Chemicals from lignin: an interplay of lignocellulose fra upgrading

Chemical Society Reviews 47, 852-908 DOI: 10.1039/c7cs00566k

Citation Report

#	Article	IF	CITATIONS
1	Branching-First: Synthesizing C–C Skeletal Branched Biobased Chemicals from Sugars. ACS Sustainable Chemistry and Engineering, 2018, 6, 7940-7950.	3.2	5
2	Selective Fragmentation of Biorefinery Corncob Lignin into <i>p</i> â€Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst. ChemSusChem, 2018, 11, 2114-2123.	3.6	73
3	Aerosol processing: a wind of innovation in the field of advanced heterogeneous catalysts. Chemical Society Reviews, 2018, 47, 4112-4155.	18.7	117
4	Efficient reductive depolymerization of hardwood and softwood lignins with Brookhart's iridium(iii) catalyst and hydrosilanes. Green Chemistry, 2018, 20, 1981-1986.	4.6	32
5	Chirality, Rigidity, and Conjugation: A First-Principles Study of the Key Molecular Aspects of Lignin Depolymerization on Ni-Based Catalysts. ACS Catalysis, 2018, 8, 4230-4240.	5.5	24
6	Shape selectivity vapor-phase conversion of lignin-derived 4-ethylphenol to phenol and ethylene over acidic aluminosilicates: Impact of acid properties and pore constraint. Applied Catalysis B: Environmental, 2018, 234, 117-129.	10.8	75
7	A Convergent Approach for a Deep Converting Lignin-First Biorefinery Rendering High-Energy-Density Drop-in Fuels. Joule, 2018, 2, 1118-1133.	11.7	149
8	Valorization of <i>Quercus suber</i> Bark toward Hydrocarbon Bio-Oil and 4-Ethylguaiacol. ACS Sustainable Chemistry and Engineering, 2018, 6, 5737-5742.	3.2	25
9	Sustainable Routes for the Synthesis of Renewable Heteroatom-Containing Chemicals. ACS Sustainable Chemistry and Engineering, 2018, 6, 5694-5707.	3.2	140
10	Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials, 2018, 8, 1055.	1.9	7
11	Green Preparation of Bioplastics Based on Degradation and Chemical Modification of Lignin Residue. Journal of Wood Chemistry and Technology, 2018, 38, 460-478.	0.9	17
12	Comparison of two multifunctional catalysts [M/Nb ₂ O ₅ (M = Pd, Pt)] for one-pot hydrodeoxygenation of lignin. Catalysis Science and Technology, 2018, 8, 6129-6136.	2.1	26
13	Vanillin derived a carbonate dialdehyde and a carbonate diol: novel platform monomers for sustainable polymers synthesis. RSC Advances, 2018, 8, 34297-34303.	1.7	15
14	Unmodified kraft lignin isolated at room temperature from aqueous solution for preparation of highly flexible transparent polyurethane coatings. RSC Advances, 2018, 8, 40765-40777.	1.7	39
15	Oxidative Biphasic Depolymerization (BPD) of Kraft Lignin at Low pH. ChemistrySelect, 2018, 3, 11680-11686.	0.7	11
16	Bioprocess development for muconic acid production from aromatic compounds and lignin. Green Chemistry, 2018, 20, 5007-5019.	4.6	127
17	Novel Kinetic Models of Xylan Dissolution and Degradation during Ethanol Based Auto-Catalyzed Organosolv Pretreatment of Bamboo. Polymers, 2018, 10, 1149.	2.0	11
18	High-Efficient and Recyclable Magnetic Separable Catalyst for Catalytic Hydrogenolysis of β-O-4 Linkage in Lignin. Polymers, 2018, 10, 1077.	2.0	6

#	Article	IF	CITATIONS
19	Preparation of Novel Aromaticâ€Aliphatic Poly(ketone ester)s through Condensation of Biomassâ€Derived Monomers. ChemCatChem, 2018, 10, 5377-5381.	1.8	7
20	Shell biorefinery: A comprehensive introduction. Green Energy and Environment, 2018, 3, 318-327.	4.7	79
21	An "ideal lignin―facilitates full biomass utilization. Science Advances, 2018, 4, eaau2968.	4.7	184
22	Relationship of thermal degradation behavior and chemical structure of lignin isolated from palm kernel shell under different process severities. Fuel Processing Technology, 2018, 181, 142-156.	3.7	83
23	Techno-economic Analysis of a Chemical Process To Manufacture Methyl-ε-caprolactone from Cresols. ACS Sustainable Chemistry and Engineering, 2018, 6, 15316-15324.	3.2	28
24	Integrated Process for Vanillin and Syringaldehyde Production from Kraft Lignin. , 2018, , 53-84.		1
25	Light/Copper Relay for Aerobic Fragmentation of Lignin Model Compounds. Asian Journal of Organic Chemistry, 2018, 7, 2431-2434.	1.3	16
26	Direct upstream integration of biogasoline production into current light straight run naphtha petrorefinery processes. Nature Energy, 2018, 3, 969-977.	19.8	58
27	Advancement in technologies for the depolymerization of lignin. Fuel Processing Technology, 2018, 181, 115-132.	3.7	159
28	Potential Lignin-Derived Alternatives to Bisphenol A in Diamine-Hardened Epoxy Resins. ACS Sustainable Chemistry and Engineering, 2018, 6, 14812-14819.	3.2	67
29	Upgrading Traditional Pulp Mill into Biorefinery Platform: Wheat Straw as a Feedstock. ACS Sustainable Chemistry and Engineering, 2018, 6, 15284-15291.	3.2	9
30	A Coenzyme-Free Biocatalyst for the Value-Added Utilization of Lignin-Derived Aromatics. Journal of the American Chemical Society, 2018, 140, 16001-16005.	6.6	63
31	Lignocellulosic Biomass as Source for Lignin-Based Environmentally Benign Antioxidants. Molecules, 2018, 23, 2664.	1.7	78
32	Structural Characterization of Lignin and Lignin-Carbohydrate Complex (LCC) from Ginkgo Shells (Ginkgo biloba L.) by Comprehensive NMR Spectroscopy. Polymers, 2018, 10, 736.	2.0	59
33	Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 2018, 9, 8127-8133.	3.7	61
34	Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, 2018, 47, 8349-8402.	18.7	493
35	Solvothermal liquefaction of alkali lignin to obtain a high yield of aromatic monomers while suppressing solvent consumption. Green Chemistry, 2018, 20, 4957-4974.	4.6	47
37	Formation and Fate of Carboxylic Acids in the Lignin-First Biorefining of Lignocellulose via H-Transfer Catalyzed by Raney Ni. ACS Sustainable Chemistry and Engineering, 2018, 6, 13408-13419.	3.2	52

#	Article	IF	CITATIONS
38	Perspective on Lignin Oxidation: Advances, Challenges, and Future Directions. Topics in Current Chemistry, 2018, 376, 30.	3.0	66
39	The path forward for lignocellulose biorefineries: Bottlenecks, solutions, and perspective on commercialization. Bioresource Technology, 2018, 264, 370-381.	4.8	420
40	Propylphenol to Phenol and Propylene over Acidic Zeolites: Role of Shape Selectivity and Presence of Steam. ACS Catalysis, 2018, 8, 7861-7878.	5.5	59
41	Catalytic lignocellulose biorefining in <i>n</i> -butanol/water: a one-pot approach toward phenolics, polyols, and cellulose. Green Chemistry, 2018, 20, 4607-4619.	4.6	113
42	Alternatives for Chemical and Biochemical Lignin Valorization: Hot Topics from a Bibliometric Analysis of the Research Published During the 2000–2016 Period. Processes, 2018, 6, 98.	1.3	47
43	Formation of Lignin Nanoparticles by Combining Organosolv Pretreatment of Birch Biomass and Homogenization Processes. Molecules, 2018, 23, 1822.	1.7	63
44	Catalytic Transfer Hydrogenolysis as an Effective Tool for the Reductive Upgrading of Cellulose, Hemicellulose, Lignin, and Their Derived Molecules. Catalysts, 2018, 8, 313.	1.6	58
45	Lignin-Derived Biomaterials for Drug Release and Tissue Engineering. Molecules, 2018, 23, 1885.	1.7	131
46	Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5â€Hydroxymethylfurfural, and Furfural. ChemSusChem, 2018, 11, 2758-2765.	3.6	60
47	Palladium Intercalated into the Walls of Mesoporous Silica as Robust and Regenerable Catalysts for Hydrodeoxygenation of Phenolic Compounds. ACS Omega, 2018, 3, 7681-7691.	1.6	23
48	Revisiting alkaline aerobic lignin oxidation. Green Chemistry, 2018, 20, 3828-3844.	4.6	114
49	Life cycle assessment of adipic acid production from lignin. Green Chemistry, 2018, 20, 3857-3866.	4.6	116
50	Reductive Catalytic Fractionation of C-Lignin. ACS Sustainable Chemistry and Engineering, 2018, 6, 11211-11218.	3.2	89
51	Catalytic conversion of duckweed to methyl levulinate in the presence of acidic ionic liquids. Bioresource Technology, 2018, 268, 488-495.	4.8	16
52	Insight into structure–reactivity relationships for the iron-catalyzed hydrotreatment of technical lignins. Bioresource Technology, 2018, 267, 93-101.	4.8	33
53	Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem, 2018, 11, 3559-3575.	3.6	81
54	Catalytic Strategies Towards Lignin-Derived Chemicals. Topics in Current Chemistry, 2018, 376, 36.	3.0	75
55	Valorization of levulinic acid over non-noble metal catalysts: challenges and opportunities. Green Chemistry, 2018, 20, 4391-4408.	4.6	119

#	Article	IF	CITATIONS
56	BBr ₃ -Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. Journal of Organic Chemistry, 2018, 83, 11019-11027.	1.7	10
57	Fractionation of Soda Pulp Lignin in Aqueous Solvent through Membrane-Assisted Ultrafiltration. ACS Sustainable Chemistry and Engineering, 2018, 6, 9056-9064.	3.2	24
58	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	2.2	58
59	Selective catalytic tailoring of the H unit in herbaceous lignin for methyl <i>p</i> -hydroxycinnamate production over metal-based ionic liquids. Green Chemistry, 2018, 20, 3743-3752.	4.6	50
60	A Xylochemically Inspired Synthesis of Lamellarin G Trimethyl Ether via an Enaminone Intermediate. Journal of Organic Chemistry, 2019, 84, 11025-11031.	1.7	22
61	Hydrodeoxygenation (HDO) of Biomass Derived Ketones Using Supported Transition Metals in a Continuous Reactor. ACS Sustainable Chemistry and Engineering, 2019, 7, 14521-14530.	3.2	15
62	Novel deep eutectic solvents with different functional groups towards highly efficient dissolution of lignin. Green Chemistry, 2019, 21, 5291-5297.	4.6	112
63	Fast Pyrolysis of Organosolv Lignin: Effect of Adding Stabilization Reagents to the Extraction Process. Energy & Fuels, 2019, 33, 8676-8682.	2.5	11
64	Ligand-Controlled Photocatalysis of CdS Quantum Dots for Lignin Valorization under Visible Light. ACS Catalysis, 2019, 9, 8443-8451.	5.5	128
65	Recent trends in hyperthermophilic enzymes production and future perspectives for biofuel industry: A critical review. Journal of Cleaner Production, 2019, 238, 117925.	4.6	64
66	Enhancing the Antioxidant Activity of Technical Lignins by Combining Solvent Fractionation and Ionicâ€Liquid Treatment. ChemSusChem, 2019, 12, 4799-4809.	3.6	24
67	Catalytic pyrolysis of soda lignin over zeolites using pyrolysis gas chromatography-mass spectrometry. Bioresource Technology, 2019, 291, 121822.	4.8	40
68	Internalization and accumulation of model lignin breakdown products in bacteria and fungi. Biotechnology for Biofuels, 2019, 12, 175.	6.2	10
69	A review on biopolymer production via lignin valorization. Bioresource Technology, 2019, 290, 121790.	4.8	180
70	One-Pot Synthesis of Lignin Thermosets Exhibiting Widely Tunable Mechanical Properties and Shape Memory Behavior. ACS Sustainable Chemistry and Engineering, 2019, 7, 13456-13463.	3.2	42
71	Fabrication of Light-Colored Lignin Microspheres for Developing Natural Sunscreens with Favorable UV Absorbability and Staining Resistance. Industrial & Engineering Chemistry Research, 2019, 58, 13858-13867.	1.8	41
72	Establishing lignin structure-upgradeability relationships using quantitative ¹ H– ¹³ C heteronuclear single quantum coherence nuclear magnetic resonance (HSQC-NMR) spectroscopy. Chemical Science, 2019, 10, 8135-8142.	3.7	50
73	Lignin Engineering in Forest Trees. Frontiers in Plant Science, 2019, 10, 912.	1.7	92

#	Article	IF	Citations
74	Valorization of aqueous waste streams from thermochemical biorefineries. Green Chemistry, 2019, 21, 4217-4230.	4.6	31
75	From levulinic acid biorefineries to γ-valerolactone (GVL) using a bi-functional Zr-Al-Beta catalyst. Reaction Chemistry and Engineering, 2019, 4, 1834-1843.	1.9	32
76	Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, 2019, 291, 121878.	4.8	177
77	Mild Alkaline Pretreatment for Isolation of Native-Like Lignin and Lignin-Containing Cellulose Nanofibers (LCNF) from Crop Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 14135-14142.	3.2	72
78	Lignin Biopolymers in the Age of Controlled Polymerization. Polymers, 2019, 11, 1176.	2.0	141
79	Computational Evidence for Kinetically Controlled Radical Coupling during Lignification. ACS Sustainable Chemistry and Engineering, 2019, 7, 13270-13277.	3.2	21
80	Activation of lignin by selective oxidation: An emerging strategy for boosting lignin depolymerization to aromatics. Bioresource Technology, 2019, 291, 121885.	4.8	73
81	Upgrading lignin bio-oil for oxygen-containing fuel production using Ni/MgO: Effect of the catalyst calcination temperature. Applied Energy, 2019, 253, 113613.	5.1	35
82	A two-stage pretreatment using dilute sodium hydroxide solution followed by an ionic liquid at low temperatures: Toward construction of lignin-first biomass pretreatment. Bioresource Technology Reports, 2019, 7, 100286.	1.5	11
83	Rapid flow-through fractionation of biomass to preserve labile aryl ether bonds in native lignin. Green Chemistry, 2019, 21, 4625-4632.	4.6	36
84	A comparative study of secondary depolymerization methods on oxidized lignins. Green Chemistry, 2019, 21, 3940-3947.	4.6	38
85	cRhâ€Catalyzed Hydroformylation of Divinylglycol: An Effective Way to Access 2,7â€Dioxadecalinâ€3,8â€diol. European Journal of Organic Chemistry, 2019, 2019, 4372-4376.	1.2	0
86	Advances in the use of CO ₂ as a renewable feedstock for the synthesis of polymers. Chemical Society Reviews, 2019, 48, 4466-4514.	18.7	438
87	Selective Production of Diethyl Maleate via Oxidative Cleavage of Lignin Aromatic Unit. CheM, 2019, 5, 2365-2377.	5.8	62
88	Catalytic Production of Value-Added Chemicals and Liquid Fuels from Lignocellulosic Biomass. CheM, 2019, 5, 2520-2546.	5.8	337
89	Efficient Utilization and Conversion of Whole Components in Waste Biomass with One-Pot-Oriented Liquefaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 18142-18152.	3.2	8
90	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angewandte Chemie - International Edition, 2019, 58, 17393-17398.	7.2	57
91	652 RIPK3 bidirectional regulation of keratinocyte fate and its mechanism of action in psoriasis. Journal of Investigative Dermatology, 2019, 139, S112.	0.3	0

#	Article	IF	CITATIONS
92	Nitrogen Dioxide Catalyzed Aerobic Oxidative Cleavage of C(OH)–C Bonds of Secondary Alcohols to Produce Acids. Angewandte Chemie, 2019, 131, 17554-17559.	1.6	21
93	From Wood to Tetrahydro-2-benzazepines in Three Waste-Free Steps: Modular Synthesis of Biologically Active Lignin-Derived Scaffolds. ACS Central Science, 2019, 5, 1707-1716.	5.3	82
94	Chemical and thermal analysis of lignin streams from Robinia pseudoacacia L. generated during organosolv and acid hydrolysis pre-treatments and subsequent enzymatic hydrolysis. International Journal of Biological Macromolecules, 2019, 140, 311-322.	3.6	23
95	Reaction Mechanisms in Pyrolysis of Hardwood, Softwood, and Kraft Lignin Revealed by ReaxFF MD Simulations. Energy & Fuels, 2019, 33, 11210-11225.	2.5	36
96	Recent progress in theoretical and computational studies on the utilization of lignocellulosic materials. Green Chemistry, 2019, 21, 9-35.	4.6	96
97	Stepwise degradation of hydroxyl compounds to aldehydes <i>via</i> successive C–C bond cleavage. Chemical Communications, 2019, 55, 925-928.	2.2	22
98	A Review on Styrene Substitutes in Thermosets and Their Composites. Polymers, 2019, 11, 1815.	2.0	28
99	Selective Hydrogenolysis of Lignin Catalyzed by the Cost-Effective Ni Metal Supported on Alkaline MgO. ACS Sustainable Chemistry and Engineering, 2019, 7, 19750-19760.	3.2	49
100	Unassisted solar lignin valorisation using a compartmented photo-electro-biochemical cell. Nature Communications, 2019, 10, 5123.	5.8	67
101	Construction of Antifouling Membrane Surfaces through Layer-by-Layer Self-Assembly of Lignosulfonate and Polyethyleneimine. Polymers, 2019, 11, 1782.	2.0	33
102	Visibleâ€Lightâ€Driven Cleavage of Câ^'O Linkage for Lignin Valorization to Functionalized Aromatics. ChemSusChem, 2019, 12, 5023-5031.	3.6	86
103	Lignin-KMC: A Toolkit for Simulating Lignin Biosynthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 18313-18322.	3.2	33
104	Mo1543 – The Effect of Low Fodmap Diet Management in Combination with Bifidobacteria on IBS Patients in Western China:A Prospective Randomized Trail. Gastroenterology, 2019, 156, S-774.	0.6	0
105	Electrochemical Aminoxyl-Mediated Oxidation of Primary Alcohols in Lignin to Carboxylic Acids: Polymer Modification and Depolymerization. Journal of the American Chemical Society, 2019, 141, 15266-15276.	6.6	118
106	Lignin Depolymerization to BTXs. Topics in Current Chemistry, 2019, 377, 26.	3.0	24
107	Lignin: A Biopolymer from Forestry Biomass for Biocomposites and 3D Printing. Materials, 2019, 12, 3006.	1.3	126
108	Spent Coffee Grounds-Templated Magnetic Nanocatalysts for Mild Oxidations. ACS Sustainable Chemistry and Engineering, 2019, 7, 17030-17038.	3.2	13
109	Controlled Preparation of Corncob Lignin Nanoparticles and their Size-Dependent Antioxidant Properties: Toward High Value Utilization of Lignin. ACS Sustainable Chemistry and Engineering, 2019, 7, 17166-17174.	3.2	47

#	Article	IF	CITATIONS
110	Production of oxygen-containing fuel from lignin bio-oil: Guaiacol as the model compound. Energy Procedia, 2019, 158, 370-375.	1.8	3
111	Hydrogenolysis of dealkaline lignin catalyzed by noble metal cooperated with metal chloride. Energy Procedia, 2019, 158, 406-411.	1.8	2
112	Reductive catalytic fractionation of black locust bark. Green Chemistry, 2019, 21, 5841-5851.	4.6	43
113	Enhanced Selective Production of Carbonyl Products for Aerobic Oxidation of Benzylic Alcohols over Mesoporous Fe2O3 Supported Gold Nanoparticles. Catalysts, 2019, 9, 754.	1.6	3
114	Unraveling the Dynamic Network in the Reactions of an Alkyl Aryl Ether Catalyzed by Ni/γ-Al ₂ O ₃ in 2-Propanol. Journal of the American Chemical Society, 2019, 141, 17370-17381.	6.6	23
115	Catalyst Support and Solvent Effects during Lignin Depolymerization and Hydrodeoxygenation. ACS Sustainable Chemistry and Engineering, 2019, 7, 16952-16958.	3.2	37
116	Fast prediction of the replacement process of oil vapor in horizontal tank and its improved safety evaluation method. Chemical Engineering Research and Design, 2019, 122, 298-306.	2.7	4
117	Highly-efficient and magnetically-separable ZnO/Co@N-CNTs catalyst for hydrodeoxygenation of lignin and its derived species under mild conditions. Green Chemistry, 2019, 21, 1021-1042.	4.6	72
118	Oxalic Diamides and <i>tert</i> -Butoxide: Two Types of Ligands Enabling Practical Access to Alkyl Aryl Ethers via Cu-Catalyzed Coupling Reaction. Journal of the American Chemical Society, 2019, 141, 3541-3549.	6.6	131
119	Fractionation of Lignocellulosic Biomass over Core–Shell Ni@Al ₂ O ₃ Catalysts with Formic Acid as a Cocatalyst and Hydrogen Source. ChemSusChem, 2019, 12, 1743-1762.	3.6	33
120	Extraction of Lignin with High β-O-4 Content by Mild Ethanol Extraction and Its Effect on the Depolymerization Yield. Journal of Visualized Experiments, 2019, , .	0.2	27
121	Optimization of Lignin Extraction from Pine Wood for Fast Pyrolysis by Using a γ-Valerolactone-Based Binary Solvent System. ACS Sustainable Chemistry and Engineering, 2019, 7, 4058-4068.	3.2	21
122	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie, 2019, 131, 4988-4991.	1.6	59
123	Catalytic Transfer Hydrogenolysis Reactions for Lignin Valorization to Fuels and Chemicals. Catalysts, 2019, 9, 43.	1.6	47
124	Production of Terephthalic Acid from Corn Stover Lignin. Angewandte Chemie - International Edition, 2019, 58, 4934-4937.	7.2	164
125	Membrane Fractionation of Liquors from Ligninâ€First Biorefining. ChemSusChem, 2019, 12, 1203-1212.	3.6	39
126	From Lignin to Chemicals: Hydrogenation of Lignin Models and Mechanistic Insights into Hydrodeoxygenation via Low-Temperature C–O Bond Cleavage. ACS Catalysis, 2019, 9, 2345-2354.	5.5	48
127	Ethanol/1,4-dioxane/formic acid as synergistic solvents for the conversion of lignin into high-value added phenolic monomers. Bioresource Technology, 2019, 278, 187-194.	4.8	57

#	Article	IF	CITATIONS
128	High Î ² -O-4 polymeric lignin and oligomeric phenols from flow-through fractionation of wheat straw using recyclable aqueous formic acid. Industrial Crops and Products, 2019, 131, 142-150.	2.5	17
129	The hydrogenation of levulinic acid to γ-valerolactone over Cu–ZrO2 catalysts prepared by a pH-gradient methodology. Journal of Energy Chemistry, 2019, 36, 15-24.	7.1	30
130	Upgrading of pyrolytic lignin into hexamethylbenzene with high purity: demonstration of the "all-to-one―biochemical production strategy in thermo-chemical conversion. Green Chemistry, 2019, 21, 1000-1005.	4.6	17
131	<i>En route</i> to CO ₂ -containing renewable materials: catalytic synthesis of polycarbonates and non-isocyanate polyhydroxyurethanes derived from cyclic carbonates. Chemical Communications, 2019, 55, 1360-1373.	2.2	85
132	Is oxidation–reduction a real robust strategy for lignin conversion? A comparative study on lignin and model compounds. Green Chemistry, 2019, 21, 803-811.	4.6	46
133	Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chemistry, 2019, 21, 245-260.	4.6	97
134	Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate. Green Chemistry, 2019, 21, 658-668.	4.6	107
135	Catalytic depolymerization of lignin over cesium exchanged and transition-metal substituted heterogeneous polyoxometalates. International Journal of Biological Macromolecules, 2019, 135, 171-179.	3.6	17
136	Sequential Catalytic Modification of the Lignin α-Ethoxylated β-O-4 Motif To Facilitate C–O Bond Cleavage by Ruthenium-Xantphos Catalyzed Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	8
137	Novel lignin nanoparticles for oral drug delivery. Journal of Materials Chemistry B, 2019, 7, 4461-4473.	2.9	112
138	A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 2019, 290, 111197.	2.3	855
139	Sustainable Lignin for Carbon Fibers: Principles, Techniques, and Applications. , 2019, , .		16
140	Chemistry and Structure of Lignin. , 2019, , 1-50.		0
141	Bio-sourced Lignin: Recovery Techniques and Principles. , 2019, , 65-150.		0
142	Melt-Processing of Lignin. , 2019, , 281-324.		1
143	Preparation and Reaction of β-O-4 γ-Aldehyde-Containing Butanosolv Lignins. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
144	Enabling microbial syringol conversion through structure-guided protein engineering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13970-13976.	3.3	41
145	Recent development of production technology of diesel- and jet-fuel-range hydrocarbons from inedible biomass. Fuel Processing Technology, 2019, 193, 404-422.	3.7	83

