Kinetics of the Methanol Reaction with OH at Interstell Temperatures

Journal of the American Chemical Society 140, 2906-2918 DOI: 10.1021/jacs.7b12773

Citation Report

#	ARTICLE Reply to the †Comment on "Methanol dimer formation drastically enhances hydrogen abstraction	IF	CITATIONS
1	from methanol by OH at low temperatureâ€â€™ by D. Heard, R. Shannon, J. Gomez Martin, R. Caravan, M. Blitz, J. Plane, M. Antiñolo, M. Agundez, E. Jimenez, B. Ballesteros, A. Canosa, G. El Dib, J. Albaladejo and J. Cernicharo, <i>Phys. Chem. Chem. Phys.</i> , 2018, 20 , DOI: 10.1039/C7CP04561A. Physical Chemistry Chemical Physics, 2018, 20, 8355-8357.	2.8	5
2	 <i>Ab Initio</i>, Transition State Theory, and Kinetic Modeling Study of the HO₂-Assisted Ketoâ€"Enol Tautomerism Propen-2-ol + HO₂ â‡" Acetone + HO₂ under Combustion, Atmospheric, and Interstellar Conditions. Journal of Physical Chemistry A, 2018, 122, 9792-9805. 	2.5	12
3	Low temperature reaction dynamics for CH ₃ OH + OH collisions on a new full dimensional potential energy surface. Physical Chemistry Chemical Physics, 2018, 20, 25951-25958.	2.8	32
4	Pressure-dependent kinetics of methyl formate reactions with OH at combustion, atmospheric and interstellar temperatures. Physical Chemistry Chemical Physics, 2018, 20, 26190-26199.	2.8	40
5	Rapid Acceleration of Hydrogen Atom Abstraction Reactions of OH at Very Low Temperatures through Weakly Bound Complexes and Tunneling. Accounts of Chemical Research, 2018, 51, 2620-2627.	15.6	36
6	A shock tube kinetic study on the branching ratio of methanol +ÂOH reaction. Proceedings of the Combustion Institute, 2019, 37, 153-162.	3.9	14
7	Chemical Kinetics Approves the Occurrence of C (³ P _{<i>j</i>}) Reaction with H ₂ O. Journal of Physical Chemistry A, 2019, 123, 5877-5892.	2.5	1
8	Low-Temperature Kinetic Isotope Effects in CH ₃ OH + H → CH ₂ OH + H ₂ Shed Light on the Deuteration of Methanol in Space. Journal of Physical Chemistry A, 2019, 123, 9061-9068.	2.5	13
9	Quantum Effects on the D + H ₃ ⁺ → H ₂ D ⁺ + H Deuteration Reaction and Isotopic Variants. Journal of Physical Chemistry A, 2019, 123, 8766-8775.	2.5	18
10	Multishelled Hollow Structures of Yttrium Oxide for the Highly Selective and Ultrasensitive Detection of Methanol. Small, 2019, 15, e1804688.	10.0	22
11	Experimental Studies of Gas-Phase Reactivity in Relation to Complex Organic Molecules in Star-Forming Regions. ACS Earth and Space Chemistry, 2019, 3, 1109-1134.	2.7	34
12	Zero- and High-Pressure Mechanisms in the Complex Forming Reactions of OH with Methanol and Formaldehyde at Low Temperatures. ACS Earth and Space Chemistry, 2019, 3, 1158-1169.	2.7	14
13	Chemical kinetics of H-abstractions from dimethyl amine by H, CH ₃ , OH, and HO ₂ radicals with multi-structural torsional anharmonicity. Physical Chemistry Chemical Physics, 2019, 21, 12685-12696.	2.8	21
14	Weak Interactions in Interstellar Chemistry: How Do Open Shell Molecules Interact with Closed Shell Molecules?. ACS Earth and Space Chemistry, 2019, 3, 1080-1095.	2.7	9
15	Gas-phase reactivity of CH ₃ OH toward OH at interstellar temperatures (11.7–177.5 K): experimental and theoretical study. Physical Chemistry Chemical Physics, 2019, 21, 6942-6957.	2.8	42
16	Quantum Roaming in the Complex-Forming Mechanism of the Reactions of OH with Formaldehyde and Methanol at Low Temperature and Zero Pressure: A Ring Polymer Molecular Dynamics Approach. Journal of Physical Chemistry Letters, 2019, 10, 1900-1907.	4.6	26
17	A master equation simulation for the •OH + CH3OH reaction. Journal of Chemical Physics, 2019, 150, 084105.	3.0	42
