Green and Sustainable Solvents in Chemical Processes

Chemical Reviews 118, 747-800 DOI: 10.1021/acs.chemrev.7b00571

Citation Report

#	Article	IF	CITATIONS
2	Aqueous-Processed, High-Capacity Electrodes for Membrane Capacitive Deionization. Environmental Science & Technology, 2018, 52, 5859-5867.	4.6	65
3	Towards Sustainable Câ^'H Functionalization Reactions: The Emerging Role of Bioâ€Based Reaction Media. Chemistry - A European Journal, 2018, 24, 13383-13390.	1.7	42
4	Advantageous Use of Ionic Liquids for the Synthesis of Pharmaceutically Relevant Quinolones. European Journal of Organic Chemistry, 2018, 2018, 2977-2983.	1.2	10
5	Hydration and alkoxylation of alkynes catalyzed by NHC–Au–OTf. Green Chemistry, 2018, 20, 2125-2134.	4.6	40
6	Synergism between ionic liquid and ultrasound for greener extraction of geraniol: Optimization using different statistical tools, comparison and prediction. Chemical Engineering Research and Design, 2018, 134, 162-171.	2.7	17
7	A PEG/copper(<scp>i</scp>) halide cluster as an eco-friendly catalytic system for C–N bond formation. Dalton Transactions, 2018, 47, 7463-7470.	1.6	9
8	A theoretical study on lidocaine solubility in deep eutectic solvents. Physical Chemistry Chemical Physics, 2018, 20, 27464-27473.	1.3	54
9	Influence of Hydration on the Structure of Reline Deep Eutectic Solvent: A Molecular Dynamics Study. ACS Omega, 2018, 3, 15246-15255.	1.6	122
10	Solvents/Eutectic Solvents. , 2018, , 184-184.		1
11	Basic ionic liquids promoted chemical transformation of CO2 to organic carbonates. Science China Chemistry, 2018, 61, 1486-1493.	4.2	31
12	Cobalt-Catalyzed Hydroarylations and Hydroaminations of Alkenes in Tunable Aryl Alkyl Ionic Liquids. Organic Letters, 2018, 20, 6215-6219.	2.4	41
13	Discovery of a Photoinduced Dark Catalytic Cycle Using <i>in Situ</i> LED-NMR Spectroscopy. Journal of the American Chemical Society, 2018, 140, 13843-13853.	6.6	30
14	Bifunctional Amine-Squaramides as Organocatalysts in Michael/Hemiketalization Reactions of β,γ-Unsaturated α-Ketoesters and α,l²-Unsaturated Ketones with 4-Hydroxycoumarins. Journal of Organic Chemistry, 2018, 83, 13111-13120.	1.7	31
15	Transformation of alcohols to esters promoted by hydrogen bonds using oxygen as the oxidant under metal-free conditions. Science Advances, 2018, 4, eaas9319.	4.7	63
16	Decarboxylative Arylation of α,βâ€Unsaturated Carboxylic Acids Using Aryl Triazenes by Copper/Ionic Liquid Combination in PEGâ€400. European Journal of Organic Chemistry, 2018, 2018, 5942-5946.	1.2	13
17	γâ€Valerolactone as a Promising Bio ompatible Media for Oneâ€Pot Synthesis of Spiro[indolineâ€3,4'â€pyrano[3,2â€ <i>c</i>]chromene Derivatives. Journal of Heterocyclic Chemistry, 2018, 55, 2817-2822.	1.4	10
18	Effect of the Solvent in Enhancing the Selectivity to Furan Derivatives in the Catalytic Hydrogenation of Furfural. ACS Sustainable Chemistry and Engineering, 2018, 6, 16235-16247.	3.2	50
19	Recent Advances on the Use of 2-methyltetrahydrofuran (2-MeTHF) in Biotransformations. Current Green Chemistry, 2018, 5, 86-103.	0.7	63

#	Article	IF	CITATIONS
20	Heterogeneous acidic catalysts for the tetrahydropyranylation of alcohols and phenols in green ethereal solvents. Beilstein Journal of Organic Chemistry, 2018, 14, 1655-1659.	1.3	8
21	Dual function of amino acid ionic liquids (Bmim[AA]) on the degradation of the organophosphorus pesticide, Paraoxon®. Organic and Biomolecular Chemistry, 2018, 16, 7446-7453.	1.5	13
22	Computationally Assisted Mechanistic Investigation and Development of Pd-Catalyzed Asymmetric Suzuki–Miyaura and Negishi Cross-Coupling Reactions for Tetra- <i>ortho</i> -Substituted Biaryl Synthesis. ACS Catalysis, 2018, 8, 10190-10209.	5.5	70
23	Adventures in Atropisomerism: Development of a Robust, Diastereoselective, Lithium-Catalyzed Atropisomer-Forming Active Pharmaceutical Ingredient Step. Organic Process Research and Development, 2018, 22, 1426-1431.	1.3	9
24	Application of copper(II)-mediated radical cross-dehydrogenative coupling to prepare spirocyclic oxindoles and to a formal total synthesis of Satavaptan. Tetrahedron, 2018, 74, 6485-6496.	1.0	8
25	Dioxygen Activation by Laccases: Green Chemistry for Fine Chemical Synthesis. Catalysts, 2018, 8, 223.	1.6	28
26	A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. Bioresource Technology, 2018, 270, 689-701.	4.8	76
27	Dehydration/Rehydration Cycles for Mixing Phospholipids without the Use of Organic Solvents. Langmuir, 2018, 34, 6869-6873.	1.6	6
28	Solvent Polarity of Cyclic Ketone (Cyclopentanone, Cyclohexanone): Alcohol (Methanol, Ethanol) Renewable Mixed-Solvent Systems for Applications in Pharmaceutical and Chemical Processing. Industrial & Engineering Chemistry Research, 2018, 57, 7331-7344.	1.8	28
29	Sustainable hydrophobic terpene-based eutectic solvents for the extraction and separation of metals. Chemical Communications, 2018, 54, 8104-8107.	2.2	116
30	Ultrasound and Ionic Liquid: An Ideal Combination for Organic Transformations. ChemistrySelect, 2018, 3, 5283-5295.	0.7	39
31	Cycloaddition Reaction of Spiro-Epoxy Oxindole with CO ₂ at Atmospheric Pressure Using Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2018, 6, 11200-11205.	3.2	46
32	Bioâ€available Solvent Cyrene: Synthesis, Derivatization, and Applications. ChemSusChem, 2018, 11, 3048-3055.	3.6	134
33	Avoiding hot-spots in Microwave-assisted Pd/C catalysed reactions by using the biomass derived solvent I ³ -Valerolactone. Scientific Reports, 2018, 8, 10571.	1.6	28
34	Deep Eutectic Mixtures as Reaction Media for the Enantioselective Organocatalyzed α-Amination of 1,3-Dicarbonyl Compounds. Catalysts, 2018, 8, 217.	1.6	16
35	Visible-Light-Driven Epoxyacylation and Hydroacylation of Olefins Using Methylene Blue/Persulfate System in Water. Journal of Organic Chemistry, 2018, 83, 8331-8340.	1.7	36
36	A Greener and Efficient Method for Nucleophilic Aromatic Substitution of Nitrogen-Containing Fused Heterocycles. Molecules, 2018, 23, 684.	1.7	16
37	Electrochemical fabrication of nanoporous gold electrodes in a deep eutectic solvent for electrochemical detections. Chemical Communications, 2018, 54, 8853-8856.	2.2	31

#	Article	IF	CITATIONS
38	Environmentally benign non-fluoro deep eutectic solvent and free-standing rice husk-derived bio-carbon based high-temperature supercapacitors. Electrochimica Acta, 2018, 286, 148-157.	2.6	32
39	Creating solvation environments in heterogeneous catalysts for efficient biomass conversion. Nature Communications, 2018, 9, 3236.	5.8	70
40	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem, 2018, 11, 3559-3575.	3.6	81
41	OPLS Force Field for Choline Chloride-Based Deep Eutectic Solvents. Journal of Physical Chemistry B, 2018, 122, 9982-9993.	1.2	132
42	One-pot synthesis of ordered nanoporous amorphous H-Zn-aluminosilicate for catalysis of bulky molecules. Sustainable Energy and Fuels, 2018, 2, 1693-1698.	2.5	10
43	Phenol Derivatives in Rutheniumâ€Catalyzed C–H Arylation: A General Synthetic Access to Azoleâ€Based Congested Polyaromatics. European Journal of Organic Chemistry, 2018, 2018, 4953-4958.	1.2	13
44	Supercritical CO2 extraction of solids using aqueous ethanol as static modifier is a two-step mass transfer process. Journal of Supercritical Fluids, 2019, 143, 179-190.	1.6	12
45	A novel crosslinking technique towards the fabrication of high-flux polybenzimidazole (PBI) membranes for organic solvent nanofiltration (OSN). Separation and Purification Technology, 2019, 209, 182-192.	3.9	104
46	Rationalizing the Phase Behavior of Triblock Copolymers through Experiments and Molecular Simulations. Journal of Physical Chemistry C, 2019, 123, 21224-21236.	1.5	33
47	Extraction of dyes contained in glow sticks using liquid CO ₂ . Green Chemistry Letters and Reviews, 2019, 12, 102-106.	2.1	0
48	Polyphenol Extraction from Humulus lupulus (Hop) Using a Neoteric Glycerol/L-Alanine Deep Eutectic Solvent: Optimisation, Kinetics and the Effect of Ultrasound-Assisted Pretreatment. AgriEngineering, 2019, 1, 403-417.	1.7	27
49	Green Synthesis of Privileged Benzimidazole Scaffolds Using Active Deep Eutectic Solvent. Molecules, 2019, 24, 2885.	1.7	40
50	Enhanced oil recovery using polyacrylates/ACTF crosslinked composite: Preparation, characterization and coreflood investigation. Journal of Petroleum Science and Engineering, 2019, 181, 106236.	2.1	15
51	Enabling technologies for the extraction of grape-pomace anthocyanins using natural deep eutectic solvents in up-to-half-litre batches extraction of grape-pomace anthocyanins using NADES. Food Chemistry, 2019, 300, 125185.	4.2	157
52	Catalyst- and reagent-free 1,6-hydrophosphonylation of <i>p</i> -quinone methides: a practical approach for the synthesis of diarylmethyl phosphine oxides. Organic and Biomolecular Chemistry, 2019, 17, 7536-7546.	1.5	14
53	Sustainable hydrogenation of aliphatic acyclic primary amides to primary amines with recyclable heterogeneous ruthenium–tungsten catalysts. Green Chemistry, 2019, 21, 5326-5335.	4.6	21
54	Deep eutectic solvent promoted hydrothiocyanation of alkynoates leading to Z-3-thiocyanatoacrylates. Tetrahedron, 2019, 75, 130456.	1.0	14
55	A metrics-based approach to preparing sustainable membranes: application to ultrafiltration. Green Chemistry, 2019, 21, 4457-4469.	4.6	23

#	Article	IF	CITATIONS
56	Rapid, High‥ield Fructose Dehydration to 5â€Hydroxymethylfurfural in Mixtures of Water and the Noncoordinating lonic Liquid [bmim][OTf]. ChemSusChem, 2019, 12, 4452-4460.	3.6	31
57	The pivotal role of the counterion in gold catalyzed hydration and alkoxylation of alkynes. Coordination Chemistry Reviews, 2019, 396, 103-116.	9.5	46
58	Self-Assembly of Diblock Copolymers Containing Thermo- and Photoresponsive Lower Critical Solution Temperature Phase Behavior Polymer with Tunable Assembly Temperature in an Ionic Liquid Mixture. ACS Omega, 2019, 4, 11229-11236.	1.6	7
59	Solvent issues in the Baylis-Hillman reaction of 5-hydroxymethyl furfural (HMF) and 5-glucosyloxymethyl furfural (GMF). Towards no-solvent conditions. Pure and Applied Chemistry, 2019, 91, 1149-1158.	0.9	2
60	Structural Factors Determining Thermal Stability Limits of Ionic Liquid/MOF Composites: Imidazolium Ionic Liquids Combined with CuBTC and ZIF-8. Industrial & Engineering Chemistry Research, 2019, 58, 14124-14138.	1.8	40
61	Biphasic Aqueous Reaction Conditions for Process-Friendly Palladium-Catalyzed C–N Cross-Coupling of Aryl Amines. Organic Process Research and Development, 2019, 23, 1752-1757.	1.3	11
62	Benzimidazolyl Palladium Complexes as Highly Active and General Bifunctional Catalysts in Sustainable Cross-Coupling Reactions. ACS Catalysis, 2019, 9, 6993-6998.	5.5	27
63	NMR study of choline chloride-based deep eutectic solvents. Journal of Molecular Liquids, 2019, 290, 111236.	2.3	87
64	Lignin Conversion Using Catalytic Ionic Liquids: Understanding the Role of Cations, Anions, and Hammett Acidity Functions. Industrial & Engineering Chemistry Research, 2019, 58, 21273-21284.	1.8	28
65	Landscape planning and design of tourist highway service area under the background of all-for-one tourism system. IOP Conference Series: Earth and Environmental Science, 2019, 304, 032092.	0.2	2
66	Hydrogen-Bond-Promoted Metal-Free Hydroamination of Alkynes. Synlett, 2019, 30, 2086-2090.	1.0	3
67	Cellulose as recyclable organocatalyst for ipso-hydroxylation of arylboronic acids. Tetrahedron Letters, 2019, 60, 151044.	0.7	19
68	Parametric studies of Cu(II) ion extraction into palm kernel fatty acid distillate as a green organic solvent. Journal of Environmental Chemical Engineering, 2019, 7, 103488.	3.3	4
69	Hierarchical Rambutan‣ike CNTsâ€Assembled Nâ^'Coâ^'C@rGO Composite as Sulfur Immobilizer for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 4565-4570.	1.7	10
70	Transport and Mechanical Properties of ABA-type Triblock Copolymer Ion Gels Correlated with Their Microstructures. Macromolecules, 2019, 52, 8430-8439.	2.2	20
71	Recent Advances of Using Ionic Liquids for Biopolymer Extraction and Processing. Biotechnology Journal, 2019, 14, e1900072.	1.8	25
72	Improving the Performance of PVDF/PVDF- <i>g</i> PEGMA Ultrafiltration Membranes by Partial Solvent Substitution with Green Solvent Dimethyl Sulfoxide during Fabrication. ACS Omega, 2019, 4, 19799-19807.	1.6	23
73	Visible Lightâ€Initiated Catalystâ€Free Oneâ€Pot, Multicomponent Construction of 5â€Substituted Indole Chromeno[2,3â€ <i>b</i>]pyridines. Advanced Synthesis and Catalysis, 2019, 361, 5182-5190.	2.1	55

#	Article	IF	CITATIONS
74	Palladium atalyzed Aminocarbonylation Reaction to Access 1,2,3â€Triazoleâ€5â€carboxamides Using Dimethyl Carbonate as Sustainable Solvent. European Journal of Organic Chemistry, 2019, 2019, 6673-6681.	1.2	15
75	Direct Solutionâ€Based Synthesis of Na ₄ (B ₁₂ H ₁₂)(B ₁₀ H ₁₀) Solid Electrolyte. ChemSusChem, 2019, 12, 4832-4837.	3.6	26
76	ZnCl ₂ /Urea Eutectic Solvent as Stable Carbonylation Source for Benign Synthesis of 2–Benzimidazolones and 2–Imidazolones: An Effective Strategy for Preventing NH ₃ Gas Evolution. ChemistrySelect, 2019, 4, 11093-11097.	0.7	13
77	Trash to Treasure: Eco-Friendly and Practical Synthesis of Amides by Nitriles Hydrolysis in WEPPA. Molecules, 2019, 24, 3838.	1.7	9
78	One-Pot Diastereoselective Synthesis of Tetrahydroquinolines from Star Anise Oil in a Choline Chloride/Zinc Chloride Eutectic Mixture. ACS Sustainable Chemistry and Engineering, 2019, 7, 18630-18639.	3.2	22
79	Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chemical Society Reviews, 2019, 48, 5266-5302.	18.7	630
80	Biomolecule-derived supported cobalt nanoparticles for hydrogenation of industrial olefins, natural oils and more in water. Green Chemistry, 2019, 21, 5104-5112.	4.6	11
81	Synergies in the co-location of food manufacturing and biorefining. Food and Bioproducts Processing, 2019, 117, 340-359.	1.8	16
82	Poly-quasi-eutectic solvents (PQESs): versatile solvents for dissolving metal oxides. Green Chemistry, 2019, 21, 5571-5578.	4.6	37
83	Insights on [BMIM][BF4] and [BMIM][PF6] ionic liquids and their binary mixtures with acetone and acetonitrile. Journal of Molecular Liquids, 2019, 294, 111632.	2.3	13
84	Catalyst-free hydrophosphination of alkenes in presence of 2-methyltetrahydrofuran: a green and easy access to a wide range of tertiary phosphines. RSC Advances, 2019, 9, 27250-27256.	1.7	18
85	Greener Terpene–Terpene Eutectic Mixtures as Hydrophobic Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 17414-17423.	3.2	85
86	Biocatalysis as Useful Tool in Asymmetric Synthesis: An Assessment of Recently Granted Patents (2014–2019). Catalysts, 2019, 9, 802.	1.6	69
87	An enhanced ionic liquid-tolerant immobilized cellulase system via hydrogel microsphere for improving in situ saccharification of biomass. Bioresource Technology, 2019, 294, 122146.	4.8	37
88	Going Green in Process Chemistry: Optimizing an Asymmetric Oxidation Reaction To Synthesize the Antiulcer Drug Esomeprazole. Journal of Chemical Education, 2019, 96, 2617-2621.	1.1	12
89	Ethyl lactate as a renewable carbonyl source for the synthesis of diynones. Green Chemistry, 2019, 21, 213-218.	4.6	14
90	Resolving X-ray photoelectron spectra of ionic liquids with difference spectroscopy. Physical Chemistry Chemical Physics, 2019, 21, 114-123.	1.3	13
91	Green Solvent for the Synthesis of Linear α-Olefins from Fatty Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 4903-4911.	3.2	9

	CITATION R	CITATION REPORT	
#	Article	IF	Citations
92	Recent advances of CO2-responsive materials in separations. Journal of CO2 Utilization, 2019, 30, 79-99.	3.3	64
93	Ionic Liquid from Vitamin B1 Analogue and Heteropolyacid: A Recyclable Heterogeneous Catalyst for Dehydrative Coupling in Organic Carbonate. ACS Sustainable Chemistry and Engineering, 2019, 7, 3727-3732.	3.2	64
94	Microwave-Assisted Dehydrogenative Cross Coupling Reactions in γ-valerolactone with a Reusable Pd/β-cyclodextrin Crosslinked Catalyst. Molecules, 2019, 24, 288.	1.7	19
95	Anisole: a further step to sustainable hydroformylation. Green Chemistry, 2019, 21, 1091-1098.	4.6	47
96	Microwaveâ€Assisted Oneâ€Pot [3+2] Cycloaddition of Azomethine Ylides and 3â€Alkenyl Oxindoles: A Facile Approach to Pyrrolidineâ€Fused Bis‧pirooxindoles. ChemistrySelect, 2019, 4, 1727-1730.	0.7	27
97	Comparison and validation of methods for the determination of 90Sr by Cerenkov counting in biological and sediment samples, including green chemistry metrics. Journal of Radioanalytical and Nuclear Chemistry, 2019, 320, 109-122.	0.7	6
98	Recent advances in the Suzuki–Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chemistry, 2019, 21, 381-405.	4.6	323
99	Origins of complex solvent effects on chemical reactivity and computational tools to investigate them: a review. Reaction Chemistry and Engineering, 2019, 4, 165-206.	1.9	108
100	Enhanced one-step sample pretreatment method for extraction of ginsenosides from rat plasma using tailor-made deep eutectic mixture solvents. Analytical Methods, 2019, 11, 1035-1042.	1.3	9
101	Rapid desorption of CO2 from deep eutectic solvents based on polyamines at lower temperatures: an alternative technology with industrial potential. Sustainable Energy and Fuels, 2019, 3, 2125-2134.	2.5	21
102	From Lossen Transposition to Solventless "Medicinal Mechanochemistry― ACS Sustainable Chemistry and Engineering, 0, , .	3.2	12
103	Alkanediol-based deep eutectic solvents for isolation of terpenoids from citrus essential oil: Experimental evaluation and COSMO-RS studies. Separation and Purification Technology, 2019, 227, 115707.	3.9	44
104	Green Solvent Mixtures for Solid-Phase Peptide Synthesis: A Dimethylformamide-Free Highly Efficient Synthesis of Pharmaceutical-Grade Peptides. ACS Sustainable Chemistry and Engineering, 2019, 7, 12867-12877.	3.2	69
105	Preparation of flame-retardant lignin-containing wood nanofibers using a high-consistency mechano-chemical pretreatment. Chemical Engineering Journal, 2019, 375, 122050.	6.6	59
106	Synergy of in-situ formation of carbonic acid and supercritical CO2-expanded liquids: Application to extraction of andrographolide from Andrographis paniculata. Journal of Supercritical Fluids, 2019, 152, 104546.	1.6	7
107	Deep Eutectic Solvent with Prussian Blue and Tungsten Oxide for Green and Low-Cost Electrochromic Devices. ACS Applied Electronic Materials, 2019, 1, 1038-1045.	2.0	24
108	Systematic evaluation of hydrophobic deep-melting eutectics as alternative solvents for the extraction of organic solutes from aqueous solution. RSC Advances, 2019, 9, 15798-15804.	1.7	17
109	l-Proline Derived Secondary Aminothiourea Organocatalyst for Synthesis of Coumarin Derived Trisubstituted Methanes: Rate Enhancement by Bifunctional Catalyst over Cooperative Catalysis. Catalysis Letters, 2019, 149, 2776-2786.	1.4	15

#	Article	IF	CITATIONS
110	Proton sponge functionalized polyacrylonitrile fibers as an efficient and recyclable superbasic catalyst for Knoevenagel condensation in Water. Journal of Cleaner Production, 2019, 231, 77-86.	4.6	28
111	A simple route to synthesize esterified lignin derivatives. Green Chemistry, 2019, 21, 3682-3692.	4.6	62
112	A methodology to parameterize SAFT-type equations of state for solid precursors of deep eutectic solvents: the example of cholinium chloride. Physical Chemistry Chemical Physics, 2019, 21, 15046-15061.	1.3	32
113	Improved Carotenoid Processing with Sustainable Solvents Utilizing Z-Isomerization-Induced Alteration in Physicochemical Properties: A Review and Future Directions. Molecules, 2019, 24, 2149.	1.7	64
114	A Bipyridineâ€Palladium Derivative as General Preâ€Catalyst for Crossâ€Coupling Reactions in Deep Eutectic Solvents. Advanced Synthesis and Catalysis, 2019, 361, 3868-3879.	2.1	44
115	Opportunities and perspectives for green chemistry in semiconductor technologies. Green Chemistry, 2019, 21, 3250-3255.	4.6	7
116	Reusable ionic liquidâ€functionalized polystyrene for the highly efficient removal of sulfadiazine sodium. Journal of Applied Polymer Science, 2019, 136, 47981.	1.3	2
117	Green Bio-Based Solvents in C-C Cross-Coupling Reactions. Current Green Chemistry, 2019, 6, 96-104.	0.7	11
118	Carbonyl Reduction and Biomass: A Case Study of Sustainable Catalysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 10182-10197.	3.2	30
119	Gluconic acid promoted cascade reactions of 2-phenylimidazo[1,2-a] pyridine-3-carbaldehyde with cyclohexane-1,3-dione to create novel fused bisheterocycles. Synthetic Communications, 2019, 49, 1836-1846.	1.1	7
120	<i>Pistacia lentiscus</i> L. edible oil: green extraction with bio-based solvents, metabolite profiling and <i>in vitro</i> anti-inflammatory activity. OCL - Oilseeds and Fats, Crops and Lipids, 2019, 26, 25.	0.6	14
121	Highly Salt Resistant Polymer Supported Ionic Liquid Adsorbent for Ultrahigh Capacity Removal of <i>p</i> -Nitrophenol from Water. ACS Sustainable Chemistry and Engineering, 2019, 7, 8195-8205.	3.2	34
122	On the cost of academic methodologies. Organic Chemistry Frontiers, 2019, 6, 2095-2108.	2.3	14
123	An aspirated in-syringe device fixed with ionic liquid and β-cyclodextrin-functionalized CNTs/TiO2 for rapid adsorption and visible-light-induced photocatalytic activity. New Journal of Chemistry, 2019, 43, 9345-9353.	1.4	22
124	Bioderived and Eco-Friendly Solvent-Processed High-Mobility Ambipolar Plastic Transistors through Controlled Irregularity of the Polymer Backbone. Chemistry of Materials, 2019, 31, 3831-3839.	3.2	20
125	Applying Green Metrics to Eco-Friendly Synthesis of Sulfur-Substituted Conjugated Dienes Based on Atom-Economic Hydrothiolation. ACS Sustainable Chemistry and Engineering, 2019, 7, 9680-9689.	3.2	19
126	Supported organometallic palladium catalyst into mesoporous channels of magnetic MCM-41 nanoparticles for phosphine-free C C coupling reactions. Microporous and Mesoporous Materials, 2019, 284, 366-377.	2.2	56
127	Metallomicelle catalyzed aerobic tandem desilylation/Glaser reaction in water. Green Chemistry, 2019, 21, 2899-2904.	4.6	30