#	Article	IF	CITATIONS
146	Membrane filtration of alkali-depolymerised kraft lignin for biological conversion. Bioresource Technology Reports, 2019, 7, 100250.	1.5	4
147	Transition-metal free oxidative C–H etherification of acylanilines with alcohols through a radical pathway. Organic and Biomolecular Chemistry, 2019, 17, 6346-6350.	1.5	8
148	A Comparison of Phenolic Monomers Produced from Different Types of Lignin by Phosphotungstic Acid Catalysts. ChemistryOpen, 2019, 8, 643-649.	0.9	20
149	Design of Nickel Supported on Water-Tolerant Nb2O5 Catalysts for the Hydrotreating of Lignin Streams Obtained from Lignin-First Biorefining. IScience, 2019, 15, 467-488.	1.9	59
150	Preparation and Characterization of Rigid Polyurethane Foams with Different Loadings of Lignin-Derived Polycarboxylic Acids. International Journal of Polymer Science, 2019, 2019, 1-6.	1.2	8
151	Low-Input Crops as Lignocellulosic Feedstock for Second-Generation Biorefineries and the Potential of Chemometrics in Biomass Quality Control. Applied Sciences (Switzerland), 2019, 9, 2252.	1.3	20
152	Microwave-assisted co-pyrolysis of lignin and waste oil catalyzed by hierarchical ZSM-5/MCM-41 catalyst to produce aromatic hydrocarbons. Bioresource Technology, 2019, 289, 121609.	4.8	51
153	Oxidative Depolymerization of Kraft Lignin for Microbial Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 11640-11652.	3.2	51
154	Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases. ACS Sustainable Chemistry and Engineering, 2019, 7, 11069-11079.	3.2	50
155	New sight on the lignin torrefaction pretreatment: Relevance between the evolution of chemical structure and the properties of torrefied gaseous, liquid, and solid products. Bioresource Technology, 2019, 288, 121528.	4.8	62
156	Autohydrolysis and microwave ionic liquid pretreatment of Pinus radiata: Imaging visualization and analysis to understand enzymatic digestibility. Industrial Crops and Products, 2019, 134, 328-337.	2.5	22
157	Recent progress in the thermal and catalytic conversion of lignin. Renewable and Sustainable Energy Reviews, 2019, 111, 422-441.	8.2	141
158	Thermochemical properties of lignin extracted from willow by deep eutectic solvents (DES). Cellulose, 2019, 26, 8501-8511.	2.4	26
159	Advances in catalytic conversion of lignocellulose to chemicals and liquid fuels. Journal of Energy Chemistry, 2019, 36, 74-86.	7.1	94
160	Preserving Both Lignin and Cellulose Chemical Structures: Flow-Through Acid Hydrotropic Fractionation at Atmospheric Pressure for Complete Wood Valorization. ACS Sustainable Chemistry and Engineering, 2019, 7, 10808-10820.	3.2	53
161	Modification of hyperbranched hemicellulose polymer and its application in adsorbing acid dyes. Cellulose, 2019, 26, 5583-5601.	2.4	25
162	Modular Engineering of Biomass Degradation Pathways. Processes, 2019, 7, 230.	1.3	10
163	Cooperative catalysis at the metal–MOF interface: hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF. Dalton Transactions, 2019, 48, 8573-8577.	1.6	44

#	Article	IF	CITATIONS
164	Antioxidant activity of unmodified kraft and organosolv lignins to be used as sustainable components for polyurethane coatings. Journal of Coatings Technology Research, 2019, 16, 1543-1552.	1.2	14
165	Toward Sustainable and Complete Wood Valorization by Fractionating Lignin with Low Condensation Using an Acid Hydrotrope at Low Temperatures (â‰ 8 0 °C). Industrial & Engineering Chemistry Research, 2019, 58, 7063-7073.	1.8	34
166	Diol pretreatment to fractionate a reactive lignin in lignocellulosic biomass biorefineries. Green Chemistry, 2019, 21, 2788-2800.	4.6	109
167	Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresource Technology, 2019, 286, 121365.	4.8	23
168	Discovery of a Highly Active Catalyst for Hydrogenolysis of Câ^'O Bonds via Systematic, Multiâ€metallic Catalyst Screening. ChemCatChem, 2019, 11, 2743-2752.	1.8	7
169	Mild Redox-Neutral Depolymerization of Lignin with a Binuclear Rh Complex in Water. ACS Catalysis, 2019, 9, 4441-4447.	5.5	74
170	Simple and facile preparation of lignosulfonate-based composite nanoparticles with tunable morphologies: From sphere to vesicle. Industrial Crops and Products, 2019, 135, 64-71.	2.5	19
171	Phenol-Enhanced Depolymerization and Activation of Kraft Lignin in Alkaline Medium. Industrial & Engineering Chemistry Research, 2019, 58, 7794-7800.	1.8	21
172	Breaking the Limit of Lignin Monomer Production via Cleavage of Interunit Carbon–Carbon Linkages. CheM, 2019, 5, 1521-1536.	5.8	167
173	Tailor-made organosolv lignins from coconut wastes: Effects of green solvents in microwave-assisted processes upon their structure and antioxidant activities. Bioresource Technology Reports, 2019, 7, 100219.	1.5	12
174	Differences in S/G ratio in natural poplar variants do not predict catalytic depolymerization monomer yields. Nature Communications, 2019, 10, 2033.	5.8	127
175	Selective hydrodeoxygenation of lignin oil to valuable phenolics over Au/Nb ₂ O ₅ in water. Green Chemistry, 2019, 21, 3081-3090.	4.6	75
176	Intensified ozonolysis of lignins in a spray reactor: insights into product yields and lignin structure. Reaction Chemistry and Engineering, 2019, 4, 1421-1430.	1.9	15
177	<i>BioLogicTool</i> : A Simple Visual Tool for Assisting in the Logical Selection of Pathways from Biomass to Products. Industrial & Engineering Chemistry Research, 2019, 58, 15945-15957.	1.8	13
178	Kinetic and mechanistic insights into hydrogenolysis of lignin to monomers in a continuous flow reactor. Green Chemistry, 2019, 21, 3561-3572.	4.6	56
179	Tungsten-based catalysts for lignin depolymerization: the role of tungsten species in C–O bond cleavage. Catalysis Science and Technology, 2019, 9, 2144-2151.	2.1	28
180	Revealing Structural Differences between Alkaline and Kraft Lignins by HSQC NMR. Industrial & Engineering Chemistry Research, 2019, 58, 5707-5714.	1.8	59
181	Utilizing stillage in the biorefinery: Economic, technological and energetic analysis. Applied Energy, 2019, 241, 491-503.	5.1	19

#	Article	IF	CITATIONS
182	Hydrothermal Liquefaction of Lignocellulosic Biomass Using Potassium Fluoride-Doped Alumina. Energy & Fuels, 2019, 33, 3248-3256.	2.5	37
183	Two-Step Fractionation of a Model Technical Lignin by Combined Organic Solvent Extraction and Membrane Ultrafiltration. ACS Omega, 2019, 4, 4615-4626.	1.6	31
184	Lignin-based multiwall carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 121, 175-179.	3.8	32
185	Ru-Catalyzed Hydrogenolysis of Lignin: Base-Dependent Tunability of Monomeric Phenols and Mechanistic Study. ACS Catalysis, 2019, 9, 4054-4064.	5.5	106
186	Bacterial conversion of depolymerized Kraft lignin. Biotechnology for Biofuels, 2019, 12, 56.	6.2	36
187	Valorization of lignin in polymer and composite systems for advanced engineering applications – A review. International Journal of Biological Macromolecules, 2019, 131, 828-849.	3.6	348
188	From Compost to Colloids—Valorization of Spent Mushroom Substrate. ACS Sustainable Chemistry and Engineering, 2019, 7, 6991-6998.	3.2	24
189	Toward Sustainable Phenolic Thermosets with High Thermal Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 7209-7217.	3.2	32
190	Reactivity of Re2O7 in aromatic solvents – Cleavage of a β-O-4 lignin model substrate by Lewis-acidic rhenium oxide nanoparticles. Journal of Catalysis, 2019, 373, 190-200.	3.1	10
191	Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin. Bioresource Technology, 2019, 285, 121335.	4.8	74
192	Structural differences of the soluble oligomers and insoluble polymers from acid-catalyzed conversion of sugars with varied structures. Carbohydrate Polymers, 2019, 216, 167-179.	5.1	23
193	Oxidative Depolymerization of Cellulolytic Enzyme Lignin over Silicotungvanadium Polyoxometalates. Polymers, 2019, 11, 564.	2.0	10
194	Pilot scale recovery of lignin from black liquor and advanced characterization of the final product. Separation and Purification Technology, 2019, 221, 226-235.	3.9	28
195	A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnology Advances, 2019, 37, 107360.	6.0	301
196	Separation of cellulose/hemicellulose from lignin in white pine sawdust using boron trihalide reagents. Tetrahedron, 2019, 75, 1465-1470.	1.0	9
197	Depolymerization of corn stover lignin with bulk molybdenum carbide catalysts. Fuel, 2019, 244, 528-535.	3.4	39
198	Ambient Reductive Amination of Levulinic Acid to Pyrrolidones over Pt Nanocatalysts on Porous TiO ₂ Nanosheets. Journal of the American Chemical Society, 2019, 141, 4002-4009.	6.6	106
199	Dioxane-based extraction process for production of high quality lignin. Bioresource Technology Reports, 2019, 5, 206-211.	1.5	26

#	Article	IF	CITATIONS
200	Catalytic depolymerization of organosolv lignin to phenolic monomers and low molecular weight oligomers. Fuel, 2019, 244, 247-257.	3.4	76
201	Fragmentation of Woody Lignocellulose into Primary Monolignols and Their Derivatives. ACS Sustainable Chemistry and Engineering, 2019, 7, 4666-4674.	3.2	56
202	Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products. Biotechnology for Biofuels, 2019, 12, 32.	6.2	182
203	Towards Solar Methanol: Past, Present, and Future. Advanced Science, 2019, 6, 1801903.	5.6	63
204	Combining Reclaimed PET with Bio-based Monomers Enables Plastics Upcycling. Joule, 2019, 3, 1006-1027.	11.7	177
205	Identifying and creating pathways to improve biological lignin valorization. Renewable and Sustainable Energy Reviews, 2019, 105, 349-362.	8.2	116
206	Funneling aromatic products of chemically depolymerized lignin into 2-pyrone-4-6-dicarboxylic acid with <i>Novosphingobium aromaticivorans</i> . Green Chemistry, 2019, 21, 1340-1350.	4.6	79
207	Wood Powder as a New Natural Sunscreen Ingredient. Biotechnology and Bioprocess Engineering, 2019, 24, 258-263.	1.4	10
208	Fractionation of lignocellulosic biomass to produce uncondensed aldehyde-stabilized lignin. Nature Protocols, 2019, 14, 921-954.	5.5	91
209	Isolation of phenolic monomers from kraft lignin using a magnetically recyclable TEMPO nanocatalyst. Green Chemistry, 2019, 21, 785-791.	4.6	17
210	Advances in porous and nanoscale catalysts for viable biomass conversion. Chemical Society Reviews, 2019, 48, 2366-2421.	18.7	457
211	Chemodivergent hydrogenolysis of eucalyptus lignin with Ni@ZIF-8 catalyst. Green Chemistry, 2019, 21, 1498-1504.	4.6	65
213	Selective C _α Alcohol Oxidation of Lignin Substrates Featuring a βâ€Oâ€4 Linkage by a Dinuclear Oxovanadium Catalyst via Twoâ€Electron Redox Processes. European Journal of Inorganic Chemistry, 2019, 2019, 4637-4646.	1.0	8
214	Efficient Mild Organosolv Lignin Extraction in a Flow-Through Setup Yielding Lignin with High β-O-4 Content. Polymers, 2019, 11, 1913.	2.0	39
215	Alternative Raw Materials for Pulp and Paper Production in the Concept of a Lignocellulosic Biorefinery. , 2019, , .		13
216	Au–Pd alloy cooperates with covalent triazine frameworks for the catalytic oxidative cleavage of β-O-4 linkages. Green Chemistry, 2019, 21, 6707-6716.	4.6	30
217	Ultrasound accelerated synthesis of <i>O</i> -alkylated hydroximides under solvent- and metal-free conditions. Organic and Biomolecular Chemistry, 2019, 17, 10223-10227.	1.5	14
218	Effect of Reaction Conditions on Catalytic and Noncatalytic Lignin Solvolysis in Water Media Investigated for a 5 L Reactor. ACS Omega, 2019, 4, 19265-19278.	1.6	7

ARTICLE IF CITATIONS # A Quantitative Molecular Atlas for Interactions Between Lignin and Cellulose. ACS Sustainable 219 3.2 36 Chemistry and Engineering, 2019, 7, 19570-19583. Pretreatment of Wheat Straw with Phosphoric Acid and Hydrogen Peroxide to Simultaneously 1.8 Facilitate Cellulose Digestibility and Modify Lignin as Adsorbents. Biomolecules, 2019, 9, 844. Enhanced Selective Production of Arenes and Regenerating Rate in Aryl Ether Hydrogenolysis over 221 1.6 1 Mesoporous Nickel in Plug-Flow Reactors. Catalysts, 2019, 9, 904. Highly Efficient Dissolution of Lignin by Eutectic Molecular Liquids. Industrial & amp; Engineering 1.8 24 Chemistry Research, 2019, 58, 23438-23444. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chemistry, 2019, 21, 223 134 4.6 5714-5752. Regioselective synthesis, isomerisation, <i>in vitro</i> oestrogenic activity, and copolymerisation of bisguaiacol F (BGF) isomers. Green Chemistry, 2019, 21, 6622-6633. 224 4.6 Activating molecular oxygen with Au/CeO2 for the conversion of lignin model compounds and 225 1.7 11 organosolv lignin. RSC Ádvances, 2019, 9, 31070-31077. Hydrogenolysis of biorefinery corncob lignin into aromatic phenols over activated carbon-supported 2.5 nickel. Sustainable Energy and Fuels, 2019, 3, 401-408. From lignin to valuable products–strategies, challenges, and prospects. Bioresource Technology, 227 4.8 565 2019, 271, 449-461. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. 4.8 Bioresource Technology, 2019, 271, 462-472. On the solution structure of kraft lignin in ethylene glycol and its implication for nanoparticle 229 2.2 33 preparation. Nanoscale Advances, 2019, 1, 299-304. Highly Selective Oxidation and Depolymerization of α,γâ€Diolâ€Protected Lignin. Angewandte Chemie -84 International Edition, 2019, 58, 2649-2654. Adsorption of Lignin Î²-O-4 Dimers on Metal Surfaces in Vacuum and Solvated Environments. ACS 231 3.2 11 Sustainable Chemistry and Engineering, 2019, 7, 2667-2678. Characterization of lignins from Populus alba L. generated as by-products in different transformation processes: Kraft pulping, organosolv and acid hydrolysis. International Journal of Biological Macromolecules, 2019, 126, 18-29. 3.6 54 Integrated Separation Process of C5 Sugars and Phenolics from Poplar Wood Using CO₂-Assisted Hydrolysis Followed by Hydrogenolysis. ACS Sustainable Chemistry and 233 3.2 14 Engineering, 2019, 7, 526-536. Highly Selective Oxidation and Depolymerization of α,γâ€Diolâ€Protected Lignin. Angewandte Chemie, 2019, 131, 2675-2680. 234 1.6 Promising Techniques for Depolymerization of Lignin into Valueâ€added Chemicals. ChemCatChem, 2019, 235 1.8 65 11, 639-654. Catalytic Upgrading of Biomassâ€Derived Sugars with Acidic Nanoporous Materials: Structural Role in Carbonâ€Chain Length Variation. ChemSusChem, 2019, 12, 347-378.

#	ARTICLE	IF	CITATIONS
237	Lignin Valorization by Cobalt atalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds. ChemSusChem, 2019, 12, 404-408.	3.6	67
238	Lignin-based polymers and nanomaterials. Current Opinion in Biotechnology, 2019, 56, 112-120.	3.3	151
239	Solvent-free lipase-catalyzed production of (meth)acrylate monomers: Experimental results and kinetic modeling. Biochemical Engineering Journal, 2019, 142, 162-169.	1.8	9
240	Attapulgiteâ€supported magnetic dual acid–base catalyst for the catalytic conversion of lignin to phenolic monomers. Journal of Chemical Technology and Biotechnology, 2019, 94, 1269-1281.	1.6	8
241	ReO _{<i>x</i>} /AC-Catalyzed Cleavage of C–O Bonds in Lignin Model Compounds and Alkaline Lignins. ACS Sustainable Chemistry and Engineering, 2019, 7, 208-215.	3.2	47
242	Renewable diesel via hydrothermal liquefaction of oleaginous yeast and residual lignin from bioconversion of corn stover. Applied Energy, 2019, 233-234, 840-853.	5.1	39
244	Reductive catalytic fractionation: state of the art of the lignin-first biorefinery. Current Opinion in Biotechnology, 2019, 56, 193-201.	3.3	264
245	Linkage Abundance and Molecular Weight Characteristics of Technical Lignins by Attenuated Total Reflectionâ€FTIR Spectroscopy Combined with Multivariate Analysis. ChemSusChem, 2019, 12, 1139-1146.	3.6	52
246	Aerobic oxidation of alkyl chain in alkylphenols over combination of Pt and Pd catalysts. Applied Catalysis A: General, 2019, 569, 149-156.	2.2	2
247	Exploring the Selective Demethylation of Aryl Methyl Ethers with a <i>Pseudomonas</i> Rieske Monooxygenase. ChemBioChem, 2019, 20, 118-125.	1.3	24
248	Lignin for white natural sunscreens. International Journal of Biological Macromolecules, 2019, 122, 549-554.	3.6	95
249	Lignin characterization of rice <i>CONIFERALDEHYDE 5â€HYDROXYLASE</i> lossâ€ofâ€function mutants generated with the <scp>CRISPR</scp> /Cas9 system. Plant Journal, 2019, 97, 543-554.	2.8	40
250	Catalytic peroxide fractionation processes for the green biorefinery of wood. Reaction Kinetics, Mechanisms and Catalysis, 2019, 126, 717-735.	0.8	8
251	Poly(methyl methacrylate) films reinforced with coconut shell lignin fractions to enhance their UV-blocking, antioxidant and thermo-mechanical properties. International Journal of Biological Macromolecules, 2019, 125, 171-180.	3.6	60
252	Carboxylic Acids Production via Electrochemical Depolymerization of Lignin. ChemElectroChem, 2019, 6, 1434-1442.	1.7	38
253	A heterodimeric glutathione S-transferase that stereospecifically breaks lignin's β(R)-aryl ether bond reveals the diversity of bacterial β-etherases. Journal of Biological Chemistry, 2019, 294, 1877-1890.	1.6	32
254	Dual Function Lewis Acid Catalyzed Depolymerization of Industrial Corn Stover Lignin into Stable Monomeric Phenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 1362-1371.	3.2	25
255	Reaction chemistry and kinetics of corn stalk pyrolysis without and with Ga/HZSM-5. Journal of Thermal Analysis and Calorimetry, 2019, 137, 491-500.	2.0	10

ARTICLE IF CITATIONS # Taskâ€Specific Catalyst Development for Ligninâ€First Biorefinery toward Hemicellulose Retention or 256 3.6 25 Feedstock Extension. ChemSusChem, 2019, 12, 944-954. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresource 4.8 Technology, 2019, 272, 570-581. RaneyÄ® nickel-catalyzed hydrodeoxygenation and dearomatization under transfer hydrogenation 258 2.2 17 conditionsâ€"Reaction pathways of non-phenolic compounds. Catalysis Today, 2020, 355, 35-42. Hydrogenolysis and hydrodeoxygenation of lignin in a two-step process to produce hydrocarbons and alkylphenols. Journal of the Energy Institute, 2020, 93, 784-791. Comparative investigation of homogeneous and heterogeneous BrAnsted base catalysts for the isomerization of glucose to fructose in aqueous media. Applied Catalysis B: Environmental, 2020, 261, 260 10.8 52 118126. Sequential Fractionation of Lignocellulosic Biomass Using CO₂ $\hat{a}\in A$ ssisted Hydrolysis Combined with $\hat{l}^{3}\hat{a}\in V$ alerolactone Treatment. Energy Technology, 2020, 8, 1900949. 1.8 Near-field-coupled lighting-rod effect for emissivity or absorptivity enhancement of 2-D (1, 2) magnetic plasmon mode by rotating the square resonators array. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 240, 106631. 262 1.1 5 Sustainable production of methyl levulinate from biomass in ionic liquid-methanol system with 3.4 29 biomass-based catalyst. Fuel, 2020, 259, 116246. Selective molecular separation of lignin model compounds by reduced graphene oxide membranes 264 3.9 9 from solvent-water mixture. Separation and Purification Technology, 2020, 230, 115865. Effect of Process Variables on the Solvolysis Depolymerization of Pine Kraft Lignin. Waste and 1.8 Biomass Valorization, 2020, 11, 3195-3206. Influence of lignin accessibility on chemical and biological decomposition of lignin/polyethylene 266 4 0.9 composite thermoplastics. Canadian Journal of Chemical Engineering, 2020, 98, 104-118. Metalloporphyrin as a Biomimetic Catalyst for the Catalytic Oxidative Degradation of Lignin to 1.8 Produce Aromatic Monomers. Waste and Biomass Valorization, 2020, 11, 4481-4489. Selective production of ethylbenzene from lignin oil over FeOx modified Ru/Nb2O5 catalyst. Applied 268 10.8 57 Catalysis B: Environmental, 2020, 260, 118143. rechargeable batteries and supercapacitors. Progress in Energy and Combustion Science, 2020, 76, 100788. A sustainable platform of lignin: From bioresources to materials and their applications in 15.8 Low temperature catalytic conversion of oligomers derived from lignin in pubescens on Pd/NbOPO4. 270 10.8 49 Applied Catalysis B: Environmental, 2020, 263, 118325. Implantable and degradable antioxidant poly ($\hat{l}\mu$ -caprolactone)-lignin nanofiber membrane for effective osteoarthritis treatment. Biomaterials, 2020, 230, 119601. Lignin as a Woodâ€Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic 272 7.8 208 Replacement. Advanced Functional Materials, 2020, 30, 1906307. 273 Fatigue damage and lifetime prediction of fiber-reinforced ceramic-matrix composites. , 2020, , 269-333.

