradation of Toxic Pollutants. Nanomaterials, 2018, 8, 914.	1.9	14
2	Superior NO _x photocatalytic removal over hybrid hierarchical Bi/BiOI with high non-NO ₂ selectivity: synergistic effect of oxygen vacancies and bismuth nanoparticles. Catalysis Science and Technology, 2018, 8, 5270-5279.	2.1	30
3	Photocatalytic treatment of VOC industrial emissions: IPA removal using a sensor-instrumented reactor. Chemical Engineering Journal, 2018, 353, 394-409.	6.6	29
4	Facet, Junction and Electric Field Engineering of Bismuthâ€Based Materials for Photocatalysis. ChemCatChem, 2018, 10, 4477-4496.	1.8	89
5	In Situ Formation of Leaf-Like Ag2S/CdS Heterojunction Photocatalyst Harnessing Vis–NIR Light for Photodegradation of Organic Pollutants. Catalysis Letters, 2018, 148, 2765-2776.	1.4	11
6	Stupendous Photocatalytic Activity of p-BiOI/n-PbTiO3 Heterojunction: The Significant Role of Oxygen Vacancies and Interface Coupling. Journal of Physical Chemistry C, 2019, 123, 21593-21606.	1.5	39
7	Photosensitization of Bi2O2CO3 nanoplates with amorphous Bi2S3 to improve the visible photoreactivity towards NO oxidation. Applied Surface Science, 2019, 495, 143561.	3.1	46
8	Glucose-assisted hydrothermal synthesis of plasmonic Bi deposited nested Bi2O2â^'xCO3 photocatalysts with enhanced photocatalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 123946.	2.3	16
9	Exploration and crystal phase engineering from bismuthinite ore to visible-light responsive photocatalyst of Bi2O3. Journal of Environmental Chemical Engineering, 2019, 7, 103375.	3.3	28
10	Constructing defective (BiO)2CO3 with different dominated facets for efficiently photocatalytic NO oxidization and in situ reaction pathway study. Applied Surface Science, 2019, 498, 143848.	3.1	13
11	Iodineâ€Deficient BiO _{1.2} I _{0.6} Coupling with Bi ₂ O ₃ for Degradation of Volatile Organic Compounds under Simulated Sunlight Irradiation. ChemSusChem, 2019, 12, 4874-4881.	3.6	9
12	Synthesis of magnetic biomass carbon-based Bi ₂ O ₃ photocatalyst and mechanism insight by a facile microwave and deposition method. New Journal of Chemistry, 2019, 43, 2888-2898.	1.4	16
13	Effects of H2O2 generation over visible light-responsive Bi/Bi2O2â^'CO3 nanosheets on their photocatalytic NO removal performance. Chemical Engineering Journal, 2019, 363, 374-382.	6.6	56
14	Facile synthesis of Bi-modified Nb-doped oxygen defective BiOCl microflowers with enhanced visible-light-driven photocatalytic performance. Journal of Alloys and Compounds, 2019, 786, 155-162.	2.8	45
15	Constructing Z-scheme SnO ₂ /N-doped carbon quantum dots/ZnSn(OH) ₆ nanohybrids with high redox ability for NO <i>x</i> removal under VIS-NIR light. Journal of Materials Chemistry A, 2019, 7, 15782-15793.	5.2	60
16	Novel hexagonal Bi2O2CO3 porous nanoplate/nitrogen-doped graphene nanomaterials with enhanced electrochemical properties for oxygen reduction reaction in acidic media for fuel cells. Carbon, 2019, 152, 459-473.	5.4	29
17	Uniform Zn ²⁺ -Doped BiOI Microspheres Assembled by Ultrathin Nanosheets with Tunable Oxygen Vacancies for Super-Stable Removal of NO. Journal of Physical Chemistry C, 2019, 123, 16268-16280.	1.5	91
18	Gas-Phase Photoelectrocatalysis for Breaking Down Nitric Oxide. Environmental Science & Technology, 2019, 53, 7145-7154.	4.6	45

#	Article	IF	CITATIONS
19	Composite soft template-assisted construction of a flower-like β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for the enhanced simulated sunlight photocatalytic degradation of tetracycline. Ceramics International, 2019, 45, 15036-15047.	2.3	38
20	One-step oxygen vacancy engineering of WO3-x/2D g-C3N4 heterostructure: Triple effects for sustaining photoactivity. Journal of Alloys and Compounds, 2019, 795, 426-435.	2.8	42
21	Oxygen Vacancies Promoted the Selective Photocatalytic Removal of NO with Blue TiO ₂ via Simultaneous Molecular Oxygen Activation and Photogenerated Hole Annihilation. Environmental Science & Technology, 2019, 53, 6444-6453.	4.6	215
22	In Situ Intermediates Determination and Cytotoxicological Assessment in Catalytic Oxidation of Formaldehyde: Implications for Catalyst Design and Selectivity Enhancement under Ambient Conditions. Environmental Science & Technology, 2019, 53, 5230-5240.	4.6	10
