Evaluating the role of rural electrification in expanding

Energy Policy 114, 492-498 DOI: 10.1016/j.enpol.2017.12.047

Citation Report

#	Article	IF	CITATIONS
1	Optimum sizing of a stand-alone hybrid energy system for rural electrification in Bangladesh. Journal of Cleaner Production, 2018, 200, 12-27.	9.3	302
2	Techno-Economic Analysis of Solar PV Electricity Supply to Rural Areas of Balochistan, Pakistan. Energies, 2018, 11, 1777.	3.1	53
3	Assessing the impact of a renewable energy programme in Bamyan, Afghanistan: The value of a capability approach. Energy for Sustainable Development, 2018, 45, 198-205.	4.5	6
4	A Techno-Economic Analysis of Off-Grid Solar PV System: A Case Study for Punjab Province in Pakistan. Processes, 2019, 7, 708.	2.8	59
5	Off-grid opportunities and threats in the wake of India's electrification push. Energy, Sustainability and Society, 2019, 9, .	3.8	23
6	Access for adaptation? Reviewing the linkages between energy, disasters, and development in India. Energy Research and Social Science, 2019, 52, 10-19.	6.4	11
7	The temporalities of energy justice: Examining India's energy policy paradox using non-western philosophy. Energy Research and Social Science, 2019, 49, 16-25.	6.4	37
8	Towards an ethnography of small hydropower in China: Rural electrification, socioeconomic development and furtive hydroscapes. Energy Research and Social Science, 2019, 48, 116-130.	6.4	28
9	The need for impact evaluation in electricity access research. Energy Policy, 2020, 137, 111099.	8.8	22
10	Energy justice from the bottom up: A capability approach to community acceptance of wind energy in Mexico. Energy Research and Social Science, 2020, 70, 101711.	6.4	65
11	The Effects of Rural Electrification on Quality of Life: A Southeast Asian Perspective. Energies, 2020, 13, 2410.	3.1	8
12	Planning with justice: Using spatial modelling to incorporate justice in electricity pricing – The case of Tanzania. Applied Energy, 2020, 264, 114749.	10.1	25
13	Achieving "Energy for All― Solar Mini-Grids for Rural Electrification in Asia. , 2021, , 227-253.		0
14	Fuel choice and tradition: Why fuel stacking and the energy ladder are out of step?. Solar Energy, 2021, 214, 491-501.	6.1	40
15	Small Hydropower for Electricity and Modernity: Impacts on the Everyday Lives of Minority Communities in Yunnan's Nu River Valley. International Political Economy Series, 2021, , 147-170.	0.5	2
16	Who Benefits and How? A Capabilities Perspective on Solar Micro-grids in India. Journal of Human Development and Capabilities, 2021, 22, 316-335.	2.0	5
17	A Capabilities-Led Approach to Assessing Technological Solutions for a Rural Community. Energies, 2021, 14, 1398.	3.1	5
18	Gendered energy relations at the crossroads of Asia: Electrification, empowerment, and mixed outcomes in northeastern Afghanistan. Energy Research and Social Science, 2021, 7 <u>3, 101928.</u>	6.4	6