#	Article	IF	CITATIONS
274	Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem, 2020, 12, 401-425.	1.8	62
275	Valorization of Waste: Sustainable Organocatalysts from Renewable Resources. ChemSusChem, 2020, 13, 439-468.	3.6	33
276	Downregulated CHI3L1 alleviates skeletal muscle stem cell injury in a mouse model of sepsis. IUBMB Life, 2020, 72, 214-225.	1.5	3
277	Facet-dependent decoration of TiO ₂ mesocrystals on TiO ₂ microcrystals for enhanced photoactivity. Nanotechnology, 2020, 31, 025604.	1.3	3
279	Efficient Plastic Waste Recycling to Valueâ€Added Products by Integrated Biomass Processing. ChemSusChem, 2020, 13, 488-492.	3.6	45
280	Lignin nanoparticles: Eco-friendly and versatile tool for new era. Bioresource Technology Reports, 2020, 9, 100374.	1.5	63
281	Recent developments in modification of lignin using ionic liquids for the fabrication of advanced materials–A review. Journal of Molecular Liquids, 2020, 301, 112417.	2.3	74
282	Selective catalytic transformation of lignin with guaiacol as the only liquid product. Chemical Science, 2020, 11, 1347-1352.	3.7	68
283	NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: effect of support acidity and cleavage of C–C bonds. Sustainable Energy and Fuels, 2020, 4, 149-163.	2.5	21
284	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	4.6	100
285	The direct transformation of bioethanol fermentation residues for production of high-quality resins. Green Chemistry, 2020, 22, 439-447.	4.6	26
286	Nickel atalyzed Câ€O Crossâ€Coupling Reaction at Low Catalytic Loading with Weak Base Participation. European Journal of Organic Chemistry, 2020, 2020, 519-522.	1.2	7
287	A Review on Lignin Liquefaction: Advanced Characterization of Structure and Microkinetic Modeling. Industrial & Engineering Chemistry Research, 2020, 59, 526-555.	1.8	45
288	Chemicals from Lignin: A Review of Catalytic Conversion Involving Hydrogen. ChemSusChem, 2020, 13, 4181-4198.	3.6	126
289	Laccase-Catalyzed Oxidation of Lignin Induces Production of H ₂ O ₂ . ACS Sustainable Chemistry and Engineering, 2020, 8, 831-841.	3.2	48
291	Prediction of fast pyrolysis products yields using lignocellulosic compounds and ash contents. Applied Energy, 2020, 257, 113897.	5.1	35
292	Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons.	0.0	07
	Renewable and Sustainable Energy Reviews, 2020, 120, 109612.	8.2	97

	CITATION	CITATION REPORT	
#	Article	IF	Citations
294	Greener synthesis of lignin nanoparticles and their applications. Green Chemistry, 2020, 22, 612-636.	4.6	280
295	System-Level Analysis of Lignin Valorization in Lignocellulosic Biorefineries. IScience, 2020, 23, 100751.	1.9	34
296	Visible-Light-Induced Oxidative Lignin C–C Bond Cleavage to Aldehydes Using Vanadium Catalysts. ACS Catalysis, 2020, 10, 632-643.	5.5	106
297	Structural elucidation of lignin macromolecule from abaca during alkaline hydrogen peroxide delignification. International Journal of Biological Macromolecules, 2020, 144, 596-602.	3.6	51
298	Effect of cobalt on titania, ceria and zirconia oxide supported catalysts on the oxidative depolymerization of prot and alkali lignin. Bioresource Technology, 2020, 299, 122589.	4.8	46
299	Catalytic applications of layered double hydroxides in biomass valorisation. Current Opinion in Green and Sustainable Chemistry, 2020, 22, 29-38.	3.2	15
300	Sustainable polymers from biomass: Bridging chemistry with materials and processing. Progress in Polymer Science, 2020, 101, 101197.	11.8	208
301	Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 1210-1221.	4.0	108
302	Preparation of Highly Reactive Lignin by Ozone Oxidation: Application as Surfactants with Antioxidant and Anti-UV Properties. ACS Sustainable Chemistry and Engineering, 2020, 8, 22-28.	3.2	39
303	Incorporation of nano lignin reverse micelles on the transparency, UV-blocking and rheological properties of high-density polyethylene films. Holzforschung, 2020, 74, 513-521.	0.9	13
304	Ni–Mg–Al Catalysts Effectively Promote Depolymerization of Rice Husk Lignin to Bio-Oil. Catalysis Letters, 2020, 150, 1591-1604.	1.4	11
305	The rise of lignin biorefinery. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 1-6.	3.2	99
306	Highly efficient conversion of Kraft lignin into liquid fuels with a Co-Zn-beta zeolite catalyst. Applied Catalysis B: Environmental, 2020, 268, 118429.	10.8	85
307	Chemical and energy potential of sugarcane. , 2020, , 141-163.		7
308	A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels. Biomass and Bioenergy, 2020, 132, 105432.	2.9	129
309	Direct Production of Levulinic Acid in One Pot from Hemp Hurd by Dilute Acid in Ionic Liquids. Energy & Fuels, 2020, 34, 1764-1772.	2.5	23
310	High valueâ€added monomer chemicals and functional bioâ€based materials derived from polymeric components of lignocellulose by organosolv fractionation. Biofuels, Bioproducts and Biorefining, 2020, 14, 371-401.	1.9	63
311	Recent developments in selective catalytic conversion of lignin into aromatics and their derivatives. Biomass Conversion and Biorefinery, 2020, 10, 873-883.	2.9	19

#	Article	IF	CITATIONS
312	Heterogeneous Catalyst Design Principles for the Conversion of Lignin into Highâ€Value Commodity Fuels and Chemicals. ChemSusChem, 2020, 13, 1947-1966.	3.6	44
313	Towards cleaner downstream processing of biomass waste chemical products by liquid chromatography: A review and recommendations. Journal of Cleaner Production, 2020, 253, 119937.	4.6	7
314	On the Effect of Hot-Water Pretreatment in Sulfur-Free Pulping of Aspen and Wheat Straw. ACS Omega, 2020, 5, 265-273.	1.6	12
315	Reductive catalytic fractionation of agricultural residue and energy crop lignin and application of lignin oil in antimicrobials. Green Chemistry, 2020, 22, 7435-7447.	4.6	48
316	Aerobic Oxidative Cleavage and Esterification of C(OH)–C Bonds. CheM, 2020, 6, 3288-3296.	5.8	51
317	Vacuum Pyrolysis of Hybrid Poplar Milled Wood Lignin with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry Analysis of Feedstock and Products for the Elucidation of Reaction Mechanisms. Energy & Fuels, 2020, 34, 14249-14263.	2.5	14
318	Biocarbon Supported Nanoscale Ruthenium Oxide-Based Catalyst for Clean Hydrogenation of Arenes and Heteroarenes. ACS Sustainable Chemistry and Engineering, 2020, 8, 15740-15754.	3.2	44
319	Non-catalytic oxidative depolymerization of lignin in perfluorodecalin to produce phenolic monomers. Green Chemistry, 2020, 22, 6567-6578.	4.6	21
320	Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil. Chemical Science, 2020, 11, 11498-11508.	3.7	84
321	Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid. Metabolic Engineering, 2020, 62, 62-71.	3.6	63
322	Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25771-25778.	3.3	35
323	Tailored Hydrophobic/Hydrophilic Lignin Coatings on Mesoporous Silica for Sustainable Cobalt(II) Recycling. ACS Sustainable Chemistry and Engineering, 2020, 8, 16262-16273.	3.2	18
324	Hydrodeoxygenation of lignin-derived phenolics – a review on the active sites of supported metal catalysts. Green Chemistry, 2020, 22, 8140-8168.	4.6	131
325	Towards Lignin-Derived Chemicals Using Atom-Efficient Catalytic Routes. Trends in Chemistry, 2020, 2, 898-913.	4.4	22
326	Thermochemical liquefaction of agricultural and forestry wastes into biofuels and chemicals from circular economy perspectives. Science of the Total Environment, 2020, 749, 141972.	3.9	63
327	Comprehensive analysis of the chemical structure of lignin from raspberry stalks (Rubus idaeus L.). International Journal of Biological Macromolecules, 2020, 164, 3814-3822.	3.6	9
328	Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metabolic Engineering Communications, 2020, 11, e00143.	1.9	73
329	Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts. ACS Catalysis, 2020, 10, 12487-12506.	5.5	36

#	Article	IF	CITATIONS
330	Selective Cleavage of Ester Linkages in Lignin Catalyzed by La-Doped Ni/MgO. ACS Sustainable Chemistry and Engineering, 2020, 8, 15685-15695.	3.2	13
331	Materials for the biorefinery: high bio-content, shape memory Kraft lignin-derived non-isocyanate polyurethane foams using a non-toxic protocol. Green Chemistry, 2020, 22, 6922-6935.	4.6	52
332	Adsorption behavior of two glucanases on three lignins and the effect by adding sulfonated lignin. Journal of Biotechnology, 2020, 323, 1-8.	1.9	9
333	Perspective on Overcoming Scale-Up Hurdles for the Reductive Catalytic Fractionation of Lignocellulose Biomass. Industrial & Engineering Chemistry Research, 2020, 59, 17035-17045.	1.8	59
334	TiO ₂ -Based Water-Tolerant Acid Catalysis for Biomass-Based Fuels and Chemicals. ACS Catalysis, 2020, 10, 9555-9584.	5.5	63
335	Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers. Chemical Society Reviews, 2020, 49, 5704-5771.	18.7	134
336	The fractionation of woody biomass under mild conditions using bifunctional phenol-4-sulfonic acid as a catalyst and lignin solvent. Green Chemistry, 2020, 22, 5414-5422.	4.6	33
337	Sub- and Supercritical Water Liquefaction of Kraft Lignin and Black Liquor Derived Lignin. Energies, 2020, 13, 3309.	1.6	47
338	Continuous Flow Upgrading of Selected C ₂ –C ₆ Platform Chemicals Derived from Biomass. Chemical Reviews, 2020, 120, 7219-7347.	23.0	222
339	Gas–Solid Oxidation of Unwashed Lignin to Carboxylic Acids. Energy & Fuels, 2020, 34, 9683-9696.	2.5	5
340	Selective aerobic oxidative cleavage of lignin C C bonds over novel hierarchical Ce-Cu/MFI nanosheets. Applied Catalysis B: Environmental, 2020, 279, 119343.	10.8	49
341	Advances in catalytic production processes of biomass-derived vinyl monomers. Catalysis Science and Technology, 2020, 10, 5411-5437.	2.1	25
342	Oxidative depolymerization of lignins for producing aromatics: variation of botanical origin and extraction methods. Biomass Conversion and Biorefinery, 2022, 12, 3795-3808.	2.9	29
343	The cornerstone of realizing lignin value-addition: Exploiting the native structure and properties of lignin by extraction methods. Chemical Engineering Journal, 2020, 402, 126237.	6.6	102
344	Cobalt Nanoparticlesâ€Catalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie - International Edition, 2020, 59, 19268-19274.	7.2	71
345	Recent Advances in the Catalytic Depolymerization of Lignin towards Phenolic Chemicals: A Review. ChemSusChem, 2020, 13, 4296-4317.	3.6	207
346	Techno-economic assessment of an integrated bio-oil steam reforming and hydrodeoxygenation system for polygeneration of hydrogen, chemicals, and combined heat and power production. , 2020, , 69-98.		1
347	Review on Conversion of Lignin Waste into Value-Added Resources in Tropical Countries. Waste and Biomass Valorization, 2021, 12, 5285-5302.	1.8	29

#	Article	IF	CITATIONS
348	Production of renewable alcohols from maple wood using supercritical methanol hydrodeoxygenation in a semi-continuous flowthrough reactor. Green Chemistry, 2020, 22, 8462-8477.	4.6	9
349	High-Throughput Analysis of Lignin by Agarose Gel Electrophoresis. Journal of Agricultural and Food Chemistry, 2020, 68, 14297-14306.	2.4	3
350	Possible dissolution mechanism of alkali lignin in lactic acid-choline chloride under mild conditions. RSC Advances, 2020, 10, 40649-40657.	1.7	12
351	Nanoporous catalysts for biomass conversion. , 2020, , 387-440.		2
352	The novel method to reduce the silica content in lignin recovered from black liquor originating from rice straw. Scientific Reports, 2020, 10, 21263.	1.6	38
353	Torrefaction at 200 °C of <i>Pubescens</i> Pretreated with AlCl ₃ Aqueous Solution at Room Temperature. ACS Omega, 2020, 5, 27709-27722.	1.6	7
354	Advanced metabolic engineering strategies for the development of sustainable microbial processes. , 2020, , 225-246.		3
355	Catalytic valorization of biomass and bioplatforms to chemicals through deoxygenation. Advances in Catalysis, 2020, , 1-108.	0.1	9
356	Production of <i>p</i> -Coumaric Acid from Corn GVL-Lignin. ACS Sustainable Chemistry and Engineering, 2020, 8, 17427-17438.	3.2	41
357	Revisiting Alkaline Pretreatment of Lignocellulose: Understanding the Structural Evolution of Three Components. Advanced Sustainable Systems, 2020, 4, 2000067.	2.7	11
358	Cobalt Nanoparticlesâ€Catalyzed Widely Applicable Successive Câ^'C Bond Cleavage in Alcohols to Access Esters. Angewandte Chemie, 2020, 132, 19430-19436.	1.6	7
359	Profiling of the formation of lignin-derived monomers and dimers from <i>Eucalyptus</i> alkali lignin. Green Chemistry, 2020, 22, 7366-7375.	4.6	51
360	Trichoderma potential in biofuel production and biorefinery. , 2020, , 221-239.		0
361	Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood. Bioresource Technology, 2020, 316, 123907.	4.8	10
362	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie, 2020, 132, 20018-20022.	1.6	19
363	High yield and high concentration glucose production from corncob residues after tetrahydrofuran + H2O co-solvent pretreatment and followed by enzymatic hydrolysis. Renewable and Sustainable Energy Reviews, 2020, 132, 110107.	8.2	28
365	Application of computational methods for pretreatment processes of different biomass feedstocks. Current Opinion in Green and Sustainable Chemistry, 2020, 26, 100366.	3.2	4
366	Downstream Processing Strategies for Ligninâ€First Biorefinery. ChemSusChem, 2020, 13, 5199-5212.	3.6	62

#	Article	IF	CITATIONS
367	Molecular Oxygen Lignin Depolymerization: An Insight into the Stability of Phenolic Monomers. ChemSusChem, 2020, 13, 4743-4758.	3.6	13
368	Progress Toward Sustainable Reversible Deactivation Radical Polymerization. Macromolecular Rapid Communications, 2020, 41, e2000266.	2.0	33
369	Biomass-derived chemical substitutes for bisphenol A: recent advancements in catalytic synthesis. Chemical Society Reviews, 2020, 49, 6329-6363.	18.7	87
370	Photocatalytic transformations of lignocellulosic biomass into chemicals. Chemical Society Reviews, 2020, 49, 6198-6223.	18.7	374
371	Synthesis of Functional Chemicals from Ligninâ€derived Monomers by Selective Organic Transformations. Advanced Synthesis and Catalysis, 2020, 362, 5143-5169.	2.1	42
372	Integrating Biomass into the Organonitrogen Chemical Supply Chain: Production of Pyrrole and <scp>d</scp> â€Proline from Furfural. Angewandte Chemie - International Edition, 2020, 59, 19846-19850.	7.2	75
373	Effect of N2 flow rate on kinetic investigation of lignin pyrolysis. Environmental Research, 2020, 190, 109976.	3.7	19
374	High-Performance Capacitive Deionization by Lignocellulose-Derived Eco-Friendly Porous Carbon Materials. Bulletin of the Chemical Society of Japan, 2020, 93, 1014-1019.	2.0	25
375	Lignin from energy plant (Arundo donax): Pyrolysis kinetics, mechanism and pathway evaluation. Renewable Energy, 2020, 161, 963-971.	4.3	26
376	Fully biological production of adipic acid analogs from branched catechols. Scientific Reports, 2020, 10, 13367.	1.6	21
377	Sustainable oxidative cleavage of catechols for the synthesis of muconic acid and muconolactones including lignin upgrading. Green Chemistry, 2020, 22, 6204-6211.	4.6	21
378	Mild fractionation of sugarcane bagasse into fermentable sugars and \hat{l}^2 -O-4 linkage-rich lignin based on acid-catalysed crude glycerol pretreatment. Bioresource Technology, 2020, 318, 124059.	4.8	35
379	MYB-mediated regulation of lignin biosynthesis in grasses. Current Plant Biology, 2020, 24, 100174.	2.3	21
380	Hardwood <i>versus</i> softwood Kraft lignin – precursor-product relationships in the manufacture of porous carbon nanofibers for supercapacitors. Journal of Materials Chemistry A, 2020, 8, 23543-23554.	5.2	28
381	Metal–Organic Framework-Mediated Synthesis of One-Dimensional Nitrogen-Doped Molybdenum Carbide for the Cleavage of Lignin and Dimeric Lignin Model Compounds. ACS Sustainable Chemistry and Engineering, 2020, 8, 17008-17015.	3.2	14
382	Structural evolution of ZIF-67-derived catalysts for furfural hydrogenation. Journal of Catalysis, 2020, 392, 302-312.	3.1	25
383	Effect of pre-acetylation of hydroxyl functional groups by choline chloride/acetic anhydride on subsequent lignin pyrolysis. Bioresource Technology, 2020, 317, 124034.	4.8	11
384	Lignin Intermediates on Palladium: Insights into Ketoâ€Enol Tautomerization from Theoretical Modelling. ChemSusChem, 2020, 13, 6574-6581.	3.6	6

#	Article	IF	CITATIONS
385	Sinapic Acid Esters: Octinoxate Substitutes Combining Suitable UV Protection and Antioxidant Activity. Antioxidants, 2020, 9, 782.	2.2	28
386	Catalytic Hydrotreatment of β-O-4 Ether in Lignin: Cleavage of the C–O Bond and Hydrodeoxygenation of Lignin-Derived Phenols in One Pot. ACS Sustainable Chemistry and Engineering, 2020, 8, 14511-14523.	3.2	37
387	Structure–function relationships of deep eutectic solvents for lignin extraction and chemical transformation. Green Chemistry, 2020, 22, 7219-7232.	4.6	151
388	Paving the Way for the Lignin Hydrogenolysis Mechanism by Deuterium-Incorporated β-O-4 Mimics. ACS Catalysis, 2020, 10, 12229-12238.	5.5	38
389	Controlled Natural Biomass Deoxygenation Allows the Design of Reusable Hot-Melt Adhesives Acting in a Multiple Oxygen Binding Mode. ACS Applied Materials & Interfaces, 2020, 12, 45394-45403.	4.0	19
390	Progress in the solvent depolymerization of lignin. Renewable and Sustainable Energy Reviews, 2020, 133, 110359.	8.2	72
391	UV-protection from chitosan derivatized lignin multilayer thin film. RSC Advances, 2020, 10, 32959-32965.	1.7	9
392	Aromatics from Lignocellulosic Biomass: A Platform for High-Performance Thermosets. ACS Sustainable Chemistry and Engineering, 2020, 8, 15072-15096.	3.2	64
393	5-Hydroxymethylfurfural Hydrodeoxygenation to 2,5-Dimethylfuran in Continuous-Flow System over Ni on Nitrogen-Doped Carbon. Sustainable Chemistry, 2020, 1, 106-115.	2.2	16
394	Sustainable access to renewable N-containing chemicals from reductive amination of biomass-derived platform compounds. Green Chemistry, 2020, 22, 6714-6747.	4.6	100
395	Enzymatic processing of lignocellulosic biomass: principles, recent advances and perspectives. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 623-657.	1.4	109
396	Aldehyde-Assisted Lignocellulose Fractionation Provides Unique Lignin Oligomers for the Design of Tunable Polyurethane Bioresins. Biomacromolecules, 2020, 21, 4135-4148.	2.6	35
397	Step-Growth Polyesters with Biobased (<i>R</i>)-1,3-Butanediol. Industrial & Engineering Chemistry Research, 2020, 59, 15598-15613.	1.8	13
398	Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chemical Reviews, 2020, 120, 10454-10515.	23.0	173
399	Reductive catalytic fractionation of lignocellulose: when should the catalyst meet depolymerized lignin fragments?. Sustainable Energy and Fuels, 2020, 4, 5588-5594.	2.5	21
400	Oxidative Aromatization of Biobased Chemicals to Benzene Derivatives through Tandem Catalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 14322-14329.	3.2	11
401	Highly Stable N-Doped Carbon-Supported Pd-Based Catalysts Prepared from Biomass Waste for H ₂ Production from Formic Acid. ACS Sustainable Chemistry and Engineering, 2020, 8, 15030-15043.	3.2	34
402	Understanding the Structural Changes of Lignin Macromolecules From Balsa Wood at Different Growth Stages. Frontiers in Energy Research, 2020, 8, .	1.2	14

#	Article	IF	CITATIONS
403	Coupling without Coupling Reactions: En Route to Developing Phenols as Sustainable Coupling Partners via Dearomatization–Rearomatization Processes. Accounts of Chemical Research, 2020, 53, 2395-2413.	7.6	53
404	Production of Aromatic Compounds by Catalytic Depolymerization of Technical and Downstream Biorefinery Lignins. Biomolecules, 2020, 10, 1338.	1.8	12
405	Co-production of soluble sugars and lignin from short rotation white poplar and black locust crops. Wood Science and Technology, 2020, 54, 1617-1643.	1.4	16
406	Investigation on the thermal degradation behavior of enzymatic hydrolysis lignin with or without steam explosion treatment characterized by TG-FTIR and Py-GC/MS. Biomass Conversion and Biorefinery, 2022, 12, 5825-5834.	2.9	14
407	A Ag–ZrO ₂ –graphene oxide nanocomposite as a metal-leaching-resistant catalyst for the aqueous-phase hydrogenation of levulinic acid into gamma-valerolactone. New Journal of Chemistry, 2020, 44, 16526-16536.	1.4	11
408	Progress in Modeling of Biomass Fast Pyrolysis: A Review. Energy & Fuels, 2020, 34, 15195-15216.	2.5	40
409	Insights into the Potential of Hardwood Kraft Lignin to Be a Green Platform Material for Emergence of the Biorefinery. Polymers, 2020, 12, 1795.	2.0	35
410	Catalytic Transfer Hydrogenolysis of Native Lignin to Monomeric Phenols over a Ni–Pd Bimetallic Catalyst. Energy & Fuels, 2020, 34, 9754-9762.	2.5	34
411	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	14.4	98
412	Chemical and Enzymatic Routes for Lignocellulosic Bioproducts via Carbon Extension and Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575.	3.2	2
412		3.2 3.2	2 28
	Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and		
413	Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chemistry and Engineering, 2020, 8, 13997-14005. Production of Methyl <i>p</i> -Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & amp; Engineering Chemistry Research,	3.2	28
413 414	Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chemistry and Engineering, 2020, 8, 13997-14005. Production of Methyl <i>p</i> -Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17328-17337. Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. Food and	3.2 1.8	28 16
413 414 415	Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chemistry and Engineering, 2020, 8, 13997-14005. Production of Methyl <i>p</i> -Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17328-17337. Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. Food and Bioproducts Processing, 2020, 124, 455-468. Biobased Resins Using Lignin and Glyoxal. ACS Sustainable Chemistry and Engineering, 2020, 8,	3.2 1.8 1.8	28 16 7
413 414 415 416	Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chemistry and Engineering, 2020, 8, 13997-14005. Production of Methyl <i>p</i> -Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17328-17337. Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. Food and Bioproducts Processing, 2020, 124, 455-468. Biobased Resins Using Lignin and Glyoxal. ACS Sustainable Chemistry and Engineering, 2020, 8, 18789-18809. Biphasic Separation Approach in the DES Biomass Fractionation Facilitates Lignin Recovery for	3.2 1.8 1.8 3.2	28 16 7 61
 413 414 415 416 417 	 Deoxygenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 13555-13575. Understanding the Effect of Precipitation Process Variables on Hardwood Lignin Characteristics and Recovery from Black Liquor. ACS Sustainable Chemistry and Engineering, 2020, 8, 13997-14005. Production of Methyl <i>p</i>-Hydroxycinnamate by Selective Tailoring of Herbaceous Lignin Using Metal-Based Deep Eutectic Solvents (DES) as Catalyst. Industrial & amp; Engineering Chemistry Research, 2020, 59, 17328-17337. Grape stalk: a first attempt to disentangle its fibres via electrostatic separation. Food and Bioproducts Processing, 2020, 124, 455-468. Biobased Resins Using Lignin and Clyoxal. ACS Sustainable Chemistry and Engineering, 2020, 8, 18789-18809. Biphasic Separation Approach in the DES Biomass Fractionation Facilitates Lignin Recovery for Subsequent Valorization to Phenolics. ACS Sustainable Chemistry and Engineering, 2020, 8, 19140-19154. Hydrogen-Free Production of 4-Alkylphenols from Lignin via Self-Reforming-Driven Depolymerization 	 3.2 1.8 1.8 3.2 3.2 3.2 	28 16 7 61 14

