Control Strategies for Soft Robotic Manipulators: A Sur-

Soft Robotics 5, 149-163 DOI: 10.1089/soro.2017.0007

Citation Report

#	Article	IF	CITATIONS
1	Research on Bending and Torsion Properties of Bionic Square Continuum Robot. , 2018, , .		1
2	Modeling and Model-free Fuzzy Control of a Continuum Robotic Arm. , 2018, , .		6
3	Control of Tendon-Driven Soft Foam Robot Hands. , 2018, , .		25
4	Novel Design and Position Control Strategy of a Soft Robot Arm. Robotics, 2018, 7, 72.	2.1	16
5	Control Design for Soft Robots based on Reduced Order Model. IEEE Robotics and Automation Letters, 2018, , 1-1.	3.3	32
6	Continuum Robot Control Based on Virtual Discrete-Jointed Robot Models. , 2018, , .		5
7	Localized online learning-based control of a soft redundant manipulator under variable loading. Advanced Robotics, 2018, 32, 1168-1183.	1,1	20
8	Neural network–based terminal sliding mode applied to position/force adaptive control for constrained robotic manipulators. Advances in Mechanical Engineering, 2018, 10, 168781401878128.	0.8	10
9	Toward Perceptive Soft Robots: Progress and Challenges. Advanced Science, 2018, 5, 1800541.	5.6	468
10	Capability by Stacking: The Current Design Heuristic for Soft Robots. Biomimetics, 2018, 3, 16.	1.5	15
11	A Novel Iterative Learning Model Predictive Control Method for Soft Bending Actuators. , 2019, , .		17
12	Cerebellum-inspired approach for adaptive kinematic control of soft robots. , 2019, , .		11
13	Open Loop Position Control of Soft Continuum Arm Using Deep Reinforcement Learning. , 2019, , .		56
14	Nonlinear System Identification of Soft Robot Dynamics Using Koopman Operator Theory. , 2019, , .		41
15	Linear and Nonlinear Low Level Control of a Soft Pneumatic Actuator. , 2019, , .		14
16	Stable Control of Force, Position, and Stiffness for Robot Joints Powered via Pneumatic Muscles. IEEE Transactions on Industrial Informatics, 2019, 15, 6270-6279.	7.2	27
17	Multi-surface sliding mode control of continuum robots with mismatched uncertainties. Meccanica, 2019, 54, 2307-2316.	1.2	17
18	Kinematics Modeling of a Twisted and Coiled Polymer-Based Elastomer Soft Robot. IEEE Access, 2019, 7, 136792-136800.	2.6	10

TION RE

#	Article	IF	CITATIONS
19	US monetary policy, oil and gold prices: Which has a greater impact on BRICS stock markets?. Economic Analysis and Policy, 2019, 64, 130-151.	3.2	17
20	Kinematic Modeling of A Constant Curvature Continuum Manipulator Using Finite Element Analysis. , 2019, , .		2
21	Design, Fabrication and Experiments of a 3D-motion Soft Elastomer Actuator. , 2019, , .		5
22	Structured motor exploration for adaptive learning-based tracking in soft robotic manipulators. , 2019, , .		2
23	Soft robot perception using embedded soft sensors and recurrent neural networks. Science Robotics, 2019, 4, .	9.9	383
24	Elasticity Versus Hyperelasticity Considerations in Quasistatic Modeling of a Soft Finger-Like Robotic Appendage for Real-Time Position and Force Estimation. Soft Robotics, 2019, 6, 228-249.	4.6	35
25	Vision-Based Online Learning Kinematic Control for Soft Robots Using Local Gaussian Process Regression. IEEE Robotics and Automation Letters, 2019, 4, 1194-1201.	3.3	80
26	Design and Analysis of a Square-Shaped Continuum Robot With Better Grasping Ability. IEEE Access, 2019, 7, 57151-57162.	2.6	19
27	Fabric-Based Soft Grippers Capable of Selective Distributed Bending for Assistance of Daily Living Tasks. , 2019, , .		8
28	Model-Based Control of Soft Actuators Using Learned Non-linear Discrete-Time Models. Frontiers in Robotics and Al, 2019, 6, 22.	2.0	43
29	Parameter Identification and Model-Based Nonlinear Robust Control of Fluidic Soft Bending Actuators. IEEE/ASME Transactions on Mechatronics, 2019, 24, 1346-1355.	3.7	51
30	Multi-level control architecture for Bionic Handling Assistant robot augmented by learning from demonstration for apple-picking. Advanced Robotics, 2019, 33, 469-485.	1.1	12
31	Robotic Skins That Learn to Control Passive Structures. IEEE Robotics and Automation Letters, 2019, 4, 2485-2492.	3.3	15
32	Exact Task Execution in Highly Under-Actuated Soft Limbs: An Operational Space Based Approach. IEEE Robotics and Automation Letters, 2019, 4, 2508-2515.	3.3	12
33	Emergence of behavior through morphology: a case study on an octopus inspired manipulator. Bioinspiration and Biomimetics, 2019, 14, 034001.	1.5	8
34	A HSMDAQ System for EstimatingTransfer Function of a DC motor. , 2019, , .		2
35	Model based adaptive control for a soft robotic manipulator. , 2019, , .		4
36	Behavioral Assessment of Various Control Laws Formulations for Position Tracking of Multi-sectioning Modeled Continuum Robots. , 2019, , .		3

#	Article	IF	CITATIONS
37	A Matlab-Internal DSL for Modelling Hybrid Rigid-Continuum Robots with TMTDyn. , 2019, , .		6
38	Non-linear System Identification and State Estimation in a Pneumatic Based Soft Continuum Robot. , 2019, , .		11
39	Demonstration-based Programming of Multi-Point Trajectories for Collaborative Continuum Robots. IFAC-PapersOnLine, 2019, 52, 513-518.	0.5	4
40	Dynamic Modeling and Motion Control of a Soft Robotic Arm Segment. , 2019, , .		10
41	H-infinity based Extended Kalman Filter for State Estimation in Highly Non-linear Soft Robotic System. , 2019, , .		14
42	A Geometrically Exact Model for Soft Continuum Robots: The Finite Element Deformation Space Formulation. Soft Robotics, 2019, 6, 790-811.	4.6	151
43	Model-Based Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators. IEEE Transactions on Robotics, 2019, 35, 124-134.	7.3	228
44	Configuration Estimation for Accurate Position Control of Large-Scale Soft Robots. IEEE/ASME Transactions on Mechatronics, 2019, 24, 88-99.	3.7	41
45	Customizable Three-Dimensional-Printed Origami Soft Robotic Joint With Effective Behavior Shaping for Safe Interactions. IEEE Transactions on Robotics, 2019, 35, 114-123.	7.3	56
46	Robust control of continuum robots using Cosserat rod theory. Mechanism and Machine Theory, 2019, 131, 48-61.	2.7	62
47	Model-based dynamic feedback control of a planar soft robot: trajectory tracking and interaction with the environment. International Journal of Robotics Research, 2020, 39, 490-513.	5.8	151
48	Closed-loop 4D-printed soft robots. Materials and Design, 2020, 188, 108411.	3.3	127
49	Controlling of Pneumatic Muscle Actuator Systems by Parallel Structure of Neural Network and Proportional Controllers (PNNP). Frontiers in Robotics and AI, 2020, 7, 115.	2.0	10
50	Control Framework for Trajectory Planning of Soft Manipulator Using Optimized RRT Algorithm. IEEE Access, 2020, 8, 171730-171743.	2.6	30
51	Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. IScience, 2020, 23, 101682.	1.9	70
52	Surface Actuation and Sensing of a Tensegrity Structure Using Robotic Skins. Soft Robotics, 2021, 8, 531-541.	4.6	11
53	Fiber-Reinforced Soft Bending Actuator Control Utilizing On/Off Valves. IEEE Robotics and Automation Letters, 2020, 5, 6732-6739.	3.3	26
54	Continuum Robots for Manipulation Applications: A Survey. Journal of Robotics, 2020, 2020, 1-19.	0.6	58