		LFORT	
#	Article	IF	CITATIONS
128	Geminal Diol of Dihydrolevoglucosenone as a Switchable Hydrotrope: A Continuum of Green Nanostructured Solvents. ACS Sustainable Chemistry and Engineering, 2019, 7, 7878-7883.	3.2	43
129	Table salt as a catalyst for the oxidation of aromatic alcohols and amines to acids and imines in aqueous medium: effectively carrying out oxidation reactions in sea water. Green Chemistry, 2019, 21, 1929-1934.	4.6	23
130	Advances in Sustainable Catalysis: A Computational Perspective. Frontiers in Chemistry, 2019, 7, 182.	1.8	36
131	From high oleic vegetable oils to hydrophobic starch derivatives: I. Development and structural studies. Carbohydrate Polymers, 2019, 214, 124-130.	5.1	23
132	Bioavailability and biological effects of bioactive compounds extracted with natural deep eutectic solvents and ionic liquids: advantages over conventional organic solvents. Current Opinion in Food Science, 2019, 26, 25-34.	4.1	93
133	Organolithiumâ€Initiated Polymerization of Olefins in Deep Eutectic Solvents under Aerobic Conditions. ChemSusChem, 2019, 12, 3134-3143.	3.6	41
134	Ionic conductivity of deep eutectic solvents: the role of orientational dynamics and glassy freezing. Physical Chemistry Chemical Physics, 2019, 21, 6801-6809.	1.3	58
135	Weinreb Amides as Directing Groups for Transition Metal-Catalyzed C-H Functionalizations. Molecules, 2019, 24, 830.	1.7	42
136	A step forward on sustainability in the cosmetics industry: A review. Journal of Cleaner Production, 2019, 225, 270-290.	4.6	161
137	Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents. ACS Applied Materials & amp; Interfaces, 2019, 11, 14313-14321.	4.0	83
138	Evaluation of lipid extraction from microalgae based on different phase regions of CO2-expanded ethanol. Chemical Engineering and Processing: Process Intensification, 2019, 138, 1-6.	1.8	19
139	Phase Behavior for the System Carbon Dioxide + p-Nitrobenzaldehyde: Experimental and Modeling. Journal of Chemical & Engineering Data, 2019, 64, 2116-2125.	1.0	2
140	New frontiers in sustainable membrane preparation: Cyreneâ,,¢ as green bioderived solvent. Journal of Membrane Science, 2019, 580, 224-234.	4.1	132
141	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie, 2019, 131, 8762-8767.	1.6	40
142	Reaction Environment Modification in Covalent Organic Frameworks for Catalytic Performance Enhancement. Angewandte Chemie - International Edition, 2019, 58, 8670-8675.	7.2	128
143	Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnology Advances, 2019, 37, 746-770.	6.0	409
144	Solvent effects in palladium catalysed cross-coupling reactions. Green Chemistry, 2019, 21, 2164-2213.	4.6	203
145	Biomass-Derived Solvents for Sustainable Transition Metal-Catalyzed C–H Activation. ACS Sustainable Chemistry and Engineering, 2019, 7, 8023-8040.	3.2	90

#	Article	IF	CITATIONS
146	Photooxygenation of 2-propargylfurans: a path to structurally diverse nitrogen-containing 5-membered rings. Chemical Communications, 2019, 55, 5443-5446.	2.2	9
147	<i>p</i> â€TSAâ€Based DESs as "Active Green Solvents―for Microwave Enhanced Cyclization of 2â€Alkynylâ€(hetero)â€arylcarboxylates: an Alternative Access to 6â€Substituted 3,4â€Fused 2â€Pyranones. European Journal of Organic Chemistry, 2019, 2019, 1904-1914.	1.2	24
148	Cyclopentyl Methyl Ether (CPME): A Versatile Ecoâ€Friendly Solvent for Applications in Biotechnology and Biorefineries. ChemSusChem, 2019, 12, 2083-2097.	3.6	99
149	Physicochemical properties of choline chloride-based deep eutectic solvents and excess properties of their pseudo-binary mixtures with 1-butanol. Journal of Chemical Thermodynamics, 2019, 133, 272-284.	1.0	133
150	Cost-effective imprinting to minimize consumption of template in room-temperature ionic liquid for fast purification of chlorogenic acid from the extract of E. ulmoides leaves. Analytical and Bioanalytical Chemistry, 2019, 411, 1261-1271.	1.9	14
151	Eucalyptol: a new solvent for the synthesis of heterocycles containing oxygen, sulfur and nitrogen. Green Chemistry, 2019, 21, 1531-1539.	4.6	39
153	Selective Iron-Mediated <i>C</i> - and <i>O</i> -Addition of Phenolic Nucleophiles to a Cyclohexadiene Scaffold Using Renewable Precursors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7155-7162.	3.2	4
154	Process Design and Economic Analysis of Renewable Isoprene from Biomass via Mesaconic Acid. ACS Sustainable Chemistry and Engineering, 2019, 7, 5576-5586.	3.2	27
155	Life cycle considerations of solvents. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 66-71.	3.2	24
156	Organocatalytic Asymmetric Conjugate Addition of Aldehydes to Maleimides and Nitroalkenes in Deep Eutectic Solvents. Molecules, 2019, 24, 4058.	1.7	14
157	Synthesis of Bio-Derived Cyclic Carbonates from Renewable Resources. ACS Sustainable Chemistry and Engineering, 2019, 7, 20126-20138.	3.2	48
158	Non-halogenated solution-processed ambipolar plastic transistors based on conjugated polymers prepared by asymmetric donor engineering. Journal of Materials Chemistry C, 2019, 7, 14977-14985.	2.7	9
159	Optimization of choline chloride-glycerol based natural deep eutectic solvent for extraction bioactive substances from Cinnamomum burmannii barks and Caesalpinia sappan heartwoods. Heliyon, 2019, 5, e02915.	1.4	26
160	Microalgae in Food-Energy-Water Nexus: A Review on Progress of Forward Osmosis Applications. Membranes, 2019, 9, 166.	1.4	13
161	Sulfonated graphitic carbon nitride as a highly selective and efficient heterogeneous catalyst for the conversion of biomass-derived saccharides to 5-hydroxymethylfurfural in green solvents. Green Chemistry, 2019, 21, 6012-6026.	4.6	107
162	A naked-eye colorimetric sensor for methanol and â€ [~] turn-on' fluorescence detection of Al ³⁺ . New Journal of Chemistry, 2019, 43, 18582-18589.	1.4	30
163	Combined Use of Deep Eutectic Solvents, Macroporous Resins, and Preparative Liquid Chromatography for the Isolation and Purification of Flavonoids and 20-Hydroxyecdysone from Chenopodium quinoa Willd. Biomolecules, 2019, 9, 776.	1.8	11
164	A green, economical synthesis of β-ketonitriles and trifunctionalized building blocks from esters and lactones. Beilstein Journal of Organic Chemistry, 2019, 15, 2930-2935.	1.3	1

#	Article	IF	CITATIONS
167	Efficient Rapid Access to Biginelli for the Multicomponent Synthesis of 1,2,3,4-Tetrahydropyrimidines in Room-Temperature Diisopropyl Ethyl Ammonium Acetate. ACS Omega, 2019, 4, 22313-22324.	1.6	49
170	Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chemistry, 2019, 21, 6123-6132.	4.6	67
171	lonic liquids as an enabling tool to integrate reaction and separation processes. Green Chemistry, 2019, 21, 6527-6544.	4.6	55
172	An efficient multicomponent synthesis of 2,4,5-trisubstituted and 1,2,4,5-tetrasubstituted imidazoles catalyzed by a magnetic nanoparticle supported Lewis acidic deep eutectic solvent. RSC Advances, 2019, 9, 38148-38153.	1.7	42
174	Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content. Nanoscale Horizons, 2019, 4, 158-168.	4.1	67
175	A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). Journal of Membrane Science, 2019, 574, 44-54.	4.1	205
176	Viscosity of liquid diethylene, triethylene and tetraethylene glycols at moderately high pressures using a vibrating wire instrument. Fluid Phase Equilibria, 2019, 480, 87-97.	1.4	12
177	Green solvents in urban mining. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 37-41.	3.2	16
178	A molecular simulation protocol for swelling and organic solvent nanofiltration of polymer membranes. Journal of Membrane Science, 2019, 573, 639-646.	4.1	50
179	Green solvents in analytical chemistry. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 42-50.	3.2	141
180	The greening of solvents: Towards sustainable organic synthesis. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 13-19.	3.2	84
181	Sustaining the Transition from a Petrobased to a Biobased Chemical Industry with Flow Chemistry. Topics in Current Chemistry, 2019, 377, 1.	3.0	104
182	Tailored Palladate Tunable Aryl Alkyl Ionic Liquids (TAAILs). Chemistry - A European Journal, 2019, 25, 2527-2537.	1.7	10
183	Green solvents for sustainable separation processes. Current Opinion in Green and Sustainable Chemistry, 2019, 18, 57-65.	3.2	75
184	A mild and efficient procedure for alkenols oxyselenocyclization by using ionic liquids. Journal of Physical Organic Chemistry, 2019, 32, e3928.	0.9	5
185	Ruthenium-Catalysed Olefin Metathesis in Environmentally Friendly Solvents: 2-Methyltetrahydrofuran Revisited. European Journal of Organic Chemistry, 2019, 2019, 640-646.	1.2	18
186	Perovskite Oxide Catalysts for Liquid-Phase Organic Reactions. Bulletin of the Chemical Society of Japan, 2019, 92, 133-151.	2.0	46
187	Direct sulfation of cellulose fibers using a reactive deep eutectic solvent to produce highly charged cellulose nanofibers. Cellulose, 2019, 26, 2303-2316.	2.4	114

# 188	ARTICLE Design of ionic liquids as liquid desiccant for an air conditioning system. Green Energy and Environment, 2019, 4, 139-145.	IF 4.7	Citations
189	Hydrogen gas-free processes for single-step preparation of transition-metal bifunctional catalysts and one-pot Î ³ -valerolactone synthesis in supercritical CO2-ionic liquid systems. Journal of Supercritical Fluids, 2019, 147, 263-270.	1.6	26
190	Natural Deep Eutectic Solvent-Catalyzed Selenocyanation of Activated Alkynes via an Intermolecular H-Bonding Activation Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 2169-2175.	3.2	116
191	Deep Eutectic Solvents. , 2019, , .		70
192	Applications of Deep Eutectic Solvents. , 2019, , 111-151.		18
193	Cyclopentyl Methyl Ether: An Elective Ecofriendly Ethereal Solvent in Classical and Modern Organic Chemistry. ChemSusChem, 2019, 12, 40-70.	3.6	100
194	Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation. Journal of Chemical Technology and Biotechnology, 2019, 94, 343-365.	1.6	101
195	Ionic liquids: green and tailor-made solvents in drug delivery. Drug Discovery Today, 2020, 25, 901-908.	3.2	87
196	Characterization of xylitol or citric acid:choline chloride:water mixtures: Structure, thermophysical properties, and quercetin solubility. Food Chemistry, 2020, 306, 125610.	4.2	24
197	Green Synthesis and Engineering Applications of Metal–Organic Frameworks. , 2020, , 139-162.		3
198	Biomolecules extraction from coffee and cocoa by―and coâ€products using deep eutectic solvents. Journal of the Science of Food and Agriculture, 2020, 100, 81-91.	1.7	52
199	Screening of functional solvent system for automatic aldehyde and ketone separation in aldol reaction: A combined COSMO-RS and experimental approach. Chemical Engineering Journal, 2020, 385, 123399.	6.6	17
200	Natural Deep Eutectic Solvents as Performance Additives for Peroxygenase Catalysis. ChemCatChem, 2020, 12, 989-994.	1.8	26
201	Extraction of bioactive compounds. , 2020, , 149-167.		11
202	Novel functionalized 1,2,3-triazole derivatives exhibit antileishmanial activity, increase in total and mitochondrial-ROS and depolarization of mitochondrial membrane potential of Leishmania amazonensis. Chemico-Biological Interactions, 2020, 315, 108850.	1.7	22
203	Recent Developments on 1,3-Dipolar Cycloaddition Reactions by Catalysis in Green Solvents. Catalysts, 2020, 10, 65.	1.6	48
204	A biphasic system based on guanidinium ionic liquid: Preparative separation of eicosapentaenoic acid ethyl ester by countercurrent chromatography. Journal of Chromatography A, 2020, 1618, 460872.	1.8	13
206	In water alkylation of amines with alcohols through a borrowing hydrogen process catalysed by ruthenium nanoparticles. Green Chemistry, 2020, 22, 327-331.	4.6	27

#	Article	IF	CITATIONS
207	Heterogeneous visible-light-induced Meerwein hydration reaction of alkenes in water using mpg-C ₃ N ₄ as a recyclable photocatalyst. Green Chemistry, 2020, 22, 411-416.	4.6	46
208	Cyreneâ,,¢ is a green alternative to DMSO as a solvent for antibacterial drug discovery against ESKAPE pathogens. RSC Medicinal Chemistry, 2020, 11, 111-117.	1.7	42
209	Expanding the design space of gel materials through ionic liquid mediated mechanical and structural tuneability. Materials Horizons, 2020, 7, 820-826.	6.4	12
210	Tandem addition/cyclization for synthesis of 2-aroyl benzofurans and 2-aroyl indoles by carbopalladation of nitriles. Organic and Biomolecular Chemistry, 2020, 18, 488-494.	1.5	14
211	Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science, 2020, 598, 117761.	4.1	348
212	Experimental solubility data of two solid derivatives of menadione in supercritical carbon dioxide: 2-((4-chlorobenzyl)amino)-3-methylnaphtalene-1,4-dione, and 2-((4-chlorophenethyl)amino)-3-methylnaphtalene-1,4-dione. Journal of Supercritical Fluids, 2020, 157, 104707	1.6	3
213	Nickelâ€Catalyzed Tandem Reaction of Functionalized Arylacetonitriles with Arylboronic Acids in 2â€MeTHF: Ecoâ€Friendly Synthesis of Aminoisoquinolines and Isoquinolones. Chemistry - an Asian Journal, 2020, 15, 106-111.	1.7	19
214	First Exploration on a Poly(vinyl chloride) Ultrafiltration Membrane Prepared by Using the Sustainable Green Solvent PolarClean. ACS Sustainable Chemistry and Engineering, 2020, 8, 91-101.	3.2	36
215	Exploration of New Biomassâ€Derived Solvents: Application to Carboxylation Reactions. ChemSusChem, 2020, 13, 2080-2088.	3.6	22
216	Facile and Green Preparation of Superfast Responsive Macroporous Polyacrylamide Hydrogels by Frontal Polymerization of Polymerizable Deep Eutectic Monomers. Industrial & Engineering Chemistry Research, 2020, 59, 1526-1533.	1.8	20
217	Organophotocatalytic Nâ€Đemethylation of Oxycodone Using Molecular Oxygen. Chemistry - A European Journal, 2020, 26, 2973-2979.	1.7	22
218	Revisiting the Liquid–Liquid Phase Behavior of n-Alkanes and Ethanol. Journal of Physical Chemistry B, 2020, 124, 156-172.	1.2	8
219	Deep eutectic solvent: An efficient and green catalyst for the three-component condensation of indoles, aromatic aldehydes, and activated methylene compounds. Tetrahedron Letters, 2020, 61, 151481.	0.7	14
220	Synergistic Enhancement of the Extraction and Separation Efficiencies of Lanthanoid(III) Ions by the Formation of Charged Adducts in an Ionic Liquid. Industrial & Engineering Chemistry Research, 2020, 59, 329-340.	1.8	20
221	Connecting precursors to a protic ionic liquid: Effects of hydrogen bond synergy in acid-base binary mixtures on the solvent-solute interactions. Journal of Molecular Liquids, 2020, 297, 111746.	2.3	4
222	Recent trends on seaweed fractionation for liquid biofuels production. Bioresource Technology, 2020, 299, 122613.	4.8	83
223	Insight into Speciation and Electrochemistry of Uranyl Ions in Deep Eutectic Solvents. Journal of Physical Chemistry B, 2020, 124, 181-189.	1.2	26
224	Perspectives and guidelines on thermodynamic modelling of deep eutectic solvents. Journal of Molecular Liquids, 2020, 298, 112183.	2.3	83

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
225	Toxic Solvent―and Additiveâ€Free Efficient Allâ€Polymer Solar Cells via a Simple Random Sequence Strategy in Both Donor and Acceptor Copolymer Backbones. Small Methods, 2020, 4, 1900696.	4.6	19
226	Mixing enhancement via a serpentine micromixer for real-time activation of carboxyl. Chemical Engineering Journal, 2020, 392, 123642.	6.6	38
227	Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: A reaction density functional theory study. Chemical Engineering Science, 2020, 213, 115380.	1.9	15
228	A green and integrated strategy for enhanced phenolic compounds extraction from mulberry (Morus) Tj E	TQq1 1 0,784314 2.3	rgBT /Over
229	Implications for Heavy Metal Extractions from Hyper Saline Brines with [NTf2]â^' lonic Liquids: Performance, Solubility, and Cost. Industrial & Engineering Chemistry Research, 2020, 59, 12536-12544.	1.8	7
230	Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of both Enantiomers of Mandelic Acid by Transesterification Catalyzed by a Thermophilic Lipase in Ionic Liquids at 120 °C. Catalysts, 2020 10, 1055.), 1.6	12
231	Manganese- and rhenium-catalyzed C–H enaminylation: expedient access to novel indole–purine hybrids with anti-tumor bioactivities. Organic Chemistry Frontiers, 2020, 7, 3709-3714.	2.3	14
232	Towards green extraction methods from microalgae learning from the classics. Applied Microbiology and Biotechnology, 2020, 104, 9067-9077.	1.7	20
233	Quantum mechanical and molecular dynamic approaches to describe solvation effects by neoteric solvents. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100395.	3.2	0
234	Enhanced extraction of arsenic and cadmium from environmental samples using a natural deep eutectic solvent and determination by inductively coupled plasma mass spectrometry. International Journal of Environmental Analytical Chemistry, 2022, 102, 7100-7111.	1.8	7
235	Introducing toxâ€Profiles of Chemical Reactions. Angewandte Chemie - International Edition, 2020, 59, 22296-22305.	7.2	14
236	Prediction of solvatochromic parameters of electronic transition energy for characterizing dipolarity/polarizability and hydrogen bonding donor interactions in binary solvent systems of liquid nonpolar-polar mixtures, CO2-expanded liquids and supercritical carbon dioxide with cosolvent. Journal of Molecular Liquids, 2020, 320, 114394.	2.3	4
237	Choline [Amino Acid] Ionic Liquid/Water Mixtures: A Triple Effect for the Degradation of an Organophosphorus Pesticide. ACS Omega, 2020, 5, 26562-26572.	1.6	17
238	Synthesis of low dimensional hierarchical transition metal oxides <i>via</i> a direct deep eutectic solvent calcining method for enhanced oxygen evolution catalysis. Nanoscale, 2020, 12, 20719-20725.	2.8	17
239	NaOH(KOH)-catalyzed vinylation of cellulose with acetylene gas in water. Cellulose, 2020, 27, 9271-9283.	2.4	2
240	New hydrophobic deep eutectic solvent for electrochemical applications. Journal of Molecular Liquids, 2020, 319, 114198.	2.3	16
241	Ionic liquid-promoted green synthesis of biologically relevant diaryl thioethers. Green Chemistry Letters and Reviews, 2020, 13, 295-302.	2.1	5
242	Introducing toxâ€Profiles of Chemical Reactions. Angewandte Chemie, 2020, 132, 22480-22489.	1.6	0

#	Article	IF	CITATIONS
243	A Comparison of Cobalt and Platinum Extraction in Hydrophobic and Hydrophilic Ionic Liquids: Implication for Proton Exchange Membrane Fuel Cell Recycling. ACS Sustainable Chemistry and Engineering, 2020, 8, 15865-15874.	3.2	16
244	Yellow-to-brown and yellow-to-green electrochromic devices based on complexes of transition metal ions with a triphenylamine-based ligand. Dalton Transactions, 2020, 49, 15041-15053.	1.6	15
245	Hydrophobic amine-based binary mixtures of active pharmaceutical and food grade ingredients: characterization and application in indium extraction from aqueous hydrochloric acid media. Green Chemistry, 2020, 22, 7047-7058.	4.6	15
246	Polyelectrolytes self-assembly: versatile membrane fabrication strategy. Journal of Materials Chemistry A, 2020, 8, 20870-20896.	5.2	48
247	Sustainable recycling of cathode scraps via Cyrene-based separation. Sustainable Materials and Technologies, 2020, 25, e00202.	1.7	28
248	Efficient Recovery of End-of-Life NdFeB Permanent Magnets by Selective Leaching with Deep Eutectic Solvents. Environmental Science & Technology, 2020, 54, 10370-10379.	4.6	57
249	Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. ACS Applied Materials & Interfaces, 2020, 12, 36639-36651.	4.0	46
250	Using COSMO-RS in the Design of Deep Eutectic Solvents for the Extraction of Antioxidants from Rosemary. ACS Sustainable Chemistry and Engineering, 2020, 8, 12132-12141.	3.2	65
251	Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS Omega, 2020, 5, 18515-18526.	1.6	20
252	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
253	A N–H functionalized perylene diimide with strong red-light absorption for green solvent processed organic electronics. Journal of Materials Chemistry C, 2020, 8, 9811-9815.	2.7	16
254	Overview of neoteric solvents as extractants in food industry: A focus on phenolic compounds separation from liquid streams. Food Research International, 2020, 136, 109558.	2.9	43
255	Building heterogeneous nanostructures for photocatalytic ammonia decomposition. Nanoscale Advances, 2020, 2, 3610-3623.	2.2	29
256	Supercritical Carbon Dioxide Applications in Food Processing. Food Engineering Reviews, 2021, 13, 570-591.	3.1	32
257	Predicting the density and viscosity of hydrophobic eutectic solvents: towards the development of sustainable solvents. Green Chemistry, 2020, 22, 8511-8530.	4.6	84
258	Exploiting Deep Eutectic Solvents and Ionic Liquids for the Valorization of Chestnut Shell Waste. ACS Sustainable Chemistry and Engineering, 2020, 8, 18386-18399.	3.2	46
259	Valorization of citrus waste through sustainable extraction processes. , 2020, , 113-133.		4
260	Steps Forward toward the Substitution of Conventional Solvents in the Heck–Mizoroki Coupling Reaction: Glycerol-Derived Ethers and Deep Eutectic Solvents as Reaction Media. ACS Sustainable Chemistry and Engineering, 2020, 8, 13076-13084.	3.2	19