		CITATION RE	PORT	
#	Article		IF	Citations
421	Lignocellulose nanocrystals from sugarcane straw. Industrial Crops and Products, 2020, 15	57, 112938.	2.5	33
422	Efficient Downstream Processing of Renewable Alcohols Using Zeolite Adsorbents. Structu Bonding, 2020, , 85-119.	ire and	1.0	6
423	Surface engineering of carbon supported CoMoS– an effective nanocatalyst for selective deoxygenation of lignin derived phenolics to arenes. Applied Catalysis A: General, 2020, 60	2)6, 117811.	2.2	17
424	Catalytic cracking of Etek lignin with zirconia supported metal-oxides for alkyl and alkoxy precovery. Bioresource Technology, 2020, 317, 124008.	phenols	4.8	15
425	The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels, Bioproduc Biorefining, 2020, 14, 830-844.	rts and	1.9	96
426	Acidic depolymerization vs ionic liquid solubilization in lignin extraction from eucalyptus w using the protic ionic liquid 1-methylimidazolium chloride. International Journal of Biologic Macromolecules, 2020, 157, 461-469.	ood al	3.6	39
427	Effect of lignin on the self-bonding of a natural fiber material in a hydrothermal environmen structure and characterization. International Journal of Biological Macromolecules, 2020, 1 1135-1140.	nt: Lignin 158,	3.6	9
428	Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Research, 2020, 48, 5169-5182.		6.5	30
429	Unlocking Structure–Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Monomers. ChemSusChem, 2020, 13, 4548-4556.	Phenolic	3.6	58
430	Highly efficient dissolution of xylan in ionic liquid-based deep eutectic solvents. Cellulose, 2 6175-6188.	2020, 27,	2.4	17
431	Controlling the Oxidation State of Fe-Based Catalysts through Nitrogen Doping toward the Hydrodeoxygenation of <i>m</i> -Cresol. ACS Catalysis, 2020, 10, 7884-7893.	2	5.5	32
432	Highly Efficient Cleavage of Ether Bonds in Lignin Models by Transfer Hydrogenolysis over Dualâ€Functional Ruthenium/Montmorillonite. ChemSusChem, 2020, 13, 4579-4586.		3.6	18
433	Aromatics Production from Lignocellulosic Biomass: Shape Selective Dealkylation of Lignin Phenolics over Hierarchical ZSM-5. ACS Sustainable Chemistry and Engineering, 2020, 8, 8		3.2	45
435	Metal organic frameworks for biomass conversion. Chemical Society Reviews, 2020, 49, 36	538-3687.	18.7	176
436	Hydrothermal Liquefaction of Lignin to Aromatic Chemicals: Impact of Lignin Structure. Inc & Engineering Chemistry Research, 2020, 59, 16957-16969.	lustrial	1.8	76
437	Systematic Diffusion-Ordered Spectroscopy for the Selective Determination of Molecular N Real Lignins and Fractions Arising from Base-Catalyzed Depolymerization Reaction Mixture Sustainable Chemistry and Engineering, 2020, 8, 8638-8647.		3.2	7
438	Copperâ€Mediated Conversion of Complex Ethers to Esters: Enabling Biopolymer Depolym under Mild Conditions. Chemistry - A European Journal, 2020, 26, 12397-12402.	ierisation	1.7	8
439	Recent Developments in Heterogeneous Catalytic Routes for the Sustainable Production of Acid from Biomass Resources. ChemSusChem, 2020, 13, 4026-4034.	f Succinic	3.6	34

#	Article	IF	CITATIONS
440	Combined lignin defunctionalisation and synthesis gas formation by acceptorless dehydrogenative decarbonylation. Green Chemistry, 2020, 22, 3791-3801.	4.6	18
441	Statistical design of experiments for production and purification of vanillin and aminophenols from commercial lignin . Green Chemistry, 2020, 22, 3917-3926.	4.6	23
442	Lignocellulosic biomass for bioethanol: Recent advances, technology trends, and barriers to industrial development. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 56-60.	3.2	69
443	Fractionation of herbaceous biomass using a recyclable hydrotropic p–toluenesulfonic acid (p–TsOH)/choline chloride (ChCl) solvent system at low temperatures. Industrial Crops and Products, 2020, 150, 112423.	2.5	29
444	Naturally Hydrophobic Foams from Lignocellulosic Fibers Prepared by Oven-Drying. ACS Sustainable Chemistry and Engineering, 2020, 8, 8267-8278.	3.2	48
445	Productâ€oriented Direct Cleavage of Chemical Linkages in Lignin. ChemSusChem, 2020, 13, 4367-4381.	3.6	66
446	Comparison of Two Acid Hydrotropes for Sustainable Fractionation of Birch Wood. ChemSusChem, 2020, 13, 4649-4659.	3.6	37
447	Catalytic hydrogenolysis of native and organosolv lignins of aspen wood to liquid products in supercritical ethanol medium. Catalysis Today, 2021, 379, 114-123.	2.2	14
448	Integrated techno-economic assessment of a biorefinery process: The high-end valorization of the lignocellulosic fraction in wood streams. Journal of Cleaner Production, 2020, 266, 122022.	4.6	45
449	Using Lignin Monomer As a Novel Capping Agent for Efficient Acid-Catalyzed Depolymerization of High Molecular Weight Lignin to Improve Its Antioxidant Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 9104-9114.	3.2	23
450	Ligninâ€Based Micro―and Nanomaterials and their Composites in Biomedical Applications. ChemSusChem, 2020, 13, 4266-4283.	3.6	130
451	Greener Routes to Biomass Waste Valorization: Lignin Transformation Through Electrocatalysis for Renewable Chemicals and Fuels Production. ChemSusChem, 2020, 13, 4214-4237.	3.6	123
452	Photoinduced transition-metal- and external-photosensitizer-free intramolecular aryl rearrangement via C(Ar)–O bond cleavage. Chemical Science, 2020, 11, 5740-5744.	3.7	29
453	Modeling of optimal green liquor pretreatment for enhanced biomass saccharification and delignification by distinct alteration of wall polymer features and biomass porosity in Miscanthus. Renewable Energy, 2020, 159, 1128-1138.	4.3	53
454	Biogas production from straw—the challenge feedstock pretreatment. Biomass Conversion and Biorefinery, 2022, 12, 379-402.	2.9	14
455	VS2 and its doped composition: Catalytic depolymerization of alkali lignin for increased bio-oil production. International Journal of Biological Macromolecules, 2020, 156, 94-102.	3.6	5
456	Catalytic Activation of Carbon–Hydrogen Bonds in Lignin Linkages over Strong-Base-Modified Covalent Triazine Frameworks for Lignin Oxidative Cleavage. ACS Catalysis, 2020, 10, 7526-7534.	5.5	25
457	Similarities in Recalcitrant Structures of Industrial Nonâ€Kraft and Kraft Lignin. ChemSusChem, 2020, 13, 4624-4632.	3.6	12

#	Article	IF	CITATIONS
458	Lignin-based smart materials: a roadmap to processing and synthesis for current and future applications. Materials Horizons, 2020, 7, 2237-2257.	6.4	129
459	Conceptual Design of a Kraft Lignin Biorefinery for the Production of Valuable Chemicals via Oxidative Depolymerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 8823-8829.	3.2	32
460	Lignin Fractionation for Reduced Heterogeneity in Self-Assembly Nanosizing: Toward Targeted Preparation of Uniform Lignin Nanoparticles with Small Size. ACS Sustainable Chemistry and Engineering, 2020, 8, 9174-9183.	3.2	94
461	Amorphous FeNi–ZrO ₂ -Catalyzed Hydrodeoxygenation of Lignin-Derived Phenolic Compounds to Naphthenic Fuel. ACS Sustainable Chemistry and Engineering, 2020, 8, 9335-9345.	3.2	60
462	Biobased Divanillin As a Precursor for Formulating Biobased Epoxy Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 9095-9103.	3.2	58
463	An Introduction to Model Compounds of Lignin Linking Motifs; Synthesis and Selection Considerations for Reactivity Studies. ChemSusChem, 2020, 13, 4238-4265.	3.6	50
464	Lignin Depolymerization: A Comparison of Methods to Analyze Monomers and Oligomers. ChemSusChem, 2020, 13, 4633-4648.	3.6	17
465	Scaling of lignin monomer hydrogenation, hydrodeoxygenation and hydrocracking reaction micro-kinetics over solid metal/acid catalysts to aromatic oligomers. Chemical Engineering Journal, 2020, 399, 125712.	6.6	31
466	Aqueous two-phase system formed by alkanolammonium-based Protic Ionic Liquids and acetone: Experimental data, thermodynamic modeling, and Kraft lignin partition. Separation and Purification Technology, 2020, 250, 117207.	3.9	11
467	Lignin Depolymerization under Continuousâ€Flow Conditions: Highlights of Recent Developments. ChemSusChem, 2020, 13, 4382-4384.	3.6	29
468	A review of conversion of lignocellulose biomass to liquid transport fuels by integrated refining strategies. Fuel Processing Technology, 2020, 208, 106485.	3.7	103
469	Development of â€~Lignin-First' Approaches for the Valorization of Lignocellulosic Biomass. Molecules, 2020, 25, 2815.	1.7	85
470	Microwave processing of lignin in green solvents: A high-yield process to narrow-dispersity oligomers. Industrial Crops and Products, 2020, 145, 112152.	2.5	23
471	Extraction of High-Purity Lignins via Catalyst-free Organosolv Pulping from Low-Input Crops. Biomacromolecules, 2020, 21, 1929-1942.	2.6	30
472	A combination of experimental and computational methods to study the reactions during a Lignin-First approach. Pure and Applied Chemistry, 2020, 92, 631-639.	0.9	9
473	Mild Organosolv Lignin Extraction with Alcohols: The Importance of Benzylic Alkoxylation. ACS Sustainable Chemistry and Engineering, 2020, 8, 5119-5131.	3.2	100
474	Lignin-Based Epoxy Resins: Unravelling the Relationship between Structure and Material Properties. Biomacromolecules, 2020, 21, 1920-1928.	2.6	118
475	Pd/Fe3O4 Nanofibers for the Catalytic Conversion of Lignin-Derived Benzyl Phenyl Ether under Transfer Hydrogenolysis Conditions. Catalysts, 2020, 10, 20.	1.6	19

#	Article	IF	CITATIONS
476	Aldehydes-Aided Lignin-First Deconstruction Strategy for Facilitating Lignin Monomers and Fermentable Glucose Production from Poplar Wood. Energies, 2020, 13, 1113.	1.6	4
477	100th Anniversary of Macromolecular Science Viewpoint: Polymers from Lignocellulosic Biomass. Current Challenges and Future Opportunities. ACS Macro Letters, 2020, 9, 476-493.	2.3	105
478	Stepwise separation of poplar wood in oxalic acid/water and $\hat{1}^3$ -valerolactone/water systems. RSC Advances, 2020, 10, 11188-11199.	1.7	5
479	Taking on all of the biomass for conversion. Science, 2020, 367, 1305-1306.	6.0	53
480	Lignin Chemistry. Topics in Current Chemistry Collections, 2020, , .	0.2	7
481	Selective hydrogenation of lignin-derived compounds under mild conditions. Green Chemistry, 2020, 22, 3069-3073.	4.6	19
482	Mechanistic Study of Diaryl Ether Bond Cleavage during Palladium atalyzed Lignin Hydrogenolysis. ChemSusChem, 2020, 13, 4487-4494.	3.6	36
483	High yield solvent extraction of hydrothermal and ball-milling treated lignin prior to enzymatic hydrolysis for co-valorization of lignin and cellulose in Miscanthus sacchariflorus. Fuel, 2020, 269, 117428.	3.4	13
484	Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning. Physical Chemistry Chemical Physics, 2020, 22, 8878-8888.	1.3	10
485	Contributions to Lignomics: Stochastic Generation of Oligomeric Lignin Structures for Interpretation of MALDI–FTâ€ICRâ€MS Results. ChemSusChem, 2020, 13, 4428-4445.	3.6	25
486	Effects of the novel catalyst Ni–S ₂ O ₈ ^{2â^'} –K ₂ O/TiO ₂ on efficient lignin depolymerization. RSC Advances, 2020, 10, 8558-8567.	1.7	4
487	Conversion of birch bark to biofuels. Green Chemistry, 2020, 22, 2255-2263.	4.6	24
488	Functionalized Metal-Organic Framework Catalysts for Sustainable Biomass Valorization. Advances in Polymer Technology, 2020, 2020, 1-11.	0.8	10
489	A snapshot of microbial diversity and function in an undisturbed sugarcane bagasse pile. BMC Biotechnology, 2020, 20, 12.	1.7	12
490	Biological conversion of lignin and its derivatives to fuels and chemicals. Korean Journal of Chemical Engineering, 2020, 37, 387-401.	1.2	24
491	Tuning Lignin Characteristics by Fractionation: A Versatile Approach Based on Solvent Extraction and Membrane-Assisted Ultrafiltration. Molecules, 2020, 25, 2893.	1.7	13
492	Lowâ€Temperature Catalytic Hydrogenolysis of Guaiacol to Phenol over Alâ€Doped SBAâ€15 Supported Ni Catalysts. ChemCatChem, 2020, 12, 4930-4938.	1.8	16
493	Stable Continuous Production of γ-Valerolactone from Biomass-Derived Levulinic Acid over Zr–Al-Beta Zeolite Catalyst. Catalysts, 2020, 10, 678.	1.6	23

#	Article	IF	CITATIONS
494	Circular economy aspects of lignin: Towards a lignocellulose biorefinery. Renewable and Sustainable Energy Reviews, 2020, 130, 109977.	8.2	135
495	Hydrodeoxygenation of Ligninâ€Derived Monomers and Dimers over a Ru Supported Solid Super Acid Catalyst for Cycloalkane Production. Advanced Sustainable Systems, 2020, 4, 1900136.	2.7	18
496	Two-step conversion of Kraft lignin to nylon precursors under mild conditions. Green Chemistry, 2020, 22, 4676-4682.	4.6	25
497	Acid-Catalyzed Glycerol Pretreatment of Sugarcane Bagasse: Understanding the Properties of Lignin and Its Effects on Enzymatic Hydrolysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 10380-10388.	3.2	42
498	Base-catalyzed oxidative depolymerization of softwood kraft lignin. Industrial Crops and Products, 2020, 152, 112473.	2.5	28
499	Downstream processing of lignin derived feedstock into end products. Chemical Society Reviews, 2020, 49, 5510-5560.	18.7	305
500	Lignin Source and Structural Characterization. ChemSusChem, 2020, 13, 4385-4393.	3.6	150
501	Current advancement on the isolation, characterization and application of lignin. International Journal of Biological Macromolecules, 2020, 162, 985-1024.	3.6	223
502	Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618.	1.9	21
503	Catalytic Processes for Biomass-Derived Platform Molecules Valorisation. Topics in Catalysis, 2020, 63, 846-865.	1.3	16
504	Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. International Journal of Biological Macromolecules, 2020, 156, 669-680.	3.6	26
505	Muconic acid isomers as platform chemicals and monomers in the biobased economy. Green Chemistry, 2020, 22, 1517-1541.	4.6	73
506	Hydrotropic Solutions Enable Homogeneous Fenton Treatment of Lignin. Industrial & Engineering Chemistry Research, 2020, 59, 4229-4238.	1.8	5
507	Enhanced Acid-Catalyzed Lignin Depolymerization in a Continuous Reactor with Stable Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 4096-4106.	3.2	25
508	Monometallic Cerium Layered Double Hydroxide Supported Pd-Ni Nanoparticles as High Performance Catalysts for Lignin Hydrogenolysis. Materials, 2020, 13, 691.	1.3	12
509	Structural insights into the alkali lignins involving the formation and transformation of arylglycerols and enol ethers. International Journal of Biological Macromolecules, 2020, 152, 411-417.	3.6	21
510	Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Industrial Crops and Products, 2020, 147, 112243.	2.5	35
511	Ligninâ€First Fractionation of Softwood Lignocellulose Using a Mild Dimethyl Carbonate and Ethylene Glycol Organosolv Process. ChemSusChem, 2020, 13, 4468-4477.	3.6	66

#	Article	IF	CITATIONS
512	In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chemistry, 2020, 22, 1851-1858.	4.6	123
513	Reductive amination of levulinic acid to N-substituted pyrrolidones over RuCl3 metal ion anchored in ionic liquid immobilized on graphene oxide. Journal of Catalysis, 2020, 383, 206-214.	3.1	26
514	Lignin solvated in zwitterionic Good's buffers displays antibacterial synergy against <scp><i>Staphylococcus aureus</i></scp> . Journal of Applied Polymer Science, 2020, 137, 49107.	1.3	5
515	Lignin extraction and upgrading using deep eutectic solvents. Industrial Crops and Products, 2020, 147, 112241.	2.5	159
516	Efficient Conversion of Pine Wood Lignin to Phenol. ChemSusChem, 2020, 13, 1705-1709.	3.6	48
517	Green and Functional Aerogels by Macromolecular and Textural Engineering of Chitosan Microspheres. Chemical Record, 2020, 20, 753-772.	2.9	42
518	<i>In situ</i> hydrogenation of phenolic compounds over Ni-based catalysts: upgrading of lignin depolymerization products. New Journal of Chemistry, 2020, 44, 5088-5096.	1.4	16
519	Upgrading of cyclohexanone to hydrocarbons by hydrodeoxygenation over nickel–molybdenum catalysts. International Journal of Hydrogen Energy, 2020, 45, 11062-11076.	3.8	28
520	Direct biosynthesis of adipic acid from lignin-derived aromatics using engineered Pseudomonas putida KT2440. Metabolic Engineering, 2020, 59, 151-161.	3.6	44
521	Effect of highly selective oxypropylation of phenolic hydroxyl groups on subsequent lignin pyrolysis: Toward the lignin valorization. Energy Conversion and Management, 2020, 207, 112551.	4.4	26
522	Catalytic pyrolysis of cow manure over a Ni/SiO2 catalyst using CO2 as a reaction medium. Energy, 2020, 195, 117077.	4.5	21
523	Efficient Fractionation of Corn Stover for Biorefinery Using a Sustainable Pathway. ACS Sustainable Chemistry and Engineering, 2020, 8, 3454-3464.	3.2	28
524	High Purity and Low Molecular Weight Lignin Nano-Particles Extracted from Acid-Assisted MIBK Pretreatment. Polymers, 2020, 12, 378.	2.0	14
525	A sustainable wood biorefinery for low–carbon footprint chemicals production. Science, 2020, 367, 1385-1390.	6.0	631
526	Vanadium-Substituted Phosphomolybdic Acids for the Aerobic Cleavage of Lignin Models—Mechanistic Aspect and Extension to Lignin. Materials, 2020, 13, 812.	1.3	10
527	A Sustainable Route to Synthesize Graphene Oxide/Ordered Mesoporous Carbon as Effect Nanocomposite Adsorbent. Journal of Nanoscience and Nanotechnology, 2020, 20, 2867-2877.	0.9	4
528	Ligninâ€derived electrochemical energy materials and systems. Biofuels, Bioproducts and Biorefining, 2020, 14, 650-672.	1.9	73
529	Hydrothermal Liquefaction of αâ€Oâ€4 Aryl Ether Linkages in Lignin. ChemSusChem, 2020, 13, 2002-2006.	3.6	11

#	Article	IF	CITATIONS
530	Development of a <i>Rhodococcus opacus</i> Cell Factory for Valorizing Lignin to Muconate. ACS Sustainable Chemistry and Engineering, 2020, 8, 2016-2031.	3.2	31
531	Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustainable Chemistry and Engineering, 2020, 8, 2361-2374.	3.2	49
532	Pure, stable and highly antioxidant lignin nanoparticles from elephant grass. Industrial Crops and Products, 2020, 145, 112105.	2.5	81
533	Model Compounds Study for the Mechanism of Horseradish Peroxidase-Catalyzed Lignin Modification. Applied Biochemistry and Biotechnology, 2020, 191, 981-995.	1.4	4
534	Assessing the Viability of Recovery of Hydroxycinnamic Acids from Lignocellulosic Biorefinery Alkaline Pretreatment Waste Streams. ChemSusChem, 2020, 13, 2012-2024.	3.6	54
535	Lignin-carbohydrate complexes (LCCs) and its role in biorefinery. Journal of Cleaner Production, 2020, 253, 120076.	4.6	83
536	Total utilization of lignin and carbohydrates in Eucalyptus grandis: an integrated biorefinery strategy towards phenolics, levulinic acid, and furfural. Biotechnology for Biofuels, 2020, 13, 2.	6.2	45
537	A simple fractionation method and GPC analysis of organosolv extracts obtained from lignocellulosic materials. Biomass Conversion and Biorefinery, 2021, 11, 1807-1821.	2.9	5
538	Controllable depolymerization of lignin using carbocatalyst graphene oxide under mild conditions. Fuel, 2020, 267, 117100.	3.4	27
539	Optimization of the process of abies ethanol lignin sulfation by sulfamic acid–urea mixture in 1,4-dioxane medium. Wood Science and Technology, 2020, 54, 365-381.	1.4	16
540	Mechanocatalytic Synergy for Expedited Cellulosic Ethanol Production Compatible with Integrated Biorefinery. ACS Sustainable Chemistry and Engineering, 2020, 8, 2399-2408.	3.2	11
541	Nickel on nitrogen-doped carbon pellets for continuous-flow hydrogenation of biomass-derived compounds in water. Green Chemistry, 2020, 22, 2755-2766.	4.6	47
542	Multiple Mechanisms Mapped in Aryl Alkyl Ether Cleavage via Aqueous Electrocatalytic Hydrogenation over Skeletal Nickel. Journal of the American Chemical Society, 2020, 142, 4037-4050.	6.6	40
543	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie, 2020, 132, 11800-11812.	1.6	19
544	Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– a review. Biomass and Bioenergy, 2020, 134, 105481.	2.9	172
545	Comparison of the Physicochemical Properties and Thermal Stability of Organosolv and Kraft Lignins from Hardwood and Softwood Biomass for Their Potential Valorization. Waste and Biomass Valorization, 2020, 11, 6541-6553.	1.8	68
546	Mechanochemical cleavage of lignin models and lignin <i>via</i> oxidation and a subsequent base-catalyzed strategy. Green Chemistry, 2020, 22, 3489-3494.	4.6	31
547	Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent. Energy Conversion and Management, 2020, 213, 112728.	4.4	11

#	Article	IF	CITATIONS
548	Comparing chemical composition and lignin structure of <i>Miscanthus x giganteus</i> and <i>Miscanthus nagara</i> harvested in autumn and spring and separated into stems and leaves. RSC Advances, 2020, 10, 10740-10751.	1.7	23
549	Zeoliteâ€Assisted Ligninâ€First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shapeâ€Selective Catalysis. ChemSusChem, 2020, 13, 4528-4536.	3.6	30
550	Directly Microwaveâ€Accelerated Cleavage of Câ^'C and Câ^'O Bonds of Lignin by Copper Oxide and H ₂ O ₂ . ChemSusChem, 2020, 13, 4510-4518.	3.6	15
551	Mesoscale Reaction–Diffusion Phenomena Governing Ligninâ€First Biomass Fractionation. ChemSusChem, 2020, 13, 4495-4509.	3.6	35
552	Bifunctional metallic-acidic mechanisms of hydrodeoxygenation of eugenol as lignin model compound over supported Cu, Ni, Pd, Pt, Rh and Ru catalyst materials. Chemical Engineering Journal, 2020, 394, 124914.	6.6	49
553	The role of pretreatment in the catalytic valorization of cellulose. Molecular Catalysis, 2020, 487, 110883.	1.0	43
554	Lignin Functionalization for the Production of Novel Materials. Trends in Chemistry, 2020, 2, 440-453.	4.4	163
555	Photocatalytic Conversion of Lignin into Chemicals and Fuels. ChemSusChem, 2020, 13, 4199-4213.	3.6	71
556	One-Pot Efficient Catalytic Oxidation for Bio-Vanillin Preparation and Carbon Isotope Analysis. ACS Omega, 2020, 5, 8794-8803.	1.6	5
557	Catechyl Lignin Extracted from Castor Seed Coats Using Deep Eutectic Solvents: Characterization and Depolymerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 7031-7038.	3.2	70
558	Evaluation of the wastewater generated during alkaline pretreatment of biomass for feasibility of recycling and reusing. Renewable Energy, 2020, 155, 1156-1164.	4.3	16
559	Using CO ₂ as an Oxidant in the Catalytic Pyrolysis of Peat Moss from the North Polar Region. Environmental Science & Technology, 2020, 54, 6329-6343.	4.6	40
560	Secondary Bonds Modifying Conjugateâ€Blocked Linkages of Biomassâ€Derived Lignin to Form Electron Transfer 3D Networks for Efficiency Exceeding 16% Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2001494.	7.8	26
561	Catalytic Hydrotreatment of Industrial Wood Tar under Supercritical Ethanol Conditions. Energy & Fuels, 2020, 34, 5983-5989.	2.5	3
562	Lignin. Springer Series on Polymer and Composite Materials, 2020, , .	0.5	26
563	Molybdenum-catalyzed oxidative depolymerization of alkali lignin: Selective production of Vanillin. Applied Catalysis A: General, 2020, 598, 117567.	2.2	43
564	Highly active Mo-V-based bifunctional catalysts for catalytic conversion of lignin dimer model compounds at room temperature. Inorganic Chemistry Communication, 2020, 116, 107910.	1.8	9
565	Domino lignin depolymerization and reconnection to complex molecules mediated by boryl radicals. Catalysis Science and Technology, 2020, 10, 3008-3014.	2.1	4