23	Controllable synthesis and efficient photocatalytic activity of BiOF nanodisks exposed with {101} facets, instead of {001} facets. Journal of Alloys and Compounds, 2019, 794, 127-136.	2.8	16
24	Roles of N-Vacancies over Porous g-C ₃ N ₄ Microtubes during Photocatalytic NO <i>_x</i> Removal. ACS Applied Materials & Interfaces, 2019, 11, 10651-10662.	4.0	210
25	BiOCl/BiOBr Heterojunction with Rich Oxygen Vacancies Induced by Ultraviolet and Its Enhanced Photocatalytic Performance. European Journal of Inorganic Chemistry, 2019, 2019, 4887-4893.	1.0	12
26	Two-dimensional electron gas in a metal/amorphous oxide interface with spin-orbit interaction. Physical Review B, 2019, 100, .	1.1	2
27	Protonated g-C3N4/Ti3+ self-doped TiO2 nanocomposite films: Room-temperature preparation, hydrophilicity, and application for photocatalytic NO removal. Applied Catalysis B: Environmental, 2019, 240, 122-131.	10.8	122
28	Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3. Applied Catalysis B: Environmental, 2019, 241, 187-195.	10.8	158
29	Defect-engineered cobalt-based solid catalyst for high efficiency oxidation of sulfite. Chemical Engineering Science, 2019, 197, 1-10.	1.9	7
30	Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 2019, 243, 576-584.	10.8	60
31	Aerobic Oxidative Dehydrogenation of Ethyl Lactate Over Reduced MoVNbOx Catalysts. Catalysis Letters, 2019, 149, 840-850.	1.4	11
32	Fast electron transfer and enhanced visible light photocatalytic activity by using poly-o-phenylenediamine modified AgCl/g-C3N4 nanosheets. Chinese Journal of Catalysis, 2019, 40, 80-94.	6.9	51
33	Polyoxometalates/TiO2 Fenton-like photocatalysts with rearranged oxygen vacancies for enhanced synergetic degradation. Applied Catalysis B: Environmental, 2019, 244, 407-413.	10.8	92
34	Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene. Applied Surface Science, 2019, 467-468, 968-978.	3.1	115
35	In situ synthesis of Z-scheme BiPO4/BiOCl0.910.1 heterostructure with multiple vacancies and valence for efficient photocatalytic degradation of organic pollutant. Separation and Purification Technology, 2019, 213, 34-44.	3.9	45
36	Novel photocatalyst nitrogen-doped simonkolleite Zn5(OH)8Cl2·H2O with vis-up-conversion photoluminescence and effective visible-light photocatalysis. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	11

#	Article	IF	CITATIONS
37	Oxygen vacancy-rich ultrathin sulfur-doped bismuth oxybromide nanosheet as a highly efficient visible-light responsive photocatalyst for environmental remediation. Chemical Engineering Journal, 2019, 360, 838-847.	6.6	79
38	One pot synthesis of CdS/BiOBr/Bi2O2CO3: A novel ternary double Z-scheme heterostructure photocatalyst for efficient degradation of atrazine. Applied Catalysis B: Environmental, 2020, 260, 118222.	10.8	210
39	Radical-induced oxidation removal of multi-air-pollutant: A critical review. Journal of Hazardous Materials, 2020, 383, 121162.	6.5	96
40	Fabrication, characterization and photocatalytic mechanism of a novel Z-scheme BiOBr/Ag3PO4@rGO composite for enhanced visible light photocatalytic degradation. Journal of Alloys and Compounds, 2020, 815, 151886.	2.8	33
41	Effect of defects on the electronic structure of a PbI2/MoS2 van der Waals heterostructure: A first-principles study. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	1
42	Bi2O2CO3–Bi2O2(OH)NO3/g-C3N4 heterojunction as a visible-light-driven photocatalyst with enhanced photogenerated charge separation. Journal of Alloys and Compounds, 2020, 818, 152852.	2.8	11
43	Defect State Assisted Z-scheme Charge Recombination in Bi ₂ O ₂ CO ₃ /Graphene Quantum Dot Composites For Photocatalytic Oxidation of NO. ACS Applied Nano Materials, 2020, 3, 772-781.	2.4	36
44	New insight into the behavior and cost-effectiveness of different radicals in the removal of NO and Hg0. Chemical Engineering Journal, 2020, 385, 123885.	6.6	19
45	Direct Z-scheme charge separation mechanism and photocatalytic properties of (BiO)2CO3-BiOCl composites prepared in-situ. Chemical Physics, 2020, 530, 110597.	0.9	9