#	Article	IF	CITATIONS
261	Microphase-separated structures of ion gels consisting of ABA-type block copolymers and an ionic liquid: A key to escape from the trade-off between mechanical and transport properties. Polymer, 2020, 206, 122849.	1.8	14
262	Transition-metal-free, one-pot, tandem C1-indolylation and N-alkylation of tetrahydroisoquinoline in biodegradable PEG solvent. Tetrahedron Letters, 2020, 61, 152304.	0.7	3
263	lonic liquids for the controllable preparation of functional TiO2 nanostructures: a review. Ionics, 2020, 26, 5853-5877.	1.2	13
265	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & amp; Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	3.2	2
266	Griseofulvin dissolved in binary aqueous co-solvent mixtures of N,N-dimethylformamide, methanol, ethanol, acetonitrile and N-methylpyrrolidone: Solubility determination and thermodynamic studies. Journal of Chemical Thermodynamics, 2020, 151, 106250.	1.0	12
267	Ionic liquids, deep eutectic solvents and liquid polymers as green solvents in carbon capture technologies: a review. Environmental Chemistry Letters, 2020, 18, 2031-2054.	8.3	103
268	Synthesis of Benzo-Fused 11H-Pyrido[2,1-b]quinazolin-11-ones by a Buchwald–Hartwig Coupling/Pyridine Dearomatization Sequence in Eucalyptol. Synthesis, 0, 52, .	1.2	5
269	Iridium-catalyzed <i>ortho</i> -selective carbon–hydrogen amidation of benzamides with sulfonyl azides in ionic liquid. RSC Advances, 2020, 10, 29712-29722.	1.7	6
270	Chemical/Water-Free Deliming Process Using Supercritical Carbon Dioxide: A Step toward Greener Leather Manufacture. ACS Sustainable Chemistry and Engineering, 2020, 8, 11747-11754.	3.2	10
271	Design of quaternary ammonium type-ionic liquids as desiccants for an air-conditioning system. Green Chemical Engineering, 2020, 1, 109-116.	3.3	10
272	Molecular dynamics investigation of wetting–dewetting behavior of reline DES nanodroplet at model carbon material. Journal of Chemical Physics, 2020, 153, 164704.	1.2	11
273	Microwaveâ€heated γâ€Alumina Applied to the Reduction of Aldehydes to Alcohols. ChemCatChem, 2020, 12, 6344-6355.	1.8	6
274	Organic acid catalyzed production of platform chemical 5-hydroxymethylfurfural from fructose: Process comparison and evaluation based on kinetic modeling. Arabian Journal of Chemistry, 2020, 13, 7430-7444.	2.3	36
275	Polyethylene glycol (PEGâ€400) Mediated Oneâ€pot Green Synthesis of 4,7â€Đihydroâ€2 <i>H</i> â€pyrazolo[3,4â€ <i>b</i>]pyridines Under Catalystâ€free Conditions. ChemistrySelect, 2020, 5, 12407-12410.	0.7	13
276	Ionic liquid catalyzed oneâ€pot multiâ€component synthesis of fused <scp>pyridine derivatives</scp> : <scp>A strategy</scp> for green and sustainable chemistry. Journal of Heterocyclic Chemistry, 2020, 57, 4291-4303.	1.4	21
277	Taming Troublesome Suzuki–Miyaura Reactions in Water Solution of Surfactants by the Use of Lecithin: A Step beyond the Micellar Model. Organic Process Research and Development, 2020, 24, 2604-2610.	1.3	17
278	Renewable Solvents for Palladium-Catalyzed Carbonylation Reactions. Organic Process Research and Development, 2020, 24, 2665-2675.	1.3	32
280	<i>Piper longum</i> Extract-Mediated Green Synthesis of Porous Cu ₂ O:Mo Microspheres and Their Superior Performance as Active Anode Material in Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 14557-14567.	3.2	15

#	Article	IF	CITATIONS
281	Recent Trends in Processing of Proteins and DNA in Alternative Solvents: A Sustainable Approach. Sustainable Chemistry, 2020, 1, 116-137.	2.2	23
282	Sustainable flow approaches to active pharmaceutical ingredients. Green Chemistry, 2020, 22, 5937-5955.	4.6	56
283	Highly Efficient and Selective Synthesis of Methyl Carbonate-Ended Polycarbonate Precursors from Dimethyl Carbonate and Bisphenol A. Industrial & Engineering Chemistry Research, 2020, 59, 13948-13955.	1.8	8
284	Replacement strategies for non-green dipolar aprotic solvents. Green Chemistry, 2020, 22, 6240-6257.	4.6	102
285	Biocompatible ionic liquids and their applications in pharmaceutics. Green Chemistry, 2020, 22, 8116-8139.	4.6	131
286	Cellulose dissolution and regeneration using a non-aqueous, non-stoichiometric protic ionic liquid system. Cellulose, 2020, 27, 9593-9603.	2.4	19
287	Eutectic Mixtures Based on Polyalcohols as Sustainable Solvents: Screening and Characterization. ACS Sustainable Chemistry and Engineering, 2020, 8, 15317-15326.	3.2	29
288	Solvent-controlled <i>E</i> / <i>Z</i> isomerization <i>vs.</i> [2 + 2] photocycloaddition mediated by supramolecular polymerization. Chemical Science, 2020, 11, 10405-10413.	3.7	33
289	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	1.7	99
290	1,3â€Dipolar Cycloaddition Reactions of Nitrile Oxides under "Nonâ€Conventional―Conditions: Green Solvents, Irradiation, and Continuous Flow. ChemPlusChem, 2020, 85, 2252-2271.	1.3	24
291	Enzyme Immobilization in Covalent Organic Frameworks: Strategies and Applications in Biocatalysis. ChemPlusChem, 2020, 85, 2051-2066.	1.3	37
292	Deep eutectic solvent as solvent and catalyst: one-pot synthesis of 1,3-dinitropropanes <i>via</i> tandem Henry reaction/Michael addition. Organic and Biomolecular Chemistry, 2020, 18, 8395-8401.	1.5	8
293	Solubility and Thermal Degradation of Quercetin in CO2-Expanded Liquids. Molecules, 2020, 25, 5582.	1.7	10
294	Physicochemical Properties of Choline Chloride-Based Deep Eutectic Solvents with Polyols: An Experimental and Theoretical Investigation. ACS Sustainable Chemistry and Engineering, 2020, 8, 18712-18728.	3.2	44
295	Rapid Construction of Substituted Dihydrothiophene Ureidoformamides at Room Temperature Using Diisopropyl Ethyl Ammonium Acetate: A Green Perspective. ACS Omega, 2020, 5, 29055-29067.	1.6	17
296	A green and efficient Pd-free protocol for the Suzuki–Miyaura cross-coupling reaction using Fe3O4@APTMS@Cp2ZrClx(x = 0, 1, 2) MNPs in PEG-400. Research on Chemical Intermediates, 2020, 46, 3361-3382.	1.3	15
297	CO ₂ -Binding Organic Liquids Comprised of 1,1,3,3-Tetramethylguanidine and Alkanol for Postcombustion CO ₂ Capture: Water Inhibitory Effect of Amine Promoters. ACS Sustainable Chemistry and Engineering, 2020, 8, 7909-7920.	3.2	23
298	Reporting the unreported: the reliability and comparability of the literature on organic solvent nanofiltration. Green Chemistry, 2020, 22, 3397-3409.	4.6	57

	Сітаті	ION REPORT	
#	Article	IF	CITATIONS
299	Aqueous solutions of deep eutectic systems as reaction media for the saccharification and fermentation of hardwood xylan into xylitol. Bioresource Technology, 2020, 311, 123524.	4.8	32
300	Micellar catalysis enabled synthesis of indolylbenzothiazoles and their functionalization via Mn(II)-catalyzed C2–H amination using pyridones. Tetrahedron Letters, 2020, 61, 152017.	0.7	6
301	Deep eutectic solvents: cutting-edge applications in cross-coupling reactions. Green Chemistry, 2020, 22, 3668-3692.	4.6	124
302	Minimizing solvent waste in catalytic reactions in highly recyclable hydrocarbon solvents. Organic and Biomolecular Chemistry, 2020, 18, 4248-4256.	1.5	7
303	Thermo-responsive switchable solvents for simultaneous microalgae cell disruption, oil extraction-reaction, and product separation for biodiesel production. Biocatalysis and Agricultural Biotechnology, 2020, 26, 101667.	1.5	17
304	Correlation and prediction of small to large sized pharmaceuticals solubility, and crystallization in binary and ternary mixed solvents using the UNIQUAC-SAC model. Fluid Phase Equilibria, 2020, 519, 112656.	1.4	13
305	Biocompatible amino acid-based ionic liquids for extracting hormones and antibiotics from swine effluents. Separation and Purification Technology, 2020, 250, 117068.	3.9	9
306	Revealing the complexity of ionic liquid–protein interactions through a multi-technique investigation. Communications Chemistry, 2020, 3, .	2.0	56
307	Nitroepoxide ring opening with thionucleophiles in water: synthesis of α-xanthyl ketones, β-keto sulfonic acids. Organic and Biomolecular Chemistry, 2020, 18, 4983-4987.	1.5	6
308	Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery—a review. Environmental Science and Pollution Research, 2020, 27, 32371-32388.	2.7	42
309	Novel Solvent Systems for Biomass Fractionation Based on Hydrogenâ€Bond Interaction: A Minireview. Advanced Sustainable Systems, 2020, 4, 2000085.	2.7	17
310	A convenient four-component reaction for the synthesis of dithiocarbamates starting from naphthols in water. Journal of Sulfur Chemistry, 2020, 41, 581-592.	1.0	4
311	Deep Eutectic Solvents Based on Natural Ascorbic Acid Analogues and Choline Chloride. ChemistryOpen, 2020, 9, 559-567.	0.9	13
312	Assessment of the organocatalytic activity of chiral l-Proline-based Deep Eutectic Solvents based on their structural features. Journal of Molecular Liquids, 2020, 313, 113573.	2.3	24
313	Metal Catalysis with Microwaves in Organic Synthesis: a Personal Account. European Journal of Organic Chemistry, 2020, 2020, 4435-4446.	1.2	9
314	Phenformin in aqueous co-solvent mixtures of N,N-dimethylformamide, ethanol, N-methylpyrrolidone and dimethyl sulfoxide: Solubility, solvent effect and preferential solvation. Journal of Chemical Thermodynamics, 2020, 144, 106085.	1.0	12
315	Bio-Solvents: Synthesis, Industrial Production and Applications. , 2020, , .		1
316	Sustainability Calculator: A Tool to Assess Sustainability in Cosmetic Products. Sustainability, 2020, 12, 1437.	1.6	27

#	Article	IF	CITATIONS
317	Multiscale Exploration and Experimental Insights into Separating Neutral Heterocyclic Nitrogen Compounds Using [emim][NO ₃] as an Extractant. ACS Sustainable Chemistry and Engineering, 2020, 8, 5662-5673.	3.2	42
318	Phase-Selective Microwave Assisted Synthesis of Iron(III) Aminoterephthalate MOFs. Materials, 2020, 13, 1469.	1.3	22
319	A Glimpse into Green Chemistry Practices in the Pharmaceutical Industry. ChemSusChem, 2020, 13, 2859-2875.	3.6	69
320	Glycerol Ethers as Hydrotropes and Their Use to Enhance the Solubility of Phenolic Acids in Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 5742-5749.	3.2	35
321	Green Asymmetric Organocatalysis. ChemSusChem, 2020, 13, 2828-2858.	3.6	107
322	Challenges in the development of new green solvents for polymer dissolution. Polymer International, 2020, 69, 895-901.	1.6	17
323	NaCl as Catalyst and Water as Solvent: Highly <i>E</i> -Selective Olefination of Methyl Substituted <i>N</i> -Heteroarenes with Benzyl Amines and Alcohols. Organic Letters, 2020, 22, 5496-5501.	2.4	24
324	Chemists around the World, Take Your Part in the Circular Economy!. Chemistry - A European Journal, 2020, 26, 9665-9673.	1.7	10
325	An environmentally sustainable biomimetic production of cyclic disulfide-rich peptides. Green Chemistry, 2020, 22, 5002-5016.	4.6	23
326	Heterogeneous carbon nitride photocatalyst for C–C bond oxidative cleavage of vicinal diols in aerobic micellar medium. Green Chemistry, 2020, 22, 5042-5049.	4.6	47
327	Green and Ethanolâ€Resistant Polyurethane Nanofibrous Membranes Based on an Ethanol Solvent for Waterproof and Breathable Textiles. Advanced Sustainable Systems, 2020, 4, 2000105.	2.7	33
328	Ru-Catalyzed Repetitive Batch Borylative Coupling of Olefins in Ionic Liquids or Ionic Liquids/scCO2 Systems. Catalysts, 2020, 10, 762.	1.6	4
329	The hydration behavior of d-glucose in the choline chloride: Urea:water mixtures. Journal of Molecular Liquids, 2020, 314, 113649.	2.3	1
330	Structural features influencing the activity of bis-biguanide ligands in the Suzuki–Miyaura cross-coupling reaction in neat water. Canadian Journal of Chemistry, 2020, 98, 547-553.	0.6	2
331	Guidelines for designing highly concentrated electrolytes for low temperature applications. Chemical Communications, 2020, 56, 9830-9833.	2.2	13
332	Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules, 2020, 25, 3016.	1.7	17
333	Nitrogen Fixation with Water Vapor by Nonequilibrium Plasma: toward Sustainable Ammonia Production. ACS Sustainable Chemistry and Engineering, 2020, 8, 2996-3004.	3.2	92
334	Electrochemical Synthesis of Biaryls via Oxidative Intramolecular Coupling of Tetra(hetero)arylborates. Journal of the American Chemical Society, 2020, 142, 4341-4348.	6.6	39

#	Article	IF	CITATIONS
335	Local composition models for predicting Kamlet-Taft dipolarity/polarizability of nonaqueous binary and ternary mixtures. Journal of Molecular Liquids, 2020, 304, 112691.	2.3	5
336	Simple Synthetic Routes to Nâ€Heterocyclic Carbene Gold(I)–Aryl Complexes: Expanded Scope and Reactivity. Chemistry - A European Journal, 2020, 26, 5541-5551.	1.7	41
337	Current perspective of sustainable surfactants based on renewable building blocks. Current Opinion in Colloid and Interface Science, 2020, 45, 124-135.	3.4	65
338	New magnetic-responsive deep eutectic catalyst based on Co2+/choline chloride for the synthesis of tetrahydro-pyrazolopyridines and pyrroles in water. Journal of Molecular Liquids, 2020, 304, 112722.	2.3	13
339	Vapor–Liquid Equilibria of the Ionic Liquid 1-Hexyl-3-methylimidazolium Triflate (C6mimTfO) with n-Alkyl Alcohols. Industrial & Engineering Chemistry Research, 2020, 59, 5142-5157.	1.8	8
340	Hydrogen bond promoted thermal stability enhancement of acetate based ionic liquid. Chinese Journal of Chemical Engineering, 2020, 28, 1293-1301.	1.7	11
341	How imidazoliumâ€based ionic liquids solubilize the poorly soluble ibuprofen? A theoretical study. AICHE Journal, 2020, 66, e16940.	1.8	13
342	Commercial Applications of Ionic Liquids. Green Chemistry and Sustainable Technology, 2020, , .	0.4	44
343	Knoevenagel Condensation and Michael Addition in Bioâ€Renewable Deep Eutectic Solvent: Facile Synthesis of a Library of Bisâ€enol Derivatives. ChemistrySelect, 2020, 5, 799-803.	0.7	17
344	Design of Lewis base functionalized ionic liquids for the N-formylation of amines with CO2 and hydrosilane: The cation effects. Catalysis Today, 2020, 356, 563-569.	2.2	29
345	Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2. Reactive and Functional Polymers, 2020, 149, 104502.	2.0	20
346	Efficient Formation of 2,5-Diformylfuran in Ionic Liquids at High Substrate Loadings and Low Oxygen Pressure with Separation through Sublimation. ACS Sustainable Chemistry and Engineering, 2020, 8, 2462-2471.	3.2	30
347	Greening Fmoc/ <i>t</i> Bu solid-phase peptide synthesis. Green Chemistry, 2020, 22, 996-1018.	4.6	85
348	Hydroformylation of recalcitrating biorenewable compounds containing trisubstituted double bonds. Applied Catalysis A: General, 2020, 591, 117406.	2.2	1
349	Fluorinated vesicles embedded with Ru-based catalysts as efficient and recyclable nanoreactors for photo-mediated aerobic oxidation. Polymer Chemistry, 2020, 11, 1727-1734.	1.9	8
350	Liquid–Liquid Phase Behavior of Solutions of 1,3-Diethylimidazolium Bis((trifluoromethyl)sulfonyl)amide in <i>n</i> -Alkyl Alcohols. Journal of Chemical & Engineering Data, 2020, 65, 1345-1357.	1.0	6
351	Indium and thallium extraction into betainium bis(trifluoromethylsulfonyl)imide ionic liquid from aqueous hydrochloric acid media. New Journal of Chemistry, 2020, 44, 2527-2537.	1.4	16
352	Design Principle of Reactive Components for Dimethacrylateâ€Terminated Quantum Dots: Preserved Photoluminescent Quantum Yield, Excellent Pattern Uniformity, and Suppression of Aggregation in the Matrix. Macromolecular Chemistry and Physics, 2020, 221, 1900488.	1.1	1

#	Article	IF	CITATIONS
353	Wholeâ€Cell Biocatalysis in Seawater: New Halotolerant Yeast Strains for the Regio―and Stereoselectivity Reduction of 1â€Phenylpropaneâ€1,2â€Dione in Salineâ€Rich Media. ChemBioChem, 2020, 21, 1621-1628.	1.3	9
354	Mild and Efficient Synthesis of Diverse Organoâ€Au I â€L Complexes in Green Solvents. ChemSusChem, 2020, 13, 2032-2037.	3.6	8
355	Metal-free and base-free decarboxylation of substituted cinnamic acids in a deep eutectic solvent. Synthetic Communications, 2020, 50, 558-563.	1.1	3
356	Increasing Complexity: A Practical Synthetic Approach to Threeâ€Dimensional, Cyclic Sulfoximines and First Insights into Their in Vitro Properties. Chemistry - A European Journal, 2020, 26, 4378-4388.	1.7	18
357	Effect of Green Solvents in the Production of PVDF-Specific Polymorphs. Industrial & Engineering Chemistry Research, 2020, 59, 5267-5275.	1.8	18
358	Fast Heck–Cassar–Sonogashira (HCS) Reactions in Green Solvents. Organic Letters, 2020, 22, 3969-3973.	2.4	26
359	A grand avenue to integrate deep eutectic solvents into biomass processing. Biomass and Bioenergy, 2020, 137, 105550.	2.9	57
360	Towards water-insensitive CO2-binding organic liquids for CO2 absorption: Effect of amines as promoter. Journal of Molecular Liquids, 2020, 306, 112938.	2.3	15
361	Desulfurization of diesel by extraction coupled with Mo-catalyzed sulfoxidation in polyethylene glycol-based deep eutectic solvents. Journal of Molecular Liquids, 2020, 309, 113093.	2.3	25
362	Microwave-Assisted Protocol for Green Functionalization of Thiophenes With a Pd/β-Cyclodextrin Cross-Linked Nanocatalyst. Frontiers in Chemistry, 2020, 8, 253.	1.8	12
363	Selective Electrocatalytic Oxidation of Biomassâ€Derived 5â€Hydroxymethylfurfural to 2,5â€Diformylfuran: from Mechanistic Investigations to Catalyst Recovery. ChemSusChem, 2020, 13, 3127-3136.	3.6	45
364	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	2.2	43
365	Recent advances in scaling-up of non-conventional extraction techniques: Learning from successes and failures. TrAC - Trends in Analytical Chemistry, 2020, 127, 115895.	5.8	104
366	Ion chromatography for monitoring [NTf ₂] ^{â^'} anion contaminants in pure and saline water. Analytical Methods, 2020, 12, 2244-2252.	1.3	8
367	Highly efficient catalyst-free domino conjugate addition, decarboxylation and esterification/amidation of coumarin carboxylic acid/esters with pyrazolones: a green chemistry approach. RSC Advances, 2020, 10, 13866-13871.	1.7	9
368	Ligand-Free and Recyclable Palladium(II) Acetate Catalyzes the Decarboxylative Cross-Coupling of Alkynyl Carboxylic Acids with Arylboronic Acids in Aqueous PEG-400. Synlett, 2020, 31, 793-796.	1.0	1
369	Quantifying the effect of polarity on the behavior of mixtures of <scp><i>n</i>â€alkanes</scp> with dipolar solvents using polar <scp>softâ€</scp> statistical associating fluid theory (Polar soft‣AFT). AICHE Journal, 2021, 67, e16649.	1.8	11
370	Stretchable, tough and elastic nanofibrous hydrogels with dermis-mimicking network structure. Journal of Colloid and Interface Science, 2021, 582, 387-395.	5.0	13

		EPORT	
#	Article	IF	CITATIONS
371	Structure and properties of two glucose-based deep eutectic systems. Food Chemistry, 2021, 336, 127717.	4.2	16
372	Green fractionation of 2G and 3G feedstocks for ethanol production: advances, incentives and barriers. Current Opinion in Food Science, 2021, 37, 1-9.	4.1	18
373	Progress on polymeric hollow fiber membrane preparation technique from the perspective of green and sustainable development. Chemical Engineering Journal, 2021, 403, 126295.	6.6	108
374	Lipophilic ion aromaticity is not important for permeability across lipid membranes. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183483.	1.4	9
375	Talaromyces amestolkiae cell disruption and colorant extraction using imidazolium-based ionic liquids. Separation and Purification Technology, 2021, 257, 117759.	3.9	23
376	Emerging green solvents and their applications during pesticide analysis in food and environmental samples. Talanta, 2021, 223, 121507.	2.9	46
377	Mechanochemical Solventâ€Free Catalytic Câ^'H Methylation. Angewandte Chemie - International Edition, 2021, 60, 6660-6666.	7.2	78
378	Direct pretreatment of raw ramie fibers using an acidic deep eutectic solvent to produce cellulose nanofibrils in high purity. Cellulose, 2021, 28, 175-188.	2.4	42
379	Preparation of full-bio-based nanofiltration membranes. Journal of Membrane Science, 2021, 618, 118674.	4.1	27
380	Ruthenium-catalyzed Câ \in "H bond functionalization in cascade and one-pot transformations. Coordination Chemistry Reviews, 2021, 428, 213602.	9.5	56
381	Deep Eutectic Solvent Choline Chloride/ <i>p</i> -toluenesulfonic Acid and Water Favor the Enthalpy-Driven Binding of Arylamines to Maleimide in Aza-Michael Addition. Journal of Organic Chemistry, 2021, 86, 223-234.	1.7	11
382	Combined theoretical and experimental studies on CO2 capture by amine-activated glycerol. Chemical Engineering Journal, 2021, 408, 128002.	6.6	16
383	Assessing Methodologies to Synthesize α‣ulfenylated Carbonyl Compounds by Green Chemistry Metrics. ChemSusChem, 2021, 14, 808-823.	3.6	14
384	Advances in aqueous biphasic systems for biotechnology applications. Current Opinion in Green and Sustainable Chemistry, 2021, 27, 100417.	3.2	8
385	Solid-liquid phase equilibrium of naphazoline hydrochloride in eleven neat solvents: Determination, solvent effect, molecular simulation and thermodynamic analysis. Journal of Molecular Liquids, 2021, 325, 114748.	2.3	11
386	Liquid–liquid extraction technology for resource recovery: Applications, potential, and perspectives. Journal of Water Process Engineering, 2021, 40, 101762.	2.6	21
387	A mild and chemoselective CALB biocatalysed synthesis of sulfoxides exploiting the dual role of AcOEt as solvent and reagent. Organic and Biomolecular Chemistry, 2021, 19, 156-161.	1.5	6
388	The nexus between alternatives assessment and green chemistry: supporting the development and adoption of safer chemicals. Green Chemistry Letters and Reviews, 2021, 14, 23-44.	2.1	10