#	Article	IF	CITATIONS
566	Synthesis of thioethers, arenes and arylated benzoxazoles by transformation of the C(aryl)–C bond of aryl alcohols. Chemical Science, 2020, 11, 7634-7640.	3.7	10
567	Conversion of rubber wood waste to methane by ethanol organosolv pretreatment. Biomass Conversion and Biorefinery, 2021, 11, 999-1011.	2.9	9
568	Alternative lignopolymer-based composites useful as enhanced functionalized support for enzymes immobilization. Catalysis Today, 2021, 379, 222-229.	2.2	3
569	Hydrothermal CO2-assisted Pretreatment of Wheat Straw for Hemicellulose Degradation Followed with Enzymatic Hydrolysis for Glucose Production. Waste and Biomass Valorization, 2021, 12, 1483-1492.	1.8	18
570	Basic carrier promoted Pt-catalyzed hydrogenolysis of alkaline lignin. Catalysis Today, 2021, 365, 193-198.	2.2	9
571	Catalytic transfer hydrogenation of 4â€Oâ€5 models in ligninâ€derived compounds to cycloalkanes over Niâ€based catalysts. Journal of the Chinese Chemical Society, 2021, 68, 582-591.	0.8	15
572	Flexibilization of Biorefineries: Tuning Lignin Hydrogenation by Hydrogen Partial Pressure. ChemSusChem, 2021, 14, 373-378.	3.6	8
574	Controlled acetylation of kraft lignin for tailoring polyacrylonitrile-kraft lignin interactions towards the production of quality carbon nanofibers. Chemical Engineering Journal, 2021, 405, 126640.	6.6	13
575	Comparative secretome of whiteâ€rot fungi reveals coâ€regulated carbohydrateâ€active enzymes associated with selective ligninolysis of ramie stalks. Microbial Biotechnology, 2021, 14, 911-922.	2.0	14
576	Methoxy groups reduced the estrogenic activity of lignin-derivable replacements relative to bisphenol A and bisphenol F as studied through two in vitro assays. Food Chemistry, 2021, 338, 127656.	4.2	23
577	Lignin valorization using biological approach. Biotechnology and Applied Biochemistry, 2021, 68, 459-468.	1.4	19
578	Condensation of furans for the production of diesel precursors: A study on the effects of surface acid sites of sulfonated carbon catalysts. Catalysis Today, 2021, 375, 155-163.	2.2	9
579	Lignin-Based Polyethylene Films with Enhanced Thermal, Opacity and Biodegradability Properties for Agricultural Mulch Applications. Journal of Polymers and the Environment, 2021, 29, 450-459.	2.4	16
580	Improved catalytic depolymerization of lignin waste using carbohydrate derivatives. Environmental Pollution, 2021, 268, 115674.	3.7	4
581	Biological treatment of plant biomass and factors affecting bioactivity. Journal of Cleaner Production, 2021, 279, 123546.	4.6	31
582	Guidelines for performing lignin-first biorefining. Energy and Environmental Science, 2021, 14, 262-292.	15.6	416
583	Carbon nanotube supported nickel catalysts for anisole and cyclohexanone conversion in the presence of hydrogen and synthesis gas: Effect of plasma, acid, and thermal functionalization. Fuel, 2021, 288, 119698.	3.4	13
584	Polyhydroxyalkanoate synthesis and characterization: A proteogenomic and process optimization study for biovalorization of industrial lignin. Bioresource Technology, 2021, 320, 124439.	4.8	22

#	Article	IF	CITATIONS
585	Directional depolymerization of lignin into high added-value chemical with synergistic effect of binary solvents. Bioresource Technology, 2021, 321, 124440.	4.8	23
586	Fractionation of lignin using organic solvents: A combined experimental and theoretical study. International Journal of Biological Macromolecules, 2021, 168, 792-805.	3.6	39
587	Wood delignification with aqueous solutions of deep eutectic solvents. Industrial Crops and Products, 2021, 160, 113128.	2.5	42
588	Catalytic hydrotreatment of Kraft lignin into liquid fuels over porous ZnCoOx nanoplates. Fuel, 2021, 283, 118801.	3.4	21
589	Wood-cellulose-fiber-based functional materials for triboelectric nanogenerators. Nano Energy, 2021, 81, 105637.	8.2	141
590	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb ₂ O ₅ Catalyst. Angewandte Chemie - International Edition, 2021, 60, 5527-5535.	7.2	169
591	Towards the Circular Economy: Converting Aromatic Plastic Waste Back to Arenes over a Ru/Nb 2 O 5 Catalyst. Angewandte Chemie, 2021, 133, 5587-5595.	1.6	42
592	Influence of chain length in protic ionic liquids on physicochemical and structural features of lignins from sugarcane bagasse. Industrial Crops and Products, 2021, 159, 113080.	2.5	7
593	One-pot depolymerization, demethylation and phenolation of lignin catalyzed by HBr under microwave irradiation for phenolic foam preparation. Composites Part B: Engineering, 2021, 205, 108530.	5.9	52
594	New (and Old) Monomers from Biorefineries to Make Polymer Chemistry More Sustainable. Macromolecular Rapid Communications, 2021, 42, e2000485.	2.0	19
595	Bioremediation of heavy metals from wastewater using nanomaterials. Environment, Development and Sustainability, 2021, 23, 9617-9640.	2.7	46
596	Lignin valorization by bacterial genus Pseudomonas: State-of-the-art review and prospects. Bioresource Technology, 2021, 320, 124412.	4.8	60
597	Lignin degradation in cooking with active oxygen and solid Alkali process: A mechanism study. Journal of Cleaner Production, 2021, 278, 123984.	4.6	16
598	Hydroconversion of Kraft lignin for biofuels production using bifunctional rhenium-molybdenum supported zeolitic imidazolate framework nanocatalyst. Bioresource Technology, 2021, 321, 124443.	4.8	21
599	Influence of delignification and reaction conditions in the aqueous phase transformation of lignocellulosic biomass to platform molecules. Bioresource Technology, 2021, 321, 124500.	4.8	9
600	Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. Bioresource Technology, 2021, 322, 124522.	4.8	83
601	New Opportunities in the Valorization of Technical Lignins. ChemSusChem, 2021, 14, 1016-1036.	3.6	94
602	Biomass waste conversion into low-cost carbon-based materials for supercapacitors: A sustainable approach for the energy scenario. Journal of Electroanalytical Chemistry, 2021, 880, 114899.	1.9	39

#	Article	IF	CITATIONS
603	Cascading of engineered bioenergy plants and fungi sustainable for low-cost bioethanol and high-value biomaterials under green-like biomass processing. Renewable and Sustainable Energy Reviews, 2021, 137, 110586.	8.2	68
604	Thio-assisted reductive electrolytic cleavage of lignin β-O-4 models and authentic lignin. Green Chemistry, 2021, 23, 412-421.	4.6	28
605	Hydrothermal liquefaction versus catalytic hydrodeoxygenation of a bioethanol production stillage residue to platform chemicals: A comparative study. Fuel Processing Technology, 2021, 213, 106654.	3.7	11
606	Building biobased, degradable, flexible polymer networks from vanillin <i>via</i> thiol–ene "click― photopolymerization. Polymer Chemistry, 2021, 12, 564-571.	1.9	22
607	2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development. Chemosphere, 2021, 268, 129326.	4.2	44
608	Selective Synthesis of Cyclohexanol Intermediates from Lignin-Based Phenolics and Diaryl Ethers using Hydrogen over Supported Metal Catalysts: A Critical Review. Catalysis Surveys From Asia, 2021, 25, 1-26.	1.0	11
609	Techno-economic analysis of different integrated biorefinery scenarios using lignocellulosic waste streams as source for phenolic alcohols production. Journal of Cleaner Production, 2021, 285, 124829.	4.6	7
610	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C 2 Platform Molecule. Angewandte Chemie, 2021, 133, 12312-12331.	1.6	5
611	Life science nanoarchitectonics at interfaces. Materials Chemistry Frontiers, 2021, 5, 1018-1032.	3.2	11
612	Cu2O(100) surface as an active site for catalytic furfural hydrogenation. Applied Catalysis B: Environmental, 2021, 282, 119576.	10.8	43
613	Toward Replacing Ethylene Oxide in a Sustainable World: Glycolaldehyde as a Bioâ€Based C ₂ Platform Molecule. Angewandte Chemie - International Edition, 2021, 60, 12204-12223.	7.2	47
614	Novel and Efficient Lignin Fractionation Processes for Tailing Lignin-Based Materials. , 2021, , 363-387.		0
615	Advances in biofuels and by-products from lignin. , 2021, , 101-130.		2
616	Lignins and their close derivatives produced by biorefinery processes for the treatment of human diseases. , 2021, , 15-32.		0
617	Lignocellulosic Biorefinery for Value-Added Products: The Emerging Bioeconomy. , 2021, , 291-321.		3
618	Recent Advances in Renewable Polymer Production from Lignin-Derived Aldehydes. Polymers, 2021, 13, 364.	2.0	10
619	Lignin extraction and isolation methods. , 2021, , 61-104.		1
620	Biomass conversion. , 2021, , 3-39.		7

ARTICLE IF CITATIONS # Grow it yourself composites: delignification and hybridisation of lignocellulosic material using 621 4.6 4 animals and fungi. Green Chemistry, 2021, 23, 7506-7514. Production of active pharmaceutical ingredients (APIs) from lignin-derived phenol and catechol. 4.6 23 Green Chemistry, 2021, 23, 7488-7498. Techno-economic analysis and life cycle assessment of a biorefinery utilizing reductive catalytic 623 15.6 106 fractionation. Energy and Environmental Science, 2021, 14, 4147-4168. Tailoring Lignin Structure to Maximize the Value from Lignin. ACS Symposium Series, 2021, , 13-36. 624 0.5 Proteomic Approaches for Advancing the Understanding and Application of Oleaginous Bacteria for 625 0.5 3 Bioconversion of Lignin to Lipids. ACS Symposium Series, 2021, , 61-96. â€~Lignin and extractives first' conversion of lignocellulosic residual streams using UV light from LEDs. 4.6 Green Chemistry, 2021, 23, 8251-8259. Photocatalytic intermolecular carboarylation of alkenes by selective C–O bond cleavage of 627 2.2 14 diarylethers. Chemical Communications, 2021, 57, 9240-9243. Isomer-dependent catalytic pyrolysis mechanism of the lignin model compounds catechol, resorcinol and hydroquinone. Chemical Science, 2021, 12, 3161-3169. 628 3.7 Recent advances in (chemo)enzymatic cascades for upgrading bio-based resources. Chemical 629 2.2 28 Communications, 2021, 57, 10661-10674. Electrochemical upgrading of depolymerized lignin: a review of model compound studies. Green 4.6 Chemistry, 2021, 23, 2868-2899 The Role of Group VIII Metals in Hydroconversion of Lignin to Value-Added Chemicals and Biofuels., 631 2 2021, , 739-765. Lignin as the most abundant natural polymers as bio- and nanosorbents. , 2021, , 111-129. Photoinduced transition-metal and external photosensitizer free cross-coupling of aryl triflates 633 2.2 13 with trialkyl phosphites. Chemical Communications, 2021, 57, 8429-8432. A guide towards safe, functional and renewable BPA alternatives by rational molecular design: 634 1.9 structure–property and structure–toxicity relationships. Polymer Chemistry, 2021, 12, 5870-5901. Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Reports, 635 2.8 47 2021, 40, 935-951. Coupling of Flavonoid Initiation Sites with Monolignols Studied by Density Functional Theory. ACS Sustainable Chemistry and Engineering, 2021, 9, 1518-1528. Reductive Catalytic Fractionation: From Waste Wood to Functional Phenolic Oligomers for 637 0.5 5 Attractive, Value-Added Applications. ACS Symposium Series, 2021, , 37-60. Lignin amination valorization: heterogeneous catalytic synthesis of aniline and benzylamine from lignin-derived chemicals. Green Chemistry, 2021, 23, 6761-6788.

#	Article	IF	CITATIONS
639	Advanced and versatile lignin-derived biodegradable composite film materials toward a sustainable world. Green Chemistry, 2021, 23, 3790-3817.	4.6	114
640	Design of task-specific metal phosphides for the sustainable manufacture of advanced biofuels. Advances in Inorganic Chemistry, 2021, 77, 219-239.	0.4	5
641	The tree fractionation. , 2021, , 33-84.		1
642	Natural polyphenols applications. , 2021, , 259-314.		1
643	Effective Lignin Utilization Strategy: Major Depolymerization Technologies, Purification Process and Production of Valuable Material. Chemistry Letters, 2021, 50, 1123-1130.	0.7	7
644	Catalytic approaches for the selective preparation of cyclohexanone from lignin-based methoxyphenols/phenols. , 2021, , 301-327.		0
645	Changes of lignin biosynthesis in tobacco leaves during maturation. Functional Plant Biology, 2021, 48, 624.	1.1	8
646	Continuous hydrogenolysis of acetal-stabilized lignin in flow. Green Chemistry, 2021, 23, 320-327.	4.6	15
647	Non-plasmonic Ni nanoparticles catalyzed visible light selective hydrogenolysis of aryl ethers in lignin under mild conditions. Green Chemistry, 2021, 23, 7780-7789.	4.6	16
648	Valorization of lignin into high value products. , 2021, , 141-152.		0
649	Ru Nanoparticles on a Sulfonated Carbon Layer Coated SBA-15 for Catalytic Hydrogenation of Furfural into 1, 4-pentanediol. Catalysis Letters, 2021, 151, 2513-2526.	1.4	14
650	Emerging heterogeneous catalysts for biomass conversion: studies of the reaction mechanism. Chemical Society Reviews, 2021, 50, 11270-11292.	18.7	102
651	A well-defined lignin-based filler for tuning the mechanical properties of polymethyl methacrylate. Green Chemistry, 2021, 23, 2329-2335.	4.6	56
652	Structural and functional analysis of lignostilbene dioxygenases from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2021, 296, 100758.	1.6	7
653	Electrochemical methods for materials recycling. Materials Advances, 2021, 2, 1113-1138.	2.6	33
654	Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst. Nature Communications, 2021, 12, 416.	5.8	97
655	Role of peracetic acid on the disruption of lignin packing structure and its consequence on lignin depolymerisation. Green Chemistry, 2021, 23, 8468-8479.	4.6	11
656	Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustainable Energy and Fuels, 2021, 5, 3445-3457.	2.5	21

#	ARTICLE	IF	CITATIONS
657	Insights into the electrochemical degradation of phenolic lignin model compounds in a protic ionic liquid–water system. Green Chemistry, 2021, 23, 1665-1677.	4.6	33
658	Estrogenic activity of lignin-derivable alternatives to bisphenol A assessed <i>via</i> molecular docking simulations. RSC Advances, 2021, 11, 22149-22158.	1.7	9
659	Biodegradable Zn-ion battery with a lignin composite electrode and bio-ionic liquid based electrolyte: possible <i>in situ</i> energy generation by lignin electrocatalysis. Materials Advances, 2021, 2, 2676-2683.	2.6	15
660	Preparation of cyclohexanol intermediates from lignin through catalytic intervention. , 2021, , 57-82.		0
661	Chemo-catalytic conversion of lignin. , 2021, , 109-128.		0
662	Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing. Molecules, 2021, 26, 178.	1.7	16
663	Types of lignin, properties, and structural characterization techniques. , 2021, , 105-158.		3
664	Access to Biorenewable and CO ₂ -Based Polycarbonates from Exovinylene Cyclic Carbonates. ACS Sustainable Chemistry and Engineering, 2021, 9, 1714-1728.	3.2	22
665	Polymeric waste valorization at a crossroads: ten ways to bridge the research on model and complex/real feedstock. Green Chemistry, 2021, 23, 4656-4664.	4.6	10
666	Comparative study of the solvolytic deconstruction of corn stover lignin in batch and flow-through reactors. Green Chemistry, 2021, 23, 7731-7742.	4.6	17
667	Electrospinning of Lignin Nanofibers for Drug Delivery. Springer Series on Polymer and Composite Materials, 2021, , 171-197.	0.5	0
668	An efficient method to prepare aryl acetates by the carbonylation of aryl methyl ethers or phenols. New Journal of Chemistry, 2021, 45, 2683-2687.	1.4	3
669	Review on lignin modifications toward natural UV protection ingredient for lignin-based sunscreens. Green Chemistry, 2021, 23, 4633-4646.	4.6	109
670	Potential of petrochemicals from lignin. , 2021, , 147-171.		4
671	Using Isopropanol as a Capping Agent in the Hydrothermal Liquefaction of Kraft Lignin in Near-Critical Water. Energies, 2021, 14, 932.	1.6	9
672	Mechanisms of Caromatic-C bonds cleavage in lignin over NbOx-supported Ru catalyst. Journal of Catalysis, 2021, 394, 94-103.	3.1	25
673	Electrokinetic and sorption properties of hydrogen peroxide treated flax fibers (Linum usitatissimum) Tj ETQq0 C	0 rgβT /O 2:4	verlock 10 Tf

674	Hydrogenolysis of Lignin-Derived Aromatic Ethers over Heterogeneous Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 3379-3407.	3.2	2	59
-----	---	-----	---	----

#	Article	IF	CITATIONS
675	Engineering a Cytochrome P450 for Demethylation of Lignin-Derived Aromatic Aldehydes. Jacs Au, 2021, 1, 252-261.	3.6	20
676	Melanin-Inspired Design: Preparing Sustainable Photothermal Materials from Lignin for Energy Generation. ACS Applied Materials & Interfaces, 2021, 13, 7600-7607.	4.0	87
677	Study of the formation of lignin hydrogels with metal cations. Journal of Wood Chemistry and Technology, 2021, 41, 73-82.	0.9	7
678	Recent Catalytic Approaches for the Production of Cycloalkane Intermediates from Ligninâ€Based Aromatic Compounds: A Review. ChemistrySelect, 2021, 6, 1715-1733.	0.7	8
679	Green chemistry design in polymers derived from lignin: review and perspective. Progress in Polymer Science, 2021, 113, 101344.	11.8	103
680	Highly Strong and Conductive Carbon Fibers Originated from Bioinspired Lignin/Nanocellulose Precursors Obtained by Flow-Assisted Alignment and In Situ Interfacial Complexation. ACS Sustainable Chemistry and Engineering, 2021, 9, 2591-2599.	3.2	24
681	High-Yield Production of Deoxygenated Monomers from Kraft Lignin over ZnO-Co/N-CNTs in Water. ACS Sustainable Chemistry and Engineering, 2021, 9, 3232-3245.	3.2	12
682	Expanding the Boundary of Biorefinery: Organonitrogen Chemicals from Biomass. Accounts of Chemical Research, 2021, 54, 1711-1722.	7.6	181
683	Bioplastic production from renewable lignocellulosic feedstocks: a review. Reviews in Environmental Science and Biotechnology, 2021, 20, 167-187.	3.9	33
684	Intracellular pathways for lignin catabolism in white-rot fungi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	82
685	Exploiting Nature's Most Abundant Polymers: Developing New Pathways for the Conversion of Cellulose, Hemicellulose, Lignin and Chitin into Platform Molecules (and Beyond). Chemistry - an Asian Journal, 2021, 16, 604-620.	1.7	16
686	Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Progress in Polymer Science, 2021, 113, 101353.	11.8	189
687	Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin. Biomass Conversion and Biorefinery, 2023, 13, 2017-2028.	2.9	8
688	Lignins Isolated via Catalyst-Free Organosolv Pulping from Miscanthus x giganteus, M. sinensis, M. robustus and M. nagara: A Comparative Study. Molecules, 2021, 26, 842.	1.7	2
689	Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives. IScience, 2021, 24, 102211.	1.9	32
690	Exploring the Electronic Properties of Extended Benzofuranâ€Cyanovinyl Derivatives Obtained from Lignocellulosic and Carbohydrate Platforms Raw Materials. ChemPlusChem, 2021, 86, 475-482.	1.3	10
691	Catalytic Depolymerization of Date Palm Waste to Valuable C5–C12 Compounds. Catalysts, 2021, 11, 371.	1.6	2
692	Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 2021, 5, 2000251.	2.7	70

#	Article	IF	CITATIONS
693	Oxalohydrazide Ligands for Copperâ€Catalyzed Câ^'O Coupling Reactions with High Turnover Numbers. Angewandte Chemie - International Edition, 2021, 60, 8203-8211.	7.2	33
694	Oxalohydrazide Ligands for Copperâ€Catalyzed Câ^'O Coupling Reactions with High Turnover Numbers. Angewandte Chemie, 2021, 133, 8284-8292.	1.6	6
695	Oxidative α-C–C Bond Cleavage of 2° and 3° Alcohols to Aromatic Acids with O ₂ at Room Temperature via Iron Photocatalysis. Organic Letters, 2021, 23, 2915-2920.	2.4	27
696	Formation and Phase Selection of CaCO ₃ in the Intervention of Lignin Monomer Model Compounds. Crystal Research and Technology, 2021, 56, 2000187.	0.6	2
697	An Overview of the Antimicrobial Properties of Lignocellulosic Materials. Molecules, 2021, 26, 1749.	1.7	27
698	Lignin waste processing into solid, liquid, and gaseous fuels: a comprehensive review. Biomass Conversion and Biorefinery, 2023, 13, 4515-4553.	2.9	20
699	Production and Application of Lignin-Based Chemicals and Materials in the Cellulosic Ethanol Production: An Overview on Lignin Closed-Loop Biorefinery Approaches. Waste and Biomass Valorization, 2021, 12, 6309-6337.	1.8	13
700	Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 2029-2043.	2.9	17
701	Aromatic plants based environmental sustainability with special reference to degraded land management. Journal of Applied Research on Medicinal and Aromatic Plants, 2021, 22, 100298.	0.9	12
702	Recent Research Progress on Lignin-Derived Resins for Natural Fiber Composite Applications. Polymers, 2021, 13, 1162.	2.0	22
703	Fractionation of Poplar Wood Using a Bifunctional Aromatic Acid under Mild Conditions. ACS Sustainable Chemistry and Engineering, 2021, 9, 5364-5376.	3.2	20
704	Catalytic fast pyrolysis of lignocellulosic biomass: Critical role of zeolite catalysts. Renewable and Sustainable Energy Reviews, 2021, 139, 110707.	8.2	139
705	Lignin First: Confirming the Role of the Metal Catalyst in Reductive Fractionation. Jacs Au, 2021, 1, 729-733.	3.6	28
706	Base-free atmospheric O2-mediated oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic acid triggered by Mg-bearing MTW zeolite supported Au nanoparticles. Applied Catalysis A: General, 2021, 616, 118106.	2.2	16
707	High value add bio-based low-carbon materials: Conversion processes and circular economy. Journal of Cleaner Production, 2021, 293, 126101.	4.6	33
708	One step liquefaction of hardwood lignin to oligomers soluble in polymerizable solvents. Industrial Crops and Products, 2021, 162, 113259.	2.5	4
709	Lignin as a Renewable Substrate for Polymers: From Molecular Understanding and Isolation to Targeted Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 5481-5485.	3.2	13
710	Lignin peroxidase in focus for catalytic elimination of contaminants — A critical review on recent progress and perspectives. International Journal of Biological Macromolecules, 2021, 177, 58-82.	3.6	68