46	One-step synthesis of Bi4Ti3O12/Bi2O3/Bi12TiO20 spherical ternary heterojunctions with enhanced photocatalytic properties via sol-gel method. Solid State Sciences, 2020, 100, 106098.	1.5	16
47	Constructing the Pd/PdO/βâ€Bi ₂ O ₃ microspheres with enhanced photocatalytic activity for Bisphenol A degradation and NO removal. Journal of Chemical Technology and Biotechnology, 2020, 95, 862-874.	1.6	20
48	A novel resource utilization type 3-dimensional flower spheroidal Fe3O4@C@(BiO)2CO3: High-efficiency degradation of tetracycline under visible light. Inorganic Chemistry Communication, 2020, 111, 107630.	1.8	1
49	Construction of p-n type Bi2O3/Bi4NbO8Cl 0D/2D heterojunction with enhanced photodegradation performance for organic pollutants. Applied Surface Science, 2020, 529, 147248.	3.1	26
50	In situ intercalation and exploitation of Co3O4 nanoparticles grown on carbon nitride nanosheets for highly efficient degradation of methylene blue. Dalton Transactions, 2020, 49, 14665-14672.	1.6	12
51	Partial substitution of magnesium in lanthanum manganite perovskite for nitric oxide oxidation: The effect of substitution sites. Journal of Colloid and Interface Science, 2020, 580, 49-55.	5.0	18
52	Toward Expanding the Optical Response of Ag2CrO4 and Bi2O3 by Their Laser-Mediated Heterojunction. Journal of Physical Chemistry C, 2020, 124, 26404-26414.	1.5	2
53	Modifying optical and photochemical properties of bismuth oxyfluoride BiTe3O7F via stoichiometry alteration between Bi3+ and Te4+ ions. Journal of Alloys and Compounds, 2020, 847, 156465.	2.8	4
54	Taming NO oxidation efficiency by Î ³ -MnO2 morphology regulation. Catalysis Science and Technology, 2020, 10, 5996-6005.	2.1	16

#	Article	IF	CITATIONS
55	High photoactivity of Bi2O2(CO3)/Zn5(CO3)2(OH)6 prepared by a facile one-pot synthesis for the efficient degradation of phenol under UV light. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 402, 112816.	2.0	6
56	One-pot synthesis of BiOCl microflowers co-modified with Mn and oxygen vacancies for enhanced photocatalytic degradation of tetracycline under visible light. Separation and Purification Technology, 2020, 251, 117414.	3.9	65
57	Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 24307-24352.	5.2	200
58	Oxygenâ€Vacancyâ€Enhanced Singlet Oxygen Production for Selective Photocatalytic Oxidation. ChemSusChem, 2020, 13, 3488-3494.	3.6	51
59	AgSCN/AgCl/FeOCl nanosheets heterojunction with novel interface structure and excellent photocatalytic performance. Journal of Alloys and Compounds, 2020, 836, 155544.	2.8	20
60	In situ self-growing 3D hierarchical BiOBr/BiOIO3 Z-scheme heterojunction with rich oxygen vacancies and iodine ions as carriers transfer dual-channels for enhanced photocatalytic activity. Chemical Engineering Journal, 2020, 396, 125258.	6.6	173
61	Design of TiO2 nanocrystals with enhanced sunlight photocatalytic activity by exploring calcining conditions. Ceramics International, 2020, 46, 21268-21274.	2.3	6
62	One-pot solvothermal fabrication of S-scheme OVs-Bi2O3/Bi2SiO5 microsphere heterojunctions with enhanced photocatalytic performance toward decontamination of organic pollutants. Applied Surface Science, 2020, 527, 146775.	3.1	88
63	A facile synthesis of a highly efficient β-Bi2O3/Bi2O2CO3 heterojunction with enhanced photocatalytic NO oxidation under visible light. New Journal of Chemistry, 2020, 44, 10989-10993.	1.4	11
64	Tailoring the Surface Oxygen Vacancies in Nanoporous BiOCl _{0.8} 1 _{0.2} Nanoflowers for Photocathodic Sensing. ACS Applied Nano Materials, 2020, 3, 6423-6431.	2.4	9
65	n–p BiOCl@g ₃ N ₄ Heterostructure with Richâ€oxygen Vacancies for Photodegradation of Carbamazepine. ChemistrySelect, 2020, 5, 2767-2777.	0.7	25
66	Two-dimensional Bi2O2CO3/δ-Bi2O3/Ag2O heterojunction for high performance of photocatalytic activity. Applied Surface Science, 2020, 525, 146613.	3.1	15
67	Precisely control interface OVs concentration for enhance 0D/2D Bi2O2CO3/BiOCl photocatalytic performance. Applied Surface Science, 2020, 530, 147218.	3.1	75