		PORT	
#	Article	IF	Citations
389	The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: gaps in knowledge and metabolic pathways. Nutrition Reviews, 2021, 79, 76-87.	2.6	14
390	Mechanochemical Solventâ€Free Catalytic Câ^'H Methylation. Angewandte Chemie, 2021, 133, 6734-6740.	1.6	19
391	Deep eutectic solventâ€assisted synthesis of highly efficient nanocatalyst (nâ€TiO ₂ @TDI@DES) Tj Organometallic Chemistry, 2021, 35, e6127.	ETQq0 0 0 1.7) rgBT /Overl 7
392	Task-specific ionic liquids as absorbents and catalysts for efficient capture and conversion of H2S into value-added mercaptan acids. Chemical Engineering Journal, 2021, 408, 127866.	6.6	72
393	Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polymer Testing, 2021, 93, 106996.	2.3	32
394	Green-Solvent-Processed Fibrous Membranes with Water/Oil/Dust-Resistant and Breathable Performances for Protective Textiles. ACS Applied Materials & Interfaces, 2021, 13, 2081-2090.	4.0	37
395	Evaluation of COSMO-RS for solid–liquid equilibria prediction of binary eutectic solvent systems. Green Energy and Environment, 2021, 6, 371-379.	4.7	41
396	Low-cost handheld NIR spectroscopy for identification of organic solvents and low-level quantification of water contamination. Talanta, 2021, 223, 121865.	2.9	14
397	Chlorinated Solvents: Their Advantages, Disadvantages, and Alternatives in Organic and Medicinal Chemistry. Chemical Reviews, 2021, 121, 1582-1622.	23.0	57
398	Toward the Next Generation of Sustainable Membranes from Green Chemistry Principles. ACS Sustainable Chemistry and Engineering, 2021, 9, 50-75.	3.2	110
399	CO ₂ switchable deep eutectic solvents for reversible emulsion phase separation. Chemical Communications, 2021, 57, 627-630.	2.2	32
400	Insights on the use of alternative solvents and technologies to recover bioâ€based food pigments. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 787-818.	5.9	36
401	Lipase-catalysed synthesis of mono- and di-acyl esters of glyceryl caffeate in propylene carbonate and their antioxidant properties in tuna oil. Journal of Biotechnology, 2021, 325, 217-225.	1.9	10
402	Multiscale evaluation of CO2-derived cyclic carbonates to separate hydrocarbons: Drafting new competitive processes. Fuel Processing Technology, 2021, 212, 106639.	3.7	20
403	Switchable solvent-based micro-extraction of pesticides in food and environmental samples. Talanta, 2021, 224, 121807.	2.9	29
404	Grapheneâ€Based Advanced Membrane Applications in Organic Solvent Nanofiltration. Advanced Functional Materials, 2021, 31, 2006949.	7.8	81
405	Determination and modelling of density, viscosity and solubility of (R)-(-)-phenylephrine hydrochloride in methanol + ethyl acetate at (278.15–323.15) K and 0.1â€MPa. Journal of Molecular Liquids, 2021, 321, 114311.	2.3	3
406	The first report of deep eutectic solvent (<scp>DES</scp>) nanoâ€photocatalyst (<scp>nâ€TiO₂â€P25</scp> @ <scp>TDI</scp> @ <scp>DES</scp> (urea:) Tj ETQq1 1 0.784314 rgB benzaldehydes. Iournal of Chemical Technology and Biotechnology. 2021. 96. 384-393.	T /Oyerloc	k 10 Tf 50 €

#	ARTICLE	IF	CITATIONS
407	Fully Renewable Nonâ€Isocyanate Polyurethanes via the Lossen Rearrangement. Macromolecular Rapid Communications, 2021, 42, e2000440.	2.0	15
408	Hansen Solubility Parameters for Selection of Green Extraction Solvents. , 2021, , 710-724.		1
409	Organic carbonate as a green solvent for biocatalysis. , 2021, , 253-275.		6
410	Miscellaneous Passerini Reaction for $\hat{1}\pm$ -Acyloxy Carboxamide: Synthesis and Process Optimization Study. Letters in Organic Chemistry, 2022, 19, 326-332.	0.2	4
411	Environmentally Friendly Solvents for Sample Preparation in Foodomics. , 2021, , 536-565.		1
412	Evaluation of greener solvents for solid-phase peptide synthesis. Green Chemistry Letters and Reviews, 2021, 14, 153-164.	2.1	21
413	Structure and noncovalent interactions in ionic liquids mixtures and deep eutectic solvents. , 2021, , 105-157.		3
414	Peroxodisulfate-assisted three-component benzylation of coumarins with styrenes and KSCN: a transition-metal-free approach for the synthesis of 3-(1-aryl-2-thiocyanatoethyl)-2 <i>H</i> -chromen-2-one in ethyl lactate. Green Chemistry, 2021, 23, 4873-4881.	4.6	13
415	Poly(methylhydrosiloxane) as a reductant in the catalytic base-free Wittig reaction. Green Chemistry, 2021, 23, 4852-4857.	4.6	9
416	Green strategies for transition metal-catalyzed C–H activation in molecular syntheses. Organic Chemistry Frontiers, 2021, 8, 4886-4913.	2.3	59
417	Green Chemistry Approach for Synthesis of Materials. Indian Institute of Metals Series, 2021, , 557-588.	0.2	0
418	lonozyme: ionic liquids as solvent and stabilizer for efficient bioactivation of CO ₂ . Green Chemistry, 2021, 23, 6990-7000.	4.6	13
419	A simple synthesis of [RuCl ₂ (NHC)(<i>p</i> -cymene)] complexes and their use in olefin oxidation catalysis. Dalton Transactions, 2021, 50, 3959-3965.	1.6	12
420	Borrowing Carbonate-Enabled Allylic Amination Reactions under Additive- and Reductant-Free Nickel Catalysis Employing Allylic Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 1846-1855.	3.2	14
421	Green solvents for remediation technologies. , 2021, , 23-30.		1
422	Supercritical fluids as green solvents. , 2021, , 891-916.		4
423	<i>In Situ</i> Radical Polymerization of <i>N</i> -isopropylacrylamide in Electrospun Anisotropic Nanofiber of Poly (Ethylene Oxide). Journal of Fiber Science and Technology, 2021, 77, 40-45.	0.2	1
424	Principles of Green Chemistry. Materials Horizons, 2021, , 15-32.	0.3	4

#	Article	IF	CITATIONS
425	Catalytic hydrogenolysis of larix bark proanthocyanidins in ionic liquids produces UV blockers with potential for use in cosmetics. RSC Advances, 2021, 11, 30078-30087.	1.7	7
426	A Theoretical Study on Terpeneâ€Based Natural Deep Eutectic Solvent: Relationship between Viscosity and Hydrogenâ€Bonding Interactions. Global Challenges, 2021, 5, 2000103.	1.8	24
427	Applications of Ionic Liquids in Plastic and Lignin Waste Recycling. Advances in Science, Technology and Innovation, 2021, , 329-336.	0.2	1
428	Steps towards sustainable solid phase peptide synthesis: use and recovery of <i>N</i> -octyl pyrrolidone. Green Chemistry, 2021, 23, 4095-4106.	4.6	21
429	Lipids as versatile solvents for chemical synthesis. Green Chemistry, 2021, 23, 7219-7227.	4.6	9
430	Carotenoids obtained from an ionic liquid-mediated process display anti-inflammatory response in the adipose tissue-liver axis. Food and Function, 2021, 12, 8478-8491.	2.1	8
431	Organic reactions in aqueous media catalyzed by nickel. Green Chemistry, 2021, 23, 6273-6300.	4.6	24
432	Green Chemistry for Green Solvent Production and Sustainability Toward Green Economy. , 2021, , 583-636.		1
433	Supercritical CO2 for biocatalysis. , 2021, , 55-72.		2
434	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149.		1
434 435	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114.	3.2	1
434 435 436	 Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. 	3.2 0.6	1 35 7
434 435 436 437	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. Life cycle thinking case study for catalytic wet air oxidation of lignin in bamboo biomass for vanillin production. Green Chemistry, 2021, 23, 1847-1860.	3.2 0.6 4.6	1 35 7 6
434 435 436 437 438	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. Life cycle thinking case study for catalytic wet air oxidation of lignin in bamboo biomass for vanillin production. Green Chemistry, 2021, 23, 1847-1860. Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090.	3.2 0.6 4.6 3.9	1 35 7 6 97
 434 435 436 437 438 439 	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Cood Old Amide Bond― ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. Life cycle thinking case study for catalytic wet air oxidation of lignin in bamboo biomass for vanillin production. Green Chemistry, 2021, 23, 1847-1860. Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090. Hazardous Creosote Wood Valorization via Fractionation and Enzymatic Saccharification Coupled with Simultaneous Extraction of the Embedded Polycyclic Aromatic Hydrocarbons Using Protic Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 704-716.	3.2 0.6 4.6 3.9 3.2	1 35 7 6 97 13
434 435 436 437 438 439 440	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient "Cut-and-Paste―Strategy to Design the "Good Old Amide Bond―ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. Life cycle thinking case study for catalytic wet air oxidation of lignin in bamboo biomass for vanillin production. Green Chemistry, 2021, 23, 1847-1860. Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090. Hazardous Creosote Wood Valorization via Fractionation and Enzymatic Saccharification Coupled with Simultaneous Extraction of the Embedded Polycyclic Aromatic Hydrocarbons Using Protic Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 704-716. Fully recyclable BrÅnsted acid catalyst systems. Green Chemistry, 2021, 23, 1266-1273.	3.2 0.6 4.6 3.9 3.2 4.6	1 35 7 6 97 13 13
 434 435 436 437 438 439 440 441 	Biosolvents as green solvents in the pharmaceutical industry. , 2021, , 105-149. The Mechanochemical Beckmann Rearrangement: An Eco-efficient â&œCut-and-Pasteâ&-Strategy to Design the â&œCood Old Amide Bondâ& ACS Sustainable Chemistry and Engineering, 2021, 9, 2100-2114. Some applications of deep eutectic solvents in alkylation of heterocyclic compounds: A review of the past 10 years. Heterocyclic Communications, 2021, 27, 45-56. Life cycle thinking case study for catalytic wet air oxidation of lignin in bamboo biomass for vanillin production. Green Chemistry, 2021, 23, 1847-1860. Covalent Organic Frameworks for Biomedical Applications. Advanced Healthcare Materials, 2021, 10, e2002090. Hazardous Creosote Wood Valorization via Fractionation and Enzymatic Saccharification Coupled with Simultaneous Extraction of the Embedded Polycyclic Aromatic Hydrocarbons Using Protic Ionic Liquid Media. ACS Sustainable Chemistry and Engineering, 2021, 9, 704-716. Fully recyclable BrÅ,nsted acid catalyst systems. Green Chemistry, 2021, 23, 1266-1273. Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions. Green Chemistry, 2021, 23, 8116-8123.	 3.2 0.6 4.6 3.9 3.2 4.6 4.6 	1 35 7 6 97 13 13 13 13 13

#	Article	IF	CITATIONS
443	Deep eutectic solvent assisted zero-waste electrospinning of lignin fiber aerogels. Green Chemistry, 2021, 23, 6065-6075.	4.6	14
444	Switchable solvents for biocatalysis. , 2021, , 211-233.		Ο
445	Controlling surface chemistry and mechanical properties of metal ionogels through Lewis acidity and basicity. Journal of Materials Chemistry A, 2021, 9, 4679-4686.	5.2	3
446	Commercial green solvents for environmental remediation. , 2021, , 89-119.		Ο
447	Facile synthesis of ZnO nanobullets by solution plasma without chemical additives. RSC Advances, 2021, 11, 26785-26790.	1.7	8
448	A sustainable approach for hydration of nitriles to amides utilising WEB as reaction medium. Current Research in Green and Sustainable Chemistry, 2021, 4, 100071.	2.9	9
449	Bis-indolylation of aldehydes and ketones using silica-supported FeCl ₃ : molecular docking studies of bisindoles by targeting SARS-CoV-2 main protease binding sites. RSC Advances, 2021, 11, 30827-30839.	1.7	16
450	Zwitterionic compounds are less ecotoxic than their analogous ionic liquids. Green Chemistry, 2021, 23, 3683-3692.	4.6	16
451	Replacing halogenated solvents by a butyl acetate solution of bisphenol S in the transformations of indoles. Green Chemistry, 2021, 23, 3588-3594.	4.6	9
452	Ionic Liquids for Increasing the Solubility of Sparingly Soluble Drug Molecules. , 2021, , 51-70.		2
453	Ionic Liquids as Active Pharmaceutical Ingredients (APIs). , 2021, , 13-33.		3
454	Fest und fest macht flüssig. Nachrichten Aus Der Chemie, 2021, 69, 47-49.	0.0	0
455	C–H Activation: Toward Sustainability and Applications. ACS Central Science, 2021, 7, 245-261.	5.3	357
456	Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts, 2021, 11, 222.	1.6	8
456 458	Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts, 2021, 11, 222. Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 2021, 26, 798.	1.6 1.7	8
456 458 459	Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts, 2021, 11, 222. Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 2021, 26, 798. The crystal structure of 3,3â€2-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 553-555.	1.6 1.7 0.1	8 27 0
456 458 459 460	Eucalyptol: A Bio-Based Solvent for the Synthesis of O,S,N-Heterocycles. Application to Hiyama Coupling, Cyanation, and Multicomponent Reactions. Catalysts, 2021, 11, 222.Green Deep Eutectic Solvents for Microwave-Assisted Biomass Delignification and Valorisation. Molecules, 2021, 26, 798.The crystal structure of 3,3â€2-((carbonylbis(azanediyl))bis(ethane-2,1-diyl)) bis(1-methyl-1H-benzo[d]imidazol-3-ium) tetrafluoroborate monohydrate, C21H28N6O3B2F8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 553-555.Nanochannels in Photoactive Polymeric Cu(l) Compatible for Efficient Micellar Catalysis: Sustainable Aerobic Oxidations of Alcohols in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 2854-2860.	1.6 1.7 0.1 3.2	8 27 0 14

#	Article	IF	CITATIONS
462	Demonstration of Green Solvent Performance on O,S,N-Heterocycles Synthesis: Metal-Free Click Chemistry and Buchwald—Hartwig Coupling. Molecules, 2021, 26, 1074.	1.7	4
463	An environmentally benign cascade reaction of 1,2,3-indantriones with ethyl 2-(pyridine-2-yl)acetates for site-selective synthesis of 5H-isochromeno[4,3-b]indolizin-5-ones. Green Synthesis and Catalysis, 2021, 2, 54-61.	3.7	7
464	Supercritical carbon dioxide and eutectic solvent in conjunction: Novel method for in-situ solvent preparation-dissolution and uranium extraction from solid matrices. Separation and Purification Technology, 2021, 257, 117950.	3.9	12
465	Interplay of Acidity and Ionic Liquid Structure on the Outcome of a Heterocyclic Rearrangement Reaction. Journal of Organic Chemistry, 2021, 86, 4045-4052.	1.7	3
466	A Review of Recent Advances in the Green Synthesis of Azole- and Pyran-based Fused Heterocycles Using MCRs and Sustainable Catalysts. Current Organic Chemistry, 2021, 25, 4-39.	0.9	21
467	Dual solvent-catalyst role of deep eutectic solvents in Hantzsch dihydropyridine synthesis. Synthetic Communications, 0, , 1-12.	1.1	2
468	Mechanochemical Aza-Vinylogous Povarov Reactions for the Synthesis of Highly Functionalized 1,2,3,4-Tetrahydroquinolines and 1,2,3,4-Tetrahydro-1,5-Naphthyridines. Molecules, 2021, 26, 1330.	1.7	5
469	Sustainable solvents in chemical synthesis: a review. Environmental Chemistry Letters, 2021, 19, 3263-3282.	8.3	20
470	Organosulfideâ€Based Deep Eutectic Electrolyte for Lithium Batteries. Angewandte Chemie, 2021, 133, 9969-9973.	1.6	12
471	Green Solvents as an Alternative to DMF in ZIF-90 Synthesis. Molecules, 2021, 26, 1573.	1.7	11
472	Organosulfideâ€Based Deep Eutectic Electrolyte for Lithium Batteries. Angewandte Chemie - International Edition, 2021, 60, 9881-9885.	7.2	42
473	Green Approaches for Sustainable Development of Liquid Separation Membrane. Membranes, 2021, 11, 235.	1.4	20
474	Removing Acrylic Conformal Coating with Safer Solvents for Re-Manufacturing Electronics. Polymers, 2021, 13, 937.	2.0	7
475	Organocatalytic transformations in deep eutectic solvents: Green methodologies made greener. Tetrahedron, 2021, 84, 131967.	1.0	18
476	Valorisation of plastic waste via metal-catalysed depolymerisation. Beilstein Journal of Organic Chemistry, 2021, 17, 589-621.	1.3	27
477	Iodine adlayer mediated gold electrooxidation in bis(trifluoromethylsulfonyl)amide-based ionic liquids. Electrochimica Acta, 2021, 371, 137811.	2.6	8
478	Solar Photooxygenations for the Manufacturing of Fine Chemicals—Technologies and Applications. Molecules, 2021, 26, 1685.	1.7	8
479	Solid-liquid phase equilibrium of busulfan in fifteen pure solvents: Solubility determination, solvent effect, model correlation and thermodynamic analysis. Journal of Chemical Thermodynamics, 2021, 154, 106328.	1.0	5

#	Article	IF	CITATIONS
480	Visible-light induced one-pot hydrogenation and amidation of nitroaromatics with carboxylic acids over 2D MXene-derived Pt/N-TiO2/Ti3C2. Molecular Catalysis, 2021, 504, 111490.	1.0	5
481	Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants, 2021, 10, 582.	2.2	47
482	Can Greener Cyrene Replace NMP for Electrode Preparation of NMC 811 Cathodes?. Journal of the Electrochemical Society, 2021, 168, 040536.	1.3	16
483	Green Chemistry Approach for Fabrication of Polymer Composites. Sustainable Chemistry, 2021, 2, 254-270.	2.2	6
484	Molecular-Based Guide to Predict the pH of Eutectic Solvents: Promoting an Efficient Design Approach for New Green Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 5783-5808.	3.2	44
485	Design of Glycerol-Based Solvents for the Immobilization of Palladium Nanocatalysts: A Hydrogenation Study. ACS Sustainable Chemistry and Engineering, 2021, 9, 6875-6885.	3.2	16
486	Hydrophobic Deep Eutectic Solvents for the Recovery of Bio-Based Chemicals: Solid–Liquid Equilibria and Liquid–Liquid Extraction. Processes, 2021, 9, 796.	1.3	16
487	Translational and reorientational dynamics in deep eutectic solvents. Journal of Chemical Physics, 2021, 154, 154501.	1.2	27
488	Real-Time Monitoring of Aqueous Organic Reduction Reactions Using Ex Situ Fiber Optic Raman Spectroscopy. ACS Sustainable Chemistry and Engineering, 2021, 9, 6068-6078.	3.2	2
490	Integration of green nanotechnology with silica for corrosion inhibition. Corrosion Reviews, 2021, 39, 211-218.	1.0	4
491	Design and theoretical study of novel deep eutectic solvents: The effects of bromine and chloride anions on solvation structure and supercapacitor performance. Journal of Power Sources, 2021, 492, 229634.	4.0	23
492	Partial Charges Optimized by Genetic Algorithms for Deep Eutectic Solvent Simulations. Journal of Chemical Theory and Computation, 2021, 17, 3078-3087.	2.3	12
493	Linking the Thermal and Electronic Properties of Functional Dicationic Salts with Their Molecular Structures. ACS Sustainable Chemistry and Engineering, 2021, 9, 6224-6234.	3.2	8
494	Design and application of photocatalysts using porous materials. Catalysis Reviews - Science and Engineering, 2021, 63, 165-233.	5.7	21
495	Self-Driven Salt-Thermal Reduction Approach for the Synthesis of Cu ₂ O and AgCl–Cu ₂ O Hybrids with Superior Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2021, 9, 5651-5660.	3.2	7
496	Cyreneâ,,¢ as a Neoteric Bioâ€Based Solvent for Catalystâ€Free Microwaveâ€Assisted Construction of Diverse Bipyridine Analogues for Heavyâ€Metal Sensing. ChemSusChem, 2021, 14, 2133-2140.	3.6	10
497	Molecular insight into flow resistance of choline chloride/urea confined in ionic model nanoslits. Fluid Phase Equilibria, 2021, 533, 112934.	1.4	4
498	The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules, 2021, 26, 2336.	1.7	30

#	Article	IF	CITATIONS
499	Sustainable Aldehyde Oxidations in Continuous Flow Using <i>in Situ</i> -Generated Performic Acid. ACS Sustainable Chemistry and Engineering, 2021, 9, 5519-5525.	3.2	15
500	<i>N</i> -Chloro- <i>N</i> -sodio-carbamates as a Practical Amidating Reagent for Scalable and Sustainable Amidation of Aldehydes under Visible Light. Organic Process Research and Development, 2021, 25, 1176-1183.	1.3	8
501	Bismuth Subnitrate-Catalyzed Markovnikov-Type Alkyne Hydrations under Batch and Continuous Flow Conditions. Molecules, 2021, 26, 2864.	1.7	2
502	Chemoselective reduction of nitroarenes, N-acetylation of arylamines, and one-pot reductive acetylation of nitroarenes using carbon-supported palladium catalytic system in water. Research on Chemical Intermediates, 2021, 47, 3289-3312.	1.3	14
503	Cytotoxicity of Ionic Liquids on Normal Human Dermal Fibroblasts in the Context of Their Present and Future Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 7649-7657.	3.2	26
504	Mechanism of Deep Eutectic Solvent Delignification: Insights from Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2021, 9, 7101-7111.	3.2	38
505	Active Solvent Hydrogen-Enhanced <i>p</i> -Nitrophenol Reduction Using Heterogeneous Silver Nanocatalysts@Surface-Functionalized Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2021, 60, 7050-7064.	1.8	11
506	Rationalizing between the efficiency and greenness of solvents – A computational study of their influence on TBATB. Sustainable Chemistry and Pharmacy, 2021, 20, 100387.	1.6	2
507	New Greener and Sustainable Methodology for Direct Sequestering and Analysis of Uranium Using a Maline Supramolecular Scaffold and Mechanistic Understanding through Speciation and Interaction Studies. ACS Sustainable Chemistry and Engineering, 2021, 9, 7846-7862.	3.2	9
508	Quantification of Dipolar Contribution and Modeling of Green Polar Fluids with the Polar Cubic-Plus-Association Equation of State. ACS Sustainable Chemistry and Engineering, 2021, 9, 7602-7619.	3.2	13
509	Métrica usando conceitos de quÃmica verde para avaliar o uso de produtos quÃmicos em métodos normatizados nacionais e internacionais para determinação do Número de Acidez Total (NAT). Research, Society and Development, 2021, 10, e25510514894.	0.0	1
510	Organobase-catalyzed one-pot three-component synthesisÂof novel pyrano[2,3-d][1,3]thiazolo[3,2-a]pyrimidine derivatives. Research on Chemical Intermediates, 2021, 47, 3537-3550.	1.3	3
511	Palladium Catalyst Recycling for Heckâ€Cassarâ€Sonogashira Crossâ€Coupling Reactions in Green Solvent/Base Blend. ChemSusChem, 2021, 14, 2591-2600.	3.6	21
512	Heteroscorpionate Rare-Earth Catalysts for the Low-Pressure Coupling Reaction of CO ₂ and Cyclohexene Oxide. Organometallics, 2021, 40, 1503-1514.	1.1	11
513	Advanced Switchable Molecules and Materials for Oil Recovery and Oily Waste Cleanup. Advanced Science, 2021, 8, e2004082.	5.6	28
514	Advances in Pyranopyrazole Scaffolds' Syntheses Using Sustainable Catalysts—A Review. Molecules, 2021, 26, 3270.	1.7	30
515	Photocatalytic oneâ€pot multidirectional N â€alkylation over Pt/Dâ€TiO 2 /Ti 3 C 2 : Ti 3 C 2 â€based shortâ€rang directional charge transmission. Applied Organometallic Chemistry, 2021, 35, e6291.	e 1.7	1
516	Î ³ -Valerolactone as Bio-Based Solvent for Nanofiltration Membrane Preparation. Membranes, 2021, 11, 418.	1.4	14