18	H2 Dissociation on H-Precovered Ni(100) Surface: Physisorbed State and Coverage Dependence. Journal of Physical Chemistry C, 2019, 123, 5365-5377.	3.1	5

#	Article	IF	CITATIONS
19	Gas phase reaction kinetics of complex organic molecules at temperatures of the interstellar medium: The OH + CH3OH case. Proceedings of the International Astronomical Union, 2019, 15, 35-40.	0.0	5
20	Computational kinetics of the hydrogen abstraction reactions of <i>n</i> -propanol and iso-propanol by OH radical. Physical Chemistry Chemical Physics, 2019, 21, 24458-24468.	2.8	15
21	Kinetics of the Hydrogen Abstraction PAH + [•] OH → PAH Radical + H ₂ O Reaction Class: An Application of the Reaction Class Transition State Theory (RC-TST) and Structure–Activity Relationship (SAR). Journal of Physical Chemistry A, 2019, 123, 750-763.	2.5	9
22	Improving the Prediction Accuracy of the Extinction of Stretched Methanol/Air Premixed Flames. Combustion Science and Technology, 2020, 192, 1088-1107.	2.3	4
23	Physisorbed State Regulates the Dissociation Mechanism of H2O on Ni(100). Journal of Physical Chemistry A, 2020, 124, 8724-8732.	2.5	5
24	Theoretical analysis and kinetic modeling of hydrogen abstraction and addition of 1,3-cyclopentadiene and associated reactions on the C5H7 potential energy surface. Combustion and Flame, 2020, 222, 423-433.	5.2	13
25	Quantum Mechanical Tunneling Is Essential to Understanding Chemical Reactivity. Trends in Chemistry, 2020, 2, 980-989.	8.5	57
26	Absolute Photoabsorption Cross-Sections of Methanol for Terrestrial and Astrophysical Relevance. Journal of Physical Chemistry A, 2020, 124, 8496-8508.	2.5	5
27	Chemical reactivity from the vibrational ground-state level. The role of the tunneling path in the tautomerization of urea and derivatives. Physical Chemistry Chemical Physics, 2020, 22, 24951-24963.	2.8	4
28	Atmospheric Chemistry of Enols: The Formation Mechanisms of Formic and Peroxyformic Acids in Ozonolysis of Vinyl Alcohol. Journal of Physical Chemistry A, 2020, 124, 4271-4279.	2.5	8
29	Disclosure of water roles in gliding arc plasma reforming of methanol for hydrogen production. Plasma Processes and Polymers, 2020, 17, 2000069.	3.0	12
30	Temperature coefficient (Q10) and its applications in biological systems: Beyond the Arrhenius theory. Ecological Modelling, 2020, 431, 109127.	2.5	38
31	Direct dynamics of a large complex hydrocarbon reaction system: The reaction of OH with exo-tricyclodecane (the main component of Jet Propellant-10). Combustion and Flame, 2020, 216, 82-91.	5.2	8
32	DFT Study on the Mechanism of the Water Gas Shift Reaction Over Ni _{<i>x</i>} P _{<i>y</i>} Catalysts: The Role of P. Journal of Physical Chemistry C, 2020, 124, 6598-6610.	3.1	18
33	Pilgrim: A thermal rate constant calculator and a chemical kinetics simulator. Computer Physics Communications, 2020, 256, 107457.	7.5	30
34	Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible. Angewandte Chemie, 2020, 132, 10918-10922.	2.0	10
35	Water Catalysis of the Reaction of Methanol with OH Radical in the Atmosphere is Negligible. Angewandte Chemie - International Edition, 2020, 59, 10826-10830.	13.8	13
36	Prediction of Rate Coefficients for the H ₂ CO + OH â†' HCO + H ₂ O Reaction at Combustion, Atmospheric and Interstellar Medium Conditions. Journal of Physical Chemistry A, 2020, 124–2309-2317	2.5	9

#	Article	IF	CITATIONS
37	The role of resonance-stabilized radical chain reactions in polycyclic aromatic hydrocarbon growth: Theoretical calculation and kinetic modeling. Proceedings of the Combustion Institute, 2021, 38, 1459-1466.	3.9	22