ARTICLE IF CITATIONS # 3D/4D-printed bending-type soft pneumatic actuators: fabrication, modelling, and control. Virtual and 55 5.3 103 Physical Prototyping, 2020, 15, 373-402. Data–Driven Disturbance Observers for Estimating External Forces on Soft Robots. IEEE Robotics and 3.3 Automation Letters, 2020, 5, 5717-5724. Design and implementation of variable inclined air pillow soft pneumatic actuator suitable for 57 2.0 21 bioimpedance applications. Sensors and Actuators A: Physical, 2020, 314, 112272. Design and closed loop control of a 3D printed soft actuator., 2020,,. Underwater Mobile Manipulation: A Soft Arm on a Benthic Legged Robot. IEEE Robotics and 59 2.2 32 Automation Magazine, 2020, 27, 12-26. Model-Free Tracking Control of Continuum Manipulators With Global Stability and Assigned Accuracy. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 1345-1355. Design Criteria of Soft Exogloves for Hand Rehabilitation-Assistance Tasks. Applied Bionics and 61 0.5 10 Biomechanics, 2020, 2020, 1-19. Bilateral Teleoperation of Soft Robots under Piecewise Constant Curvature Hypothesis: An Experimental Investigation., 2020,,. Distance-directed Target Searching for a Deep Visual Servo SMA Driven Soft Robot Using Reinforcement Learning. Journal of Bionic Engineering, 2020, 17, 1126-1138. 63 2.7 28 Control-Based 4D Printing: Adaptive 4D-Printed Systems. Applied Sciences (Switzerland), 2020, 10, 3020. 1.3 Stiffness Analysis of a Pneumatic Soft Manipulator Based on Bending Shape Prediction. IEEE Access, 65 2.6 8 2020, 8, 82227-82241. Uniform conductivity in stretchable silicones <i>via</i> multiphase inclusions. Soft Matter, 2020, 16, 1.2 5827-5839. Biomedical soft robots: current status and perspective. Biomedical Engineering Letters, 2020, 10, 67 2.1 47 369-385. A Compression Valve for Sanitary Control of Fluid-Driven Actuators. IEEE/ASME Transactions on Mechatronics, 2020, 25, 1005-1015. 3.7 Optimal Design of a Compliant Constant-Force Mechanism to Deliver a Nearly Constant Output Force 69 4.6 31 Over a Range of Input Displacements. Soft Robotics, 2020, 7, 758-769. Towards an Untethered Knit Fabric Soft Continuum Robotic Module with Embedded Fabric Sensing., Coordinated Soft Robot Multi-Arm Manipulation., 2020, , . 0 71 Closing the Loop with Liquid-Metal Sensing Skin for Autonomous Soft Robot Gripping., 2020, , .

#	Article	IF	CITATIONS
73	Cable-Driven Jamming of a Boundary Constrained Soft Robot. , 2020, , .		11
74	Topology optimization of a cable-driven soft robotic gripper. Structural and Multidisciplinary Optimization, 2020, 62, 2749-2763.	1.7	41
75	A proposed soft pneumatic actuator control based on angle estimation from data-driven model. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234, 612-625.	1.0	19
76	Nonlinear Model based Dynamic Control of Pneumatic driven Quasi Continuum Manipulators. , 2020, ,		7
77	First-Order Dynamic Modeling and Control of Soft Robots. Frontiers in Robotics and AI, 2020, 7, 95.	2.0	28
78	Challenges of continuum robots in clinical context: a review. Progress in Biomedical Engineering, 2020, 2, 032003.	2.8	116
79	Medical robotics. , 2020, , 153-204.		10
80	Future trends in I&M: Indirect sensing in soft robots using observers/filters. IEEE Instrumentation and Measurement Magazine, 2020, 23, 42-43.	1.2	4
81	Model-Based Pose Control of Inflatable Eversion Robot With Variable Stiffness. IEEE Robotics and Automation Letters, 2020, 5, 3398-3405.	3.3	25
82	A Probabilistic Model-Based Online Learning Optimal Control Algorithm for Soft Pneumatic Actuators. IEEE Robotics and Automation Letters, 2020, 5, 1437-1444.	3.3	20
83	Machine Learning for Soft Robotic Sensing and Control. Advanced Intelligent Systems, 2020, 2, 1900171.	3.3	110
84	On an Improved State Parametrization for Soft Robots With Piecewise Constant Curvature and Its Use in Model Based Control. IEEE Robotics and Automation Letters, 2020, 5, 1001-1008.	3.3	110
85	Open-Loop Position Control in Collaborative, Modular Variable-Stiffness-Link (VSL) Robots. IEEE Robotics and Automation Letters, 2020, 5, 1772-1779.	3.3	22
86	Concentric Precurved Bellows: New Bending Actuators for Soft Robots. IEEE Robotics and Automation Letters, 2020, 5, 1215-1222.	3.3	7
87	A Geometric Variable-Strain Approach for Static Modeling of Soft Manipulators With Tendon and Fluidic Actuation. IEEE Robotics and Automation Letters, 2020, 5, 4006-4013.	3.3	61
88	Electronic skins and machine learning for intelligent soft robots. Science Robotics, 2020, 5, .	9.9	339
89	Energy-shaping control of soft continuum manipulators with in-plane disturbances. International Journal of Robotics Research, 2021, 40, 236-255.	5.8	37
90	Algebraic approach towards the exploitation of "softnessâ€: the input–output equation for morphological computation. International Journal of Robotics Research, 2021, 40, 99-118	5.8	9