#	Article	IF	CITATIONS
19	Energy Justice and the Capability Approach—Introduction to the Special Issue. Journal of Human Development and Capabilities, 2021, 22, 185-196.	2.0	13
20	Techno-Environ-Economical Analysis of Floating PV/On-Ground PV/Grid Extension Systems for Electrification of a Remote Area in India. Technology and Economics of Smart Grids and Sustainable Energy, 2021, 6, 1.	2.6	14
21	Evaluating sub-Saharan Africa's electrification progress: Guiding principles for pro-poor strategies. Energy Research and Social Science, 2021, 75, 102045.	6.4	10
22	Enabling development impact of solar mini-grids through the community engagement: Evidence from rural Sierra Leone. Energy Policy, 2021, 154, 112294.	8.8	3
23	Understanding the multiple harms of energy poverty through Nussbaum's theory of central capabilities. Local Environment, 2021, 26, 1026-1042.	2.4	7
24	Toward Clean Residential Energy: Challenges and Priorities in Research. Environmental Science & Technology, 2021, 55, 13602-13613.	10.0	18
25	Impressions of remote area electrification on social and economic indicators. AIMS Energy, 2020, 8, 1045-1068.	1.9	1
26	Climate implications of electrification projects in the developing world: a systematic review. Environmental Research Letters, 2020, 15, 103010.	5.2	0
27	Agrivoltaics: A Climate-Smart Agriculture Approach for Indian Farmers. Land, 2021, 10, 1277.	2.9	12
28	Economic Growth in Maharashtra and India with Particular Reference to Electricity Consumption. Lecture Notes in Mechanical Engineering, 2022, , 53-62.	0.4	0
29	A microgrid for the secluded Paana Theertham Kani settlement in India. Clean Energy, 2022, 6, 43-58.	3.2	5
30	Limited Demand or Unreliable Supply? A Bibliometric Review and Computational Text Analysis of Research on Energy Policy in India. Sustainability, 2021, 13, 13421.	3.2	6
31	Household Energy Choice for Cooking Fuel and Underlying Circumstances in Non-Formal Urban Settlements in Kenya. , 2020, 6, 01-11.		0
32	Between a rock and a hard place: Negotiating gender, forest laws and capabilities for fuelwood access in Zimbabwe. Geoforum, 2022, 132, 42-51.	2.5	2
33	Examination of energy poverty among households in Kasargod District of Kerala. Energy for Sustainable Development, 2022, 68, 472-479.	4.5	3
34	Equal goods, but inequitable capabilities? A gender-differentiated study of off-grid solar energy in rural Tanzania. Energy Research and Social Science, 2022, 91, 102726.	6.4	3
35	Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community. Renewable Energy, 2022, 198, 1021-1031.	8.9	17
36	India's biomethane generation potential from wastes and the corresponding greenhouse gas emissions abatement possibilities under three end use scenarios: electricity generation, cooking, and road transport applications. Sustainable Energy and Fuels, 2022, 7, 209-241.	4.9	2

#	Article	IF	CITATIONS
37	Off-grid Photovoltaic Systems Implementation for Electrification of Remote Areas: Experiences and Lessons Learned in the Pantanal Sul-Mato-Grossense Region of Brazil. Brazilian Archives of Biology and Technology, 0, 66, .	0.5	0
38	Clean energy access as an enabler for social development: A multidimensional analysis for Sub-Saharan Africa. Energy for Sustainable Development, 2023, 72, 114-126.	4.5	11
39	Prediction on the Performance Parameters of a Variable Compression Ratio (VCR) Dual Fuel Diesel-Producer Gas CI Engine: An Experimental and Theoretical Approach. Arabian Journal for Science and Engineering, 0, , .	3.0	4
40	Why do capabilities need Ubuntu? Specifying the relational (im)morality of energy poverty. Energy Research and Social Science, 2023, 96, 102921.	6.4	1
41	Analysing intersections of justice with energy transitions in India - A systematic literature review. Energy Research and Social Science, 2023, 98, 103010.	6.4	8
42	Low-capacity decentralized electricity systems limit the adoption of electronic appliances in rural Nepal. Energy Policy, 2023, 177, 113576.	8.8	2
43	A comprehensive study and assessment of electricity acts and power sector policies of India on social, technical, economic, and environmental fronts. Sustainable Energy Technologies and Assessments, 2023, 57, 103299.	2.7	2
45	Electrification in post-conflict Timor-Leste: Opportunities for energy services to enhance rural agricultural development. Energy Research and Social Science, 2024, 110, 103433.	6.4	0
46	A capability approach to analyse well-being impacts of wind energy infrastructure. Environmental Research: Infrastructure and Sustainability, 2024, 4, 015009.	2.3	0
47	The effect of miniâ€grid rural electrification on urbanization: <scp>Evidence</scp> from the pilot miniâ€grid systems in <scp>Ghana</scp> . Review of Development Economics, 0, , .	1.9	0
48	Building climate resilience through energy access? An empirical study on grid connectivity in the Indian Sundarbans. Energy Research and Social Science, 2024, 112, 103504.	6.4	0