38	Microcanonical Tunneling Rates from Density-of-States Instanton Theory. Journal of Chemical Theory and Computation, 2021, 17, 40-55.	5.3	10
40	A kinetics study on hydrogen abstraction reactions of cyclopentane by hydrogen, methyl, and ethyl radicals. Physical Chemistry Chemical Physics, 2021, 23, 7333-7342.	2.8	4
41	Neural network potential energy surface for the low temperature ring polymer molecular dynamics of the H2CO + OH reaction. Journal of Chemical Physics, 2021, 154, 094305.	3.0	18
42	Large Anharmonic Effects on Tunneling and Kinetics: Reaction of Propane with Muonium. Journal of Physical Chemistry Letters, 2021, 12, 4154-4159.	4.6	7
43	Multistructural Variational Reaction Kinetics of the Simplest Unsaturated Methyl Ester: H-Abstraction from Methyl Acrylate by H, OH, CH ₃ , and HO ₂ Radicals. Journal of Physical Chemistry A, 2021, 125, 5103-5116.	2.5	11
44	Effect of ammonia and water molecule on OH + CH3OH reaction under tropospheric condition. Scientific Reports, 2021, 11, 12185.	3.3	10
45	Entanglement Effect and Angular Momentum Conservation in a Nonseparable Tunneling Treatment. Journal of Chemical Theory and Computation, 2021, 17, 3863-3885.	5.3	4
46	Theoretical study on hydrogen abstraction reactions from cyclopentanol by hydroxyl radical. Fuel, 2021, 297, 120766.	6.4	12
47	Exploring the OH-initiated reactions of styrene in the atmosphere and the role of van der Waals complex. Chemosphere, 2021, 282, 131004.	8.2	4
48	On the role of vibrational selective scaling for the calculation of enthalpies of formation using a composite method. Theoretical Chemistry Accounts, 2020, 139, 1.	1.4	2
49	Role of ring-enlargement reactions in the formation of aromatic hydrocarbons. Physical Chemistry Chemical Physics, 2020, 22, 4699-4714.	2.8	29
50	Kinetics of the Toluene Reaction with OH Radical. Research, 2019, 2019, 5373785.	5.7	16
51	The trans/cis ratio of formic (HCOOH) and thioformic (HC(O)SH) acids in the interstellar medium. Astronomy and Astrophysics, 2022, 658, A150.	5.1	12
52	Predictive Combustion Kinetics of OH Radical Reactions with a C5 Unsaturated Alcohol: The Competitive H-Abstraction and OH-Addition Reactions of 2-Methyl-3-buten-2-ol. Journal of Physical Chemistry A, 2021, 125, 10451-10462.	2.5	2
53	An integrated protocol to study hydrogen abstraction reactions by atomic hydrogen in flexible molecules: application to butanol isomers. Physical Chemistry Chemical Physics, 2022, 24, 3043-3058.	2.8	6
54	The kinetics of the reactions of Br atoms with the xylenes: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 4843-4858.	2.8	3
55	On-The-Fly Kinetics of the Hydrogen Abstraction by Hydroperoxyl Radical: An Application of the Reaction Class Transition State Theory. Frontiers in Chemistry, 2021, 9, 806873.	3.6	0

#	Article	IF	CITATIONS
56	Master equation study of hydrogen abstraction from HCHO by OH <i>via</i> a chemically activated intermediate. Faraday Discussions, 0, 238, 431-460.	3.2	4
57	Pressure-Dependent Kinetics of O-Xylene Reaction with Oh Radical. SSRN Electronic Journal, 0, , .	0.4	о
58	Pressure-dependent kinetics of the <i>o</i> -xylene reaction with OH radicals. Physical Chemistry Chemical Physics, 2022, 24, 8672-8682.	2.8	5
59	Modelling cosmic masers in C-type shock waves – the coexistence of Class I CH3OH and 1720ÂMHz OH masers. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4555-4572.	4.4	2
60	Probing the Exit Channel of the OH + CH ₃ OH → H ₂ O + CH ₃ O Reaction by Photodetachment of CH ₃ O [–] (H ₂ O). Journal of Physical Chemistry Letters, 2022, 13, 142-148.	4.6	7