#	Article	IF	CITATIONS
91	Dynamic Control of Multisection Three-Dimensional Continuum Manipulators Based on Virtual Discrete-Jointed Robot Models. IEEE/ASME Transactions on Mechatronics, 2021, 26, 777-788.	3.7	39
92	Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments. Advanced Intelligent Systems, 2021, 3, 2000187.	3.3	130
93	Finite-time tracking control for a variable stiffness pneumatic soft bionic caudal fin. Mechanical Systems and Signal Processing, 2021, 152, 107314.	4.4	10
94	Construction of Controller Model of Notch Continuum Manipulator for Laryngeal Surgery Based on Hybrid Method. IEEE/ASME Transactions on Mechatronics, 2021, 26, 1022-1032.	3.7	20
95	Shape Changing Robots: Bioinspiration, Simulation, and Physical Realization. Advanced Materials, 2021, 33, e2002882.	11.1	66
96	Model-based online learning and adaptive control for a "human-wearable soft robot―integrated system. International Journal of Robotics Research, 2021, 40, 256-276.	5.8	56
97	Trajectory Tracking Control Design for Large-Scale Linear Dynamical Systems With Applications to Soft Robotics. IEEE Transactions on Control Systems Technology, 2021, 29, 556-566.	3.2	22
98	<i>TMTDyn</i> : A Matlab package for modeling and control of hybrid rigid–continuum robots based on discretized lumped systems and reduced-order models. International Journal of Robotics Research, 2021, 40, 296-347.	5.8	52
99	Spider Origami: Folding Principle of Jumping Spider Leg Joints for Bioinspired Fluidic Actuators. Advanced Science, 2021, 8, 2003890.	5.6	22
100	Co-optimization of Morphology and Actuation Parameters of Multi-sectional FREEs for Trajectory Matching. IEEE Robotics and Automation Letters, 2021, , 1-1.	3.3	2
101	Structured Prediction for CRiSP Inverse Kinematics Learning With Misspecified Robot Models. IEEE Robotics and Automation Letters, 2021, 6, 5650-5657.	3.3	2
102	Soft Robots. , 2021, , 1-15.		12
103	Cosserat Rod-Based Dynamic Modeling of Tendon-Driven Continuum Robots: A Tutorial. IEEE Access, 2021, 9, 68703-68719.	2.6	42
104	Steering Mechanisms for Continuum Devices using Flexible Loops. Journal of Japan Society of Computer Aided Surgery, 2021, 23, 65-72.	0.1	0
105	A Novel Design for a Compliant Mechanism Based Variable Stiffness Grasper Through Structure Modulation. Journal of Medical Devices, Transactions of the ASME, 2021, 15, .	0.4	4
106	Skeletonizing the Dynamics of Soft Continuum Body from Video. Soft Robotics, 2022, 9, 201-211.	4.6	4
107	Solarâ€Ðriven Soft Robots. Advanced Science, 2021, 8, 2004235.	5.6	17
108	Fuzzy Adaptive Variable Structure Control of Second-Order Robotic Manipulators with Dead Zones. Journal of Mathematics, 2021, 2021, 1-9.	0.5	0

#	Article	IF	CITATIONS
109	Harnessing the Multistability of Kresling Origami for Reconfigurable Articulation in Soft Robotic Arms. Soft Robotics, 2022, 9, 212-223.	4.6	55
110	Tactile sensing biohybrid soft E-skin based on bioimpedance using aloe vera pulp tissues. Scientific Reports, 2021, 11, 3054.	1.6	7
111	Construction of business strategic planning structure model based on deep learning algorithm. Information Systems and E-Business Management, 0, , 1.	2.2	2
112	Distributed Mode-Dependent Event-Triggered Passive Filtering for Flexible Manipulator with Semi-Markov Parameters. Sensors, 2021, 21, 2058.	2.1	0
113	Neural Networks Predicting Microbial Fuel Cells Output for Soft Robotics Applications. Frontiers in Robotics and AI, 2021, 8, 633414.	2.0	15
114	Control and Trajectory Optimization for Soft Aerial Manipulation. , 2021, , .		8
115	Robust Fractional-Order Control Using a Decoupled Pitch and Roll Actuation Strategy for the I-Support Soft Robot. Mathematics, 2021, 9, 702.	1.1	2
116	Optimization of NPIC Controller using Genetic Algorithm. IOP Conference Series: Materials Science and Engineering, 2021, 1104, 012001.	0.3	2
117	Design, Fabrication, and Characterization of a Helical Twisting, Contracting, and Bending Fabric Soft Continuum Actuator. , 2021, , .		2
118	Configuration Tracking for Soft Continuum Robotic Arms Using Inverse Dynamic Control of a Cosserat Rod Model. , 2021, , .		11
119	Energy shaping control with integral action for soft continuum manipulators. Mechanism and Machine Theory, 2021, 158, 104250.	2.7	19
120	Elastica: A Compliant Mechanics Environment for Soft Robotic Control. IEEE Robotics and Automation Letters, 2021, 6, 3389-3396.	3.3	66
121	Bayesian Neural Network Modeling and Hierarchical MPC for a Tendon-Driven Surgical Robot With Uncertainty Minimization. IEEE Robotics and Automation Letters, 2021, 6, 2642-2649.	3.3	10
122	Characterizing Continuous Manipulation Families for Dexterous Soft Robot Hands. Frontiers in Robotics and Al, 2021, 8, 645290.	2.0	2
123	The new material science of robots. Current Opinion in Solid State and Materials Science, 2021, 25, 100894.	5.6	3
124	Emerging behaviours from cyclical, incremental and uniform movements of hyper-redundant and growing robots. Mechanism and Machine Theory, 2021, 158, 104198.	2.7	1
125	FEM-Based Gain-Scheduling Control of a Soft Trunk Robot. IEEE Robotics and Automation Letters, 2021, 6, 3081-3088.	3.3	17
126	Hybrid Adaptive Control Strategy for Continuum Surgical Robot Under External Load. IEEE Robotics and Automation Letters, 2021, 6, 1407-1414.	3.3	30

#	Article	IF	Citations
127	Dynamics and Control Structure for NPID Controller. IOP Conference Series: Materials Science and Engineering, 2021, 1116, 012141.	0.3	5
128	Vacuum induced tube pinching enables reconfigurable flexure joints with controllable bend axis and stiffness. , 2021, , .		9
129	Transfer learning for accurate modeling and control of soft actuators. , 2021, , .		6
130	Gaussian Process Dynamics Models for Soft Robots with Shape Memory Actuators. , 2021, , .		6
131	Intelligent Soft Surgical Robots for Nextâ€Generation Minimally Invasive Surgery. Advanced Intelligent Systems, 2021, 3, 2100011.	3.3	55
132	Using First Principles for Deep Learning and Model-Based Control of Soft Robots. Frontiers in Robotics and Al, 2021, 8, 654398.	2.0	18
133	Modeling, learning, perception, and control methods for deformable object manipulation. Science Robotics, 2021, 6, .	9.9	96
134	A Neural Network Based Dynamic Control Method for Soft Pneumatic Actuator with Symmetrical Chambers. Actuators, 2021, 10, 112.	1.2	8
135	A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus. Bioinspiration and Biomimetics, 2021, 16, 046007.	1.5	28
136	An Integrated Kinematic Modeling and Experimental Approach for an Active Endoscope. Frontiers in Robotics and Al, 2021, 8, 667205.	2.0	1
137	A New Approach of Soft Joint Based on a Cable-Driven Parallel Mechanism for Robotic Applications. Mathematics, 2021, 9, 1468.	1.1	5
138	Soft Robotic Hands and Tactile Sensors for Underwater Robotics. Applied Mechanics, 2021, 2, 356-383.	0.7	25
139	Task space adaptation via the learning of gait controllers of magnetic soft millirobots. International Journal of Robotics Research, 2021, 40, 1331-1351.	5.8	10
140	Position regulation in Cartesian space of a class of inextensible soft continuum manipulators with pneumatic actuation. Mechatronics, 2021, 76, 102573.	2.0	10
141	Modelling and implementation of soft bio-mimetic turtle using echo state network and soft pneumatic actuators. Scientific Reports, 2021, 11, 12076.	1.6	21
142	Designing and Analysis of Dynamic Model for Robotic Manipulator. Lecture Notes in Electrical Engineering, 2022, , 683-691.	0.3	1
143	Kinematic Model Predictive Control for a Novel Tethered Aerial Cable-Driven Continuum Robot. , 2021, , .		4
144	Cable Configuration and Driving Force Analysis of a Cable-Driven Hyper-Redundant Manipulator. , 2021,		0