68	Synthesis amorphous TiO2 with oxygen vacancy as carriers transport channels for enhancing photocatalytic activity. Materials Letters, 2020, 265, 127465.	1.3	38
69	TiO2 with exposed (001) facets/Bi4O5Br2 nanosheets heterojunction with enhanced photocatalytic for NO removal. Nanotechnology, 2020, 31, 254002.	1.3	8
70	Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity. Journal of Colloid and Interface Science, 2020, 567, 357-368.	5.0	57
71	Effect of p-n type nano-heterojunction formed between two narrow bandgap semiconductors in Cu ⁺ doped GeSe ₂ -Sb ₂ Se ₃ glass ceramics on photocatalytic activities. Semiconductor Science and Technology, 2020, 35, 035017.	1.0	4
72	(002) Oriented Bi2O2CO3 Nanosheets with Enhanced Photocatalytic Performance for Toluene Removal in Air. Catalysts, 2020, 10, 389.	1.6	14

#	Article	IF	CITATIONS
73	The sources and seasonal fluxes of particulate organic carbon in the Yellow River. Earth Surface Processes and Landforms, 2020, 45, 2004-2019.	1.2	31
74	Mo Promotes Interfacial Interaction and Induces Oxygen Vacancies in 2D/2D of Mo-g-C ₃ N ₄ and Bi ₂ O ₂ CO ₃ Photocatalyst for Enhanced NO Oxidation. Industrial & Engineering Chemistry Research, 2020, 59, 9509-9518.	1.8	20
75	Enhanced photocatalytic NO removal and toxic NO2 production inhibition over ZIF-8-derived ZnO nanoparticles with controllable amount of oxygen vacancies. Chinese Journal of Catalysis, 2021, 42, 175-183.	6.9	66
76	Construction of β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for deep understanding the importance of separation efficiency and valence band position. Journal of Hazardous Materials, 2021, 401, 123262.	6.5	47
77	A novel and facile procedure to decorate Bi2O3 with Bi2S3 nanocrystals: Composites synthesis, analyses, and photocatalytic performance assessment. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125640.	2.3	14
78	Broad-spectrum response NCQDs/Bi2O2CO3 heterojunction nanosheets for ciprofloxacin photodegradation: Unraveling the unique roles of NCQDs upon different light irradiation. Chemosphere, 2021, 264, 128434.	4.2	40
79	Oxygen Vacancies Engineering–Mediated BiOBr Atomic Layers for Boosting Visible Lightâ€Driven Photocatalytic CO ₂ Reduction. Solar Rrl, 2021, 5, 2000480.	3.1	42
80	The property tuning of NH3-SCR over iron-tungsten catalyst: Role of calcination temperature on surface defect and acidity. Applied Surface Science, 2021, 538, 147999.	3.1	33
81	Self-grown oxygen vacancies-rich CeO2/BiOBr Z-scheme heterojunction decorated with rGO as charge transfer channel for enhanced photocatalytic oxidation of elemental mercury. Journal of Colloid and Interface Science, 2021, 587, 402-416.	5.0	120
82	Facile synthesis of Z-scheme ZnO/Ag/Ag3PO4 composite photocatalysts with enhanced performance for the degradation of ciprofloxacin. Materials Chemistry and Physics, 2021, 260, 124136.	2.0	42
83	Surface defect engineering of metal oxides photocatalyst for energy application and water treatment. Journal of Materiomics, 2021, 7, 388-418.	2.8	117
84	In-situ generation of oxygen vacancies and metallic bismuth from (BiO)2CO3 via N2-assisted thermal-treatment for efficient selective photocatalytic NO removal. Applied Catalysis B: Environmental, 2021, 281, 119481.	10.8	97
85	Selective Bonding Effect of Heterologous Oxygen Vacancies in Z-Scheme Cu ₂ O/SrFe _{0.5} Ta _{0.5} O ₃ Heterojunctions for Constructing Efficient Interfacial Charge-Transfer Channels and Enhancing Photocatalytic NO Removal Performances. Langmuir, 2021, 37, 894-907.	1.6	6
86	Photocatalytic reaction mechanisms at a gas–solid interface for typical air pollutant decomposition. Journal of Materials Chemistry A, 2021, 9, 20184-20210.	5.2	28
87	In situ preparation of Bi2O3/(BiO)2CO3 composite photocatalyst with enhanced visible-light photocatalytic activity. Research on Chemical Intermediates, 2021, 47, 1601-1613.	1.3	7
88	Correlation between Photocorrosion of ZnO and Lattice Relaxation Induced by Its Surface Vacancies. Journal of Physical Chemistry C, 2021, 125, 3242-3255.	1.5	19
89	Fabrication of {001}-facet enriched anatase TiO2/TiOF2 heterostructures with controllable morphology for enhanced photocatalytic activity. Materials Today Communications, 2021, 26, 102060.	0.9	7