61	TorsiFlex: an automatic generator of torsional conformers. Application to the twenty proteinogenic amino acids. Journal of Cheminformatics, 2021, 13, 100.	6.1	30
62	Unusual Chemical Processes in Interstellar Chemistry: Past and Present. Frontiers in Astronomy and Space Sciences, 2021, 8, .	2.8	24
63	Combustion Kinetics of N-Propylamine: Theoretical Calculations and Ignition Delay Time Measurements. SSRN Electronic Journal, 0, , .	0.4	0
64	Theoretical study of the NO ₃ radical reaction with CH ₂ ClBr, CH ₂ ICl, CH ₂ Brl, CHCl ₂ Br, and CHClBr ₂ . Physical Chemistry Chemical Physics, 2022, 24, 14365-14374.	2.8	3
65	Strong non-Arrhenius behavior at low temperatures in the OH + HCl → H ₂ O + Cl reaction due to resonance induced quantum tunneling. Chemical Science, 2022, 13, 7955-7961.	7.4	2
66	Combustion kinetics of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e3358" altimg="si330.svg"><mml:mi>n</mml:mi></mml:math> -propylamine: Theoretical calculations and ignition delay time measurements. Fuel, 2022, 324, 124710.	6.4	3
67	Reaction of OH radicals with CH ₃ NH ₂ in the gas phase: experimental (11.7–177.5) 1 23593-23601.	[j ETQq1 2.8	1 0.784314 rg 5
68	Quantum Tunneling in Computational Catalysis and Kinetics: Is it Really Important?. , 2024, , 713-734.		1
69	A Theoretical Study of H-Abstractions of Benzaldehyde by H, O ³ (P), ³ O ₂ , OH, HO ₂ , and CH ₃ Radicals: Ab Initio Rate Coefficients and Their Uncertainty Quantification. Journal of Physical Chemistry A, 2022, 126, 7523-7533.	2.5	2
70	Rate constants for H-atom abstraction reactions from mono-aromatic hydrocarbons by H, CH3, OH and 3O2: A systematic theoretical investigation. Combustion and Flame, 2023, 257, 112421.	5.2	5
71	Quantitative Kinetics of HO ₂ Reactions with Aldehydes in the Atmosphere: High-Order Dynamic Correlation, Anharmonicity, and Falloff Effects Are All Important. Journal of the American Chemical Society, 2022, 144, 19910-19920.	13.7	13
72	Identification of Torsional Modes in Complex Molecules Using Redundant Internal Coordinates: The Multistructural Method with Torsional Anharmonicity with a Coupled Torsional Potential and Delocalized Torsions. Journal of Chemical Theory and Computation, 2022, 18, 7671-7682.	5.3	5
73	Theoretical Study on Abstraction and Addition Reaction Kinetics for a Medium-Size Unsaturated Methyl Ester: Methyl-3-hexenoate + H/OH Radicals. Journal of Physical Chemistry A, 2022, 126, 9461-9474.	2.5	2

#	Article	IF	CITATIONS
74	A comprehensive benchmark <i>ab initio</i> survey of the stationary points and products of the OH· + CH3OH system. Journal of Chemical Physics, 2023, 158, .	3.0	3
75	Analytical potential energy surface and dynamics for the OH + CH₃OH reaction . Journal of Chemical Physics, 0, , .	3.0	4
76	A systematic mechanistic survey on the reactions between OH radical and CH ₃ OH on ice. Faraday Discussions, 0, 245, 508-518.	3.2	1
77	Paving the way to the synthesis of PAHs in dark molecular clouds: The formation of cyclopentadienyl radical (c-C ₅ H ₅). Astronomy and Astrophysics, 2023, 673, A118.	5.1	3
78	The neural network based Δ-machine learning approach efficiently brings the DFT potential energy surface to the CCSD(T) quality: a case for the OH + CH ₃ OH reaction. Physical Chemistry Chemical Physics, 2023, 25, 11192-11204.	2.8	3
79	Multi-structural variational kinetics study on hydrogen abstraction reactions of cyclopentanol and cyclopentane by hydroperoxyl radical with anharmonicity, recrossing and tunneling effects. Physical Chemistry Chemical Physics, 2023, 25, 12943-12960.	2.8	2