#	Article	IF	CITATIONS
145	Visual Servoing of a Cable-Driven Soft Robot Manipulator With Shape Feature. IEEE Robotics and Automation Letters, 2021, 6, 4281-4288.	3.3	38
146	A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots. Advanced Materials Technologies, 2021, 6, 2100437.	3.0	18
147	Individual deformability compensation of soft hydraulic actuators through iterative learning-based neural network. Bioinspiration and Biomimetics, 2021, 16, 056016.	1.5	3
148	Kinematics and Stiffness of Active-Passive Hybrid Cable-Driven Robots: Modeling and Analysis. , 2021, , .		2
149	Hybrid adaptive disturbance rejection control for inflatable robotic arms. ISA Transactions, 2022, 126, 617-628.	3.1	8
150	Linear Drive Based on Silicon/Ethanol Composite. Polymers, 2021, 13, 2668.	2.0	3
151	Nonlinear energy-based control of soft continuum pneumatic manipulators. Nonlinear Dynamics, 2021, 106, 229-253.	2.7	32
152	Soft Robotics: Morphology and Morphology-inspired Motion Strategy. IEEE/CAA Journal of Automatica Sinica, 2021, 8, 1500-1522.	8.5	24
153	Adaptive robust control of soft bending actuators: an empirical nonlinear model-based approach. Journal of Zhejiang University: Science A, 2021, 22, 681-694.	1.3	7
154	Design, Fabrication, and Performance Analysis of a Vertically Suspended Soft Manipulator. International Journal of Automation Technology, 2021, 15, 696-705.	0.5	1
155	Prediction model-based learning adaptive control for underwater grasping of a soft manipulator. International Journal of Intelligent Robotics and Applications, 2021, 5, 337-353.	1.6	3
156	Static Modeling of Soft Reinforced Bending Actuator Considering External Force Constraints. Soft Robotics, 2022, 9, 776-787.	4.6	9
157	A Survey for Machine Learning-Based Control of Continuum Robots. Frontiers in Robotics and Al, 2021, 8, 730330.	2.0	40
158	Koopman-Based Control of a Soft Continuum Manipulator Under Variable Loading Conditions. IEEE Robotics and Automation Letters, 2021, 6, 6852-6859.	3.3	34
159	Constrained visual predictive control of tendon-driven continuum robots. Robotics and Autonomous Systems, 2021, 145, 103856.	3.0	8
160	Theoretical and experimental investigation study of data driven work envelope modelling for 3D printed soft pneumatic actuators. Sensors and Actuators A: Physical, 2021, 331, 112978.	2.0	9
161	Origami-Inspired Soft Actuators for Stimulus Perception and Crawling Robot Applications. IEEE Transactions on Robotics, 2022, 38, 748-764.	7.3	39
162	Adaptive Energy Shaping Control of a Class of Nonlinear Soft Continuum Manipulators. IEEE/ASME Transactions on Mechatronics, 2022, 27, 280-291.	3.7	17

#	Article	IF	CITATIONS
163	Hierarchical control of soft manipulators towards unstructured interactions. International Journal of Robotics Research, 2021, 40, 411-434.	5.8	52
164	Robotic Motion Coordination Based on a Geometric Deformation Measure. IEEE Systems Journal, 2022, 16, 3689-3699.	2.9	6
165	Soft Robots. , 2020, , 1-14.		40
166	Disturbance Observer Based Control for Quasi Continuum Manipulators. IFAC-PapersOnLine, 2020, 53, 9808-9813.	0.5	8
167	Position Control of Soft Manipulators with Dynamic and Kinematic Uncertainties. IFAC-PapersOnLine, 2020, 53, 9847-9852.	0.5	3
168	Gripping Force Modeling of a Variable Inclined Air Pillow Soft Pneumatic Actuator. , 2020, , .		4
169	Modelling the Soft Robot <i>Kyma</i> Based on Real‶ime Finite Element Method. Computer Graphics Forum, 2020, 39, 289-302.	1.8	8
170	Learning of Sub-optimal Gait Controllers for Magnetic Walking Soft Millirobots. , 2020, 2020, .		12
171	Open-Loop Motion Control of a Hydraulic Soft Robotic Arm Using Deep Reinforcement Learning. Lecture Notes in Computer Science, 2021, , 302-312.	1.0	2
172	Workspace Analysis and Stiffness Optimization of Snake-Like Cable-Driven Redundant Robots. Lecture Notes in Computer Science, 2021, , 653-665.	1.0	2
173	States and Contact Forces Estimation for a Fabric-Reinforced Inflatable Soft Robot. , 2021, , .		5
174	TRANS-AM: Transfer Learning by Aggregating Dynamics Models for Soft Robotic Assembly. , 2021, , .		7
175	Deep Reinforcement Learning Framework for Underwater Locomotion of Soft Robot. , 2021, , .		12
176	Adaptive Tracking Control of Soft Robots Using Integrated Sensing Skins and Recurrent Neural Networks. , 2021, , .		2
177	Soft Robot Optimal Control Via Reduced Order Finite Element Models. , 2021, , .		13
178	Soft manipulator control via gain-scheduling strategy. , 2021, , .		0
179	Design and Control of Pneumatic Systems for Soft Robotics: A Simulation Approach. IEEE Robotics and Automation Letters, 2021, 6, 5800-5807.	3.3	26
180	From Bioinspiration to Computer Generation: Developments in Autonomous Soft Robot Design. Advanced Intelligent Systems, 2022, 4, 2100086.	3.3	47