#	Article	IF	CITATIONS
517	Solid-liquid phase equilibrium of nimesulide (Form I) in twelve mono-solvents: Solubility determination, molecular dynamic simulation, solvent effect, model correlation and thermodynamic analysis. Journal of Molecular Liquids, 2021, 330, 115480.	2.3	13
518	Fabrication of pondcypress fiber with intact structure and multiple active hydroxyl groups by alkali aided two-step mechanical refining. Cellulose, 2021, 28, 6829-6843.	2.4	4
519	Synthesis, thermal behavior and kinetic study of N-morpholinium dicationic ionic liquids by thermogravimetry. Journal of Molecular Liquids, 2021, 332, 115662.	2.3	29
520	Metal-chloroglynate ionic liquids: Catalytic application for friedel-crafts [F–C] reactions. Journal of the Indian Chemical Society, 2021, 98, 100081.	1.3	2
521	New deep eutectic solvent based superparamagnetic nanofluid for determination of perfluoroalkyl substances in edible oils. Talanta, 2021, 228, 122214.	2.9	19
522	Choline dihydrogen phosphate-based deep eutectic solvent: A suitable bioplatform for lipase extraction. Separation and Purification Technology, 2021, 265, 118525.	3.9	9
523	Metal-organic framework composites as green/sustainable catalysts. Coordination Chemistry Reviews, 2021, 436, 213827.	9.5	105
524	Synthesis and electrochemical properties of LiFePO4 cathode material by ionic thermal method using eutectic mixture of tetramethyl ammonium chloride–urea. Rare Metals, 2021, 40, 3477-3484.	3.6	19
525	Optimized Supercritical CO2 Extraction Enhances the Recovery of Valuable Lipophilic Antioxidants and Other Constituents from Dual-Purpose Hop (Humulus lupulus L.) Variety Ella. Antioxidants, 2021, 10, 918.	2.2	7
526	Trends in Sonochemical and Hydrodynamic Reactor Strategies for Catalytic Production of Biodiesel: Effects of the Influencing Process Parameters and Kinetics. European Journal of Sustainable Development Research, 2021, 5, em0164.	0.4	0
527	Green Solvents for the Liquid-Phase Exfoliation of Biochars. ACS Sustainable Chemistry and Engineering, 2021, 9, 9114-9125.	3.2	10
528	Nickelocene as an Air- and Moisture-Tolerant Precatalyst in the Regioselective Synthesis of Multisubstituted Pyridines. Journal of Organic Chemistry, 2021, 86, 9328-9343.	1.7	9
529	A review on the potential uses of deep eutectic solvents in chitin and chitosan related processes. Carbohydrate Polymers, 2021, 262, 117942.	5.1	59
530	The Pretreatment of Lignocelluloses With Green Solvent as Biorefinery Preprocess: A Minor Review. Frontiers in Plant Science, 2021, 12, 670061.	1.7	29
531	Green and sustainable membrane fabrication development. Sustainable Technologies for Green Economy, 2021, 1, 14-23.	2.7	7
532	Regiodivergent Isosorbide Acylation by Oxidative N-Heterocyclic Carbene Catalysis in Batch and Continuous Flow. ACS Sustainable Chemistry and Engineering, 2021, 9, 8295-8305.	3.2	13
533	Synthesis of 1-(2-substitutedphenyl-2,3-dihydro-1H-benzo[b][1,4]diazepin-4-yl)naphthalene-2-ol under different solvent conditions as a potent antimicrobial agent. Chemical Data Collections, 2021, 33, 100690.	1.1	2
534	Green solvent screening using modeling and simulation. Current Opinion in Green and Sustainable Chemistry, 2021, 29, 100469.	3.2	21

	CITATION RE	PORT	
#	Article	IF	CITATIONS
535	Molecular Imprinting: Green Perspectives and Strategies. Advanced Materials, 2021, 33, e2100543.	11.1	359
536	Advancing Air―and Moistureâ€Compatible sâ€Block Organometallic Chemistry Using Sustainable Solvents. European Journal of Inorganic Chemistry, 2021, 2021, 3116-3130.	1.0	31
537	Editorial Catalysts: Supported Metal Catalysts and Their Applications in Fine Chemicals. Catalysts, 2021, 11, 791.	1.6	2
538	Visible-light-initiated tandem synthesis of difluoromethylated oxindoles in 2-MeTHF under additive-, metal catalyst-, external photosensitizer-free and mild conditions. Chinese Chemical Letters, 2021, 32, 1907-1910.	4.8	100
539	Extraction and multi-scale mechanism explorations for separating indole from coal tar via tetramethylguanidine-based ionic liquids. Journal of Environmental Chemical Engineering, 2021, 9, 105255.	3.3	14
540	Green and sustainable method of manufacturing anti-fouling zwitterionic polymers-modified poly(vinyl chloride) ultrafiltration membranes. Journal of Colloid and Interface Science, 2021, 591, 343-351.	5.0	26
541	Experimental and molecular modeling study on the binary mixtures of [EMIM][BF4] and [EMIM][TFSI] ionic liquids. Journal of Molecular Liquids, 2021, 334, 116049.	2.3	14
542	Evaluating the Role of Water as a Cosolvent and an Antisolvent in [HSO ₄]-Based Protic Ionic Liquid Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 10524-10536.	3.2	30
543	Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. Chemistry, 2021, 3, 753-764.	0.9	3
544	General Mechanochemical Synthetic Protocol to Late Transition Metal–NHC (<i>N</i> -Heterocyclic) Tj ETQq1 :	1 0,78431 3.2	.4 rgBT /Ove
545	Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass, 2021, 1, 29-59.	1.2	38
546	Solubility, solvent effect, molecular simulation and thermodynamic properties of clozapine in twelve pure solvents. Journal of Chemical Thermodynamics, 2021, 158, 106398.	1.0	10
547	Terpenoid-capric acid based natural deep eutectic solvent: Insight into the nature of low viscosity. Cleaner Engineering and Technology, 2021, 3, 100116.	2.1	14
548	Experimental and theoretical investigation of the cycloisomerization of N-propargylcarboxamide catalyzed by NHC-Au-X in green solvents. Inorganica Chimica Acta, 2021, 522, 120372.	1.2	4
549	Hydrohydroxymethylation of Ethyl Ricinoleate and Castor Oil. ACS Sustainable Chemistry and Engineering, 2021, 9, 9444-9454.	3.2	18
550	The effect of alkyl chain and electronegative atoms in anion on biological activity of anilinium carboxylate bioactive ionic liquids and computational approaches by DFT functional and molecular docking. Heliyon, 2021, 7, e07509.	1.4	19
551	Revealing the residual mechanism of switchable solvents in heavy oil. Fuel Processing Technology, 2021, 218, 106857.	3.7	12
552	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	3.2	38

#	Article	IF	CITATIONS
553	Insights into Fast Amide Couplings in Aqueous Nanomicelles. Organic Process Research and Development, 2021, 25, 1960-1965.	1.3	21
554	Green Methods for the Synthesis of Pyrazoles: A Review. Organic Preparations and Procedures International, 2021, 53, 317-351.	0.6	8
555	Lithium-salt-based deep eutectic solvents: Importance of glass formation and rotation-translation coupling for the ionic charge transport. Journal of Chemical Physics, 2021, 155, 044503.	1.2	8
556	Deep eutectic systems from betaine and polyols – Physicochemical and toxicological properties. Journal of Molecular Liquids, 2021, 335, 116201.	2.3	28
557	Reductive Electropolymerization and Electrochromism of Iron(II) Complex with Styrene-Based Ligand. Materials, 2021, 14, 4831.	1.3	3
558	Crossâ€linked poly(<i>N</i> â€vinylpyrrolidone)â€titanium tetrachloride complex: A novel stable solid TiCl ₄ equivalent as a recyclable polymeric Lewis acid catalyst for regioselective ringâ€opening alcoholysis of epoxides. Applied Organometallic Chemistry, 2021, 35, e6385.	1.7	4
559	Tamisolve® NxG as an Alternative Non-Toxic Solvent for the Preparation of Porous Poly (Vinylidene) Tj ETQq0 0	0 rgBT /O\ 2:0	verlgck 10 Tf
560	Guanidine-phosphate ionic liquids as antiwear additives in two basic oils: Different lubrication mechanisms. Tribology International, 2021, 160, 106942.	3.0	11
561	Regioselective synthesis of di-aromatic ring-fused 2,8-dioxa/dithia bicyclo[3,3,1]nonane derivatives via recyclable polymeric BrĄnsted acid-catalyzed one-pot tandem formation of multiple chemical C–C/C–O and C–C/C–S bonds. Tetrahedron, 2021, 95, 132341.	1.0	1
562	Enzyme-Inspired Lysine-Modified Carbon Quantum Dots Performing Carbonylation Using Urea and a Cascade Reaction for Synthesizing 2-Benzoxazolinone. ACS Catalysis, 2021, 11, 10778-10788.	5.5	10
563	A â€~Defective' Conjugated Porous Poly-Azo as Dual Photocatalyst. Catalysts, 2021, 11, 1064.	1.6	3
564	Hexagonal basalt-like ceramics LaxMg1-xTiO3 (x = 0 and 0.5) contrived via deep eutectic solvent for selective electrochemical detection of dopamine. Physica B: Condensed Matter, 2021, 615, 413068.	1.3	15
565	Hydrophobic liquid-polymer-based deep eutectic solvent for extraction and multi-residue analysis of pesticides in water samples. Microchemical Journal, 2021, 167, 106314.	2.3	24
566	Solvent extraction and performance analysis of residual palm oil for biodiesel production: Experimental and simulation study. Journal of Environmental Chemical Engineering, 2021, 9, 105519.	3.3	28
567	Extractive deterpenation of citrus essential oils using quaternary ammonium-based deep eutectic solvents. Journal of Molecular Liquids, 2021, 336, 116868.	2.3	13
568	Amino-acid-based chiral ionic liquids characterization and application in aqueous biphasic systems. Fluid Phase Equilibria, 2021, 542-543, 113091.	1.4	10
569	Curse and Blessing–The Role of Water in the Homogeneously Ru-Catalyzed Epoxidation of Technical Grade Methyl Oleate. ACS Sustainable Chemistry and Engineering, 2021, 9, 11469-11478.	3.2	7

570	Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions. Energy & Fuels, 2021, 35, 14382-14400.	:	2.5	12
-----	---	---	-----	----

#	Article	IF	CITATIONS
571	Advances in nonâ€palladium atalysed Stille couplings. Applied Organometallic Chemistry, 2021, 35, e6430.	1.7	8
572	Sustainable strategies of C–N bond formation via Ullmann coupling employing earth abundant copper catalyst. Tetrahedron, 2021, 97, 132406.	1.0	16
573	Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers, 2021, 13, 3154.	2.0	20
574	Silica-based ionogels containing imidazolium ionic liquids and their electrorheological responses at room and elevated temperatures. Materials Today Communications, 2021, 28, 102532.	0.9	1
575	Hydrophobic deep eutectic solvents: the new generation of green solvents for diversified and colorful applications in green chemistry. Journal of Cleaner Production, 2021, 314, 127965.	4.6	125
576	Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La ₂ B ₂ O ₇ (B=Ti, Zr, Ce). ChemCatChem, 2021, 13, 4549-4556.	1.8	11
577	Ultrasound-assisted extraction of antioxidant phenolic compounds from Lavandula angustifolia flowers using natural deep eutectic solvents: An experimental design approach. Sustainable Chemistry and Pharmacy, 2021, 22, 100492.	1.6	28
578	A further step to sustainable palladium catalyzed oxidation: Allylic oxidation of alkenes in green solvents. Applied Catalysis A: General, 2021, 625, 118349.	2.2	0
579	CO2-binding organic liquids for high pressure CO2 absorption: Statistical mixture design approach and thermodynamic modeling of CO2 solubility using LJ-Global TPT2 EoS. Journal of Molecular Liquids, 2021, 337, 116396.	2.3	13
580	The green solvent: a critical perspective. Clean Technologies and Environmental Policy, 2021, 23, 2499-2522.	2.1	80
581	Processing of lignocellulose in ionic liquids: A cleaner and sustainable approach. Journal of Cleaner Production, 2021, 323, 129189.	4.6	25
582	Dismantling of Printed Circuit Boards Enabling Electronic Components Sorting and Their Subsequent Treatment Open Improved Elemental Sustainability Opportunities. Sustainability, 2021, 13, 10357.	1.6	25
583	A translation of the twelve principles of green chemistry to guide the development of cross-coupling reactions. Catalysis Today, 2022, 397-399, 265-271.	2.2	17
584	Sustainability in drug discovery. Medicine in Drug Discovery, 2021, 12, 100107.	2.3	5
585	Manganeseâ€catalyzed amination reactions: An overview. Applied Organometallic Chemistry, 2021, 35, e6421.	1.7	7
586	Molecular interactions between novel synthesized biodegradable ionic liquids with antidepressant drug. Chemical Thermodynamics and Thermal Analysis, 2021, 3-4, 100012.	0.7	7
587	HPMC: A Biomass-Based Semisynthetic Sustainable Additive Enabling Clean and Fast Chemistry in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 12719-12728.	3.2	19
588	Synthesis of Conjugated Polymers via Transition Metal Catalysed Câ^'H Bond Activation. Chemistry - an Asian Journal, 2021, 16, 2896-2919.	1.7	12

ARTICLE IF CITATIONS Emerging Green Techniques for the Extraction of Antioxidants from Agri-Food By-Products as 589 2.2 66 Promising Ingredients for the Food Industry. Antioxidants, 2021, 10, 1417. Extraction of Aloesin from Aloe vera Rind Using Alternative Green Solvents: Process Optimization and 1.3 Biological Activity Assessment. Biology, 2021, 10, 951. Ionic liquids as a useful tool for tailoring active pharmaceutical ingredients. Journal of Controlled 591 4.8 43 Release, 2021, 338, 268-283. A comprehensive study of the dissolution process of N-oxide based explosives in deep eutectic 2.3 solvents. Journal of Mólecular Liquids, 2021, 340, 117170. Effect of H2O Addition on the Corrosion Resistance of Trivalent Chromium-Carbon Coatings Electrodeposited from Choline Chloride Deep Eutectic Solvent. International Journal of 593 0.5 0 Electrochemical Science, 0, , ArticleID:211055. Computational modeling of polydecanediol-co-citrate using benzalkonium chloride-based hydrophobic eutectic solvents: COSMO-RS, reactivity, and compatibility insights. Journal of Molecular Liquids, 2021, 339, 116674. 594 2.3 Review on chemical enhanced oil recovery: Utilization of ionic liquids and deep eutectic solvents. 595 2.1 34 Journal of Petroleum Science and Engineering, 2021, 205, 108746. How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and 596 2.3 computational approach. Journal of Molecular Liquids, 2021, 339, 116743. An environmentally stable supramolecular biosolvent: Characterization and study of its potential for 597 4.6 4 the elimination of polar toxic substances in water. Journal of Cleaner Production, 2021, 321, 128975. Constructing the frustrated Lewis pairs within N,S-codoped carbon to reveal the role of adjacent heteroatom sites for highly effective removal of heavy metal ions. Chemical Engineering Journal, 2021, 6.6 24 422, 130153. MBA-cross-linked poly(N-vinyl-2-pyrrolidone)/ferric chloride macromolecular coordination complex as a novel and recyclable Lewis acid catalyst: Synthesis, characterization, and performance toward 599 3 2.0 for regioselective ring-opening alcoholysis of epoxides. Reactive and Functional Polymers, 2021, 168, 105032 The effect of electrically conducting carbon materials on the conductivity and morphology of poly(vinyl butyral) and chitosan blend composite for application in anti-corrosive coatings. Synthetic 2.1 Metals, 2021, 281, 116914. Novel insight into composite packing of copper modified adsorbents for synergistically capturing H2S&HCl in low-temperature anaerobic environment. Separation and Purification Technology, 2021, 601 3.9 0 275, 119222. Experimental measurement, thermodynamic analysis and molecular simulation of topiramate solubility 2.3 in fourteen mono-solvents at various temperatures. Journal of Molecular Liquids, 2021, 342, 116992. Molecular dynamics of binary deep eutectic solvents as biocompatible working fluids in heat and mass 603 2.39 transfer systems. Journal of Molecular Liquids, 2021, 342, 117493. Considering solubility disparity and acoustic-cavitation susceptivity of neoteric solvents to accurately predict sono-recovery yield of value-added compounds. Separation and Purification 604 3.9 Technology, 2021, 276, 119306. Enhancing antifouling property of reverse osmosis membranes via surface tethered with the aminated 605 4.0 9 cation of ionic liquids. Desalination, 2021, 517, 115257. Nonionic surfactants based hydrophobic deep eutectic solvents for liquid–liquid microextraction of 4.2 24 Sudan dyes in tomato chili sauces. Food Chemistry, 2021, 364, 130373.

#	Article	IF	CITATIONS
607	COSMO-susCAMPD: Sustainable solvents from combining computer-aided molecular and process design with predictive life cycle assessment. Chemical Engineering Science, 2021, 245, 116863.	1.9	13
608	Green solvent engineering for environment-friendly fabrication of high-performance perovskite solar cells. Chemical Engineering Journal, 2021, 425, 131475.	6.6	12
609	1-Disulfo-[2,2-bipyridine]-1,1-diium chloride ionic liquid as an efficient catalyst for the green synthesis of 5-substituted 1H-tetrazoles. Journal of Molecular Structure, 2022, 1247, 131289.	1.8	10
610	Environmentally friendly waterborne polyurethane nanofibrous membranes by emulsion electrospinning for waterproof and breathable textiles. Chemical Engineering Journal, 2022, 427, 130925.	6.6	101
611	A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chemistry, 2021, 23, 6414-6430.	4.6	22
612	The RCF biorefinery: Building on a chemical platform from lignin. Advances in Inorganic Chemistry, 2021, , 241-297.	0.4	8
613	Influence of solvent structure and hydrogen bonding on catalysis at solid–liquid interfaces. Chemical Society Reviews, 2021, 50, 12308-12337.	18.7	53
614	Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities. New Journal of Chemistry, 2021, 45, 6577-6585.	1.4	5
615	Enzymatic synthesis of novel fructosylated compounds by Ffase from <i>Schwanniomyces occidentalis</i> in green solvents. RSC Advances, 2021, 11, 24312-24319.	1.7	3
616	Synthesis of 2-ethoxycarbonylthieno[2,3- <i>b</i>]quinolines in biomass-derived solvent γ-valerolactone and their biological evaluation against protein tyrosine phosphatase 1B. RSC Advances, 2021, 11, 3216-3220.	1.7	5
617	Synthesis and characteristic of 1-amino-2-propanol-based ionic liquids and effective extraction of antioxidants from Mugwort. Journal of Molecular Liquids, 2021, 322, 115014.	2.3	1
618	Liquid polymers in environment remediation. , 2021, , 67-88.		0
619	Eutectics: formation, properties, and applications. Chemical Society Reviews, 2021, 50, 8596-8638.	18.7	184
620	Biomass-derived Î ³ -valerolactone: efficient dissolution and accelerated alkaline hydrolysis of polyethylene terephthalate. Green Chemistry, 2021, 23, 4065-4073.	4.6	30
621	Eco-friendly and sustainable processing of wood-based materials. Green Chemistry, 2021, 23, 2198-2232.	4.6	48
622	Diformylxylose as a new polar aprotic solvent produced from renewable biomass. Green Chemistry, 2021, 23, 4790-4799.	4.6	16
623	Building bio-Profiles for common catalytic reactions. Green Chemistry, 2021, 23, 6373-6391.	4.6	7
624	Four-component synthesis of 3-aminomethylated imidazoheterocycles in EtOH under catalyst-free, oxidant-free and mild conditions. Green Chemistry, 2021, 23, 4430-4434.	4.6	48

#	Article	IF	CITATIONS
625	Fundamentals of cellulose lightweight materials: bio-based assemblies with tailored properties. Green Chemistry, 2021, 23, 3542-3568.	4.6	57
626	Sustainable solvent selection for the manufacture of methylammonium lead triiodide (MAPbl ₃) perovskite solar cells. Green Chemistry, 2021, 23, 2471-2486.	4.6	45
627	Light Absorption and Recycling in Hybrid Metal Halide Perovskite Photovoltaic Devices. Advanced Energy Materials, 2020, 10, 1903653.	10.2	28
628	Molecularly Controlled Catalysis – Targeting Synergies Between Local and Nonâ€local Environments. ChemCatChem, 2021, 13, 1659-1682.	1.8	20
629	Calcium Carbide: Versatile Synthetic Applications, Green Methodology and Sustainability. European Journal of Organic Chemistry, 2021, 2021, 43-52.	1.2	48
630	Green Chemistry in Analytical Chemistry. , 2018, , 1-24.		3
631	Commercial Aspects of Biomass Deconstruction with Ionic Liquids. Green Chemistry and Sustainable Technology, 2020, , 87-127.	0.4	9
632	Novel Solvents for Biotechnology Applications. , 2019, , 790-806.		12
633	Synthesis and X-ray crystal structure of a Molybdenum(VI) Schiff base complex: Design of a new catalytic system for sustainable olefin epoxidation. Inorganica Chimica Acta, 2020, 511, 119775.	1.2	8
634	Nonrotational Mechanism of Polarization in Alcohols. Journal of Physical Chemistry B, 2020, 124, 11022-11029.	1.2	6
635	How Pure and Hydrated Reline Deep Eutectic Solvents Affect the Conformation and Stability of Lysozyme: Insights from Atomistic Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2020, 124, 11919-11927.	1.2	28
636	Sustainability in Perovskite Solar Cells. ACS Applied Materials & amp; Interfaces, 2021, 13, 1-17.	4.0	53
637	Thermally-Stable Imidazolium Dicationic Ionic Liquids with Pyridine Functional Groups. ACS Sustainable Chemistry and Engineering, 2020, 8, 8762-8772.	3.2	25
638	Systematic Screening of Deep Eutectic Solvents as Sustainable Separation Media Exemplified by the CO ₂ Capture Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 8741-8751.	3.2	64
639	Recent Developments in the Delignification and Exploitation of Grass Lignocellulosic Biomass. ACS Sustainable Chemistry and Engineering, 2021, 9, 2412-2432.	3.2	48
640	Calcium hypophosphite mediated deiodination in water: mechanistic insights and applications in large scale syntheses of d-quinovose and d-rhamnose. Green Chemistry, 2019, 21, 1122-1127.	4.6	3
641	Revealing the interfacial nanostructure of a deep eutectic solvent at a solid electrode. Physical Chemistry Chemical Physics, 2020, 22, 12104-12112.	1.3	19
642	Visible-light-induced ligand-free RuCl ₃ catalyzed C–H phosphorylation in water. Chemical Communications, 2020, 56, 4704-4707.	2.2	17