80	Influence of the substrate on the density and infrared spectra of the adsorbed methanol ice of different thicknesses using molecular dynamics simulation. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3656-3664.	4.4	0
81	An Ab Initio RRKM-Based Master Equation Study for Kinetics of OH-Initiated Oxidation of 2-Methyltetrahydrofuran and Its Implications in Kinetic Modeling. Energies, 2023, 16, 3730.	3.1	2
82	Reliable Gas Phase Reaction Rates at Affordable Cost by Means of the Parameter-Free JunChS-F12 Model Chemistry. Journal of Chemical Theory and Computation, 2023, 19, 3526-3537.	5.3	6
83	The atmospheric relevance of primary alcohols and imidogen reactions. Scientific Reports, 2023, 13, .	3.3	0
84	Competition between Abstraction and Addition Channels for the Reaction between the OH Radical and Vinyl Alcohol in the Interstellar Medium. ACS Earth and Space Chemistry, 0, , .	2.7	0
85	The GRETOBAPE Gas-phase Reaction Network: The Importance of Being Exothermic. Astrophysical Journal, Supplement Series, 2023, 266, 38.	7.7	5
86	Crossed-Beam Imaging of the Reaction of OH with Propanol Isomers. Journal of Physical Chemistry A, 2023, 127, 5202-5208.	2.5	0
87	The role of dimers in complex forming reactions at low temperature: full dimension potential and dynamics of (H ₂ CO) ₂ +OH reaction. ChemPhysChem, 2023, 24, .	2.1	1
88	Comprehensive Theoretical Study on Four Typical Intramolecular Hydrogen Shift Reactions of Peroxy Radicals: Multireference Character, Recommended Model Chemistry, and Kinetics. Journal of Chemical Theory and Computation, 2023, 19, 3284-3302.	5.3	3
89	Theoretical kinetics analysis of the OH + CH ₃ OH hydrogen abstraction reaction using a fullâ€dimensional potential energy surface. International Journal of Chemical Kinetics, 2023, 55, 525-536.	1.6	Ο
90	Gas-phase formation of glycolonitrile in the interstellar medium. Physical Chemistry Chemical Physics, 2023, 25, 20988-20996.	2.8	1
91	Kinetics of Sulfur Trioxide Reaction with Water Vapor to Form Atmospheric Sulfuric Acid. Journal of the American Chemical Society, 2023, 145, 19866-19876.	13.7	6

#	Article	IF	CITATIONS
92	New computational tools for chemical kinetics: the Cathedral Package. Theoretical Chemistry Accounts, 2023, 142, .	1.4	0
93	Theoretical Kinetics studies of isoprene peroxy radical chemistry: The fate of Z-Î-(4-OH, 1-OO)-ISOPOO radical. Ecotoxicology and Environmental Safety, 2023, 266, 115553.	6.0	0
94	A kinetic study of the reactions of atomic bromine with the trimethylbenzenes. Physical Chemistry Chemical Physics, 0, , .	2.8	0
95	Quantitative kinetics of the atmospheric reaction between isocyanic acid and hydroxyl radicals: post-CCSD(T) contribution, anharmonicity, recrossing effects, torsional anharmonicity, and tunneling. Physical Chemistry Chemical Physics, 0, , .	2.8	0
96	Determination of the Branching Ratio of CH ₃ OH + OH Reaction on Water Ice Surface at 10 K. Astrophysical Journal, 2024, 960, 90.	4.5	0
97	Effect of temperature on the gas-phase reaction of CH ₃ CN with OH radicals: experimental (<i>T</i> = 11.7–177.5 K) and computational (<i>T</i> = 10–400 K) kinetic study. Physical Chemistry Chemical Physics, 2024, 26, 3632-3646.	2.8	0
98	A theoretical and experimental study of 2-ethylfuranÂ+ÂOH reaction. Combustion and Flame, 2024, 261, 113321.	5.2	0
99	Rapid Atmospheric Reactions between Criegee Intermediates and Hypochlorous Acid. Journal of Physical Chemistry A, 2024, 128, 909-917.	2.5	0
100	Can astronomical observations be used to constrain crucial chemical reactions? The methoxy case. SOLIS XVIII. Monthly Notices of the Royal Astronomical Society, 2024, 528, 6706-6719.	4.4	0