#	Article	IF	CITATIONS
181	Observer-Based Adaptive Sliding Mode Control for Soft Actuators with Input Constraints. Lecture Notes in Electrical Engineering, 2022, , 524-533.	0.3	0
182	Design, Construction and Validation of a Proof of Concept Flexible–Rigid Mechanism Emulating Human Leg Behavior. Applied Sciences (Switzerland), 2021, 11, 9351.	1.3	2
183	Force Control of a 3D Printed Soft Gripper with Built-In Pneumatic Touch Sensing Chambers. Soft Robotics, 2022, 9, 970-980.	4.6	20
184	Multiple Module Manipulator with Control Strategy for Minimally Invasive Surgery. , 2020, , .		0
185	A Kind of Kinematics Modeling of 2 DOFs Notched Continuum Manipulator. , 2020, , .		0
186	Pose Estimation and Tracking Control of a Pneumatic Soft Robotic Hand. IFAC-PapersOnLine, 2020, 53, 9962-9967.	0.5	2
187	Nonlinear Model Predictive Control of a Robotic Soft Esophagus. IEEE Transactions on Industrial Electronics, 2022, 69, 10363-10373.	5.2	3
188	Highly stretchable-compressible coiled polymer sensor for soft continuum manipulator. Smart Materials and Structures, 2022, 31, 015043.	1.8	7
189	Soft Actuators and Robotic Devices for Rehabilitation and Assistance. Advanced Intelligent Systems, 2022, 4, 2100140.	3.3	44
190	What is an artificial muscle? A comparison of soft actuators to biological muscles. Bioinspiration and Biomimetics, 2022, 17, 011001.	1.5	27
191	Stochastic spatio-temporal optimization for control and co-design of systems in robotics and applied physics. Autonomous Robots, 2022, 46, 283-306.	3.2	5
192	FEA-Based Inverse Kinematic Control: Hyperelastic Material Characterization of Self-Healing Soft Robots. IEEE Robotics and Automation Magazine, 2022, 29, 78-88.	2.2	9
193	Piston-Driven Pneumatically-Actuated Soft Robots: Modeling and Backstepping Control. , 2022, 6, 1837-1842.		15
194	Constrained Reachability Problems forÂaÂPlanar Manipulator. Lecture Notes in Electrical Engineering, 2022, , 17-31.	0.3	1
195	Analytical Modeling and Control of Soft Fast Pneumatic Networks Actuators. , 2020, , .		5
196	Optimizing a Continuum Manipulator's Search Policy Through Model-Free Reinforcement Learning. , 2020, , .		5
197	A Discrete-Jointed Robot Model Based Control Strategy for Spatial Continuum Manipulators. , 2020, , .		4
198	SENSORIMOTOR GRAPH: Action-Conditioned Graph Neural Network for Learning Robotic Soft Hand Dynamics. , 2021, , .		2

#	Article	IF	CITATIONS
199	Dynamic Grasping with a "Soft" Drone: From Theory to Practice. , 2021, , .		23
200	A Parameter Identification Method for Static Cosserat Rod Models: Application to Soft Material Actuators with Exteroceptive Sensors. , 2021, , .		11
201	Task Driven Skill Learning in a Soft-Robotic Arm. , 2021, , .		2
202	A Soft Somesthetic Robotic Finger Based on Conductive Working Liquid and an Origami Structure. , 2021, , .		1
203	Quasi-static Optimal Design of a Pneumatic Soft Robot to Maximize Pressure-to-Force Transference. , 2021, , .		3
204	Adaptive Neural Network Based Sliding Mode Control of Continuum Robots with Mismatched Uncertainties. , 2021, , .		2
205	Underwater Soft Robotics: A Review of Bioinspiration in Design, Actuation, Modeling, and Control. Micromachines, 2022, 13, 110.	1.4	42
206	Evolutionary Inverse Material Identification: Bespoke Characterization of Soft Materials Using a Metaheuristic Algorithm. Frontiers in Robotics and AI, 2021, 8, 790571.	2.0	3
207	Closed-Loop Dynamic Control of a Soft Manipulator Using Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2022, 7, 4741-4748.	3.3	24
208	Energy Shaping Control of Hydraulic Soft Continuum Planar Manipulators. , 2022, 6, 1748-1753.		7
209	Equivalent-Input-Disturbance-Based Dynamic Tracking Control for Soft Robots via Reduced-Order Finite-Element Models. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4078-4089.	3.7	8
210	A review of soft manipulator research, applications, and opportunities. Journal of Field Robotics, 2022, 39, 281-311.	3.2	46
211	Control Strategies for Soft Robot Systems. Advanced Intelligent Systems, 2022, 4, .	3.3	64
212	Kawaii emotions in presentations: Viewing a physical touch affects perception of affiliative feelings of others toward an object. PLoS ONE, 2022, 17, e0264736.	1.1	5
213	Visual servoing of continuum robots: Methods, challenges, and prospects. International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18, e2384.	1.2	11
214	Model-Based Nonlinear Feedback Controllers for Pressure Control of Soft Pneumatic Actuators Using On/Off Valves. Frontiers in Robotics and Al, 2022, 9, 818187.	2.0	3
215	Kinematic Analysis of Soft Continuum Manipulators Based on Sparse Workspace Mapping. IEEE Robotics and Automation Letters, 2022, 7, 5055-5062.	3.3	1
216	Controlling Soft Robotic Arms Using Continual Learning. IEEE Robotics and Automation Letters, 2022, 7, 5469-5476.	3.3	8

#	Article	IF	Citations
217	FEM-Based Nonlinear Controller for a Soft Trunk Robot. IEEE Robotics and Automation Letters, 2022, 7, 5735-5740.	3.3	3
218	Synchronous Motion Generation of Multiple Continuum Robots Based on a Jacobian-Estimation Strategy. , 2021, , .		1
219	A Novel 3D Ring-Based Flapper Valve for Soft Robotic Applications. Robotics, 2022, 11, 2.	2.1	0
220	Open-loop Model-free Dynamic Control of a Soft Manipulator for Tracking Tasks. , 2021, , .		3
221	A Dataâ€Driven Review of Soft Robotics. Advanced Intelligent Systems, 2022, 4, .	3.3	28
222	Human Assistance and Augmentation with Wearable Soft Robotics: a Literature Review and Perspectives. Current Robotics Reports, 2021, 2, 399-413.	5.1	10
223	New effective bending rigidity and structural instability analysis of noncircular cross-section elastic rod model. European Physical Journal: Special Topics, 2022, 231, 2325-2334.	1.2	3
224	Swing up Control of a Soft Inverted Pendulum with Revolute Base. , 2021, , .		3
225	Trajectory Generation for Multiprocess Robotic Tasks Based on Nested Dual-Memory Deep Deterministic Policy Gradient. IEEE/ASME Transactions on Mechatronics, 2022, 27, 4643-4653.	3.7	8
226	Model reference adaptive control of a soft bending actuator with input constraints and parametric uncertainties. Mechatronics, 2022, 84, 102800.	2.0	6
228	Closing the Control Loop with Time-Variant Embedded Soft Sensors and Recurrent Neural Networks. Soft Robotics, 2022, 9, 1167-1176.	4.6	9
229	Public Opinion About the Benefit, Risk, and Acceptance of Aerial Manipulation Systems. IEEE Transactions on Human-Machine Systems, 2022, 52, 1069-1085.	2.5	4
230	Model-Based Data-Driven System Identification and Controller Synthesis Framework for Precise Control of SISO and MISO HASEL-Powered Robotic Systems. , 2022, , .		1
231	Tractable and Intuitive Dynamic Model for Soft Robots via the Recursive Newton-Euler Algorithm. , 2022, , .		1
232	Open Source Tendon-driven Continuum Mechanism: A Platform for Research in Soft Robotics. , 2022, , .		7
233	Soft Pneumatic Actuators: A Review of Design, Fabrication, Modeling, Sensing, Control and Applications. IEEE Access, 2022, 10, 59442-59485.	2.6	72
234	Model-free dynamic control of robotic joints with integrated elastic ligaments. Robotics and Autonomous Systems, 2022, 155, 104150.	3.0	3
235	Recent Progress in Modeling and Control of Bio-Inspired Fish Robots. Journal of Marine Science and Engineering, 2022, 10, 773.	1.2	23