#	Article	IF	CITATIONS
711	A multi-omics approach to lignocellulolytic enzyme discovery reveals a new ligninase activity from <i>Parascedosporium putredinis</i> NO1. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	18
712	Improved conversion efficiency of Lignin-to-Fuel conversion by limiting catalyst deactivation. Chemical Engineering Journal, 2021, 410, 128270.	6.6	22
713	Supported-Metal Catalysts in Upgrading Lignin to Aromatics by Oxidative Depolymerization. Catalysts, 2021, 11, 467.	1.6	24
714	The effect of mix-milling with P2O5 on cellulose physicochemical properties responsible for increased glucose yield. Carbohydrate Polymers, 2021, 258, 117652.	5.1	7
715	Advances in Versatile Nanoscale Catalyst for the Reductive Catalytic Fractionation of Lignin. ChemSusChem, 2021, 14, 2268-2294.	3.6	20
716	Highly Efficient Semi-Continuous Extraction and In-Line Purification of High β-O-4 Butanosolv Lignin. Frontiers in Chemistry, 2021, 9, 655983.	1.8	19
717	Perspectives on Multifunctional Catalysts Derived from Layered Double Hydroxides toward Upgrading Reactions of Biomass Resources. ACS Catalysis, 2021, 11, 6440-6454.	5.5	46
718	Phosphorus containing group and lignin toward intrinsically flame retardant cellulose nanofibril-based film with enhanced mechanical properties. Composites Part B: Engineering, 2021, 212, 108699.	5.9	50
719	Metabolism of syringyl lignin-derived compounds in Pseudomonas putida enables convergent production of 2-pyrone-4,6-dicarboxylic acid. Metabolic Engineering, 2021, 65, 111-122.	3.6	48
720	Postsynthesis of Delaminated MWW-Type Stannosilicate as a Robust Catalyst for Sugar Conversion to Methyl Lactate. Industrial & Engineering Chemistry Research, 2021, 60, 8027-8034.	1.8	7
721	Isolating High Antimicrobial Ability Lignin From Bamboo Kraft Lignin by Organosolv Fractionation. Frontiers in Bioengineering and Biotechnology, 2021, 9, 683796.	2.0	41
722	Hydroxymethylation of softwood kraft lignin and phenol with paraformaldehyde. Sustainable Chemistry and Pharmacy, 2021, 20, 100376.	1.6	11
723	Debottlenecking a Pulp Mill by Producing Biofuels from Black Liquor in Three Steps. ChemSusChem, 2021, 14, 2414-2425.	3.6	23
724	Impact of drying process on kraft lignin: lignin-water interaction mechanism study by 2D NIR correlation spectroscopy. Journal of Materials Research and Technology, 2021, 12, 159-169.	2.6	22
725	Efficient hydrodeoxygenation of phenolic compounds and raw lignin-oil under a temperature-controlled phase-transfer catalysis. Fuel, 2021, 291, 120091.	3.4	14
726	Examination of how variations in lignin properties from Kraft and organosolv extraction influence the physicochemical characteristics of hydrothermal carbon. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105095.	2.6	16
727	Chiral Photonic Liquid Crystal Films Derived from Cellulose Nanocrystals. Small, 2021, 17, e2007306.	5.2	54
728	Unexpected Formation of Organic Siloxanes alongside Ethylphenols in the Catalytic Hydrogenation of Waste Enzymatic Lignin, Advanced Energy and Sustainability Research, 2021, 2, 2100059	2.8	2

#	Article	IF	CITATIONS
729	A Multiomic Approach to Understand How Pleurotus eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi (Basel, Switzerland), 2021, 7, 426.	1.5	9
731	Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. Journal of Bioresources and Bioproducts, 2021, 6, 108-128.	11.8	167
732	Oxidative Catalytic Fractionation and Depolymerization of Lignin in a One-Pot Single-Catalyst System. ACS Sustainable Chemistry and Engineering, 2021, 9, 7719-7727.	3.2	36
733	Preparation of Lignin-Based High-Ortho Thermoplastic Phenolic Resins and Fibers. Molecules, 2021, 26, 3993.	1.7	6
734	Aqueous Phase Selective Hydrogenation of Lignin-Derived Phenols to Cyclohexanols Over Pd/ \hat{I}^3 -Al2O3. Topics in Catalysis, 0, , 1.	1.3	2
735	Bio-BTX production from the shape selective catalytic fast pyrolysis of lignin using different zeolite catalysts: Relevance between the chemical structure and the yield of bio-BTX. Fuel Processing Technology, 2021, 216, 106792.	3.7	57
736	Microwave-assisted deep eutectic solvents (DES) pretreatment of control and transgenic poplars for boosting the lignin valorization and cellulose bioconversion. Industrial Crops and Products, 2021, 164, 113415.	2.5	79
737	Strategies for the Removal of Polysaccharides from Biorefinery Lignins: Process Optimization and Techno Economic Evaluation. Molecules, 2021, 26, 3324.	1.7	5
738	A comprehensive review on lignin obtained from agro-residues: potential source of useful chemicals. Biomass Conversion and Biorefinery, 2023, 13, 5533-5556.	2.9	8
739	Catalytic waste Kraft lignin hydrodeoxygenation to liquid fuels over a hollow Ni-Fe catalyst. Applied Catalysis B: Environmental, 2021, 287, 119975.	10.8	64
740	Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angewandte Chemie, 2021, 133, 16535-16539.	1.6	1
741	Transforming biorefinery designs with â€~Plug-In Processes of Lignin' to enable economic waste valorization. Nature Communications, 2021, 12, 3912.	5.8	71
742	Selective delignification of poplar wood with a newly isolated white-rot basidiomycete Peniophora incarnata T-7 by submerged fermentation to enhance saccharification. Biotechnology for Biofuels, 2021, 14, 135.	6.2	17
743	Photocatalytic Upgrading of Lignin Oil to Diesel Precursors and Hydrogen. Angewandte Chemie - International Edition, 2021, 60, 16399-16403.	7.2	44
744	Acetone:Water fractionation of pyrolytic lignin improves its antioxidant and antibacterial activity. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105175.	2.6	17
745	3-D hierarchical porous carbon from oxidized lignin by one-step activation for high-performance supercapacitor. International Journal of Biological Macromolecules, 2021, 180, 51-60.	3.6	43
746	Staged biorefinery of Moso bamboo by integrating polysaccharide hydrolysis and lignin reductive catalytic fractionation (RCF) for the sequential production of sugars and aromatics. Industrial Crops and Products, 2021, 164, 113358.	2.5	8
747	Embedding ruthenium nanoparticles in the shell layer of titanium zirconium oxide hollow spheres to catalyze the degradation of alkali lignin under mild condition. Journal of Hazardous Materials, 2021, 411, 125161.	6.5	15

#	Article	IF	CITATIONS
748	Uranyl-Photocatalyzed Hydrolysis of Diaryl Ethers at Ambient Environment for the Directional Degradation of 4-O-5 Lignin. Jacs Au, 2021, 1, 1141-1146.	3.6	29
749	Development of Lignin-Based Mesoporous Carbons for the Adsorption of Humic Acid. ACS Omega, 2021, 6, 15222-15235.	1.6	13
750	Biomass fast pyrolysis in an innovative gas-solid vortex reactor: Experimental proof of concept. Journal of Analytical and Applied Pyrolysis, 2021, 156, 105165.	2.6	20
751	Can Sustainable Packaging Help to Reduce Food Waste? A Status Quo Focusing Plant-Derived Polymers and Additives. Applied Sciences (Switzerland), 2021, 11, 5307.	1.3	3
752	Catalytic C–O bond cleavage in a β-O-4 lignin model through intermolecular hydrogen transfer. Inorganica Chimica Acta, 2021, 521, 120305.	1.2	14
753	Lignin-Based High-Performance Fibers by Textile Spinning Techniques. Materials, 2021, 14, 3378.	1.3	19
754	Process development for tall oil lignin production. Bioresource Technology, 2021, 329, 124891.	4.8	8
755	Spontaneous Electric Fields Play a Key Role in Thermochemical Catalysis at Metalâ^'Liquid Interfaces. ACS Central Science, 2021, 7, 1045-1055.	5.3	30
756	Highly-efficient isolation of cellulose microfiber from rice straw via gentle low-temperature phase transition. Cellulose, 2021, 28, 7021-7031.	2.4	8
757	Metal Sulfide Photocatalysts for Lignocellulose Valorization. Advanced Materials, 2021, 33, e2007129.	11.1	106
758	Lignin Aromatics to PHA Polymers: Nitrogen and Oxygen Are the Key Factors for <i>Pseudomonas</i> . ACS Sustainable Chemistry and Engineering, 2021, 9, 10579-10590.	3.2	18
759	Sulfation of wheat straw soda lignin: Role of solvents and catalysts. Catalysis Today, 2022, 397-399, 397-406.	2.2	7
760	Enzyme Catalyzed Copolymerization of Lignosulfonates for Hydrophobic Coatings. Frontiers in Bioengineering and Biotechnology, 2021, 9, 697310.	2.0	6
761	Solvent Effect on the Hydroconversion of Lignin-Related Model Compounds over MoO ₃ . Energy & Fuels, 2021, 35, 12142-12150.	2.5	5
762	Acid Hydrotropic Fractionation of Lignocelluloses for Sustainable Biorefinery: Advantages, Opportunities, and Research Needs. ChemSusChem, 2021, 14, 3031-3046.	3.6	46
763	Optimal timing of multiple investment decisions in a wood value chain: A real options approach. Journal of Environmental Management, 2021, 290, 112590.	3.8	3
764	Catalytic Liquefaction of Kraft Lignin with Solvothermal Approach. Catalysts, 2021, 11, 875.	1.6	10
765	Deep Eutectic Solvents for the Valorisation of Lignocellulosic Biomasses towards Fine Chemicals. Biomass, 2021, 1, 29-59.	1.2	38

#	Article	IF	CITATIONS
766	Depolymerization of biorefinery lignin by improved laccases of the whiteâ€rot fungus <i>Obba rivulosa</i> . Microbial Biotechnology, 2021, 14, 2140-2151.	2.0	6
767	Lignin Fractionation Methods: Can Lignin Fractions Be Separated in a True Industrial Process?. Industrial & Engineering Chemistry Research, 2021, 60, 10863-10881.	1.8	23
769	Catalytic transfer hydrogenolysis of C–O bonds in lignin model compounds without arene hydrogenation. Green Chemical Engineering, 2022, 3, 25-33.	3.3	10
770	The effects of mild Lewis acids-catalyzed ethanol pretreatment on the structural variations of lignin and cellulose conversion in balsa wood. International Journal of Biological Macromolecules, 2021, 183, 1362-1370.	3.6	19
771	Enzymes, <i>In Vivo</i> Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability. Chemical Reviews, 2021, 121, 10367-10451.	23.0	111
772	Added-Value Chemicals from Lignin Oxidation. Molecules, 2021, 26, 4602.	1.7	22
773	Novel siliconâ€contained ligninâ€based carbon fibers derived from bamboo pulping black liquor with improved electrochemical performance for supercapacitors. Journal of Applied Polymer Science, 2021, 138, 51321.	1.3	7
774	Lignin Biorefinery: New Horizons in Catalytic Hydrodeoxygenation for the Production of Chemicals. Energy & Fuels, 2021, 35, 16965-16994.	2.5	39
775	Lignin-based electrodes for energy storage application. Industrial Crops and Products, 2021, 165, 113425.	2.5	157
776	Characterisation of mass distributions of solvent-fractionated lignins using analytical ultracentrifugation and size exclusion chromatography methods. Scientific Reports, 2021, 11, 13937.	1.6	7
778	Effects of Milling and UV Pretreatment on the Pyrolytic Behavior and Thermal Stability of Softwood and Hardwood. Energy & Fuels, 2021, 35, 11353-11365.	2.5	9
779	Bringing Material Concepts into Conventional Biorefineries: Considerations of Sources, Preparations, and Applications of Lignin Nanomaterials. ACS Sustainable Chemistry and Engineering, 2021, 9, 10403-10423.	3.2	31
780	Valorization of Rice Straw via Hydrotropic Lignin Extraction and Its Characterization. Molecules, 2021, 26, 4123.	1.7	4
781	Unraveling the Role of Metal in M/NiAl ₂ O ₄ (M = Pt, Pd, Ru) Catalyst for the Self-Reforming-Driven Hydrogenolysis of Lignin. Industrial & Engineering Chemistry Research, 2021, 60, 11699-11706.	1.8	18
782	Catalytic S _N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angewandte Chemie - International Edition, 2021, 60, 20391-20399.	7.2	22
783	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie - International Edition, 2021, 60, 20666-20671.	7.2	66
784	Sustainable Production of Benzylamines from Lignin. Angewandte Chemie, 2021, 133, 20834-20839.	1.6	4
785	Catalytic [3+3] Annulation of <scp>βâ€Ketoethers</scp> and Cyclopropenones <i>via</i> C(sp ³)—O/C—C Bond Cleavage under <scp>Transitionâ€Metal</scp> Free Conditions. Chinese Journal of Chemistry, 2021, 39, 2769-2773.	2.6	5

#	Article	IF	CITATIONS
786	Metal-alkali catalytic valorization of lignocellulose towards aromatics and small molecular alcohols and acids in a holistic approach. Cellulose, 2021, 28, 9589-9611.	2.4	4
787	Fast screening of Depolymerized Lignin Samples Through 2D‣iquid Chromatography Mapping. ChemistryOpen, 2021, 10, 740-747.	0.9	5
788	Rhenium – A Tuneable Player in Tailored Hydrogenation Catalysis. European Journal of Inorganic Chemistry, 2021, 2021, 4043-4065.	1.0	24
789	Non-productive binding of cellobiohydrolase i investigated by surface plasmon resonance spectroscopy. Cellulose, 2021, 28, 9525-9545.	2.4	5
790	Natural Syringyl Mediators Accelerate Laccase-Catalyzed β-O-4 Cleavage and Cα-Oxidation of a Guaiacyl Model Substrate via an Aggregation Mechanism. ACS Omega, 2021, 6, 22578-22588.	1.6	7
791	Enzymes $\hat{a} \in \mathcal{E}$ Key Elements of the Future Biorefineries. , 0, , .		1
792	Thermal Conversion of Flax Shives in Sub- and Supercritical Ethanol in the Presence of Ru/C Catalyst. Catalysts, 2021, 11, 970.	1.6	17
793	Effects of torrefaction on the formation and distribution of dioxins during wood and PVC pyrolysis: An experimental and mechanistic study. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105240.	2.6	15
794	Boosting second-generation ethanol titers from green coconut fiber by using high-concentration polyethylene glycol. Industrial Crops and Products, 2021, 166, 113494.	2.5	9
795	Unlocking the Catalytic Hydrogenolysis of Chlorosilanes into Hydrosilanes with Superbases. ACS Catalysis, 2021, 11, 10855-10861.	5.5	9
796	Raney Ni as a Versatile Catalyst for Biomass Conversion. ACS Catalysis, 2021, 11, 10508-10536.	5.5	49
797	Biorefinery Concept Employing Bacillus coagulans: LX-Lignin and L-(+)-Lactic Acid from Lignocellulose. Microorganisms, 2021, 9, 1810.	1.6	12
798	Catalytic S _N Ar Hydroxylation and Alkoxylation of Aryl Fluorides. Angewandte Chemie, 2021, 133, 20554-20562.	1.6	4
799	Vessel―and rayâ€specific monolignol biosynthesis as an approach to engineer fiberâ€hypolignification and enhanced saccharification in poplar. Plant Journal, 2021, 108, 752-765.	2.8	11
800	Lignin pyrolysis under NH3 atmosphere for 4-vinylphenol product: An experimental and theoretical study. Fuel, 2021, 297, 120776.	3.4	18
801	Histidine protonation states are key in the Ligl catalytic reaction mechanism. Proteins: Structure, Function and Bioinformatics, 2021, , .	1.5	2
802	Solvothermal-Based Lignin Fractionation From Corn Stover: Process Optimization and Product Characteristics. Frontiers in Chemistry, 2021, 9, 697237.	1.8	7
803	Catalytic fast pyrolysis of beech wood lignin isolated by different biomass (pre)treatment processes: Organosolv, hydrothermal and enzymatic hydrolysis. Applied Catalysis A: General, 2021, 623, 118298.	2.2	35

#	ARTICLE	IF	CITATIONS
804	Reductive or oxidative catalytic lignin depolymerization: An overview of recent advances. Catalysis Today, 2021, 373, 24-37.	2.2	47
805	Facile design of tough, strong, and UV-shielding soy protein-based composite films. Industrial Crops and Products, 2021, 166, 113474.	2.5	13
806	In Situ Wood Delignification toward Sustainable Applications. Accounts of Materials Research, 2021, 2, 606-620.	5.9	71
807	Selective Demethoxylation of Lignin-Derived Methoxyphenols to Phenols over Lignin-Derived-Biochar-Supported Mo ₂ C Catalysts. Energy & Fuels, 2021, 35, 17138-17148.	2.5	6
808	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
809	Tricin Biosynthesis and Bioengineering. Frontiers in Plant Science, 2021, 12, 733198.	1.7	25
810	Bridging Scales in Bioenergy and Catalysis: A Review of Mesoscale Modeling Applications, Methods, and Future Directions. Energy & Fuels, 2021, 35, 14382-14400.	2.5	12
811	Conversion of lignocellulose to biofuels and chemicals via sugar platform: An updated review on chemistry and mechanisms of acid hydrolysis of lignocellulose. Renewable and Sustainable Energy Reviews, 2021, 146, 111169.	8.2	138
812	Chemical Transformations of Flax Shive Lignin by the Action of Polysaccharide Fermentation Products. Journal of Applied Spectroscopy, 2021, 88, 781-788.	0.3	4
814	Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with <i>p</i> â€Hydroxybenzoic Acidâ€Based Deep Eutectic Solvent. ChemSusChem, 2021, 14, 5235-5244.	3.6	9
815	Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2021, 147, 111217.	8.2	57
816	Advances in engineering microbial biosynthesis of aromatic compounds and related compounds. Bioresources and Bioprocessing, 2021, 8, .	2.0	26
817	Oxidative Catalytic Fractionation of Lignocellulosic Biomass under Non-alkaline Conditions. Journal of the American Chemical Society, 2021, 143, 15462-15470.	6.6	65
818	Valorization of lignin in native corn stover via fractionation-hydrogenolysis process over cobalt-supported catalyst without external hydrogen. Molecular Catalysis, 2021, 514, 111832.	1.0	5
819	Catalytic Hydrogenolysis of Lignin: The Influence of Minor Units and Saccharides. ChemSusChem, 2021, 14, 5186-5198.	3.6	9
820	Ultraclean hybrid poplar lignins via liquid–liquid fractionation using ethanol–water solutions. MRS Communications, 2021, 11, 692.	0.8	7
821	Self-hydrogen transfer hydrogenolysis of native lignin over Pd-PdO/TiO2. Applied Catalysis B: Environmental, 2022, 301, 120767.	10.8	33
822	Selective biomass photoreforming for valuable chemicals and fuels: A critical review. Renewable and Sustainable Energy Reviews, 2021, 148, 111266.	8.2	70

ARTICLE IF CITATIONS Extraction of Noncondensed Lignin from Poplar Sawdusts with <i>p</i>-Toluenesulfonic Acid and 823 2.4 20 Ethanol. Journal of Agricultural and Food Chemistry, 2021, 69, 10838-10847. One-Pot Bioconversion of Lignin-Derived Substrates into Gallic Acid. Journal of Agricultural and 824 2.4 Food Chemistry, 2021, 69, 11336-11341. Effect of metal triflates on the microwave-assisted catalytic hydrogenolysis of birch wood lignin to 825 2.57 monophenolic compounds. Industrial Crops and Products, 2021, 167, 113515. Bacterial Transformation of Aromatic Monomers in Softwood Black Liquor. Frontiers in 826 Microbiology, 2021, 12, 735000. Heterogeneous Cobalt atalyzed Câ[~]C Bond Cleavage in Alcohols to Carbonyl Compounds. 827 7 1.8 ChemCatChem, 2021, 13, 4355. Hydrothermal Depolymerization of Kraft Lignins with Green C₁–C₃ Alcohol–Water Mixtures. Energy & amp; Fuels, 2021, 35, 15770-15777. 2.5 Improved value and carbon footprint by complete utilization of corncob lignocellulose. Chemical 829 6.6 50 Engineering Journal, 2021, 419, 129565. Novel catalytic potential of a hyperthermostable monoâ€'copper oxidase (LPMO-AOAA17) for the oxidation of lignin monomers and depolymerisation of lignin dimer in aqueous media. International 3.6 14 Journal of Biological Macromolecules, 2021, 186, 563-573. Anchoring single platinum atoms onto nickel nanoparticles affords highly selective catalysts for 831 2.8 13 lignin conversion. Cell Reports Physical Science, 2021, 2, 100567. Oxidative cleavage of C–C bonds in lignin. Nature Chemistry, 2021, 13, 1118-1125. 6.6 ZnIn₂S₄â€Based Photocatalysts for Energy and Environmental Applications. 833 4.6 153 Small Methods, 2021, 5, e2100887. Lignin-Based Additives for Improved Thermo-Oxidative Stability of Biolubricants. ACS Sustainable 3.2 Chemistry and Engineering, 2021, 9, 12548-12559. The role of lignin and lignin-based materials in sustainable construction – A comprehensive review. 835 3.6 192 International Journal of Biological Macromolecules, 2021, 187, 624-650. Hydrogenolysis of lignin to phenolic monomers over Ru based catalysts with different metal-support interactions: Effect of partial hydrogenation of C(sp2)-O/C. Fuel, 2021, 302, 121184. 3.4 Mo-based catalyst for chemical looping deoxygenation of phenolic compounds to aromatic 837 3.7 11 hydrocarbons. Fuel Processing Technology, 2021, 221, 106936. Economical concerns of lignin in the energy sector. Cleaner Engineering and Technology, 2021, 4, 14 100258. Oxidative valorisation of lignin into valuable phenolics: Effect of acidic and basic catalysts and 839 4.8 17 reaction parameters. Bioresource Technology, 2021, 338, 125513. Overview and technology opportunities for thermochemically-produced bio-blendstocks. Journal of 840 3.3 Environmental Chemical Engineering, 2021, 9, 106255.