#	Article	IF	CITATIONS
643	Mechanochemical synthesis of (hetero)aryl Au(<scp>i</scp>) complexes. Green Chemistry, 2020, 22, 5648-5655.	4.6	31
644	Green Chemistry Approaches to the Synthesis of Coumarin Derivatives. Current Organic Chemistry, 2020, 24, 4-43.	0.9	51
645	Microwave-accelerated Carbon-carbon and Carbon-heteroatom Bond Formation via Multi-component Reactions: A Brief Overview. Current Microwave Chemistry, 2020, 7, 23-39.	0.2	16
646	Aggregation Behavior and Thermodynamic Studies of Hydrotropes: A Review. Tenside, Surfactants, Detergents, 2020, 57, 192-202.	0.5	7
647	Contribution to the production and use of biomass-derived solvents – a review. Acta Innovations, 2020, , 29-56.	0.4	21
648	Editorial: Properties and Applications of Ionic Liquids in Energy and Environmental Science. Frontiers in Chemistry, 2020, 8, 627213.	1.8	24
649	Microalgae Biomolecules: Extraction, Separation and Purification Methods. Processes, 2021, 9, 10.	1.3	64
650	Biocatalysis in ionic liquids: state-of-the-union. Green Chemistry, 2021, 23, 8406-8427.	4.6	30
651	Deep eutectic solvent for the synthesis of (E)- Nitroalkene via microwave assisted Henry reaction. Current Research in Green and Sustainable Chemistry, 2021, 4, 100187.	2.9	4
652	Neoteric solvent-based blue biorefinery: for chemicals, functional materials and fuels from oceanic biomass. Green Chemistry, 2021, 23, 8821-8847.	4.6	14
653	Asymmetric Sequential Michael Addition and Cyclization Reactions of 2-(2-Nitrovinyl)phenols Catalyzed by Bifunctional Amino-Squaramides. SynOpen, 2021, 05, 278-284.	0.8	3
654	Dicationic-Type Quaternary Ammonium Salts as Candidates of Desiccants for an Air-Conditioning System. ACS Sustainable Chemistry and Engineering, 2021, 9, 14502-14514.	3.2	4
655	Investigating the Role of Natural Deep Eutectic Low Melting Mixtures for the Synthesis of Symmetrical Bisamides. ChemistrySelect, 2021, 6, 10948-10956.	0.7	11
656	Synthesis and Physical Properties of Tunable Aryl Alkyl Ionic Liquids (TAAILs). Chemistry - A European Journal, 2021, 27, 15554-15557.	1.7	10
657	Why do ammonium salt/phenol-based deep eutectic solvents show low viscosity?. Arabian Journal of Chemistry, 2022, 15, 103512.	2.3	4
658	Choline Chloride-Based DES as Solvents/Catalysts/Chemical Donors in Pharmaceutical Synthesis. Molecules, 2021, 26, 6286.	1.7	26
659	Fiberâ€Based Biopolymer Processing as a Route toward Sustainability. Advanced Materials, 2022, 34, e2105196.	11.1	71
660	New deep eutectic solvents based on imidazolium cation: Probing redox speciation of uranium oxides by electrochemical and theoretical simulations. Journal of Electroanalytical Chemistry, 2021, 901, 115752	1.9	6

#	Article	IF	CITATIONS
661	Unexpected hydrophobic to hydrophilic transition of PET fabric treated in a deep eutectic solvent of choline chloride and oxalic acid. Polymer, 2021, 234, 124246.	1.8	14
662	Supercritical fluid extraction (SCFE) as green extraction technology for high-value metabolites of algae, its potential trends in food and human health. Food Research International, 2021, 150, 110746.	2.9	32
663	Green Chemistry in Analytical Chemistry. , 2019, , 613-636.		1
664	Chemicals: solvents. , 2020, , 221-228.		1
665	New protocols for the synthesis of 5-amino-7-(4-phenyl)-4,7-dihydro-[1,2,4]triazolo[1,5-a]pyrimidine-6-carboxylate esters using an efficient additive. Turkish Journal of Chemistry, 2020, 44, 1100-1109.	0.5	1
666	Titanium Dioxide Nanoparticles Modified with Disulfonic Acid Functionalized Imidazolium Ionic Liquids for Use as Electrorheological Materials. ACS Applied Nano Materials, 2021, 4, 12382-12392.	2.4	5
667	Renaturation of Lyophilized Concanavalin a Treated in Water Content Controlled Hydrated Ionic Liquids. Applied Sciences (Switzerland), 2021, 11, 57.	1.3	2
668	Reaction of Carboxylic Acid Hydrazides with 2,2′-(Carbonothioyldisulfanediyl)diacetic acid in Water as a "Green―Synthesis of N-(4-Oxo-2-sulfanylidene-1,3-thiazolidin-3-yl) Carboxamides. Russian Journal of Organic Chemistry, 2020, 56, 2240-2243.	0.3	1
669	Levulinic acid: perspectives of its biobased production and most promising derivatives. , 2022, , 387-414.		5
670	Estimation of Hansen solubility parameters with regularized regression for biomass conversion products: An application of adaptable group contribution. Chemical Engineering Science, 2022, 248, 117184.	1.9	6
671	Green solvents for the formation of amide linkages. Organic and Biomolecular Chemistry, 2022, 20, 1137-1149.	1.5	26
673	Use of Vanadium Catalysts in Epoxidation and Sulphoxidation Reactions with Green Chemistry Criteria. RSC Catalysis Series, 2020, , 205-240.	0.1	1
674	Oxidative ionothermal synthesis for micro and macro Zn-based materials. Materials Advances, 2020, 1, 3597-3604.	2.6	7
675	An Expeditious One-Pot Three-Component Synthesis of 4-Aryl-3,4-dihydrobenzo[g] quinoline-2,5,10(1H)-triones under Green Conditions. Current Organic Chemistry, 2020, 23, 2626-2634.	0.9	8
676	(Bio)electroanalysis in the Field of Greener Analytical Chemistry. RSC Green Chemistry, 2020, , 181-220.	0.0	1
677	Solventes verdes obtidos de biomassa: propriedades e aplicações. , 2020, , 45-84.		Ο
678	Application of Ionic Liquids for Sustainable Catalysis. RSC Energy and Environment Series, 2020, , 304-360.	0.2	0
679	Identifying the crucial role of water and chloride for efficient mild oxidation of methane to methanol over a [Cu2(μ-O)]2+-ZSM-5 catalyst. Journal of Catalysis, 2022, 405, 1-14.	3.1	19

		CITATION R	EPORT	
#	Article		IF	Citations
680	Advancement of Cu(III) and Fe(III) directed oxidative transformations: Recent impact of micellar environment. Journal of Molecular Liquids, 2022, 347, 117993.	aqueous	2.3	7
681	A Methodology to Evaluate Solvent Extraction-Based Processes Considering Techno-Ec Environmental Sustainability Criteria for Biorefinery Applications. Industrial & Engi Chemistry Research, 2021, 60, 16394-16416.	pnomic and neering	1.8	9
682	CO2 triggered switchable and tunable solvents for biocatalysis. , 2022, , 177-189.			1
683	Switchable solvents for bio-refinery applications. , 2022, , 1-20.			0
684	Polarity-changing solvents for CO2 capture. , 2022, , 21-37.			1
685	Sustainable synthesis of a new semiamorphous Ti-BDC MOF material and the photocate performance of its ternary composites with Ag3PO4 and g-C3N4. Applied Surface Scier 151996.	alytic nce, 2022, 578,	3.1	20
686	New natural deep eutectic solvents based on aromatic organic acids. Green Chemistry l Reviews, 2021, 14, 713-719.	Letters and	2.1	11
687	A facile one pot catalystâ€free synthesis of anticancer substituted diâ€amino Nâ€tosyl regioselective Câ€N bond cleavage steered by Nâ€tosylation Asian Journal of Organic	benzoyl thiazoles via Chemistry, 0, , .	1.3	1
688	Carvone and its eutectic mixtures as novel, biodegradable, and tunable solvents to extr hydrophobic compounds in substitution for volatile toxic solvents. Food Chemistry, 202	act 22, 374, 131630.	4.2	5
689	Recyclable and Reusable Pd(OAc)2/XPhos–SO3Na/PEG-400/H2O System for Cyanatic with Potassium Ferrocyanide. Catalysis Letters, 0, , 1.	on of Aryl Chlorides	1.4	0
690	Hibiscus sabdariffa L. calyces' and argon DBD plasma: potential eco-friendly cleaner silver gelatin prints. Pigment and Resin Technology, 2021, ahead-of-print, .	's for fire-damaged	0.5	1
691	Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) an Electro-Fermentation Technology. Fermentation, 2021, 7, 291.	d	1.4	35
692	Use of Green Solvents in Metallaphotoredox Cross-Electrophile Coupling Reactions Util Lipophilic Modified Dual Ir/Ni Catalyst System. Journal of Organic Chemistry, 2021, 86,	izing a 17428-17436.	1.7	5
693	Catalytic Methods for the Production of Sugar Esters. Kataliz V Promyshlennosti, 2021,	21, 424.	0.2	0
694	Performances of Homogeneous and Heterogenized Methylene Blue on Silica Under Rec and Continuous Flow Photochemical Reactors. Frontiers in Chemical Engineering, 2021	l Light in Batch ., 3, .	1.3	5
695	Orthogonal Catalysis for an Enantioselective Domino Inverseâ€Electron Demand Dielsâ [°] Alder/Substitution Reaction. Chemistry - A European Journal, 2022, 28, .		1.7	8
696	Next generation of nanozymes: A perspective of the challenges to match biological per Journal of Applied Physics, 2021, 130, .	formance.	1.1	5
697	Recyclable Pd2dba3/XPhos/PEG-2000 System for Efficient BorylÂation of Aryl Chlorides Access to Aryl Boronates. Synthesis, 0, , .	Practical	1.2	2

#	Article	IF	CITATIONS
698	Development of a green catalyst for production of synthetic banana flavoring based on low transition temperature mixture through numerical optimization, LCA assessment and sustainability metrics. Journal of Cleaner Production, 2021, 329, 129744.	4.6	2
699	Electrochemical Synthesis of Unique Nanomaterials in Ionic Liquids. Nanomaterials, 2021, 11, 3270.	1.9	14
700	Non-traditional solvent effects in organic reactions. Physical Chemistry Chemical Physics, 2021, 23, 26028-26029.	1.3	3
701	Assessment of Deep Eutectic Solvents Toxicity in Zebrafish (<i>Danio Rerio</i>). SSRN Electronic Journal, 0, , .	0.4	0
702	Sustainable production of levulinic acid and its derivatives for fuel additives and chemicals: progress, challenges, and prospects. Green Chemistry, 2021, 23, 9198-9238.	4.6	61
703	Recent advances in polymer membranes employing non-toxic solvents and materials. Green Chemistry, 2021, 23, 9815-9843.	4.6	71
704	Mechanistic investigations on a homogeneous ruthenium Guerbet catalyst in a flow reactor. Reaction Chemistry and Engineering, 2022, 7, 711-718.	1.9	5
705	Mechanochemical Câ^'X/Câ^'H Functionalization: An Alternative Strategic Access to Pharmaceuticals. European Journal of Organic Chemistry, 2022, 2022, .	1.2	23
706	Simulation of deep eutectic solvents: Progress to promises. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022, 12, e1598.	6.2	22
707	Hair Styling Based on Eutectic Formulations with Peptides. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	0
708	Conversion of CO2 to cyclic carbonates by metal-ethylenediamine complexes in ionic liquid: A DFT mechanistic study. Journal of CO2 Utilization, 2022, 57, 101872.	3.3	5
709	Solubilization of phytocomplex using natural deep eutectic solvents: A case study of Ginkgo biloba leaves extract. Industrial Crops and Products, 2022, 177, 114455.	2.5	3
710	Systematical study on dimethyl ether as a renewable solvent for warm VAPEX and its significant implications for the heavy oil industry. Fuel, 2022, 312, 122911.	3.4	17
711	A priori design of new natural deep eutectic solvent for lutein recovery from microalgae. Food Chemistry, 2022, 376, 131930.	4.2	32
712	Launching Deep Eutectic Solvents (DESs) and Natural Deep Eutectic Solvents (NADESs) for the Preparation of More Sustainable Membranes. SSRN Electronic Journal, 0, , .	0.4	1
713	Intermolecular and Intramolecular Friedelâ€Crafts Acylation of Carboxylic Acids using Binary Ionic Liquids: An Experimental and Computational Study. ChemistrySelect, 2022, 7, .	0.7	5
714	Mixed Oxime-Functionalized IL/16-s-16 Gemini Surfactants System: Physicochemical Study and Structural Transitions in the Presence of Promethazine as a Potential Chiral Pollutant. Chemosensors, 2022, 10, 46.	1.8	5
715	Green synthesis of various saturated S-heterocyclic scaffolds: an update. ChemistrySelect, 2023, 8, 3017-3041.	0.7	1

#	Αρτιςι ε	IF	CITATIONS
716	Combination of air/moisture/ambient temperature compatible organolithium chemistry with sustainable solvents: selective and efficient synthesis of guanidines and amidines. Green Chemistry,	4.6	7
	2022, 24, 800-812.		
717	Polysaccharide-Derived Diol: Characterization and Degradability Studies. Molecules, 2022, 27, 325.	1.7	15
718	Too much water? Not enough? <i>In situ</i> monitoring of the mechanochemical reaction of copper salts with dicyandiamide. CrystEngComm, 2022, 24, 1292-1298.	1.3	10
719	Substituent Effects on Physical Properties of Azole Based Ionic Liquids. Heterocycles, 2022, 104, 275.	0.4	0
720	Liquid–Liquid Equilibria of Ternary Mixtures Containing n-Tetradecane + γ-Valerolactone + Aldehyde [Butanal or Pentanal or (E)-2-Undecenal] at 298.15 K. Journal of Chemical & Engineering Data, 2022, 67, 393-403.	1.0	4
721	Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications. Catalysts, 2022, 12, 101.	1.6	10
722	Emulsion templated scaffolds of poly(ε-caprolactone) – a review. Chemical Communications, 2022, 58, 1468-1480.	2.2	26
723	Acylamido-based anion-functionalized ionic liquids for efficient synthesis of poly(isosorbide) Tj ETQq1 1 0.78431	4 rgBT /O\ 2.1	verlock 10 Tf
724	Recent developments in green approaches for sustainable synthesis of indole-derived scaffolds. Molecular Diversity, 2022, 26, 3411-3445.	2.1	6
725	Computational chemistry and the study and design of catalysts. , 2022, , 299-332.		1
726	Green Synthesis of 2-thioxothiazolidin-4-one Derivatives in Deep Eutectic Solvents via Knoevenagel Condensation. Letters in Organic Chemistry, 2022, 19, 890-901.	0.2	1
727	Deep Eutectic Solvents in Solar Energy Technologies. Molecules, 2022, 27, 709.	1.7	23
728	Eucalyptol, an All-Purpose Product. Catalysts, 2022, 12, 48.	1.6	13
729	Green Solventâ€Processed Hemiâ€Isoindigo Polymers for Stable Temperature Sensors. Advanced Functional Materials, 2022, 32, .	7.8	12
730	Sustainable protocols for direct C–H bond arylation of (hetero)arenes. Green Chemistry, 2022, 24, 1809-1894.	4.6	40
731	Applications of poly(α-olefin)s as solvents in organometallic chemistry. Journal of Organometallic Chemistry, 2022, 962, 122261.	0.8	3
732	Molecular-level insights into inherent heterogeneity of maline deep eutectic system. Journal of Molecular Liquids, 2022, 350, 118478.	2.3	4
733	The application of green solvent in a biorefinery using lignocellulosic biomass as a feedstock. Journal of Environmental Management, 2022, 307, 114385.	3.8	33

#	Article	IF	CITATIONS
734	Green solvents for organic electronics processing. , 2022, , 425-462.		1
735	Phase-Transfer-Catalyzed Alkylation of Hydantoins. ACS Organic & Inorganic Au, 2022, 2, 312-317.	1.9	8
736	Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction. Molecules, 2022, 27, 29.	1.7	9
737	Low-temperature molecular motions in a deep eutectic solvent choline chloride/urea studied by spin-probe EPR. Russian Chemical Bulletin, 2021, 70, 2366-2369.	0.4	1
738	Green Chemistry in the Synthesis of Pharmaceuticals. Chemical Reviews, 2022, 122, 3637-3710.	23.0	155
739	Catalytic Approaches to Multicomponent Reactions: A Critical Review and Perspectives on the Roles of Catalysis. Molecules, 2022, 27, 132.	1.7	32
740	Application of natural raw materials for development of cosmetics through nanotechnology. , 2022, , 157-201.		2
741	Amino-functionalized polysaccharide derivatives: Synthesis, properties and application. Current Research in Green and Sustainable Chemistry, 2022, 5, 100309.	2.9	4
742	Neoteric deep eutectic solvents: history, recent developments, and catalytic applications. Soft Matter, 2022, 18, 2695-2721.	1.2	31
743	Electrospinning based on benign solvents: current definitions, implications and strategies. Green Chemistry, 2022, 24, 2347-2375.	4.6	61
744	Synthesis design using mass related metrics, environmental metrics, and health metrics. Pure and Applied Chemistry, 2022, 94, 215-245.	0.9	0
745	Revisiting the Physicochemical Properties and Applications of Deep Eutectic Solvents. Molecules, 2022, 27, 1368.	1.7	77
746	Diels–Alder Cycloaddition Reactions in Sustainable Media. Molecules, 2022, 27, 1304.	1.7	9
747	Replacement of Less-Preferred Dipolar Aprotic and Ethereal Solvents in Synthetic Organic Chemistry with More Sustainable Alternatives. Chemical Reviews, 2022, 122, 6749-6794.	23.0	58
749	The future of Organic Chemistry: an irreversible path towards sustainability. Mini-Reviews in Organic Chemistry, 2022, 19, .	0.6	1
750	Biodegradable Solvents: A Promising Tool to Recover Proteins from Microalgae. Applied Sciences (Switzerland), 2022, 12, 2391.	1.3	7
751	Mechanochemical Solvent-Free <i>N</i> -Sulfenylations of Sulfoximines and Sulfonimidamides. ACS Sustainable Chemistry and Engineering, 2022, 10, 2863-2867.	3.2	18
752	Toward Green Atom Transfer Radical Polymerization: Current Status and Future Challenges. Advanced Science, 2022, 9, e2106076.	5.6	73

#	Article	IF	CITATIONS
753	Sustainable Pd-Catalyzed Direct Arylation of Thienyl Derivatives with (Hetero)aromatic Bromides under Air in Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2022, 10, 3037-3047.	3.2	12
755	Cellulose-based fiber spinning processes using ionic liquids. Cellulose, 2022, 29, 3079-3129.	2.4	47
757	Fusion of Cellulose and Multicomponent Reactions: Benign by Design. ACS Sustainable Chemistry and Engineering, 2022, 10, 4359-4373.	3.2	11
759	The role of hydrogenâ€bond in solubilizing drugs by ionic liquids: A molecular dynamics and density functional theory study. AICHE Journal, 2022, 68, .	1.8	14
760	A Green Synthesis of Carbeneâ€Metalâ€Amides (CMAs) and Carbolineâ€Derived CMAs with Potent <i>inâ€vitro</i> and <i>ex vivo</i> Anticancer Activity. ChemMedChem, 2022, , .	1.6	10
761	Carbon dioxide fixation into cyclic carbonates at room temperature catalyzed by heteroscorpionate aluminum complexes. Green Chemical Engineering, 2022, 3, 280-287.	3.3	4
762	Sustainable Exploitation and Commercialization of Ultradense Nanobubbles: Reinventing Liquidity. ACS Sustainable Chemistry and Engineering, 2022, 10, 3383-3386.	3.2	7
763	Structure and Dynamic Properties of a Glycerol–Betaine Deep Eutectic Solvent: When Does a DES Become an Aqueous Solution?. ACS Sustainable Chemistry and Engineering, 2022, 10, 3501-3512.	3.2	13
764	Environmental Exploration of Ultra-Dense Nanobubbles: Rethinking Sustainability. Environments - MDPI, 2022, 9, 33.	1.5	8
765	Silverâ€catalysed A ³ â€coupling reactions in phenylacetic acid/alkylamine <i>N</i> â€oxide eutectic mixture under dielectric heating: An alternative approach to propargylamines. Applied Organometallic Chemistry, 2022, 36, .	1.7	6
766	Suitable Cathode NMP Replacement for Efficient Sustainable Printed Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 4047-4058.	2.5	24
767	Implicated by scale: Anthropochemicals and the experience of ecology. Sociological Review, 0, , 003802612210847.	0.9	Ο
769	Photocatalytic oxidative of Keggin-type polyoxometalate ionic liquid for enhanced extractive desulfurization in binary deep eutectic solvents. Chinese Journal of Chemical Engineering, 2022, 44, 205-211.	1.7	6
770	Prospective pathways of green graphene-based lab-on-chip devices: the pursuit toward sustainability. Mikrochimica Acta, 2022, 189, 177.	2.5	5
771	Functionalization of pasta through the incorporation of bioactive compounds from agri-food by-products: Fundamentals, opportunities, and drawbacks. Trends in Food Science and Technology, 2022, 122, 49-65.	7.8	30
772	Adsorption performance of silica supported polyamidoamine dendrimers for Cd(II) and Cu(II) in N,N-dimethylformamide. Journal of Molecular Liquids, 2022, 357, 119098.	2.3	4
773	A novel cubic Znâ€citric acidâ€based MOF as a highly efficient and reusable catalyst for the synthesis of pyranopyrazoles and 5â€substituted 1Hâ€ŧetrazoles. Applied Organometallic Chemistry, 2022, 36, .	1.7	33
774	L-menthol-based eutectic solvents: Characterization and application in the removal of drugs from water. Journal of Molecular Liquids, 2022, 352, 118754.	2.3	17

#	Article	IF	Citations
775	Appearance of an Electrochemical Oxidative Peak of Gold/Bis(trifluoromethylsulfonyl)amide-based Ionic Liquid Interfaces at Elevated Temperatures. Chemistry Letters, 2022, 51, 461-464.	0.7	2
776	Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics. Chemical Engineering Journal, 2022, 442, 136188.	6.6	14
777	Launching deep eutectic solvents (DESs) and natural deep eutectic solvents (NADESs), in combination with different harmless co-solvents, for the preparation of more sustainable membranes. Journal of Membrane Science, 2022, 649, 120387.	4.1	25
778	Improvement of CO2 capture processes by tailoring the reaction enthalpy of Aprotic N‑Heterocyclic anion-based ionic liquids. Chemical Engineering Journal Advances, 2022, 10, 100291.	2.4	8
779	Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresource Technology, 2022, 352, 127065.	4.8	33
780	Design strategy of poly(vinylidene fluoride) membranes for water treatment. Progress in Polymer Science, 2022, 128, 101535.	11.8	73
781	Systematic evaluation of hydrophobic deep eutectic solvents as alternative media for the extraction of metal ions from aqueous solution. Talanta, 2022, 243, 123373.	2.9	12
782	Assessment of deep eutectic solvents toxicity in zebrafish (Danio rerio). Chemosphere, 2022, 299, 134415.	4.2	7
783	pH-controlled reversible deep-eutectic solvent based enzyme system for simultaneous extraction and in-situ separation of isoflavones from Pueraria lobata. Separation and Purification Technology, 2022, 292, 120992.	3.9	11
784	A water-compatible magnetic dual-template molecularly imprinted polymer fabricated from a ternary biobased deep eutectic solvent for the selective enrichment of organophosphorus in fruits and vegetables. Food Chemistry, 2022, 384, 132475.	4.2	32
785	Integrating Technoeconomic, Environmental, and Safety Criteria in Solvent Screening for Extraction Processes: The Case of Algae Lipid Extraction. ACS Sustainable Chemistry and Engineering, 2022, 10, 472-485.	3.2	4
786	A Comparative Analysis of Conventional and Deep Eutectic Solvent (DES)-Mediated Strategies for the Extraction of Chitin from Marine Crustacean Shells. Molecules, 2021, 26, 7603.	1.7	9
787	Conversion of Calcium Citrate to Citric Acid with Compressed CO ₂ . ACS Omega, 2022, 7, 683-687.	1.6	6
788	Nickel-Catalyzed Reductive Cross-Coupling of Aryl Bromides with Vinyl Acetate in Dimethyl Isosorbide as a Sustainable Solvent. Organic Letters, 2022, 24, 354-358.	2.4	15
789	Evaluation of the environment impact of extraction of bioactive compounds from Darcyodes rostrata using Deep Eutectic Solvent (DES) using Life Cycle Assessment (LCA). Journal of Physics: Conference Series, 2021, 2120, 012005.	0.3	7
790	Can perovskites be efficient photocatalysts in organic transformations?. Journal of Materials Chemistry A, 2022, 10, 12317-12333.	5.2	9
791	Mn-Mediated α-Radical Addition of Carbonyls to Olefins: Systematic Study, Scope, and Electrocatalysis. Journal of Organic Chemistry, 2022, 87, 5690-5702.	1.7	6
792	Redox-responsive properties of core-cross-linked micelles of poly(ethylene oxide)-b-poly(furfuryl) Tj ETQq1 1 0.78 105271.	4314 rgBT 2.0	/Overlock 1 6