#	Article	IF	CITATIONS
236	Efficient Jacobian-Based Inverse Kinematics With Sim-to-Real Transfer of Soft Robots by Learning. IEEE/ASME Transactions on Mechatronics, 2022, 27, 5296-5306.	3.7	15
237	Modeling of a Soft Actuator With a Semicircular Cross Section Under Gravity and External Load. IEEE Transactions on Industrial Electronics, 2023, 70, 4952-4961.	5.2	0
238	Framework for simulation-based control design evaluation for a snake robot as an example of a multibody robotic system. Multibody System Dynamics, 2022, 55, 375-397.	1.7	5
239	Geometrically-Exact Inverse Kinematic Control of Soft Manipulators With General Threadlike Actuators' Routing. IEEE Robotics and Automation Letters, 2022, 7, 7311-7318.	3.3	8
240	Quasi-Static FEA Model for a Multi-Material Soft Pneumatic Actuator in SOFA. IEEE Robotics and Automation Letters, 2022, 7, 7391-7398.	3.3	2
241	4D-printed pneumatic soft actuators modeling, fabrication, and control. , 2022, , 103-140.		0
242	Computing Funnels Using Numerical Optimization Based Falsifiers. , 2022, , .		1
243	Forward Kinematics and Control of a Segmented Tunable-Stiffness 3-D Continuum Manipulator. , 2022, , ,		1
244	Reproduction of Human Demonstrations with a Soft-Robotic Arm based on a Library of Learned Probabilistic Movement Primitives. , 2022, , .		4
245	Finite element modeling of an origami-inspired delta mechanism with flexible components and joints. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2022, 236, 10914-10922.	1.1	2
246	Learning-Based Approach for a Soft Assistive Robotic Arm to Achieve Simultaneous Position and Force Control. IEEE Robotics and Automation Letters, 2022, 7, 8315-8322.	3.3	7
247	A policy gradient algorithm integrating long and short-term rewards for soft continuum arm control. Science China Technological Sciences, 2022, 65, 2409-2419.	2.0	3
248	Offset-free model predictive control of a soft manipulator using the Koopman operator. Mechatronics, 2022, 86, 102871.	2.0	8
249	On the Stability of the Soft Pendulum With Affine Curvature: Open-Loop, Collocated Closed-Loop, and Switching Control. , 2023, 7, 385-390.		2
250	Development of Pneumatic Networks Soft Robot with Anti-Windup PID Control. , 2022, , .		3
251	Obstacle Avoidance Path Planning and Motion Control for a Multi-Joint Soft Manipulator. , 2022, , .		2
252	Contact mechanics analysis of a soft robotic fingerpad. Frontiers in Mechanical Engineering, 0, 8, .	0.8	4
253	A concise guide to modelling the physics of embodied intelligence in soft robotics. Nature Reviews Physics, 2022, 4, 595-610.	11.9	36

#	Article	IF	CITATIONS
254	Cascade Control for Robust Tracking of Continuum Soft Robots With Finite-Time Convergence of Pneumatic System. , 2023, 7, 577-582.		3
255	A New Geometric Method for Solving the Inverse Kinematics of Two-Segment Continuum Robot. Lecture Notes in Computer Science, 2022, , 101-112.	1.0	0
256	Adaptive Optimal Tracking Control forÂContinuum Robots withÂUncertain Dynamics. Lecture Notes in Electrical Engineering, 2022, , 697-711.	0.3	1
257	Learning-based State-dependent Coefficient Form Task Space Tracking Control of Soft Robot. , 2022, , .		Ο
258	Two trajectory tracking control methods for space hyper-redundant cable-driven robots considering model uncertainty. Multibody System Dynamics, 2022, 56, 123-152.	1.7	8
259	Control of a Soft Actuator using a Long Short-Term Memory Neural Network. , 2022, , .		1
260	Optimal Contact Points for an Octopus Arm. SN Computer Science, 2022, 3, .	2.3	0
261	Dynamic Task Space Control Enables Soft Manipulators to Perform Realâ€World Tasks. Advanced Intelligent Systems, 2023, 5, .	3.3	8
262	Characterization of continuum robot arms under reinforcement learning and derived improvements. Frontiers in Robotics and AI, 0, 9, .	2.0	1
263	A Review of Locomotion, Control, and Implementation of Robot Fish. Journal of Intelligent and Robotic Systems: Theory and Applications, 2022, 106, .	2.0	9
264	Fabric Inflatable Soft Actuators for Soft Wearable Devices: The MOSAR Case. Machines, 2022, 10, 871.	1.2	1
265	Genetic Algorithm-based Optimal Design Strategy of a Continuum Surgical Manipulator. International Journal of Control, Automation and Systems, 2022, 20, 3312-3320.	1.6	Ο
266	A Reinforcement Learning Method for Motion Control With Constraints on an HPN Arm. IEEE Robotics and Automation Letters, 2022, 7, 12006-12013.	3.3	0
267	Adaptive Visual Servoing Shape Control of a Soft Robot Manipulator Using Bézier Curve Features. IEEE/ASME Transactions on Mechatronics, 2023, 28, 945-955.	3.7	5
268	Deep Direct Visual Servoing of Tendon-Driven Continuum Robots. , 2022, , .		1
269	Recent Synergies of Machine Learning and Neurorobotics: A Bibliometric and Visualized Analysis. Symmetry, 2022, 14, 2264.	1.1	1
270	A Magnetorheological Elastomerâ€Based Proportional Valve for Soft Pneumatic Actuators. Advanced Intelligent Systems, 2023, 5, .	3.3	1
271	Embodied Intelligence in soft robotics: joys and sorrows. IOP Conference Series: Materials Science and Engineering, 2022, 1261, 012002.	0.3	2