90	Bismuth oxycarbonate grafted NiFe-LDH supported on g-C3N4 as bifunctional catalyst for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2021, 46, 12145-12157.	3.8	22

#	Article	IF	CITATIONS
91	Photocatalytic Conversion of Nitrogen Oxides: Current State and Perspectives: a Review. Theoretical and Experimental Chemistry, 2021, 57, 30-63.	0.2	3
92	Oxygen Vacant Semiconductor Photocatalysts. Advanced Functional Materials, 2021, 31, 2100919.	7.8	242
93	Oxygen vacancies and interfacial electric field co-induced photocatalytic performance of OVs-BiOI/α-Bi2O3 heterojunctions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126262.	2.3	17
94	Surface characterization of mesoporous biomass activated carbon modified by thermal chemical vapor deposition and adsorptive mechanism of nitrate ions in aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 616, 126213.	2.3	7
95	Unprecedented solar water splitting of dendritic nanostructured Bi2O3 films by combined oxygen vacancy formation and Na2MoO4 doping. International Journal of Hydrogen Energy, 2021, 46, 23702-23714.	3.8	11
96	Boosting photoresposive ability of WO ₃ –Bi ₂ O ₃ nanocomposite rods via annealing-induced intrinsic precipitation of nanosized Bi particles. Nanotechnology, 2021, 32, 315701.	1.3	6
97	Valence state and active site of CeO2-WO3 catalysts supported on CNT. Journal of Physics and Chemistry of Solids, 2021, 153, 109999.	1.9	2
98	Maximizing the Formation of Reactive Oxygen Species for Deep Oxidation of NO via Manipulating the Oxygen-Vacancy Defect Position on (BiO) ₂ CO ₃ . ACS Catalysis, 2021, 11, 7735-7749.	5.5	94
99	Heterostructural (Sr0.6Bi0.305)2Bi2O7/ZnO for novel high-performance H2S sensor operating at low temperature. Journal of Hazardous Materials, 2021, 414, 125500.	6.5	23
100	Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy. Chinese Chemical Letters, 2022, 33, 1117-1130.	4.8	8
101	Three-Dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chemical Engineering Journal, 2021, 418, 129117.	6.6	36
102	Photocatalytic NOx removal using tantalum oxide nanoparticles: A benign pathway. Applied Catalysis B: Environmental, 2021, 291, 119974.	10.8	58
103	Factors affecting photocatalytic performance through the evolution of the properties due to the phase transition from NaBiO3·2H2O to BiO2ⴒx. Frontiers in Energy, 2022, 16, 471-482.	1.2	1
104	Photoinduced oxygen activation of Fe2O3/TiO2 heterostructures for efficient removal of AsH3. Applied Surface Science, 2021, 559, 149874.	3.1	6
105	Enhanced solar photocatalytic degradation of nitric oxide using graphene quantum dots/bismuth tungstate composite catalysts. Chemical Engineering Journal, 2021, 420, 129595.	6.6	62
106	Optimized strategies for (BiO)2CO3 and its application in the environment. Environmental Science and Pollution Research, 2021, 28, 56003-56031.	2.7	5
107	Oxygen-vacancy-assisted construction of FeOOH/CdS heterostructure as an efficient bifunctional photocatalyst for CO2 conversion and water oxidation. Applied Catalysis B: Environmental, 2021, 293, 120203.	10.8	71
108	Exploring the photocatalytic conversion mechanism of gaseous formaldehyde degradation on TiO2–-OV surface. Journal of Hazardous Materials, 2022, 424, 127217.	6.5	22

#	Article	IF	CITATIONS
109	Boosted photocatalytic removal of tetracycline on S-scheme Bi12O17Cl2/α-Bi2O3 heterojunctions with rich oxygen vacancies. Applied Surface Science, 2021, 563, 150246.	3.1	40
110	2D/2D black-BiOCl/ Fe2O3 heterojunction photo-Fenton catalytic system for enhanced visible-light tetracycline degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126953.	2.3	23
111	In vitro and in vivo antibacterial performance of Zr & O PIII magnesium alloys with high concentration of oxygen vacancies. Bioactive Materials, 2021, 6, 3049-3061.	8.6	12
112	Atomic interfacial structure and charge transfer mechanism on in-situ formed BiOI/Bi2O2SO4 p–n heterojunctions with highly promoted photocatalysis. Applied Catalysis B: Environmental, 2021, 297, 120492.	10.8	62