#	Article	IF	CITATIONS
794	Industrial sludge valorization and decontamination via lipid extraction and heavy metals removal using low-cost protic ionic liquid. Science of the Total Environment, 2022, 835, 155451.	3.9	17
795	A case study in green chemistry: the reduction of hazardous solvents in an industrial R&D environment. Green Chemistry, 2022, 24, 3943-3956.	4.6	10
796	Alginate Aerogel Beads Doped with a Polymeric Deep Eutectic Solvent for Green Solid-Phase Microextraction of 5-Hydroxymethylfurfural in Coffee Samples. SSRN Electronic Journal, 0, , .	0.4	0
797	Solid-Liquid Equilibrium Solubility, Thermodynamic Properties, and Solvent Effect of Flavoxate Hydrochloride in Twelve Pure Solvents Ranged from 278.15 K to 323.15 K. SSRN Electronic Journal, 0, , .	0.4	0
798	Optimized Ultrasound-Assisted Extraction of Lignans from Linum Species with Green Solvents. Molecules, 2022, 27, 2732.	1.7	1
799	Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities. EScience, 2022, 2, 243-277.	25.0	67
800	Efficient Greener Visibleâ€Lightâ€Catalyzed Debenzylation of Benzyl Ethers and Esters: A Gateway to Wider Exploitation of Stable Benzyl Protecting Groups. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	1
801	Enzymatic continuous-flow preparation of nature-inspired phenolic esters as antiradical and antimicrobial agents. Food Chemistry, 2022, 390, 133195.	4.2	3
802	Directionally Aligned Crown Ethers as Superactive Organocatalysts for Transitionâ€metal Ionâ€free Arylation of Unactivated Arenes. Chemistry - an Asian Journal, 2022, 17, .	1.7	0
803	Solvent Screening Is Not Solvent Effect: A Review on the Most Neglected Aspect of Multicomponent Reactions. European Journal of Organic Chemistry, 2022, 2022, .	1.2	4
804	Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angewandte Chemie, 2022, 134, .	1.6	10
805	Pickering Emulsion Catalysis: Interfacial Chemistry, Catalyst Design, Challenges, and Perspectives. Angewandte Chemie - International Edition, 2022, 61, .	7.2	60
806	Assessment of bio-ionic liquids as promising solvents in industrial separation processes: Computational screening using COSMO-RS method. Fluid Phase Equilibria, 2022, 560, 113495.	1.4	10
807	Binary mixtures with deep eutectic Solvents: Comparing properties with a Non–Ideality approach. Journal of Molecular Liquids, 2022, 359, 119259.	2.3	3
808	Supercapacitance in graphene oxide materials modified with tetrapyrrole dyes: a mechanistic study. Nanoscale, 2022, 14, 8534-8547.	2.8	1
809	Recyclable [RuCl2(p-cymene)]2/PEG-400/H2O System for Efficient Annulation of N-Methoxybenzamides with Alkynes Under External Oxidant-Free Conditions. Catalysis Letters, 0, , 1.	1.4	0
810	Sustainable Ruthenium(II)-Catalyzed C–H Activations in and on H ₂ O. ACS Sustainable Chemistry and Engineering, 2022, 10, 6871-6888.	3.2	20
811	Water enabled, nickel-catalyzed highly chemoselective <i>C</i> -allylation of (NH)-indoles employing alcohols. Green Chemistry, 2022, 24, 4921-4927.	4.6	7

#	Article	IF	CITATIONS
812	Photoredox Cross-Dehydrogenative Coupling of <i>N</i> Aryl Glycines Mediated by Mesoporous Graphitic Carbon Nitride: An Environmentally Friendly Approach to the Synthesis of Non-Proteinogenic α-Amino Acids (NPAAs) Decorated with Indoles. Journal of Organic Chemistry, 2022, 87, 7826-7837.	1.7	8
813	Deuteron magnetic resonance study of glyceline deep eutectic solvents: Selective detection of choline and glycerol dynamics. Journal of Chemical Physics, 2022, 156, .	1.2	4
814	Bioinspired Cryoprotectants Enabled by Binary Natural Deep Eutectic Solvents for Sustainable and Green Cryopreservation. ACS Sustainable Chemistry and Engineering, 2022, 10, 7677-7691.	3.2	17
815	Metal free synthesis of 1,3-diynes through Csp–Csp homo- and hetero-coupling reaction of terminal alkynes. Sustainable Chemistry and Pharmacy, 2022, 28, 100734.	1.6	0
816	Recent development in machine learning of polymer membranes for liquid separation. Molecular Systems Design and Engineering, 2022, 7, 856-872.	1.7	7
817	Ecotoxicological study of bio-based deep eutectic solvents formed by glycerol derivatives in two aquatic biomodels. Green Chemistry, 2022, 24, 5228-5241.	4.6	8
819	The brown seaweed genus Zonaria: major features, biotechnological potential, and applications. Journal of Applied Phycology, 0, , .	1.5	0
820	Pd/Fe3O4 supported on bio-waste derived cellulosic-carbon as a nanocatalyst for C-C coupling and electrocatalytic application. Frontiers of Chemical Science and Engineering, 2022, 16, 1514-1525.	2.3	3
821	Insights on the cellulose pretreatment at room temperature by choline-chloride-based deep eutectic solvents: an atomistic study. Cellulose, 2022, 29, 6517-6548.	2.4	8
822	Extracción de antioxidantes de los arándanos (Vaccinium corymbosum): efecto de solventes verdes sobre polifenoles totales, capacidad antioxidante y comportamiento electroquÃmico. Tecno Lógicas, 2022, 25, e2277.	0.1	0
823	Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 2022, 298, 121448.	3.9	70
824	Enhanced and green extraction betulin from Celtis sinensis leaves using hydrophobic deep eutectic solvent. Biomass Conversion and Biorefinery, 0, , .	2.9	0
825	An Environmentally Benign Multicomponent Cascade Reaction of 3-Formylchromones, 2-Naphthols, and Heterocyclic Ketal Aminals: Site-Selective Synthesis of Functionalized Morphan Derivatives. Journal of Organic Chemistry, 0, , .	1.7	1
826	Development of deep eutectic solvents for sustainable chemistry. Journal of Molecular Liquids, 2022, 362, 119654.	2.3	29
827	Proof of Concept: Interface of Recyclable Organogels with Embedded Palladium Nanoparticles Catalyzing Suzuki–Miyaura Coupling in Water at Room Temperature. ACS Omega, 0, , .	1.6	4
828	Recent Advances in Microwaveâ€assisted Cross oupling Reactions. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	7
829	Eco-Friendly Synthesis of PEtOz-PA: A Promising Polymer for the Formulation of Curcumin-Loaded Micelles. Molecules, 2022, 27, 3788.	1.7	1
830	DFT calculations, molecular docking and SAR investigation for the formation of eutectic mixture using thiourea and salicylic acid. Journal of Molecular Liquids, 2022, 362, 119650	2.3	12

	ARTICLE	IF	CITATIONS
831	Catalytic aerobic epoxidation of bio-renewable alkenes using organic carbonates as green solvents. Molecular Catalysis, 2022, 527, 112400.	1.0	3
832	Estimating the solubility of HFC/HFO in ionic liquids from molecular structure using machine learning method. Chemical Engineering Research and Design, 2022, 184, 315-325.	2.7	8
833	The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. Journal of Molecular Liquids, 2022, 361, 119664.	2.3	15
834	Alginate aerogel beads doped with a polymeric deep eutectic solvent for green solid-phase microextraction of 5-hydroxymethylfurfural in coffee samples. Microchemical Journal, 2022, 181, 107729.	2.3	13
835	Exploitation of distillation for energy-efficient and cost-effective environmentally benign process of waste solvents recovery from semiconductor industry. Science of the Total Environment, 2022, 841, 156743.	3.9	7
836	Critical Considerations for Developing Sustainable Ionic-liquid-based Valorisation Strategies for Waste. RSC Green Chemistry, 2022, , 168-181.	0.0	0
837	Halometallate ionic liquids: thermal properties, decomposition pathways, and life cycle considerations. Green Chemistry, 2022, 24, 5800-5812.	4.6	9
838	Efficient Capture of Co2ÂIn Co2-Binding Organic Liquids Formed by 1,1,3,3-Tetramethylguanidine and Glycerol Derivatives. SSRN Electronic Journal, 0, , .	0.4	0
839	A novel electromagnetic mill promoted mechanochemical solid-state Suzuki–Miyaura cross-coupling reaction using ultra-low catalyst loading. Green Chemistry, 2022, 24, 6026-6035.	4.6	8
840	Waste and Circular Economy. RSC Green Chemistry, 2022, , 1-18.	0.0	0
9/1			
041	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232.	2.4	6
842	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128.	2.4	6 0
842 843	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Scientific Reports, 2022, 12, .	2.4	6 0 3
842 843 844	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Scientific Reports, 2022, 12, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie - International Edition, 2022, 61, .	2.4 1.6 7.2	6 0 3 34
842 843 844 845	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis., 2022, , 104-128. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Scientific Reports, 2022, 12, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie - International Edition, 2022, 61, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie - International Edition, 2022, 61, .	2.4 1.6 7.2 1.6	6 0 3 34 0
842 843 844 844 845 846	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Scientific Reports, 2022, 12, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie - International Edition, 2022, 61, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie, 0, , . Monitoring of Catalyst-Free Microwave-Assisted MCR-Type Synthesis of 2-Amino-3-cyano-4H-chromene Derivatives Using Raman Spectrometry. Synthesis, 2022, 54, 5215-5225.	2.4 1.6 7.2 1.6 1.2	6 0 3 3 4 0
842 843 843 844 845 845 846 847	Sustainable Design of New Ionic Forms of Vitamin B ₃ and Their Utilization as Plant Protection Agents. Journal of Agricultural and Food Chemistry, 2022, 70, 8222-8232. Green Solvents for Sustainable Organic Synthesis. , 2022, , 104-128. A high-throughput HPLC method for simultaneous quantification of pyrethroid and pyriproxyfen in long-lasting insecticide-treated nets. Scientific Reports, 2022, 12, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie - International Edition, 2022, 61, . Design of Threeâ€Dimensional Covalent Organic Framework Membranes for Fast and Robust Organic Solvent Nanofiltration. Angewandte Chemie, 0, , . Monitoring of Catalyst-Free Microwave-Assisted MCR-Type Synthesis of 2-Amino-3-cyano-4H-chromene Derivatives Using Raman Spectrometry. Synthesis, 2022, 54, 5215-5225. Overview of Solvent System Selection Strategies for Countercurrent Chromatography. Separation and Purification Reviews, 2023, 52, 305-25.	2.4 1.6 7.2 1.6 1.2 2.8	 6 0 3 34 0 1 2

#	Article	IF	CITATIONS
849	Transition State Theory-Inspired Neural Network for Estimating the Viscosity of Deep Eutectic Solvents. ACS Central Science, 2022, 8, 983-995.	5.3	17
850	Rapid preparation of conductive and self-healing ionic gels with tunable mechanical properties via frontal polymerization of deep eutectic monomers. Colloid and Polymer Science, 2022, 300, 989-998.	1.0	6
851	Valorization of Coffee Silverskin through Subcritical Water Extraction: An Optimization Based on T-CQA Using Response Surface Methodology. Sustainability, 2022, 14, 8435.	1.6	6
852	"Eucalyptol: An Alternative Green Solvent for the Michael Addition of Indoles to α, βâ€Unsaturated Ketones and Nitrostyrenes― ChemistrySelect, 2022, 7, .	0.7	0
853	Efficient Dry Impregnation of Zirconium into Hâ€ZSMâ€5 Zeolites. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	1
854	Unraveling Alcohol Dehydrogenase Catalysis in Organic–Aqueous Biphasic Systems Combining Experiments and Molecular Dynamics Simulations. ACS Catalysis, 2022, 12, 9171-9180.	5.5	11
855	Dehydrative Substitution Reaction in Water for the Preparation of Unsymmetrically Substituted TriaryImethanes: Synthesis, Aggregationâ€Enhanced Emission, and Mechanofluorochromism. ChemPlusChem, 2022, 87, .	1.3	2
856	Current methodologies for the assessment of deep eutectic systems toxicology: Challenges and perspectives. Journal of Molecular Liquids, 2022, 362, 119675.	2.3	6
857	A dielectric spectroscopy study of deep eutectic mixtures of glycerol and hydroxyl ammonium chloride in liquid and glassy states. Materials Chemistry and Physics, 2022, 289, 126500.	2.0	0
858	Highly efficient toluene absorption with ï€-electron donor-based deep eutectic solvents. Separation and Purification Technology, 2022, 298, 121618.	3.9	16
859	Protophilic solvent-impelled quasi-catalytic CO2 valorization to formic acid and N-formamides. Fuel, 2022, 326, 125074.	3.4	4
860	Green solvents in polymeric membrane fabrication: A review. Separation and Purification Technology, 2022, 298, 121691.	3.9	32
861	Green solvents and approaches recently applied for extraction of natural bioactive compounds. TrAC - Trends in Analytical Chemistry, 2022, 157, 116732.	5.8	30
862	Synthesis and Characterization of Amine-Functionalized Thiosemicarbazone Cyclopalladated Compounds. , 0, , .		0
863	Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chemical Reviews, 2022, 122, 13478-13515.	23.0	120
864	Deep eutectic solvents: green solvents for the removal of degraded gelatin on cellulose nitrate cinematographic films. Heritage Science, 2022, 10, .	1.0	3
865	Cyreneâ,,¢ blends: a greener solvent system for organic syntheses. Green Chemistry, 2022, 24, 7184-7193.	4.6	9
866	From A ³ /KA ² to AYA/KYA multicomponent coupling reactions with terminal ynamides as alkyne surrogates – a direct, green route to γ-amino-ynamides. Green Chemistry, 0, , .	4.6	2

#	Article	IF	CITATIONS
867	Photoredox-catalyzed coupling of acyl oxime acetates with thiophenols to give arylthioesters in water at room temperature. Green Chemistry, 2022, 24, 6849-6853.	4.6	7
868	Mechanochemistry: New Tools to Navigate the Uncharted Territory of "Impossible―Reactions. ChemSusChem, 2022, 15, .	3.6	82
869	Predicting the Surface Tension of Deep Eutectic Solvents: A Step Forward in the Use of Greener Solvents. Molecules, 2022, 27, 4896.	1.7	5
870	Micellar Catalysis as a Tool for C–H Bond Functionalization toward C–C Bond Formation. Organometallics, 2022, 41, 3084-3098.	1.1	15
871	Mechanistic Approach to Reveal Interaction of Uranyl Ions in Alkyltriphenylphosphonium Bromide-Based Deep Eutectic Solvent. Inorganic Chemistry, 2022, 61, 12599-12609.	1.9	3
872	Assessment of COSMO-SAC Predictions for Solid–Liquid Equilibrium in Binary Eutectic Systems. Industrial & Engineering Chemistry Research, 2022, 61, 13256-13264.	1.8	16
873	Metal-Free, Adjustable, and Recyclable Catalytic Systems for the Construction of C–C Bonds by Activating Propargylic Alcohols. Journal of Organic Chemistry, 2022, 87, 11669-11680.	1.7	4
874	Density and Viscosity of Glycolic, Lactic, and Malic Acid Esters. Journal of Chemical & Engineering Data, 2022, 67, 2323-2332.	1.0	2
875	Development of a Continuous Flow Synthesis of Lorazepam. Organic Process Research and Development, 2022, 26, 2715-2727.	1.3	3
876	Copper-Catalyzed Reactions of Aryl Halides with N-Nucleophiles and Their Possible Application for Degradation of Halogenated Aromatic Contaminants. Catalysts, 2022, 12, 911.	1.6	7
877	A Convenient, Rapid, Conventional Heating Route to MIDA Boronates. Molecules, 2022, 27, 5052.	1.7	0
878	Solubilization of Aldehydes and Amines in Aqueous C <i>_i</i> E <i>_j</i> Surfactant Aggregates: Solubilization Capacity and Aggregate Properties. Langmuir, 2022, 38, 10022-10031.	1.6	2
879	Desulfurization of Morupule Coal with Subcritical Aqueous Ethanol Extraction. ChemistryOpen, 0, , .	0.9	0
880	Comparative investigation of the structural characteristics of tobacco stalk lignin during the DES and alkaline deconstruction toward sustainable materials. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	1
881	Deep Eutectic Solvents for Extraction and Preconcentration of Organic and Inorganic Species in Water and Food Samples: A Review. Critical Reviews in Analytical Chemistry, 0, , 1-14.	1.8	10
882	An update on synthesis, properties, applications and toxicity of the ILs. Journal of Molecular Liquids, 2022, 364, 119989.	2.3	9
883	Tailored one-pot lignocellulose fractionation to maximize biorefinery toward controllable producing lignin nanoparticles and facilitating enzymatic hydrolysis. Chemical Engineering Journal, 2022, 450, 138315.	6.6	33
884	Metallization of PET fibers in supercritical carbon dioxide and potential applications in the textile sector. Journal of Supercritical Fluids, 2022, 191, 105722.	1.6	2

#	Article	IF	CITATIONS
885	Graphene oxide functionalized diethanolamine sulfate as a novel, highly efficient and sustainable catalyst for the synthesis of 8-aryl-7H-acenaphtho[1,2-d] imidazoles. Research on Chemical Intermediates, 2022, 48, 4537-4551.	1.3	1
886	Acceptorless dehydrogenation of alcohols and transfer hydrogenation of aldehydes in water using a single biâ€functional, biâ€state, water soluble ruthenium catalyst. Chemistry - an Asian Journal, 0, , .	1.7	0
887	Extraction performance and interaction analysis of 2-pyrrolidone-based brÃ,nsted acidic ionic liquids on removal of quinoline from coal-based products. Journal of Molecular Liquids, 2022, 366, 120320.	2.3	4
888	Green solvent processing: Effect of type of solvent on extraction and quality of protein from dairy and non-dairy expired milk products. Food Chemistry, 2023, 400, 133988.	4.2	4
889	Are deep eutectic solvents really green?: A life-cycle perspective. Green Chemistry, 2022, 24, 7924-7930.	4.6	46
890	Solvent Screening Methodology considering Techno-Economic and Environmental Sustainability criteria for Algae Lipid Extraction. Computer Aided Chemical Engineering, 2022, , 1039-1044.	0.3	0
891	Design and applications of biocompatible choline amino acid ionic liquids. Green Chemistry, 2022, 24, 7281-7304.	4.6	16
892	Deep eutectic solvents vs. ionic liquids: Similarities and differences. , 2022, , 105-138.		0
893	Biocatalytic processes in ionic liquids and supercritical carbon dioxide biphasic systems. , 2022, , 403-433.		0
894	Critical analysis of green solvent credentials of eutectic solvents. , 2022, , 77-104.		1
895	Chemical Reactions in Ionic Liquids. , 2022, , 1-9.		0
896	Conversion of Organosolv and Kraft lignins into value-added compounds assisted by an acidic deep eutectic solvent. Sustainable Energy and Fuels, 2022, 6, 4800-4815.	2.5	7
897	Water as a solvent: transition metal catalyzed dehydrogenation of alcohols going green. Dalton Transactions, 2022, 51, 11987-12020.	1.6	8
898	Catalytic Organic Reactions in Liquid Phase by Perovskite Oxides: A Review. Asian Journal of Chemistry, 2022, 34, 2489-2498.	0.1	1
899	Clean biocatalysis in sponge-like ionic liquids. , 2022, , 155-182.		1
900	Biocatalysis, solvents, and green metrics in sustainable chemistry. , 2022, , 1-22.		3
901	Designable synthesis of reactive deep eutectic solvents (RDESs) in regulating Ni-based materials for an efficient oxygen evolution reaction. Green Chemistry, 2022, 24, 8014-8020.	4.6	1
902	Microwave-assisted Synthesis of Pharmacologically Active 4-Phenoxyquinolines and their Benzazole-quinoline Hybrids Through SNAr Reaction of 4,7-dichloroquinoline and Phenols Using [bmim][PF6] as a Green Solvent. Current Organic Synthesis, 2023, 20, 546-559.	0.7	2

#	Article	IF	CITATIONS
903	Cascade Processes with Micellar Reaction Media: Recent Advances and Future Directions. Molecules, 2022, 27, 5611.	1.7	8
904	Exploring the In Situ Formation Mechanism of Polymeric Aluminum Chloride–Silica Gel Composites under Mechanical Grinding Conditions: As a High-Performance Nanocatalyst for the Synthesis of Xanthene and Pyrimidinone Compounds. ACS Omega, 2022, 7, 32577-32587.	1.6	4
905	Experimental Study and Thermodynamic Modeling of Mesalamine and Azathioprine Solubility in Some Choline Chloride-Based Deep Eutectic Solvents. Journal of Chemical & Engineering Data, 2022, 67, 3252-3267.	1.0	6
906	Sustainability Challenges of the Chemical Industry. , 2022, , 1-12.		0
907	Efficient Synthesis of Pyrazoles via pH Dependent Isomerization of Enaminodiones. Asian Journal of Organic Chemistry, 0, , .	1.3	0
908	Synthesis and application of choline chloride based deep eutectic solvents in liquid-liquid and solid-liquid assisted extraction of organophosphorus flame retardants from landfill leachate and sediment. International Journal of Environmental Analytical Chemistry, 0, , 1-19.	1.8	0
909	Supercooled deep eutectic melt of tetramethylguanidine hydrochloride and sorbitol: An efficient promoter for synthesis of pyrano[3,2-c]chromenes. Journal of Molecular Liquids, 2022, 367, 120501.	2.3	3
910	C–H activation and subsequent C–C bond formation in rigid alkenes catalyzed by Ru(<scp>iii</scp>) metallates. Reaction Chemistry and Engineering, 2022, 8, 164-174.	1.9	1
911	Simple and sustainable synthesis of perovskite-based optoelectronic material: CsPbBr ₃ nanocrystals <i>via</i> laser ablation in alcohol. Nanoscale Advances, 0, , .	2.2	5
912	Dynamic environment at the Zr _{6} oxo cluster surface is key for the catalytic formation of amide bonds. Catalysis Science and Technology, 2023, 13, 100-110.	2.1	5
913	Application of Bio-Profiles of Chemical Reactions for Analysis of Solvent Impact on Overall Toxicity of C–C Cross-Coupling Process. Doklady Chemistry, 2022, 504, 106-117.	0.2	3
914	Synthesis of α,β-Unsaturated Ketones in Water: The Claisen–Schmidt Condensation Revisited. ACS Sustainable Chemistry and Engineering, 2022, 10, 14271-14279.	3.2	4
915	"On-Water―Reaction of (Thio)isocyanate: A Sustainable Process for the Synthesis of Unsymmetrical (Thio)ureas. Organic Process Research and Development, 2022, 26, 3141-3152.	1.3	4
916	Stereodivergent Synthesis of (<i>Z</i>)-/(<i>E</i>)-β-Sulfonylacrylamides via Tandem Difunctionalization of Alkynes with Sulfinates and Isocyanides. Organic Letters, 2022, 24, 7632-7636.	2.4	3
917	Experiences and consequences of phasing out substances of concern in a multinational healthcare company. Environmental Sciences Europe, 2022, 34, .	2.6	2
918	An Efficient and Durable Electrocatalyst Based on Strongly Coupled Pt Nanoparticles on CeO ₂ Microspheres for CO-Resilient Methanol Oxidation. Journal of Physical Chemistry C, 2022, 126, 18670-18682.	1.5	6
919	Using biobased solvents for the extraction of phenolic compounds from kiwifruit industry waste. Separation and Purification Technology, 2023, 304, 122344.	3.9	7
920	Microfluidic-Blow-Spinning fabricated sandwiched structural fabrics for All-Season personal thermal management. Chemical Engineering Journal, 2023, 453, 139763.	6.6	6