#	Article	IF	CITATIONS
272	A compliant robotic grip structure based on shape memory polymer composite. Composites Communications, 2022, 36, 101383.	3.3	19
273	Snakelike and Continuum Robots: A Review of Reviews. , 2022, , 1-14.		0
274	A Geometric Kinematic Model for Flexible Voxel-Based Robots. Soft Robotics, 0, , .	4.6	0
275	Variable Stiffness Pad and Its Application to Hybrid Rigid-Soft Robots. IEEE Access, 2022, 10, 123271-123282.	2.6	0
276	Design and control of an aerial-ground tethered tendon-driven continuum robot with hybrid routing. Robotics and Autonomous Systems, 2023, 161, 104344.	3.0	1
277	Machine Learning and Optimization Applications for Soft Robotics. Advances in Computational Intelligence and Robotics Book Series, 2022, , 13-29.	0.4	0
278	A novel obstacle avoidance heuristic algorithm of continuum robot based on FABRIK. Science China Technological Sciences, 2022, 65, 2952-2966.	2.0	0
279	Backstepping Control for Tracking of Solenoid Valve Actuated Pneumatic Continuum Soft Robots. , 2022, , .		Ο
280	Adaptive Pincer Grasping of Soft Pneumatic Grippers Based on Object Stiffness for Modellable and Controllable Grasping Quality. Robotics, 2022, 11, 132.	2.1	2
281	Hydrogel and Machine Learning for Soft Robots' Sensing and Signal Processing: A Review. Journal of Bionic Engineering, 2023, 20, 845-857.	2.7	9
282	Modeling and Control of a Soft Robotic Arm Based on a Fractional Order Control Approach. Fractal and Fractional, 2023, 7, 8.	1.6	5
283	Soft Pneumatic Actuators with Controllable Stiffness by Bioâ€Inspired Lattice Chambers and Fused Deposition Modeling 3D Printing. Advanced Engineering Materials, 2023, 25, .	1.6	11
284	Comparison of Modern Control Methods for Soft Robots. Sensors, 2022, 22, 9464.	2.1	5
285	Machine Learning Amplified Control System for HASEL Actuator Soft Robot System. Journal of Physics: Conference Series, 2022, 2405, 012026.	0.3	0
286	Nonlinear Dynamics of a Resonant-Impact Dielectric Elastomer Actuator. Applied System Innovation, 2022, 5, 122.	2.7	2
287	Design and control of soft biomimetic pangasius fish robot using fin ray effect and reinforcement learning. Scientific Reports, 2022, 12, .	1.6	6
288	FEM-Based N-Net Control of a Flexible Dexterous Finger. Journal of Physics: Conference Series, 2022, 2402, 012003.	0.3	0
289	Behavior Analysis of Biomimetic Soft Bending Actuators in Free Motion and Contact. Journal of Bionic Engineering, 2023, 20, 967-981.	2.7	4

	CHAILON	REPORT	
#	Article	IF	CITATIONS
290	Soft Robots Modeling: A Structured Overview. IEEE Transactions on Robotics, 2023, 39, 1728-1748.	7.3	54
291	An Interdisciplinary Tutorial: A Self-Healing Soft Finger with Embedded Sensor. Sensors, 2023, 23, 811.	2.1	2
292	Design and Control of a Multiple-Section Continuum Robot With a Hybrid Sensing System. IEEE/ASME Transactions on Mechatronics, 2023, 28, 1522-1533.	3.7	2
293	A Simulation Tool for Physics-Informed Control of Biomimetic Soft Robotic Arms. IEEE Robotics and Automation Letters, 2023, 8, 936-943.	3.3	3
294	Towards accurate modeling of modular soft pneumatic robots: from volume FEM to Cosserat rod. , 2022, , .		4
295	RAPTOR: Rapid Aerial Pickup and Transport of Objects by Robots. , 2022, , .		10
296	Design of a modular continuum robot with alterable compliance using tubular-actuation. , 2022, , .		0
297	Rigid Skeleton Enhanced Dexterous Soft Finger Possessing Proprioception. , 2022, , .		1
298	Investigation of Lateral Compression Effects in Fiber Reinforced Soft Pneumatic Actuators. , 2022, , .		2
299	Design and Analysis of a Novel Underactuated Adaptive Gripper for Robotic Assembly. , 2022, , .		0
300	Design and path tracking control of a continuum robot for maxillary sinus surgery. International Journal of Computer Assisted Radiology and Surgery, 0, , .	1.7	0
301	MECHANICAL DESIGN, ACTUATION AND CONTROL OF BIOINSPIRED SOFT SURGICAL ROBOTS. , 2022, , .		0
302	Dataâ€Driven Navigation of Ferromagnetic Soft Continuum Robots Based on Machine Learning. Advanced Intelligent Systems, 2023, 5, .	3.3	1
303	Modeling and Control of Robotic Manipulators Based on Artificial Neural Networks: A Review. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2023, 47, 1307-1347.	0.8	7
304	Exploiting a Simple Asymmetric Pleating Method to Realize a Textile Based Bending Actuator. IEEE Robotics and Automation Letters, 2023, 8, 1794-1801.	3.3	2
305	Discrete Cosserat Static Model-Based Control of Soft Manipulator. IEEE Robotics and Automation Letters, 2023, 8, 1739-1746.	3.3	2
306	Research on Data Construction and Classification of Deformable Objects Grasped by Soft Hand with Multi-source Information Fusion. , 2022, , .		0
307	"RobOstrich―Manipulator: A Novel Mechanical Design and Control Based on the Anatomy and Behavior of an Ostrich Neck. IEEE Robotics and Automation Letters, 2023, 8, 3062-3069.	3.3	4