#	Article	IF	CITATIONS
841	Catalytic oxidation of lignin and model compounds over nano europium oxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626, 126846.	2.3	5
842	Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals. Renewable and Sustainable Energy Reviews, 2021, 149, 111368.	8.2	36
843	Dual lignin valorization enabled by carbon quantum dots and lithium-sulfur cathode. Industrial Crops and Products, 2021, 170, 113801.	2.5	10
844	Application of biomass derived products in mid-size automotive industries: A review. Chemosphere, 2021, 280, 130723.	4.2	32
845	Promoting catalytic hydrogenolysis degradation of black liquor crude lignin by extended soda-oxygen cooking. Industrial Crops and Products, 2021, 170, 113788.	2.5	5
846	Controlling Diphenyl Ether Hydrogenolysis Selectivity by Tuning the Pt Support and H-Donors under Mild Conditions. ACS Catalysis, 2021, 11, 12661-12672.	5.5	20
847	Lignin valorization toward value-added chemicals and fuels via electrocatalysis: A perspective. Chinese Journal of Catalysis, 2021, 42, 1831-1842.	6.9	38
848	Lignin-to-chemicals: Application of catalytic hydrogenolysis of lignin to produce phenols and terephthalic acid via metal-based catalysts. International Journal of Biological Macromolecules, 2021, 190, 72-85.	3.6	27
849	Biobased thermally-stable aromatic cyanate ester thermosets: A review. Reactive and Functional Polymers, 2021, 168, 105037.	2.0	21
850	Size-controlled lignin nanoparticles for tuning the mechanical properties of poly(vinyl alcohol). Industrial Crops and Products, 2021, 172, 114012.	2.5	26
851	Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnology Advances, 2021, 51, 107702.	6.0	42
852	Exploration of in-situ formed MoSx catalyst for co-hydrodeoxygenation of sawdust and vacuum gas oil in pilot-scale plant. Applied Catalysis B: Environmental, 2021, 297, 120499.	10.8	5
853	Reductive liquefaction of lignin to monocyclic hydrocarbons: ReS2/Al2O3 as efficient char inhibitor and hydrodeoxygenation catalyst. Applied Catalysis B: Environmental, 2021, 297, 120449.	10.8	20
854	Direct fractionation of wood chips by deep eutectic solvent facilitated pulping technology and application for enzyme hydrolysis. Industrial Crops and Products, 2021, 171, 113927.	2.5	7
855	Enhanced production of hydrocarbons from lignin isolated from sugarcane bagasse using formic acid induced supercritical ethanol liquefaction followed by hydrodeoxygenation. Chemosphere, 2021, 285, 131491.	4.2	9
856	A critical review on metal-based catalysts used in the pyrolysis of lignocellulosic biomass materials. Journal of Environmental Management, 2021, 299, 113597.	3.8	42
857	Engineering Acinetobacter baylyi ADP1 for mevalonate production from lignin-derived aromatic compounds. Metabolic Engineering Communications, 2021, 13, e00173.	1.9	14
858	Copper atoms inlaid in titanium zirconium oxide spherical shell confine free radicals for the robust Fenton-like treatment of complex biogas slurry. Applied Catalysis B: Environmental, 2021, 298, 120555.	10.8	8

#	Article	IF	CITATIONS
859	Unmasking radical-mediated lignin pyrolysis after benzyl hydroxyl shielding. Bioresource Technology, 2021, 342, 125944.	4.8	7
860	Catalytic depolymerization of Kraft lignin towards liquid fuels over bifunctional molybdenum oxide based supported catalyst. Fuel, 2021, 306, 121599.	3.4	13
861	Biphasic pretreatment for energy and carbon efficient conversion of lignocellulose into bioenergy and reactive lignin. Applied Energy, 2021, 303, 117653.	5.1	25
862	Hydrothermal oxidative valorisation of lignin into functional chemicals: A review. Bioresource Technology, 2021, 342, 126016.	4.8	30
863	A synergistic hydrothermal-deep eutectic solvent (DES) pretreatment for rapid fractionation and targeted valorization of hemicelluloses and cellulose from poplar wood. Bioresource Technology, 2021, 341, 125828.	4.8	52
864	Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Current Opinion in Biotechnology, 2022, 73, 1-13.	3.3	39
865	Sustainable technologies for platform and drop-in chemicals: production and applications. , 2022, , 1-29.		0
866	High-solid ethylenediamine pretreatment to fractionate new lignin streams from lignocellulosic biomass. Chemical Engineering Journal, 2022, 427, 130962.	6.6	38
867	Value-added products from lignin: IsolationValue-added products from lignin: Isolation, characterization and applications. , 2021, , 33-55.		2
868	Capitalizing on lignin and tannin value. , 2021, , 183-258.		0
869	Selective oxidation of bio-based platform molecules and their conversion products over metal nanoparticle catalysts: a review. Reaction Chemistry and Engineering, 2021, 6, 418-440.	1.9	9
870	One-pot route to convert technical lignin into versatile lignin esters for tailored bioplastics and sustainable materials. Green Chemistry, 2021, 23, 4567-4579.	4.6	17
871	Oxidative depolymerization of Kraft lignin to high-value aromatics using a homogeneous vanadium–copper catalyst. Catalysis Science and Technology, 2021, 11, 1843-1853.	2.1	24
872	The RCF biorefinery: Building on a chemical platform from lignin. Advances in Inorganic Chemistry, 2021, , 241-297.	0.4	8
873	Microbial utilization of lignin-derived aromatics <i>via</i> a synthetic catechol <i>meta</i> -cleavage pathway. Green Chemistry, 2021, 23, 8238-8250.	4.6	6
874	The thousand faces of Cu-doped porous mixed oxides (Cu-PMO) in the conversion of renewable resources and beyond. Advances in Inorganic Chemistry, 2021, , 59-98.	0.4	4
875	Lignocellulose-derived hydrogel/aerogel-based flexible quasi-solid-state supercapacitors with high-performance: a review. Journal of Materials Chemistry A, 2021, 9, 14233-14264.	5.2	55
876	Synthetic lignin-like and degradable nanocarriers. Polymer Chemistry, 2021, 12, 4661-4667.	1.9	4

#	Article	IF	CITATIONS
877	Fungal Treatment for the Valorization of Technical Soda Lignin. Journal of Fungi (Basel, Switzerland), 2021, 7, 39.	1.5	10
878	Enhancing lignin depolymerization <i>via</i> a dithionite-assisted organosolv fractionation of birch sawdust. Green Chemistry, 2021, 23, 3268-3276.	4.6	13
879	Employing lignin in the formation of the selective layer of thin-film composite membranes for pervaporation desalination. Materials Advances, 2021, 2, 3099-3106.	2.6	12
880	Sequential oxidation-depolymerization strategies for lignin conversion to low molecular weight aromatic chemicals. Advances in Inorganic Chemistry, 2021, 77, 99-136.	0.4	10
881	Controlled lignosulfonate depolymerization <i>via</i> solvothermal fragmentation coupled with catalytic hydrogenolysis/hydrogenation in a continuous flow reactor. Green Chemistry, 2021, 23, 9894-9905.	4.6	16
882	Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid. Green Chemistry, 2021, 23, 1536-1561.	4.6	42
883	Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chemical Society Reviews, 2021, 50, 6042-6093.	18.7	104
884	Protection Strategies Enable Selective Conversion of Biomass. Angewandte Chemie - International Edition, 2020, 59, 11704-11716.	7.2	82
885	Metalâ€Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem, 2020, 12, 2890-2941.	1.8	56
886	Chemical Modification of Lignin by Polymerization and Depolymerization. Springer Series on Polymer and Composite Materials, 2020, , 139-180.	0.5	5
887	Lignin Composites for Biomedical Applications: Status, Challenges and Perspectives. Springer Series on Polymer and Composite Materials, 2020, , 253-273.	0.5	5
888	Biofuel: Types and Process Overview. Clean Energy Production Technologies, 2020, , 1-28.	0.3	2
889	Bioremediation Approaches for Treatment of Pulp and Paper Industry Wastewater: Recent Advances and Challenges. , 2020, , 1-48.		13
890	Pyrolysis Chemistry and Mechanisms: Interactions of Primary Components. Biofuels and Biorefineries, 2020, , 113-137.	0.5	1
891	Lignin valorization and cleavage of arylether bonds in chemical processing of wood: a mini-review. Wood Science and Technology, 2020, 54, 787-820.	1.4	27
892	Catalytic Ethanolysis of Enzymatic Hydrolysis Lignin over an Unsupported Nickel Catalyst: The Effect of Reaction Conditions. Energy & Fuels, 2021, 35, 519-528.	2.5	9
893	Alkali-Based Pretreatment-Facilitated Lignin Valorization: A Review. Industrial & Engineering Chemistry Research, 2020, 59, 16923-16938.	1.8	70
894	Stabilization strategies in biomass depolymerization using chemical functionalization. Nature Reviews Chemistry, 2020, 4, 311-330.	13.8	214

#	Article	IF	CITATIONS
895	Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chemical Society Reviews, 2020, 49, 4273-4306.	18.7	559
897	HYDROGENATION OF ABIES WOOD AND ETHANOL-LIGNIN BY MOLECULAR HYDROGEN IN SUPERCRITI-CAL ETHANOL OVER BIFUNCTIONAL RU/C CATALYST. Khimiya Rastitel'nogo Syr'ya, 2019, , 15-26.	0.0	6
899	Applicability of Recombinant Laccases From the White-Rot Fungus Obba rivulosa for Mediator-Promoted Oxidation of Biorefinery Lignin at Low pH. Frontiers in Bioengineering and Biotechnology, 2020, 8, 604497.	2.0	14
900	Reductive Catalytic Fractionation of Flax Shive over Ru/C Catalysts. Catalysts, 2021, 11, 42.	1.6	21
901	Bioplastics: requirement for sustainability. American Journal of Environmental Biology, 0, , 50-59.	0.0	1
902	Catalytic Conversion of Lignin to Liquid Fuels with an Improved H/C _{eff} Value over Bimetallic NiMo-MOF-Derived Catalysts. ACS Sustainable Chemistry and Engineering, 2021, 9, 13937-13952.	3.2	20
903	pH-Responsive Lignin Hydrogel for Lignin Fractionation. ACS Sustainable Chemistry and Engineering, 2021, 9, 13972-13978.	3.2	21
904	Insights into alkaline choline chloride-based deep eutectic solvents pretreatment for Populus deltoides: Lignin structural features and modification mechanism. International Journal of Biological Macromolecules, 2021, 193, 319-327.	3.6	30
905	Microwaveâ€Assisted Production of 5â€Hydroxymethylfurfural from Glucose. ChemistrySelect, 2021, 6, 10582-10586.	0.7	3
906	Depolymerization of Technical Lignins in Supercritical Ethanol: Effects of Lignin Structure and Catalyst. Energy & Fuels, 2021, 35, 17769-17783.	2.5	10
907	Guaiacol Hydrodeoxygenation over Iron–Ceria Catalysts with Platinum Single-Atom Alloy Clusters as a Promoter. ACS Catalysis, 2021, 11, 12794-12814.	5.5	24
908	Fractionation of Lignin with Decreased Heterogeneity: Based on a Detailed Characteristics Study of Sequentially Extracted Softwood Kraft Lignin. ACS Sustainable Chemistry and Engineering, 2021, 9, 13862-13873.	3.2	20
909	Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity. Bioresource Technology, 2022, 343, 126120.	4.8	13
910	Production of oxalic acid from sawdust using coal fly ash as a catalyst. SN Applied Sciences, 2021, 3, 1.	1.5	1
911	The Importance of Extraction Protocol on the Analysis of Novel Waste Sources of Lignocellulosic Biomass. Energies, 2021, 14, 6406.	1.6	2
912	Ternary Alloys Enable Efficient Production of Methoxylated Chemicals via Selective Electrocatalytic Hydrogenation of Lignin Monomers. Journal of the American Chemical Society, 2021, 143, 17226-17235.	6.6	43
913	A renewable lignin-derived bio-oil for boosting the oxidation stability of biodiesel. Renewable Energy, 2022, 182, 867-878.	4.3	14
914	Lignin-Based Membrane for Dye Removal. Sustainable Textiles, 2022, , 181-213.	0.4	1

# 915	ARTICLE Revealing the role of hydrogen bonding interactions and supramolecular complexes in lignin dissolution by deep eutectic solvents. Journal of Molecular Liquids, 2021, 344, 117779.	IF 2.3	Citations
916	Flow chemistry for a better fractionation of lignocellulosic biomass in products structure and yield. Industrial Crops and Products, 2021, 173, 114124.	2.5	3
917	Design of Water-Tolerant Ni-Supported Nb2O5 Nanorods for the Hydrotreating of Lignin Streams Obtained from Lignin-First Biorefining. SSRN Electronic Journal, 0, , .	0.4	0
918	Introduction to Nanocatalysts. RSC Catalysis Series, 2019, , 1-36.	0.1	5
920	ToF-SIMS imaging reveals that <i>p</i> -hydroxybenzoate groups specifically decorate the lignin of fibres in the xylem of poplar and willow. Holzforschung, 2021, 75, 452-462.	0.9	21
921	Investigating (Pseudo)-Heterogeneous Pd-Catalysts for Kraft Lignin Depolymerization under Mild Aqueous Basic Conditions. Catalysts, 2021, 11, 1311.	1.6	6
922	From Lignin to Valuable Aromatic Chemicals: Lignin Depolymerization and Monomer Separation via Centrifugal Partition Chromatography. ACS Central Science, 2021, 7, 1831-1837.	5.3	59
923	Synthesis and Characterization of Lignin- <i>graft</i> -poly(ethylene brassylate): a Biomass-Based Polyester with High Mechanical Properties. ACS Sustainable Chemistry and Engineering, 2021, 9, 14766-14776.	3.2	9
924	Conductive, Self-Healing, Adhesive, and Antibacterial Hydrogels Based on Lignin/Cellulose for Rapid MRSA-Infected Wound Repairing. ACS Applied Materials & Interfaces, 2021, 13, 52333-52345.	4.0	68
925	Clycerol organosolv pretreatment can unlock lignocellulosic biomass for production of fermentable sugars: Present situation and challenges. Bioresource Technology, 2022, 344, 126264.	4.8	44
926	Polar solvents enhance the efficiency of microwave pre-treatment of woody biomass. Biomass and Bioenergy, 2021, 155, 106281.	2.9	6
927	Genomic Dissection of Peduncle Morphology in Barley through Nested Association Mapping. Plants, 2021, 10, 10.	1.6	5
928	Pyrolysis characteristics and kinetics of lignin: effect of starting lignins. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2022, 44, 8096-8108.	1.2	4
929	Recent Advances in Enzymatic Conversion of Lignin to Value Added Products. , 2021, , 439-471.		1
930	Spectroscopic analysis of organic materials susceptible to transformation processes. ECORFAN Journal Bolivia, 0, , 1-6.	0.0	0
931	Sustainable production of succinic acid and 3-hydroxypropionic acid from renewable feedstocks. , 2022, , 367-386.		1
932	Mild fractionation of poplar into reactive lignin via lignin-first strategy and its enhancement on cellulose saccharification. Bioresource Technology, 2022, 343, 126122.	4.8	25
933	Systematic evaluation of fractionation and valorization of lignocellulose via two-stage hydrothermal liquefaction. Fuel, 2022, 310, 122358.	3.4	10

#	Article	IF	CITATIONS
934	Advances in pretreatment of lignocellulosic biomass for bioenergy production: Challenges and perspectives. Bioresource Technology, 2022, 343, 126123.	4.8	166
935	Applications of Lignin in the Agri-Food Industry. Springer Series on Polymer and Composite Materials, 2020, , 275-298.	0.5	3
936	Biorefinery: A Concept for Co-producing Biofuel with Value-Added Products. Environmental Chemistry for A Sustainable World, 2020, , 23-52.	0.3	1
937	Reductive fractionation of larch in a supercritical ethanol medium in the presence of bifunctional Ru/C catalyst and hydrogen donors. Kataliz V Promyshlennosti, 2020, 20, 127-139.	0.2	4
938	Depolymerization Strategies for Lignin Valorization toward Valuable Aromatic Compounds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 357-359.	0.0	0
939	From plant phenols to novel bio-based polymers. Progress in Polymer Science, 2022, 125, 101473.	11.8	78
940	Ionic liquids screening for lignin dissolution: COSMO-RS simulations and experimental characterization. Journal of Molecular Liquids, 2022, 348, 118007.	2.3	14
941	Preparation and properties of novel bio-based epoxy resin thermosets from lignin oligomers and cardanol. International Journal of Biological Macromolecules, 2021, 193, 1400-1408.	3.6	33
942	The Sizeâ€Dependent Catalytic Performances of Supported Metal Nanoparticles and Single Atoms for the Upgrading of Biomassâ€Derived 5â€Hydroxymethylfurfural, Furfural, and Levulinic acid. ChemCatChem, 2022, 14, .	1.8	3
943	Depolymerization and Demethylation of Kraft Lignin in Molten Salt Hydrate and Applications as an Antioxidant and Metal Ion Scavenger. Journal of Agricultural and Food Chemistry, 2021, 69, 13568-13577.	2.4	20
944	Synthesis of Bio Phenolic Polymer and Its Properties. , 2021, , 13-37.		0
945	Reductive Fractionation of Larch Wood in Supercritical Ethanol in the Presence of a Bifunctional Ru/C Catalyst and Hydrogen Donors. Catalysis in Industry, 2020, 12, 330-342.	0.3	1
946	Z-Scheme nanocomposite with high redox ability for efficient cleavage of lignin C–C bonds under simulated solar light. Green Chemistry, 2021, 23, 10071-10078.	4.6	30
947	Microbial assimilation of lignin-derived aromatic compounds and conversion to value-added products. Current Opinion in Microbiology, 2022, 65, 64-72.	2.3	27
948	Efficient vanillin biosynthesis by recombinant lignin-degrading bacterium Arthrobacter sp. C2 and its environmental profile via life cycle assessment. Bioresource Technology, 2022, 347, 126434.	4.8	15
949	Towards understanding kraft lignin depolymerisation under hydrothermal conditions. Holzforschung, 2022, 76, 37-48.	0.9	8
950	Unique Gelation of Polyethylene Glycol-Modified Lignin in Hot Ethanol and Its Application to the Synthesis of Epoxy Resin with a Large Lignin Content. Industrial & Engineering Chemistry Research, 2021, 60, 17045-17054.	1.8	3
951	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promising Method of its Integrated Processing. Kataliz V Promyshlennosti, 2021, 21, 425-443.	0.2	1

#	Article	IF	CITATIONS
952	Selective catalytic transformation of cellulose into bio-based cresol with CuCr2O4@MCM-41 catalyst. Cellulose, 2022, 29, 303-319.	2.4	11
953	Bio-inspired water resistant and fast multi-responsive Janus actuator assembled by cellulose nanopaper and graphene with lignin adhesion. Chemical Engineering Journal, 2022, 433, 133672.	6.6	29
954	Process intensification strategies for lignin valorization. Chemical Engineering and Processing: Process Intensification, 2022, 171, 108732.	1.8	12
955	Biomass: Renewable carbon resource for chemical and energy industry. Innovation(China), 2022, 3, 100184.	5.2	30
956	Fractionation of Birch Wood by Integrating Alkaline-Acid Treatments and Hydrogenation in Ethanol over a Bifunctional Ruthenium Catalyst. Catalysts, 2021, 11, 1362.	1.6	6
957	Alkaline aerobic oxidation of native softwood lignin in the presence of Na ⁺ -cyclic polyether complexes. Journal of Wood Chemistry and Technology, 2022, 42, 1-14.	0.9	6
958	Reductive Catalytic Depolymerization of Semi-industrial Wood-Based Lignin. Industrial & Engineering Chemistry Research, 2021, 60, 16827-16838.	1.8	12
959	Monitoring Molecular Weight Changes during Technical Lignin Depolymerization by Operando Attenuated Total Reflectance Infrared Spectroscopy and Chemometrics. ChemSusChem, 2021, 14, 5517-5524.	3.6	9
960	Characterization of Highly Ferulate-Tolerant Acinetobacter baylyi ADP1 Isolates by a Rapid Reverse Engineering Method. Applied and Environmental Microbiology, 2022, 88, AEM0178021.	1.4	5
961	Formation mechanism of CH4 during lignin pyrolysis: A theoretical study. Journal of the Energy Institute, 2022, 100, 237-244.	2.7	5
962	Pt Nanoparticles on ZSM-5 Nanoparticles for Base-Free Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. ACS Applied Nano Materials, 2021, 4, 14047-14059.	2.4	14
963	Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metabolic Engineering, 2022, 71, 13-41.	3.6	36
964	Lignin Removal and Cellulose Digestibility Improved by Adding Antioxidants and Surfactants to Organosolv Pretreatment of Sugarcane Bagasse. Bioenergy Research, 2022, 15, 1107-1115.	2.2	9
965	Structural characterizations of lignins extracted under same severity using different acids. International Journal of Biological Macromolecules, 2022, 194, 204-212.	3.6	13
966	Lignin Nanoparticles and Alginate Gel Beads: Preparation, Characterization and Removal of Methylene Blue. Nanomaterials, 2022, 12, 176.	1.9	10
967	Catalytic Amination of Phenols with Amines. Journal of the American Chemical Society, 2022, 144, 1144-1151.	6.6	32
968	Lignin-derived materials and their applications in rechargeable batteries. Green Chemistry, 2022, 24, 565-584.	4.6	37
969	Unimolecular thermal decarbonylation of vanillin stifled by the bimolecular reactivity of methyl-loss intermediate. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105410.	2.6	8

#	Article	IF	Citations
970	Identification and quantification of lignin monomers and oligomers from reductive catalytic fractionation of pine wood with GC — GC – FID/MS. Green Chemistry, 2022, 24, 191-206.	4.6	41
971	Developing highly transparent yet ultraviolet blocking fully biocomposite films based on chitin and lignin using ethanol/water as processing solvents. International Journal of Biological Macromolecules, 2022, 201, 308-317.	3.6	5
972	Next generation applications of lignin derived commodity products, their life cycle, techno-economics and societal analysis. International Journal of Biological Macromolecules, 2022, 197, 179-200.	3.6	29
973	Selective oxidation of cellulose into formic acid over heteropolyacid-based temperature responsive catalysts. Renewable Energy, 2022, 185, 139-146.	4.3	10
974	Structural analysis of light-colored separated lignin (lignocresol) and its antioxidant properties. International Journal of Biological Macromolecules, 2022, 197, 169-178.	3.6	17
975	Enhanced enzymatic hydrolysis of poplar cellulosic residue fractionated by a magnetic carbon-based solid-acid catalyst in the γ-valerolactone–water system. Industrial Crops and Products, 2022, 176, 114397.	2.5	6
976	Value addition of lignin to zingerone using recyclable AlPO4 and Ni/LRC catalysts. Chemical Engineering Journal, 2022, 431, 134130.	6.6	10
977	Organosolv and ionosolv processes for autohydrolyzed poplar fractionation: Lignin recovery and characterization. International Journal of Biological Macromolecules, 2022, 197, 131-140.	3.6	8
978	Lignin depolymerization and biotransformation to industrially important chemicals/biofuels. Fuel, 2022, 312, 122935.	3.4	29
979	Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization. Renewable and Sustainable Energy Reviews, 2022, 156, 111986.	8.2	98
980	Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). Chemosphere, 2022, 290, 133297.	4.2	18
981	Extraction methodology of lignin from biomass waste influences the quality of bio-oil obtained by solvothermal depolymerization process. Chemosphere, 2022, 293, 133473.	4.2	6
982	Extremophiles and extremozymes in lignin bioprocessing. Renewable and Sustainable Energy Reviews, 2022, 157, 112069.	8.2	25
983	Single-Atom Ni Sites Anchored on CeO ₂ Nanospheres as an Efficient Catalyst for the Hydrogenolysis of Lignin to Aromatic Monomers. SSRN Electronic Journal, 0, , .	0.4	0
984	Ambient-pressure lignin valorization to high-performance polymers by intensified reductive catalytic deconstruction. Science Advances, 2022, 8, eabj7523.	4.7	30
985	Lignin Depolymerization in the Presence of Base, Hydrogenation Catalysts, and Ethanol. Catalysts, 2022, 12, 158.	1.6	12
986	Reductive Catalytic Fractionation of Lignocellulose over Ni/Al ₂ O ₃ Catalyst Prepared by an EDTA-Assisted Impregnation Method. Energy & Fuels, 2022, 36, 1929-1938.	2.5	5
987	Recent advances in lignin valorization. , 2022, , 365-388.		1

# 988	ARTICLE Production of ionic liquids using renewable sources. , 2022, , 29-43.	IF	Citations 0
989	Pathway to fully-renewable biobased polyesters derived from HMF and phenols. Polymer Chemistry, 2022, 13, 1215-1227.	1.9	1
990	Insights into cascade and sequential one-pot pathways for reductive amination of aldehydes paired with bio-derived levulinic acid to <i>N</i> -substituted pyrrolidones using molecular hydrogen. Reaction Chemistry and Engineering, 2022, 7, 1005-1013.	1.9	4
991	Protonâ€Promoted Nickelâ€Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
992	Toward a Fundamental Understanding of the Role of Lignin in the Biorefinery Process. Frontiers in Energy Research, 2022, 9, .	1.2	13
993	Visible-Light-Induced Selective C–C Bond Cleavage Reactions of Dimeric β-O-4 and β-1 Lignin Model Substrates Utilizing Amine-Functionalized Fullerene. Journal of Organic Chemistry, 2022, 87, 2289-2300.	1.7	6
994	Bioplastics for a circular economy. Nature Reviews Materials, 2022, 7, 117-137.	23.3	550
995	Electrocatalytic hydrogenation of lignin monomer to methoxy-cyclohexanes with high faradaic efficiency. Green Chemistry, 2022, 24, 142-146.	4.6	11
996	De-polymerization/De-fragmentation Aided Extraction of Value-Added Chemicals from Lignin. Energy, Environment, and Sustainability, 2022, , 113-141.	0.6	1
998	Production of levulinic acid and alkyl levulinates: a process insight. Green Chemistry, 2022, 24, 614-646.	4.6	84
999	Lignin depolymerization for monomers production by sustainable processes. , 2022, , 65-110.		0
1000	5â€Hydroxymethylfurfural and Furfural Chemistry Toward Biobased Surfactants. ChemSusChem, 2022, 15, .	3.6	10
1001	Rational synthesis of palladium nanoparticles modified by phosphorous for the conversion of diphenyl ether to KA oil. Applied Catalysis A: General, 2022, 630, 118464.	2.2	6
1002	Selectivity Control of C-O Bond Cleavage for Catalytic Biomass Valorization. Frontiers in Energy Research, 2022, 9, .	1.2	5
1003	Protonâ€Promoted Nickel atalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angewandte Chemie, 0, , .	1.6	6
1004	Base-catalyzed depolymerization of lignin into phenols: methoxy groups' secondary reactions triggered phenol regulation and repolymerization. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3
1005	Synthesis of Green Deep Eutectic Solvents for Pretreatment Wheat Straw: Enhance the Solubility of Typical Lignocellulose. Sustainability, 2022, 14, 657.	1.6	15
1006	Effects of the Addition of Poly(ethylene Glycol) and Non-ionic Surfactants on Pretreatment, Enzymatic Hydrolysis, and Ethanol Fermentation. Bioenergy Research, 2022, 15, 889-904.	2.2	9