#	Article	IF	Citations
921	On the need for gate-to-gate environmental metrics in biocatalysis: fatty acid hydration catalyzed by oleate hydratases as a case study. Green Chemistry, 2022, 24, 9620-9628.	4.6	13
922	<i>N</i> -Carboxyanhydrides directly from amino acids and carbon dioxide and their tandem reactions to therapeutic alkaloids. Green Chemistry, 2022, 24, 9245-9252.	4.6	4
923	Tailored acidic deep eutectic solvents: A multifunctional co-catalyst mediating homogeneous catalysis and heterogeneous separation of ethylene methoxycarbonylation. Fuel, 2023, 333, 126562.	3.4	4
924	Artichoke By-Products Valorization for Phenols-Enriched Fresh Egg Pasta: A Sustainable Food Design Project. Sustainability, 2022, 14, 14778.	1.6	5
925	Machine learning coupled with group contribution for predicting the density of deep eutectic solvents. Fluid Phase Equilibria, 2023, 565, 113672.	1.4	7
926	Biorefineries: Achievements and challenges for a bio-based economy. Frontiers in Chemistry, 0, 10, .	1.8	19
927	Facile preparation of stretchable and multifunctional ionic gels via frontal polymerization of polymerizable ternary deep eutectic monomers with a long pot life. Colloid and Polymer Science, 0, , .	1.0	3
928	Greener Syntheses of Coumarin Derivatives Using Magnetic Nanocatalysts: Recent Advances. Topics in Current Chemistry, 2023, 381, .	3.0	2
929	NIST-UNIFAC parametrization for phase equilibrium calculation of mixtures containing lactones. Fluid Phase Equilibria, 2023, 565, 113673.	1.4	1
930	One-Pot Synthesis of 2- <i>C</i> -Branched Glycosyl Triazoles by Integrating 1,2-Cyclopropanated Sugar Ring-Opening Azidation and CuAAC Reaction. Journal of Organic Chemistry, 2022, 87, 16736-16742.	1.7	6
931	Synthesis of amines: From a microwave batch reactor to a continuous milliflow reactor with heterogeneous feed and product. Chemical Engineering and Processing: Process Intensification, 2023, 183, 109252.	1.8	2
932	Fast evaluation of the safety of chemical reactions using cytotoxicity potentials and bio-Strips. Chemosphere, 2023, 313, 137378.	4.2	2
933	Microemulsion system formed with new piperazinium-based surface-active ionic liquid. Journal of Molecular Liquids, 2023, 371, 121103.	2.3	5
934	A comparative study of antisolvent versus salting-out precipitations of glycopeptide vancomycin: Precipitation efficiency and product qualities. Powder Technology, 2023, 415, 118181.	2.1	2
935	Experimental and theoretical study on ion association in [Hmim][halide] + water/isopropanol mixtures. Fluid Phase Equilibria, 2023, 566, 113680.	1.4	3
936	Efficient fractionation and targeted valorization of industrial xylose residue by synergistic and mild alkaline deep eutectic solventâ€'hydrogen peroxide pretreatment. Fuel Processing Technology, 2023, 241, 107591.	3.7	7
938	Citric Acid Recovery and Methanol Production from a Waste Food Fruit Sample by Thermal Decomposition of a Reusable Zinc Citrate Complex. ACS Sustainable Chemistry and Engineering, 2022, 10, 15680-15691.	3.2	0
939	Techno-economic and Environmental Analysis of Algae Biodiesel Production via Lipid Extraction Using Alternative Solvents. Industrial & Engineering Chemistry Research, 2022, 61, 18030-18044.	1.8	1

#	Article	IF	CITATIONS
940	Ultrasmall Cu ^I Nanoparticles Stabilized on Surface of HPMC: An Efficient Catalyst for Fast and Organic Solventâ€Free Tandem Click Chemistry in Water. ChemSusChem, 2023, 16, .	3.6	2
941	A Twisted Road to the Discovery and Chemical Development of BMS-986142: A Reversible Inhibitor of BTK Conformationally Constrained by Two Rotationally Stable Atropisomeric Axes. ACS Symposium Series, 0, , 173-202.	0.5	0
942	Towards a rational design of natural deep eutectic solvents for the extraction of polyphenols from Luma apiculata. Journal of Molecular Liquids, 2023, 372, 121155.	2.3	3
943	Scalable Direct Recycling of Cathode Black Mass from Spent Lithiumâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	28
944	Acid-Promoted Direct C–H Carbamoylation at the C-3 Position of Quinoxalin-2(1 <i>H</i>)-ones with Isocyanide in Water. ACS Omega, 2023, 8, 1577-1587.	1.6	2
945	Critical Assessment of the Sustainability of Deep Eutectic Solvents: A Case Study on Six Choline Chloride-Based Mixtures. ACS Omega, 2022, 7, 47449-47461.	1.6	18
946	Epitaxial supercritical fluid processing of ZIF-8 membranes towards efficient C3H6/C3H8 separation. Journal of Membrane Science, 2023, 669, 121300.	4.1	4
947	Mechanism of Friedel–Crafts Acylation Using Metal Triflate in Deep Eutectic Solvents: An Experimental and Computational Study. ACS Omega, 2023, 8, 271-278.	1.6	1
948	Direct Z-Scheme g-C3N5/Cu3TiO4 Heterojunction Enhanced Photocatalytic Performance of Chromene-3-Carbonitriles Synthesis under Visible Light Irradiation. Catalysts, 2022, 12, 1593.	1.6	5
949	Recent advances in electrooxidative radical transformations of alkynes. Science China Chemistry, 0, , .	4.2	5
950	Controversy on the toxic nature of deep eutectic solvents and their potential contribution to environmental pollution. Heliyon, 2022, 8, e12567.	1.4	25
951	Effects of Energy Intensification of Pressure-Swing Distillation on Energy Consumption and Controllability. ACS Omega, 0, , .	1.6	2
952	Solid-liquid equilibrium solubility, thermodynamic properties, and solvent effect of flavoxate hydrochloride in twelve pure solvents ranged from 278.15ÂK to 323.15ÂK. Journal of Chemical Thermodynamics, 2023, 180, 106985.	1.0	4
953	Continuous flow synthesis of phenyl glucosazone and its conversion to 2H-1,2,3-Triazole building blocks. Journal of Flow Chemistry, 2023, 13, 211-215.	1.2	2
954	Enzymatic Reactions using Ionic Liquids for Green Sustainable Chemical Process; Stabilization and Activation of Lipases. Chemical Record, 2023, 23, .	2.9	3
955	Green extraction of bioactive compounds from <i>Azadirachta indica</i> in aqueous glycerol and modelling and optimisation by response surface methodology. Folia Horticulturae, 2022, 34, 249-262.	0.6	1
956	Uncovering biodegradability and biocompatibility of betaine-based deep eutectic systems. Environmental Science and Pollution Research, 2023, 30, 40218-40229.	2.7	3
957	Effect of acetylene linkage on solvatochromism of betaine consisting of 1-methylpyridinium and phenolate units. Results in Chemistry, 2023, 5, 100784.	0.9	0

	Сітатіс	on Report	
#	Article	IF	CITATIONS
958	The E factor at 30: a passion for pollution prevention. Green Chemistry, 2023, 25, 1704-1728.	4.6	54
959	Natural Eutectic Solvent Mixture of <i> <scp> </scp> </i> â€Menthol/Malonic acid (4 : 1) and Its Il Solution: Thermal and Physical Characterizations and NMR Studies of Molecular Interaction. European Journal of Organic Chemistry, 0, , .	ouprofen 1.2	1
960	Pyromelliticâ€Diimideâ€Based Liquid Material Forming an Exciplex with Naphthalene. ChemPhotoChem, 2023, 7, .	1.5	2
961	"Liquidâ€Toâ€Solid―Conversion of Biomass Wastes Enhanced by Uniform Nitrogen Doping for the Preparation of Highâ€Valueâ€Added Carbon Materials for Energy Storage with Superior Characteristics. ChemSusChem, 2023, 16, .	3.6	4
962	Rapid Electrodeposition and Corrosion Behavior of Zn Coating from a Designed Deep Eutectic Solvent. Metals, 2023, 13, 172.	1.0	5
963	Lignin derived hydrophobic deep eutectic solvents as sustainable extractants. Journal of Cleaner Production, 2023, 388, 135808.	4.6	5
964	Polyetheretherketone fiber-supported TBD as an efficient fibrous superbase catalyst for organic conversions in continuous-flow processing. Journal of Catalysis, 2023, 418, 110-120.	3.1	2
965	A comprehensive review on recent developments and future perspectives of switchable solvents and their applications in sample preparation techniques. Green Chemistry, 2023, 25, 1729-1748.	4.6	8
966	Green solvents for multiphase systems. , 2023, , 111-132.		0
967	Green solvents in polymer synthesis. , 2023, , 51-84.		2
968	Enhancing effect of choline chloride-based deep eutectic solvents with polyols on the aqueous solubility of curcumin–insight from experiment and theoretical calculation. Chinese Journal of Chemical Engineering, 2023, 59, 160-168.	1.7	1
969	Visible light mediated organocatalytic dehydrogenative aza-coupling of 1,3-diones using aryldiazonium salts. RSC Advances, 2023, 13, 3147-3154.	1.7	1
970	Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3-d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorganic Chemistry, 2023, 135, 106390.	2.0	9
971	Large-Scale Amide Coupling in Aqueous Media: Process for the Production of Diazabicyclooctane β-Lactamase Inhibitors. Organic Process Research and Development, 2023, 27, 120-128.	1.3	6
972	Industrial application of green solvent for energy conversion and storage. , 2023, , 113-124.		0
973	Taming diamines and acyl chlorides by carbon dioxide in selective mono-acylation reactions. Green Chemistry, 2023, 25, 1332-1338.	4.6	2
974	Cu-catalysed Chan–Lam synthesis of unsymmetrical aryl chalcogenides under aqueous micellar conditions. Green Chemistry, 2023, 25, 2782-2789.	4.6	7
975	Putting the squeeze on imine synthesis: citrus juice as a reaction medium in the introductory organic laboratory. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	1

#	Article	IF	CITATIONS
976	Improving the sustainability of the ruthenium-catalysed <i>N</i> -directed C–H arylation of arenes with aryl halides. Green Chemistry, 2023, 25, 2394-2400.	4.6	5
977	Recent advances in the (3+2) cycloaddition of azomethine ylide. New Journal of Chemistry, 2023, 47, 8997-9034.	1.4	9
978	Solvent-free selective oxidation of benzyl alcohol using Ru loaded ceria-zirconia catalysts. Molecular Catalysis, 2023, 540, 113049.	1.0	3
979	Sensitive determination of polybrominated diphenyl ethers (PBDEs) in water and milk by effervescence-enhanced switchable hydrophilic-hydrophobic solvent-based salting-out microextraction and high-performance liquid chromatography with photodiode array detection (HPI C-PDA). Analytical Letters. 0., 1-15.	1.0	0
980	Simultaneous extraction with two phases (modified supercritical CO2 and CO2-expanded liquid) to enhance sustainable extraction/isolation of pinocembrin from Lippia origanoides (Verbenaceae). Advances in Sample Preparation, 2023, 6, 100059.	1.1	3
981	Data-driven investigation of process solvent and membrane material on organic solvent nanofiltration. Journal of Membrane Science, 2023, 674, 121519.	4.1	6
982	Efficient capture of benzene and its homologues volatile organic compounds with π electron donor-based deep eutectic solvent: Experimental and computational thermodynamics. Journal of Molecular Liquids, 2023, 377, 121498.	2.3	2
983	Synthesis, characterization, DFT studies, and adsorption properties of sulfonated starch synthesized in deep eutectic solvent. International Journal of Biological Macromolecules, 2023, 238, 124083.	3.6	1
984	Molybdenum catalyzed deoxydehydration of aliphatic glycols under microwave irradiation. Journal of Organometallic Chemistry, 2023, 992, 122705.	0.8	2
985	Molecular insights into potential hydrophobic deep eutectic solvents for furfural extraction guided by COSMO-RS and machine learning. Journal of Molecular Liquids, 2023, 379, 121631.	2.3	7
986	Synthesis of green solvents from bio-based lactones using heterogeneous copper catalysts. Catalysis Today, 2023, 418, 114104.	2.2	3
987	A new approach for the direct acylation of bio-oil enriched with levoglucosan: Kinetic study and lipase thermostability. Biochemical Engineering Journal, 2023, 195, 108915.	1.8	1
988	Exploring anionic homopolymerization and copolymerization of vinyl monomers in deep eutectic solvent. European Polymer Journal, 2023, 191, 112044.	2.6	0
989	Solutes in solvent resistant and solvent tolerant nanofiltration: How molecular interactions impact membrane rejection. Journal of Membrane Science, 2023, 677, 121595.	4.1	7
990	Chemical Reactions in Ionic Liquids. , 2022, , 179-188.		0
991	Occurrence, effects, and ecological risks of chemicals in sanitizers and disinfectants: A review. Environmental Chemistry and Ecotoxicology, 2023, 5, 62-78.	4.6	9
992	Hydrated Ionic Liquids: Perspective for Bioscience. Chemical Record, 2023, 23, .	2.9	1
993	Bioinspired green deep eutectic solvents: preparation, catalytic activity, and biocompatibility. Journal of Molecular Liquids, 2023, 376, 121355.	2.3	12

.,		15	C
#	ARTICLE	IF	CHATIONS
994	Recyclability and reusability of the solvents. , 2023, , 133-170.		0
995	Applications of ionic liquids for the biochemical transformation of lignocellulosic biomass into biofuels and biochemicals: A critical review. Biochemical Engineering Journal, 2023, 193, 108850.	1.8	13
996	Converting Nonâ€strained γâ€Valerolactone and Derivatives into Sustainable Polythioesters via Isomerizationâ€driven Cationic Ringâ€Opening Polymerization of Thionolactone Intermediate. Angewandte Chemie - International Edition, 2023, 62, .	7.2	8
997	Converting Nonâ€strained γâ€Valerolactone and Derivatives into Sustainable Polythioesters via Isomerizationâ€driven Cationic Ringâ€Opening Polymerization of Thionolactone Intermediate. Angewandte Chemie, 2023, 135, .	1.6	3
998	Celecoxib solubility in two choline chloride-based deep eutectic solvents- Experimental study, thermodynamic modeling, and molecular dynamic simulation. Fluid Phase Equilibria, 2023, 568, 113761.	1.4	5
999	Selectivity in micellar catalysed reactions: The role of interfacial dipole, compartmentalisation, and specific interactions with the surfactants. Current Opinion in Colloid and Interface Science, 2023, 64, 101681.	3.4	6
1000	Green Chemistry Approach for the Synthesis of Isoxazole Derivatives and Evaluation of Their Anti-epileptic Activity. Current Drug Discovery Technologies, 2023, 20, .	0.6	0
1001	Solvothermal Engineering of NaTi ₂ (PO ₄) ₃ Nanomorphology for Applications in Aqueous Na-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 3429-3436.	3.2	7
1002	Sustainable organocatalytic cyanosilylation of ketones by PPM-level loading of triphenylcarbenium tetrakis(pentafluorophenyl)borate. Green Chemistry, 2023, 25, 2387-2393.	4.6	4
1003	"One-Pot―Construction of Networked AlCl3•6H2O@β-CD Composites by Mechanical Milling: A Green and Efficient Catalyst for the Synthesis of Bisindolylmethane Compounds. Catalysis Letters, 2024, 154, 270-279.	1.4	0
1004	An eco-friendly and very low catalyst loading continuous condensation of primary amines and 1,3 Di carbonyl compounds: Synthesis of enaminones and enaminoesters by microreactor technology. Journal of Flow Chemistry, 0, , .	1.2	0
1005	1,3-Dioxolane compounds (DOXs) as biobased reaction media. Green Chemistry, 2023, 25, 2790-2799.	4.6	1
1006	Oligo(ethylene glycol) Side Chain Architecture Enables Alcohol-Processable Conjugated Polymers for Organic Solar Cells. Macromolecules, 2023, 56, 2092-2103.	2.2	6
1007	Deep Eutectic Liquids as a Topical Vehicle for Tadalafil: Characterisation and Potential Wound Healing and Antimicrobial Activity. Molecules, 2023, 28, 2402.	1.7	7
1008	Application of hindered ether solvents for palladium catalyzed Suzuki–Miyaura, Sonogashira and cascade Sonogashira cross-coupling reactions. Organic and Biomolecular Chemistry, 2023, 21, 2603-2609.	1.5	0
1009	Investigation of reactive extraction of monocarboxylic acids with menthol-based hydrophobic deep eutectic solvent by response surface methodology. Separation Science and Technology, 2023, 58, 1450-1459.	1.3	2
1010	A Facile Deep Eutectic Solvent (DES) Mediated Green Approach for the Synthesis of Fluorescein and Phenolphthalein Dyes. ChemistrySelect, 2023, 8, .	0.7	2
1011	Application of Green Solvent in Green Chemistry: An overview. Green Chemistry & Technology Letters, 2023, 9, 01-14.	0.3	1

#		IF	CITATIONS
π 1012	A Horizon Scan to support Chemical Pollution related policymaking for sustainable and climate resilient economies. Environmental Toxicology and Chemistry, 0, , .	2.2	3
1013	New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Frontiers in Nutrition, 0, 10, .	1.6	23
1014	Efficient and Reversible Capture of CO ₂ in CO ₂ -Binding Organic Liquids Formed by 1,1,3,3-Tetramethylguanidine and Glycerol Derivatives. ACS Sustainable Chemistry and Engineering, 2023, 11, 5335-5344.	3.2	7
1015	A new, ecological and stability-indicating method by HPLC for the quantification of moxifloxacin in tablets. Current Green Chemistry, 2023, 10, .	0.7	1
1016	Preparation and Emulsifying Properties of Carbon-Based Pickering Emulsifier. Processes, 2023, 11, 1070.	1.3	2
1017	Application of Recently used Green Solvents in Sample Preparation Techniques: A Comprehensive Review of Existing Trends, Challenges, and Future Opportunities. Critical Reviews in Analytical Chemistry, 0, , 1-20.	1.8	5
1018	Photoinduced Glycosylation Using a Diarylthiophene as an Organo Lewis Photoacid Catalyst. European Journal of Organic Chemistry, 0, , .	1.2	2
1019	Synergizing machine learning, molecular simulation and experiment to develop polymer membranes for solvent recovery. Journal of Membrane Science, 2023, 678, 121678.	4.1	9
1020	Versatile Triphenylphosphine-Containing Polymeric Catalysts and Elucidation of Structure–Function Relationships. Journal of the American Chemical Society, 2023, 145, 9686-9692.	6.6	4
1021	Versatile application of strong BrÃ,nsted acid deep eutectic solvent as recyclable reaction media and catalysts in organic synthesis. Journal of Molecular Liquids, 2023, 385, 121876.	2.3	1
1022	Enzymatic Synthesis of a Novel Coumarin Aminophosphonates: Antibacterial Effects and Oxidative Stress Modulation on Selected E. coli Strains. International Journal of Molecular Sciences, 2023, 24, 7609.	1.8	4
1044	Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells. RSC Advances, 2023, 13, 18165-18206.	1.7	7
1045	Biorenewable Solvents for High-Performance Organic Solar Cells. ACS Energy Letters, 2023, 8, 3038-3047.	8.8	4
1049	A focus on sustainable method development for greener synthesis. Chemical Science, 2023, 14, 7408-7410.	3.7	3
1050	Assessing the Environmental Impact of Atomic Layer Deposition (ALD) Processes and Pathways to Lower It. ACS Materials Au, 2023, 3, 274-298.	2.6	5
1057	Cellulose processing in ionic liquids from a materials science perspective: turning a versatile biopolymer into the cornerstone of our sustainable future. Green Chemistry, 2023, 25, 5338-5389.	4.6	8
1058	Dipolar Microenvironment Enhanced Catalytic Activity of Pd Nanoparticles in MOF Channel. ACS Sustainable Chemistry and Engineering, 2023, 11, 10219-10224.	3.2	0
1059	Ionic Liquids: Fundamental Properties and Classifications. , 2023, , 1-15.		1

#	Article	IF	CITATIONS
1078	Circular economy for perovskite solar cells – drivers, progress and challenges. Energy and Environmental Science, 2023, 16, 3711-3733.	15.6	4
1083	Remediation and recycling of inorganic acids and their green alternatives for sustainable industrial chemical processes. Environmental Science Advances, 2023, 2, 1306-1339.	1.0	0
1090	Insights into the quantitative structure–activity relationship for ionic liquids: a bibliometric mapping analysis. Environmental Science and Pollution Research, 2023, 30, 95054-95076.	2.7	1
1091	Environmentally Friendly Solvents. Current and Future Developments in Food Science, 2023, , 68-131.	0.0	0
1094	Green nanofiber membranes. , 2023, , 149-168.		0
1095	Green solvents for membrane fabrication. , 2023, , 9-44.		0
1111	Toward Intrinsically Flame-Retardant, Bioenabled Nitrogen Aromatic Nylon 6,6 Comonomers. ACS Symposium Series, 0, , 163-176.	0.5	0
1112	Syntheses of Biobased Polymers Using Bio/Naturally Derived Products. , 2023, , 31-57.		0
1124	Green and Sustainable Chemistry: A New Blossoming Area to Solve Multiple Global Problems of Environment and Economy. , 2023, , 171-180.		0
1128	Sustainable Green Environment and Health Improvement. , 2023, , 195-211.		0
1132	Introduction to environmental and green chemistry. , 2024, , 1-22.		0
1133	Green anthrosphere through industrial ecology. , 2024, , 131-147.		0
1148	Parameters affecting the efficiency of extraction systems in the food industries. , 2024, , 397-434.		0
1177	Highly selective pressure-dependent (transfer) hydrogenative depolymerization of polybutylene succinate. Chemical Communications, 0, , .	2.2	0
1190	New horizons on advanced nanoscale materials for Cultural Heritage conservation. Nanoscale Horizons, 2024, 9, 566-579.	4.1	0
1194	Green Solvents for Liquidâ \in "Liquid Extraction: Recent Advances and Future Trends. , 0, , .		0
1200	Super- and Subcritical Fluid Extraction of Nutraceuticals and Novel Phytocompound. , 2024, , 129-151.		0
1201	A tutorial review for research laboratories to support the vital path toward inherently sustainable and green synthetic chemistry. , 2024, 2, 578-607.		0

		CITATION REPORT		
#	Article		IF	CITATIONS
1202	Saponin: a green and efficient natural surfactant for Suzuki–Miyaura cross-couplings substrates in aqueous media at ambient conditions. Green Chemistry, 2024, 26, 1393-	s of heteroaryl •1398.	4.6	0
1204	From preservation of aquatic ecosystems to ecocatalysis $\hat{A}^{\textcircled{e}}$, 2024, , 733-766.			0
1221	General backgrounds. , 2024, , 1-12.			0