#	Article	IF	CITATIONS
308	Design and Modeling of Fabric-Shelled Pneumatic Bending Soft Actuators. IEEE Robotics and Automation Letters, 2023, 8, 3110-3117.	3.3	2
309	A Hybrid Controller for a Soft Pneumatic Manipulator Based on Model Predictive Control and Iterative Learning Control. Sensors, 2023, 23, 1272.	2.1	3
310	Proprioceptive Touch of a Soft Actuator Containing an Embedded Intrinsically Soft Sensor using Kinesthetic Feedback. Journal of Intelligent and Robotic Systems: Theory and Applications, 2023, 107, .	2.0	4
311	Topology optimization of locomoting soft bodies using material point method. Structural and Multidisciplinary Optimization, 2023, 66, .	1.7	4
312	Soft-body animal motion control and its inspiration for designing biomimetic robots. Scientia Sinica Vitae, 2024, 54, 308-324.	0.1	0
313	Soft Robotic Perception System with Ultrasonic Auto-Positioning and Multimodal Sensory Intelligence. ACS Nano, 2023, 17, 4985-4998.	7.3	25
314	Adaptive control of a soft pneumatic actuator using experimental characterization data. Frontiers in Robotics and Al, O, 10, .	2.0	0
315	Soft robotics towards sustainable development goals and climate actions. Frontiers in Robotics and Al, 0, 10, .	2.0	3
316	Wearable upper limb robotics for pervasive health: a review. Progress in Biomedical Engineering, 2023, 5, 032003.	2.8	3
317	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .	3.3	21
317 318	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, . Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853.	3.3 2.6	21
317 318 319	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, . Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853. Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139.	3.3 2.6 0.3	21 4 0
317318319320	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853.Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139.Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. Journal of Experimental Biology, 2023, 226, .	3.3 2.6 0.3 0.8	21 4 0 5
 317 318 319 320 325 	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853.Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139.Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. Journal of Experimental Biology, 2023, 226, .FBCCD: A Forward and Backward Cyclic Iterative Solver for the Inverse Kinematics of Continuum Robot. Lecture Notes in Mechanical Engineering, 2023, , 329-345.	 3.3 2.6 0.3 0.8 0.3 	21 4 0 5 0
 317 318 319 320 325 333 	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, .Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853.Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139.Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. Journal of Experimental Biology, 2023, 226, .FBCCD: A Forward and Backward Cyclic Iterative Solver for the Inverse Kinematics of Continuum Robot. Lecture Notes in Mechanical Engineering, 2023, , 329-345.Kinematic-Model-Free Tip Position Control of Reconfigurable and Growing Soft Continuum Robots. , 2023, , .	 3.3 2.6 0.3 0.8 0.3 	21 4 0 5 0 1
 317 318 319 320 325 333 334 	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, . Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853. Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139. Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. Journal of Experimental Biology, 2023, 226, . FBCCD: A Forward and Backward Cyclic Iterative Solver for the Inverse Kinematics of Continuum Robot. Lecture Notes in Mechanical Engineering, 2023, , 329-345. Kinematic-Model-Free Tip Position Control of Reconfigurable and Growing Soft Continuum Robots. , 2023, , . Learning-based Position and Stiffness Feedforward Control of Antagonistic Soft Pneumatic Soft Pneumatic Actuators using Gaussian Processes. , 2023, .	 3.3 2.6 0.3 0.8 0.3 	21 4 0 5 0 1
 317 318 319 320 322 333 334 335 	Continuum Robots: An Overview. Advanced Intelligent Systems, 2023, 5, . Ablation Study of a Dynamic Model for a 3D-Printed Pneumatic Soft Robotic Arm. IEEE Access, 2023, 11, 37840-37853. Continuum Robots for Space Applications. Mechanisms and Machine Science, 2023, , 129-139. Biomechanics, motor control and dynamic models of the soft limbs of the octopus and other cephalopods. Journal of Experimental Biology, 2023, 226, . FBCCD: A Forward and Backward Cyclic Iterative Solver for the Inverse Kinematics of Continuum Robot. Lecture Notes in Mechanical Engineering, 2023, 329-345. Kinematic-Model-Free Tip Position Control of Reconfigurable and Growing Soft Continuum Robots. , 2023, , . Learning-based Position and Stiffness Feedforward Control of Antagonistic Soft Pneumatic Actuators using Gaussian Processes. , 2023, , . Multi-modal Sensor Fusion for Learning Rich Models for Interacting Soft Robots. , 2023, , .	 3.3 2.6 0.3 0.8 0.3 	 21 4 0 5 0 1 1 2

#	Article	IF	CITATIONS
337	Learning a Controller for Soft Robotic Arms and Testing its Generalization to New Observations, Dynamics, and Tasks. , 2023, , .		1
338	Whole-arm Grasping Strategy for Soft Arms to Capture Space Debris. , 2023, , .		1
339	Mixed \$mathcal{H}_{infty}/mathcal{H}_{2}\$ Control of a Soft Robotic Structure Actuated by Dielectric Elastomers. , 2022, , .		0
342	Dynamics Learning-Based Fault Isolation for A Soft Trunk Robot. , 2023, , .		1
344	Feedback Control for Inflatable Soft Robotic Finger Touch Detection Based on Static Pressure-Resistance Characteristics. , 2023, , .		0
345	An equivalent two section method for calculating the workspace of multi-segment continuum robots. , 2023, , .		Ο
346	Autonomous Intelligent Navigation for Flexible Endoscopy Using Monocular Depth Guidance and 3-D Shape Planning. , 2023, , .		1
347	Meta-Learning-Based Optimal Control for Soft Robotic Manipulators to Interact with Unknown Environments. , 2023, , .		0
348	Toward Zero-Shot Sim-to-Real Transfer Learning for Pneumatic Soft Robot 3D Proprioceptive Sensing. , 2023, , .		2
349	Bootstrapping the Dynamic Gait Controller of the Soft Robot Arm. , 2023, , .		0
350	Adaptive Sliding Mode Fault-Tolerant Control of Tendon Driven Continuum Robots using Cosserat Rod Model. , 2023, , .		0
356	A Comparative Analysis of Plane and Corrugated Designs of Soft Pneumatic Actuators Based on Finite Element Method. Lecture Notes in Mechanical Engineering, 2023, , 507-518.	0.3	0
364	Model-Based Reinforcement Learning for Position Control of Continuum Manipulators Actuated by Pneumatic Artificial Muscles. , 2023, , .		0
369	Performance Characterization of a Resonant-Impact Crawling Robot Driven by Dielectric Elastomer Actuator*. , 2023, , .		0
374	An Overview of the Untapped Potential of Soft Robotic Arms with Integration of Machining Tools. Lecture Notes in Mechanical Engineering, 2024, , 107-115.	0.3	0
376	Bioinspired soft robots for deep-sea exploration. Nature Communications, 2023, 14, .	5.8	4
380	The future of medical robotics. , 2024, , 379-387.		0
384	Calibration of Simulation for Soft Manipulators: A Case Study. , 2023, , .		Ο

#	Article	IF	CITATIONS
385	Comparative Analysis of Actuation Response in Silicone and Polyurethane Rubber Manipulators. , 2023, , .		0
386	Simulation Approach for Soft Manipulators in Gazebo using Kinematic Model. , 2023, , .		0
387	Data-based Inverse Kinematic Control for Multi-section Soft Manipulator. , 2023, , .		0
388	Data-oriented Inverse Kinematics Applied to Soft Robots With Fiducial Markers for Shape Feedback. , 2023, , .		Ο
389	PARAMETER TUNING OF ADDICTIVE MANUFACTURING CONTINUUM FLEXIBLE MANIPULATOR SIMULATION. , 0,		0
390	DATA-ORIENTED INVERSE KINEMATICS USING THREE CAMERAS' POINTS OF VIEW. , 0, , .		Ο
392	Closed Loop Control of Tendon Driven Continuum Robots Using IMUs. , 2023, , .		0
393	A Localization Framework for Boundary Constrained Soft Robots. , 2023, , .		0
394	Dexterous Soft Hands Linearize Feedback-Control for In-Hand Manipulation. , 2023, , .		0
395	Implementation of a Cosserat Rod-Based Configuration Tracking Controller on a Multi-Segment Soft Robotic Arm. , 2023, , .		0
398	Control of Soft Pneumatic Actuators with Approximated Dynamical Modeling. , 2023, , .		0
399	Motion Control Utilizing Surrogate Model for A Soft Actuator Driven by Airbag-typed Cells. , 2023, , .		0
400	Dynamic modeling and Control of a Soft Robotic Arm Using a Piecewise Universal Joint Model. , 2023, ,		1
405	Intelligent Model-Free Control for Tendon-Driven Continuum Robotic Arms. , 2023, , .		0
412	A Hybrid Control Approach forÂaÂPneumatic-Actuated Soft Robot. Springer Proceedings in Advanced	0.9	0

Robotics, 2024, , 19-35.