113	Doping and facet effects synergistically mediated interfacial reaction mechanism and selectivity in photocatalytic NO abatement. Journal of Colloid and Interface Science, 2021, 604, 624-634.	5.0	12
114	Constructing 3D Bi/Bi4O5I2 microspheres with rich oxygen vacancies by one-pot solvothermal method for enhancing photocatalytic activity on mercury removal. Chemical Engineering Journal, 2021, 425, 131599.	6.6	93
115	Improved photocatalytic activity of BaTiO3/La2Ti2O7 heterojunction composites via piezoelectric-enhanced charge transfer. Applied Surface Science, 2021, 570, 151146.	3.1	36
116	Facilitated interfacial charge separation using triphenylamine-zinc porphyrin dyad-sensitized TiO2 nanoparticles for photocatalysis. Journal of Alloys and Compounds, 2021, 889, 161795.	2.8	11
117	A review on the preparation, microstructure, and photocatalytic performance of Bi ₂ O ₃ in polymorphs. Nanoscale, 2021, 13, 17687-17724.	2.8	58
118	Facile one-pot synthesis of defect-engineered step-scheme WO ₃ /g-C ₃ N ₄ heterojunctions for efficient photocatalytic hydrogen production. Catalysis Science and Technology, 2021, 11, 2734-2744.	2.1	29
119	Single-Atom Photocatalysts for Emerging Reactions. ACS Central Science, 2021, 7, 39-54.	5.3	94
120	Defect-engineering of Pt/Bi ₄ NbO ₈ Br heterostructures for synergetic promotional photocatalytic removal of versatile organic contaminants. Journal of Materials Chemistry C, 2021, 9, 2784-2792.	2.7	13
121	Ti3C2 MXene modified g-C3N4 with enhanced visible-light photocatalytic performance for NO purification. Journal of Colloid and Interface Science, 2020, 575, 443-451.	5.0	98
122	Rational fabrication flowerlike BiOBr with oxygen vacancy for enhancing photocatalytic performance to remove gaseous mercury. Chemical Physics Letters, 2021, 785, 139164.	1.2	6
123	4-Nitrophenol Efficient Photoreduction from Exfoliated and Protonated Phenyl-Doped Graphitic Carbon Nitride Nanosheets. Polymers, 2021, 13, 3752.	2.0	3
124	Bi2WO6 quantum dots with oxygen vacancies combined with g-C3N4 for NO removal. Journal of Colloid and Interface Science, 2022, 609, 447-455.	5.0	12
125	In-situ conversion of Bi2O2CO3 to Bi2O2CO3/Fe2O3/BiOCl, Fe2O3/BiOCl heterojunctions and boosted photodegradation activity. Inorganic Chemistry Communication, 2021, 134, 109066.	1.8	1
126	Bi2O2CO3/red phosphorus S-scheme heterojunction for H2 evolution and Cr(VI) reduction. Journal of Colloid and Interface Science, 2022, 609, 320-329.	5.0	32

#	Article	IF	Citations
127	Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity. Journal of Molecular Structure, 2022, 1254, 132339.	1.8	5
128	Ultrathin Bi ₄ O ₅ Br ₂ nanosheets with surface oxygen vacancies and strong interaction with Bi ₂ O ₂ CO ₃ for highly efficient removal of water contaminants. Environmental Science: Nano, 2022, 9, 1341-1352.	2.2	5
129	Ball-milled bismuth oxybromide/biochar composites with enhanced removal of reactive red owing to the synergy between adsorption and photodegradation. Journal of Environmental Management, 2022, 308, 114652.	3.8	24
130	A New Strategy for Plasma-Catalytic Reduction of No to N2 on the Surface of Modified Bi2moo6. SSRN Electronic Journal, 0, , .	0.4	0
131	Mechanistic insights into the photocatalytic reduction of nitric oxide to nitrogen on oxygen-deficient quasi-two-dimensional bismuth-based perovskites. Environmental Science: Nano, 2022, 9, 1453-1465.	2.2	11
132	Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: An effective electrocatalyst for oxygen evolution reaction. International Journal of Hydrogen Energy, 2022, 47, 12487-12499.	3.8	10
133	Designing "Core–Shell―Insolubleâ€SiW ₁₁ Fe@δâ€Bi ₂ O ₃ Zâ€Schen Heterojunction for Photoâ€Driven Nitrogen Reduction Reaction and Evaluating the Impact of Oxygen toward Nitrogen Reduction. Advanced Materials Interfaces, 2022, 9, .	าe 1.9	6
134	Design and mechanism of photocatalytic oxidation for the removal of air pollutants: a review. Environmental Chemistry Letters, 2022, 20, 2687-2708.	8.3	17
135	Review—Strategic Design of Layered Double Hydroxides and Graphitic Carbon Nitride Heterostructures for Photoelectrocatalytic Water Splitting Applications. Journal of the Electrochemical Society, 2022, 169, 046515.	1.3	9
136	Oxygen vacancies-modified S-scheme Bi2Ti2O7/CaTiO3 heterojunction for highly efficient photocatalytic NO removal under visible light. Journal of Environmental Chemical Engineering, 2022, 10, 107420.	3.3	7
137	Layered bismuth-based photocatalysts. Coordination Chemistry Reviews, 2022, 463, 214515.	9.5	99
138	A new strategy for plasma-catalytic reduction of NO to N2 on the surface of modified Bi2MoO6. Chemical Engineering Journal, 2022, 440, 135754.	6.6	13
139	Oxygen vacancy engineering of photocatalytic nanomaterials for enrichment, activation, and efficient removal of nitrogen oxides with high selectivity: a review. Environmental Chemistry Letters, 2022, 20, 3905-3925.	8.3	17
140	Singlet Oxygen and Mobile Hydroxyl Radicals Co-operating on Gas–Solid Catalytic Reaction Interfaces for Deeply Oxidizing NO _{<i>x</i>} . Environmental Science & Technology, 2022, 56, 5830-5839.	4.6	22
141	Nh2-Mil-125(Ti) Modified Graphitic Carbon Nitride with Carbon Vacancy for Efficient Photocatalytic No Removal. SSRN Electronic Journal, 0, , .	0.4	0
142	In-situ monitoring of dynamic behavior of catalyst materials and reaction intermediates in semiconductor catalytic processes. Journal of Semiconductors, 2022, 43, 041104.	2.0	10
143	Oxygen vacancy-engineered BaTiO3 nanoparticles for synergistic cancer photothermal, photodynamic, and catalytic therapy. Nano Research, 2022, 15, 7304-7312.	5.8	19
144	Modulating pâ€Orbital of Bismuth Nanosheet by Nickel Doping for Electrocatalytic Carbon Dioxide Reduction Reaction. ChemSusChem, 2022, 15, .	3.6	7

#	Article	IF	CITATIONS
145	Sonophotocatalytic treatment of wastewater using simulated solar light-driven Bi2O3-ZnO nanophotocatalyst sensitized with copper phthalocyanine. Materials Chemistry and Physics, 2022, 288, 126355.	2.0	9
146	Effect of coloured TiO ₂ with different oxygen vacancy concentrations on the photocatalytic oxidation of gaseous mercury. International Journal of Environmental Analytical Chemistry, 0, , 1-10.	1.8	0
147	Optimization of the Bi2O3/Cu synthesis process using response surface methodology as a tetracycline photodegradation agent. Results in Engineering, 2022, 16, 100521.	2.2	5
148	NH2-MIL-125(Ti) modified graphitic carbon nitride with carbon vacancy for efficient photocatalytic NO removal. Chemosphere, 2022, 307, 135660.	4.2	9
149	Interfacial dependent reactive oxygen species generation over Pt-ZrO2 nanoparticles for catalytic oxidation of formaldehyde at room temperature. Applied Surface Science, 2022, 600, 154056.	3.1	14
150	In-situ growth into jungle-like Bi2O3/Bi2O2CO3 heterostructures with concentration-controllable oxygen vacancy and ratio-tunable phase composition. Materials Science in Semiconductor Processing, 2022, 150, 106893.	1.9	1
151	Bismuth based novel substrate for surface enhanced Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 280, 121576.	2.0	5
152	2D Z-scheme heterojunction and oxygen deficiency synergistically boosting the photocatalytic activity of a layered BaTiO3/BiOIO3 composite. Applied Materials Today, 2022, 29, 101574.	2.3	9
153	Constructing Oxygen Vacancies on Bi ₂ MoO ₆ Nanosheets by Aqueous Ammonia Etching with Enhanced Photocatalytic NO Oxidation Performance. Energy & Fuels, 2022, 36, 11485-11494.	2.5	7
154	Controlled synthesis of β-Bi2O3/Bi2O2CO3 hollow microspheres with enhanced photocatalytic degradation of tetracycline under visible light. Materials Today Communications, 2022, 33, 104304.	0.9	2
155	β particles induced directional inward migration of oxygen vacancies: Surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS. Applied Catalysis B: Environmental, 2022, 318, 121879.	10.8	97
156	Low temperature one-pot synthesis of 1,1-diethoxyethane from ethanol on Bi/BiCeOx with strong metal-support interactions. Nano Research, 2023, 16, 3709-3718.	5.8	3
157	Metal-doped carbon-supported/modified titanate nanotubes for perfluorooctane sulfonate degradation in water: Effects of preparation conditions, mechanisms, and parameter optimization. Science of the Total Environment, 2022, 853, 158573.	3.9	7
158	Engineering of Bi2O2CO3/Ti3C2Tx heterojunctions co-embedded with surface and interface oxygen vacancies for boosted photocatalytic degradation of levofloxacin. Chemical Engineering Journal, 2023, 452, 139327.	6.6	37
159	A novel S-scheme heterojunction based on 0D/3D CeO ₂ /Bi ₂ O ₂ CO ₃ for the photocatalytic degradation of organic pollutants. New Journal of Chemistry, 2022, 46, 15987-15998.	1.4	2
160	Metal-Doped Carbon-Supported/Modified Titanate Nanotubes for Perfluorooctane Sulfonate Degradation in Water:Effects of Preparation Conditions, Mechanisms, and Parameter Optimization. SSRN Electronic Journal, 0, , .	0.4	0
161	Typical layered structure bismuth-based photocatalysts for photocatalytic nitrogen oxides oxidation. Science of the Total Environment, 2023, 855, 158644.	3.9	15
162	Oxygen Vacancies Enhanced Ozonation toward Phenol Derivatives Removal over O _v -Bi ₂ O ₃ . ACS ES&T Water, 2022, 2, 1725-1733.	2.3	11

#	Article	IF	Citations
	Covalent organic framework membranes prepared via mixed linker modulated assembly for hydrogen		
163	peroxide enrichment. Journal of Membrane Science, 2022, 663, 121043.	4.1	1
164	OD/1D Bi2O3@TNTs composites synthesized by the decoration of Bi2O3 quantum dots onto titanate nanotubes: Synergistic adsorption of U(VI) and tetracycline. Separation and Purification Technology, 2023, 306, 122537.	3.9	8
165	Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Applied Catalysis B: Environmental, 2023, 323, 122151.	10.8	34
166	Ion doping engineering of nickel-doped BiOIO3 nanosheets for gaining oxygen vacancy to enhance light absorption. Fuel Processing Technology, 2023, 241, 107626.	3.7	11
167	Photocatalytic NO removal over defective Bi/BiOBr nanoflowers: The inhibition of toxic NO2 intermediate via high humidity. Applied Catalysis B: Environmental, 2023, 324, 122238.	10.8	37
168	Lightâ€Emitting Diode Visibleâ€Lightâ€Driven Photocatalytic Redox Reactions in Nitrogen Oxide Removal Using βâ€Bi ₂ O ₃ /Bi/gâ€C ₃ N ₄ Prepared by Oneâ€Step In Thermal Reduction Synthesis. Advanced Energy and Sustainability Research, 2023, 4, .	sSit8	2
169	Heterogeneous interfacial photocatalysis for the inactivation of Karenia mikimotoi by Bi2O3 loaded onto a copper metal organic framework (Bi2O3@Cu-MOF) under visible light. Chemical Engineering Journal, 2023, 456, 141154.	6.6	18
170	Methods and strategies for producing porous photocatalysts: Review. Journal of Solid State Chemistry, 2023, 320, 123834.	1.4	3
171	Visible-light driven p–n heterojunction formed between α-Bi ₂ O ₃ and Bi ₂ O ₂ CO ₃ for efficient photocatalytic degradation of tetracycline. RSC Advances, 2023, 13, 1594-1605.	1.7	12
172	Electronically modulated d-band centers of MOF-derived carbon-supported Ru/HfO2 for oxygen reduction and aqueous/flexible zinc-air batteries. Journal of Energy Chemistry, 2023, 80, 247-255.	7.1	7
173	A review of self-cleaning photocatalytic surface: Effect of surface characteristics on photocatalytic activity for NO. Environmental Pollution, 2023, 327, 121580.	3.7	6
174	TiO2 mesocrystals: Immobilisation, surface fluorination and application in photocatalytic water treatment. Applied Surface Science, 2023, 616, 156487.	3.1	4
175	BiOI-SnO2 Heterojunction Design to Boost Visible-Light-Driven Photocatalytic NO Purification. International Journal of Environmental Research and Public Health, 2023, 20, 4009.	1.2	3
176	Size-Independent Reconfigurable Logic Gate with Bismuth Oxide Based Photoelectrochemical Device. Journal of the American Chemical Society, 2023, 145, 4969-4974.	6.6	1
177	Construction of Ternary Bismuthâ€Based Heterojunction by Using (BiO) ₂ CO ₃ as Electron Bridge for Highly Efficient Degradation of Phenol. Chemistry - A European Journal, 2023, 29, .	1.7	9
188	Recent advances of semiconductor photocatalysis for water pollutant treatment: mechanisms, materials and applications. Physical Chemistry Chemical Physics, 2023, 25, 25899-25924.	1.3	1
189	Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Research, 2024, 17, 1003-1026.	5.8	0
195	Recent Progress and Current Status of Photocatalytic NO Removal. , 0, , .		0

ARTICLE

IF CITATIONS