#	Article	IF	CITATIONS
1007	Dihydrolevoglucosenone (Cyreneâ,,¢) as a versatile biobased solvent for lignin fractionation, processing, and chemistry. Green Chemistry, 2022, 24, 338-349.	4.6	18
1008	Ligninâ€First Monomers to Catechol: Rational Cleavage of Câ^'O and Câ^'C Bonds over Zeolites. ChemSusChem, 2022, 15, .	3.6	19
1009	Chemistry and Nanotechnologyâ€Oriented Strategies toward Nanocellulose for Human Water Treatment. Advanced Sustainable Systems, 2022, 6, .	2.7	4
1010	Ionic liquids and lignin interaction: An overview. Bioresource Technology Reports, 2022, 17, 100958.	1.5	11
1011	Biobased vitrimers: Towards sustainable and adaptable performing polymer materials. Progress in Polymer Science, 2022, 127, 101515.	11.8	94
1012	Catalyst-free liquefaction of lignin for monophenols in hydrogen donor solvents. Fuel Processing Technology, 2022, 229, 107180.	3.7	9
1013	Catalytic transformation of biomass-based feedstocks in green solvents. , 2022, , 673-720.		1
1014	Hydrodeoxygenation of lignin to hydrocarbons. , 2022, , 469-497.		0
1015	Toward low-cost biological and hybrid biological/catalytic conversion of cellulosic biomass to fuels. Energy and Environmental Science, 2022, 15, 938-990.	15.6	93
1016	Photocatalysis of biomass lignin to simple aromatic molecules. , 2022, , 535-561.		1
1017	Chapter 1. Recent Developments and Perspectives on Solar-driven Fine Chemicals Synthesis: From the Reaction System to 2D Photocatalysts. Inorganic Materials Series, 2022, , 1-64.	0.5	1
1018	Thermochemical methods for upgrading of lignin to aromatic chemicals. , 2022, , 499-533.		1
1019	Promoted Production of Phenolic Monomers from Lignin-First Depolymerization of Lignocellulose over Ru Supported on Biochar by N,P- <i>co</i> -Doping. ACS Sustainable Chemistry and Engineering, 2022, 10, 2343-2354.	3.2	22
1020	Solidified and Immobilized Heteropolyacids for the Valorization of Lignocellulose. ChemCatChem, 2022, 14, .	1.8	6
1021	Efficient Electrocatalytic Upgradation of Furan-Based Biomass: Key Roles of a Two-Dimensional Mesoporous Poly(m-phenylenediamine)-Graphene Heterostructure and a Ternary Electrolyte. Macromolecules, 0, , .	2.2	5
1022	Nano-dispersible azo pigments from lignin: a new synthetic approach and epoxy-polyamine composite coating. Pigment and Resin Technology, 2023, 52, 400-412.	0.5	3
1023	Mechanistic Characterization of Zeolite-Catalyzed Aromatic Electrophilic Substitution at Realistic Operating Conditions. Jacs Au, 2022, 2, 502-514.	3.6	17
1024	Alpha-, Beta- and Gamma-Cellulose Quantification and Two-Stage Concentrated-Dilute Acid Lignin Recovery from Three Rice Husks: Lignin Characterization and Depolymerization. Waste and Biomass Valorization, 2022, 13, 2963-2977.	1.8	4

#	ARTICLE Prediction of phenolic compounds and glucose content from dilute inorganic acid pretreatment of	IF	CITATIONS
1025	lignocellulosic biomass using artificial neural network modeling. Bioresources and Bioprocessing, 2021, 8, .	2.0	14
1026	Review on the preparation and application of lignin-based carbon aerogels. RSC Advances, 2022, 12, 10755-10765.	1.7	11
1027	Integrating lignin depolymerization with microbial funneling processes using agronomically relevant feedstocks. Green Chemistry, 2022, 24, 2795-2811.	4.6	20
1028	Low temperature catalytic hydrodeoxygenation of lignin-derived phenols to cyclohexanols over the Ru/SBA-15 catalyst. RSC Advances, 2022, 12, 9352-9362.	1.7	10
1029	A molecular motor from lignocellulose. Green Chemistry, 2022, 24, 3689-3696.	4.6	10
1030	Structure-Activity Relationships Over Ru-Based Catalysts in Anisole Demethoxylation: Spectroscopic and Kinetic Studies. SSRN Electronic Journal, 0, , .	0.4	0
1031	Selective Catalytic Conversion of Kraft Lignin into Monoaromatic Hydrocarbons Over Niobium Oxide Catalysts. SSRN Electronic Journal, 0, , .	0.4	0
1032	Ionic Liquid (II) Dissolution Utilized for Biomass Conversion into Biofuels, Value-Added Chemicals and Advanced Materials: A Comprehensive Review. SSRN Electronic Journal, 0, , .	0.4	0
1033	Efficient Fractionation of Bamboo Residue by Autohydrolysis and Deep Eutectic Solvents Pretreatment Towards Valorization. SSRN Electronic Journal, 0, , .	0.4	0
1034	Plasma technology for lignocellulosic biomass conversion toward an electrified biorefinery. Green Chemistry, 2022, 24, 2680-2721.	4.6	18
1035	Chemicals from lignin by diol-stabilized acidolysis: reaction pathways and kinetics. Green Chemistry, 2022, 24, 3193-3207.	4.6	15
1037	Experimental-based mechanistic study and optimization of hydrothermal liquefaction of anaerobic digestates. Sustainable Energy and Fuels, 2022, 6, 2314-2329.	2.5	16
1038	Recovery of low molecular weight compounds from alkaline pretreatment liquor <i>via</i> membrane separations. Green Chemistry, 2022, 24, 3152-3166.	4.6	8
1039	Microbial-Assisted Systems for Lignin-Based Product Generation. , 2022, , 555-587.		1
1040	Inâ€Đepth Identification of Phenolics Fractionated from <i>Eucalyptus</i> Kraft Lignin. Advanced Sustainable Systems, 2022, 6, .	2.7	5
1041	Critical enzyme reactions in aromatic catabolism for microbial lignin conversion. Nature Catalysis, 2022, 5, 86-98.	16.1	51
1042	Lignocellulosic Materials for the Production of Biofuels, Biochemicals and Biomaterials and Applications of Lignocellulose-Based Polyurethanes: A Review. Polymers, 2022, 14, 881.	2.0	26
1043	Mass Transport Limitations and Kinetic Consequences of Corn Stover Deacetylation. Frontiers in Energy Research, 2022, 10, .	1.2	5

#	Article	IF	CITATIONS
1044	Waste-to-Fuel Approach: Valorization of Lignin from Coconut Coir Pith. ACS Agricultural Science and Technology, 2022, 2, 349-358.	1.0	8
1045	Preparation of Renewable Thiol‥ne "Click―Networks Based on Fractionated Lignin for Anticorrosive Protective Film Applications. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	2
1046	Top-down strategy for bamboo lignocellulose-derived carbon heterostructure with enhanced electromagnetic wave dissipation. Chinese Journal of Chemical Engineering, 2022, 43, 360-369.	1.7	5
1047	Renewable Thiol–yne "Click―Networks Based on Propargylated Lignin for Adhesive Resin Applications. ACS Applied Polymer Materials, 2022, 4, 2544-2552.	2.0	12
1048	Hydrogen spillover assisted by oxygenate molecules over nonreducible oxides. Nature Communications, 2022, 13, 1457.	5.8	37
1049	Catalytic Hydrodeoxygenation of Guaiacol to Cyclohexanol over Bimetallic NiMo-MOF-Derived Catalysts. Catalysts, 2022, 12, 371.	1.6	13
1050	Fractionation of Lignin Streams Using Tangential Flow Filtration. Industrial & Engineering Chemistry Research, 2022, 61, 4407-4417.	1.8	4
1051	Hydrogen Spilloverâ€Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. ChemSusChem, 2022, 15, .	3.6	25
1052	Trends in Lignin Biotransformations for Bio-Based Products and Energy Applications. Bioenergy Research, 2023, 16, 88-104.	2.2	11
1053	A combination of deep eutectic solvent and ethanol pretreatment for synergistic delignification and enhanced enzymatic hydrolysis for biorefinary process. Bioresource Technology, 2022, 350, 126885.	4.8	32
1054	Recent advances in amine catalyzed aldol condensations. Catalysis Reviews - Science and Engineering, 0, , 1-83.	5.7	7
1055	Hydrogenation of biomass derived furfural using Ru-Ni-Mg–Al-hydrotalcite material. Biomass Conversion and Biorefinery, 2024, 14, 4325-4340.	2.9	6
1056	Elucidating the role of NiMoS-USY during the hydrotreatment of Kraft lignin. Chemical Engineering Journal, 2022, 442, 136216.	6.6	14
1057	Lessons from Biomass Valorization for Improving Plastic-Recycling Enzymes. Annual Review of Chemical and Biomolecular Engineering, 2022, 13, 457-479.	3.3	2
1058	Hydrogenolysis Cleavage of the C _{sp2} –C _{sp3} Bond over a Metal-Free NbOPO ₄ Catalyst. ACS Catalysis, 2022, 12, 4806-4812.	5.5	14
1059	Recent advances in biological activities of lignin and emerging biomedical applications: A short review. International Journal of Biological Macromolecules, 2022, 208, 819-832.	3.6	46
1060	Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. Bioresource Technology, 2022, 352, 127065.	4.8	33
1061	Hydrogenolysis of cornstalk lignin in supercritical ethanol over N-doped micro-mesoporous biochar supported Ru catalyst. Fuel Processing Technology, 2022, 231, 107218.	3.7	28

#	Article	IF	CITATIONS
1062	Organosolv fractionation of a lignocellulosic biomass feedstock using a pilot scale microwave-heating reactor. Industrial Crops and Products, 2022, 180, 114700.	2.5	12
1063	Revealing structural and functional specificity of lignin from tobacco stalk during deep eutectic solvents deconstruction aiming to targeted valorization. Industrial Crops and Products, 2022, 180, 114696.	2.5	25
1064	Valorization of lignin into phenolic compounds via fast pyrolysis: Impact of lignin structure. Fuel, 2022, 319, 123758.	3.4	42
1065	Pretreatment methods to enhance solubilization and anaerobic biodegradability of lignocellulosic biomass (wheat straw): Progress and challenges. Fuel, 2022, 319, 123726.	3.4	34
1066	Total chemocatalytic cascade conversion of lignocellulosic biomass into biochemicals. Applied Catalysis B: Environmental, 2022, 310, 121280.	10.8	16
1067	Microwave-Stimulated Conversion of a Tar/Lignin Blend into Hydrocarbons in a Plasma-Catalytic Mode. Russian Journal of Applied Chemistry, 2021, 94, 1513-1524.	0.1	5
1068	<i>p</i> HBMT1, a BAHD-family monolignol acyltransferase, mediates lignin acylation in poplar. Plant Physiology, 2022, 188, 1014-1027.	2.3	18
1069	Hydrodemethoxylation/Dealkylation on Bifunctional Nanosized Zeolite Beta. Molecules, 2021, 26, 7694.	1.7	3
1070	Synergistic interaction of renewable nipagin and eugenol for aromatic copoly(ether ester) materials with desired performance. Scientific Reports, 2021, 11, 24119.	1.6	0
1071	Lignin demethylation for modifying halloysite nanotubes towards robust phenolic foams with excellent thermal insulation and flame retardancy. Journal of Applied Polymer Science, 2022, 139, .	1.3	11
1072	Production of Jet Fuel Precursors from Waste Kraft Lignin with a Complex Copper Acid Catalyst. ACS Sustainable Chemistry and Engineering, 2022, 10, 495-507.	3.2	12
1073	Oxidation of Various Kraft Lignins with a Bacterial Laccase Enzyme. International Journal of Molecular Sciences, 2021, 22, 13161.	1.8	13
1074	Holistic Valorization of Hemp through Reductive Catalytic Fractionation. ACS Sustainable Chemistry and Engineering, 2021, 9, 17207-17213.	3.2	14
1075	Integrated Cascade Biorefinery Processes to Transform Woody Biomass Into Phenolic Monomers and Carbon Quantum Dots. Frontiers in Bioengineering and Biotechnology, 2021, 9, 803138.	2.0	10
1076	One‣tep Synthesis of Ligninâ€Based Triblock Copolymers as Highâ€Temperature and UVâ€Blocking Thermoplastic Elastomers. Angewandte Chemie - International Edition, 2022, 61, e202114946.	7.2	36
1077	Monomers and Macromolecular Materials from Renewable Resources: State of the Art and Perspectives. Molecules, 2022, 27, 159.	1.7	19
1078	Nickel and Rhenium Mixed Oxides-Doped Graphene Oxide (MOs/GO) Catalyst for the Oxidative Depolymerization of Fractionated Bagasse Lignin. Industrial & Engineering Chemistry Research, 2022, 61, 215-223.	1.8	3
1079	Oneâ€Step Synthesis of Ligninâ€Based Triblock Copolymers as Highâ€Temperature and UVâ€Blocking Thermoplastic Elastomers. Angewandte Chemie, 2022, 134, .	1.6	5

#	Article	IF	CITATIONS
1080	Highly efficient C(CO)–C(alkyl) bond cleavage in ketones to access esters over ultrathin N-doped carbon nanosheets. Chemical Science, 2022, 13, 5196-5204.	3.7	6
1081	Heterogeneous strategies for selective conversion of lignocellulosic polysaccharides. Cellulose, 2022, 29, 3059-3077.	2.4	15
1082	Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports, 2022, 12, 6108.	1.6	26
1083	NbO _{<i>x</i>} -Based Catalysts for the Activation of C–O and C–C Bonds in the Valorization of Waste Carbon Resources. Accounts of Chemical Research, 2022, 55, 1301-1312.	7.6	30
1084	Characterization of Organosolv Lignins and Their Application in the Preparation of Aerogels. Materials, 2022, 15, 2861.	1.3	10
1085	Skeletal Ni electrode-catalyzed C-O cleavage of diaryl ethers entails direct elimination via benzyne intermediates. Nature Communications, 2022, 13, 2050.	5.8	4
1086	Efficient demethylation of lignin for polyphenol production enabled by low-cost bifunctional protic ionic liquid under mild and halogen-free conditions. Chemical Engineering Journal, 2022, 443, 136486.	6.6	25
1087	Insight into the production of phenol from coâ€pyrolysis of cellulose and sodium borohydride. Biofuels, Bioproducts and Biorefining, 0, , .	1.9	0
1088	Advances in value-added aromatics by oxidation of lignin with transition metal complexes. Transition Metal Chemistry, 2022, 47, 189-211.	0.7	4
1089	Ligninâ€First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotubeâ€Supported Ruthenium: Impact of Lignin Sources. ChemSusChem, 2022, 15, .	3.6	23
1092	Research progress on the role of common metal catalysts in biomass pyrolysis: a state-of-the-art review. Green Chemistry, 2022, 24, 3922-3942.	4.6	34
1093	Degradation mechanism of a lignin model compound during alkaline aerobic oxidation: formation of the vanillin precursor from the I ² -O-4 middle unit of softwood lignin. Reaction Chemistry and Engineering, 2022, 7, 1603-1616.	1.9	4
1094	Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. ACS Catalysis, 2022, 12, 5711-5725.	5.5	34
1095	Structural elucidation and targeted valorization of poplar lignin from the synergistic hydrothermal-deep eutectic solvent pretreatment. International Journal of Biological Macromolecules, 2022, 209, 1882-1892.	3.6	20
1097	Technology Overview of Fast Pyrolysis of Lignin: Current State and Potential for Scaleâ€Up. ChemSusChem, 2022, 15, .	3.6	7
1098	Production of Phenolic Compounds from Catalytic Oxidation of Kraft Black Liquor in a Continuous Reactor. Industrial & Engineering Chemistry Research, 2022, 61, 7430-7437.	1.8	6
1100	Lignocellulosic biomass analysis: acidic lignin recovery, characterisation, and depolymerisation. Biomass Conversion and Biorefinery, 2024, 14, 5239-5249.	2.9	2
1101	Sustainable Production of Bioactive Molecules from Câ€Ligninâ€Derived Propenylcatechol. ChemSusChem, 2022, 15, .	3.6	11

#	Article	IF	CITATIONS
1102	Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. , 2022, 1, e9120006.		68
1103	Standard-Free Quantification of Dicarboxylic Acids: Case Studies with Salt-Rich Effluents and Serum. Journal of the American Society for Mass Spectrometry, 2022, , .	1.2	1
1104	Tuning lignin properties by mild ionic-liquid-mediated selective alcohol incorporation. Chem Catalysis, 2022, 2, 1407-1427.	2.9	5
1105	High Content Nanocellulose 3Dâ€Printed and Esterified Structures with Strong Interfacial Adhesion, High Mechanical Properties, and Shape Fidelity. Advanced Materials Interfaces, 2022, 9, .	1.9	14
1106	Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing. ISME Journal, 2022, 16, 1944-1956.	4.4	16
1107	Engineering <i>Pseudomonas putida</i> for improved utilization of syringyl aromatics. Biotechnology and Bioengineering, 2022, 119, 2541-2550.	1.7	7
1108	Efficient fractionation of bamboo residue by autohydrolysis and deep eutectic solvents pretreatment. Bioresource Technology, 2022, 354, 127225.	4.8	23
1109	Biobased PET from lignin using an engineered cis, cis-muconate-producing Pseudomonas putida strain with superior robustness, energy and redox properties. Metabolic Engineering, 2022, 72, 337-352.	3.6	26
1110	Highly selective separation of eucalyptus hemicellulose by salicylic acid treatment with both aromatic and hydroxy acids. Bioresource Technology, 2022, 355, 127304.	4.8	23
1111	Depolymerization of Kraft lignin into liquid fuels over a WO3 modified acid-base coupled hydrogenation catalyst. Fuel, 2022, 323, 124428.	3.4	16
1112	Ionic liquid dissolution utilized for biomass conversion into biofuels, value-added chemicals and advanced materials: A comprehensive review. Chemical Engineering Journal, 2022, 445, 136733.	6.6	32
1113	Anchoring single Ni atoms on CeO2 nanospheres as an efficient catalyst for the hydrogenolysis of lignin to aromatic monomers. Fuel, 2022, 324, 124499.	3.4	20
1114	Amorphous Ni-Ru bimetallic phosphide composites as efficient catalysts for the hydrogenolysis of diphenyl ether and lignin. Fuel, 2022, 324, 124489.	3.4	9
1115	Trash to treasure: Fallen leaves as separators for supercapacitors. International Journal of Energy Research, 2022, 46, 14517-14525.	2.2	4
1116	Carbon-Based Nanocatalysts (CnCs) for Biomass Valorization and Hazardous Organics Remediation. Nanomaterials, 2022, 12, 1679.	1.9	12
1117	High purity lignin from untreated larch bark: an efficient green methodology for lignin valorization and low-value by-product mitigation. Journal of Wood Chemistry and Technology, 0, , 1-9.	0.9	2
1118	Mild Organosolv Delignification of Residual Aspen Bark after Extractives Isolation as a Step in Biorefinery Processing Schemes. Molecules, 2022, 27, 3185.	1.7	8
1119	Optimization of lignin extraction by response surface methodology from sugarcane bagasse using deep eutectic solvents (DES). Industrial Crops and Products, 2022, 184, 115040.	2.5	13

#	Article	IF	CITATIONS
1120	Depolymerization of Kraft lignin to liquid fuels with MoS2 derived oxygen-vacancy-enriched MoO3 in a hydrogen-donor solvent system. Fuel, 2022, 324, 124674.	3.4	15
1121	Integration of lignin microcapsulated pesticide production into lignocellulose biorefineries through FeCl ₃ -mediated deep eutectic solvent pretreatment. Green Chemistry, 2022, 24, 5242-5254.	4.6	14
1122	Complete utilization of waste lignin: preparation of lignin-derived carbon supports and conversion of lignin-derived guaiacol to nylon precursors. Catalysis Science and Technology, 2022, 12, 5021-5031.	2.1	3
1123	Integrated Chemical and Biological Process for Production of 100% Lignocellulose-Based Nylons. SSRN Electronic Journal, 0, , .	0.4	0
1124	Discovery, characterization, and metabolic engineering of Rieske non-heme iron monooxygenases for guaiacol O-demethylation. Chem Catalysis, 2022, 2, 1989-2011.	2.9	8
1125	Closing the Carbon Loop in the Circular Plastics Economy. Macromolecular Rapid Communications, 2022, 43, .	2.0	21
1126	Mild, Electroreductive Lignin Cleavage: Optimizing the Depolymerization of Authentic Lignins. ACS Sustainable Chemistry and Engineering, 2022, 10, 7545-7552.	3.2	10
1127	Catalytic lignin valorisation by depolymerisation, hydrogenation, demethylation and hydrodeoxygenation: Mechanism, chemical reaction kinetics and transport phenomena. Chemical Engineering Journal, 2022, 448, 137309.	6.6	31
1128	Hydrogenation of Ligninâ€derived Phenolic Compounds over Ru/C Enhanced by Al ₂ O ₃ Catalyst at Room Temperature. ChemistrySelect, 2022, 7, .	0.7	4
1129	Bifunctional Pt–Re Catalysts in Hydrodeoxygenation of Isoeugenol as a Model Compound for Renewable Jet Fuel Production. ACS Engineering Au, 2022, 2, 436-449.	2.3	7
1130	Bacterial conversion routes for lignin valorization. Biotechnology Advances, 2022, 60, 108000.	6.0	16
1131	Tungstate-Catalyzed Bioinspired Decarboxylative Halogenation of Electron-Deficient (Hetero)Phenolic Acids. ACS Sustainable Chemistry and Engineering, 2022, 10, 7453-7462.	3.2	2
1132	Titanate Nanotubes-Based Heterogeneous Catalyst for Efficient Production of Biomass Derived Chemicals. Frontiers in Chemistry, 2022, 10, .	1.8	2
1133	Reduced deactivation of mechanochemically delaminated hierarchical zeolite MCM-22 catalysts during 4-propylphenol cracking. Journal of Catalysis, 2022, 411, 187-192.	3.1	9
1134	Enhancing α-etherification of lignin in Eucalyptus diol pretreatment to improve lignin monomer production. Industrial Crops and Products, 2022, 185, 115130.	2.5	21
1135	Self-Crosslinked Lignin Nanoparticles Reinforced Degradable Plastics Poly(L-Lactide) with Supertough and Strong Performance. SSRN Electronic Journal, 0, , .	0.4	0
1136	Depolymerization of Lignin by Homogeneous Photocatalysis. Springer Handbooks, 2022, , 1537-1562.	0.3	1
1137	Biocatalytic Production of a Nylonâ€6 Precursor from Caprolactone in Continuous Flow. ChemSusChem, 2022, 15, .	3.6	11

#	Article	IF	CITATIONS
1138	Reductive Catalytic Fractionation of Lignocellulosic Biomass: A New Promissing Method for Its Complex Processing. Catalysis in Industry, 2022, 14, 231-250.	0.3	3
1139	Beta zeolite as an efficient catalyst for the synthesis of diphenolic acid (DPA) from renewable levulinic acid. Catalysis Today, 2022, , .	2.2	4
1140	Role of methoxy and C -based substituents in electrochemical oxidation mechanisms and bond cleavage selectivity of β-O-4 lignin model compounds. Green Energy and Environment, 2024, 9, 114-125.	4.7	6
1141	Possible use as biofuels of monoaromatic oxygenates produced by lignin catalytic conversion: A review. Catalysis Today, 2023, 408, 150-167.	2.2	4
1142	Systems biology-guided understanding of white-rot fungi for biotechnological applications: A review. IScience, 2022, 25, 104640.	1.9	31
1143	Fully lignocellulose-based PET analogues for the circular economy. Nature Communications, 2022, 13,	5.8	27
1144	Systematic review on lignin valorization in the agro-food system: From sources to applications. Journal of Environmental Management, 2022, 317, 115258.	3.8	18
1145	High-efficiency catalytic hydrodeoxygenation of lignin-derived vanillin with nickel-supported metal phosphate catalysts. Chemical Engineering Journal, 2022, 448, 137723.	6.6	36
1146	Recent advances in lignin-based carbon fibers (LCFs): precursors, fabrications, properties, and applications. Green Chemistry, 2022, 24, 5709-5738.	4.6	35
1147	Insights into the Hydrogenolysis Mechanism of Diphenyl Ether over Cl-Modified Pt/l³-Al ₂ O ₃ Catalysts by Experimental and Theoretical Studies. ACS Sustainable Chemistry and Engineering, 2022, 10, 8897-8907.	3.2	7
1148	A Prior Biological Delignification Treatment as an Aid for the Hydrothermal Pretreatment of Sugarcane Straw. Waste and Biomass Valorization, 2022, 13, 4881-4895.	1.8	3
1149	Catalysis and chemistry of lignin depolymerization in alcohol solvents - A review. Catalysis Today, 2023, 408, 168-181.	2.2	13
1150	The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. Energies, 2022, 15, 4707.	1.6	4
1151	Molecular Engineering of Biorefining Lignin Waste for Solid-State Electrolyte. ACS Sustainable Chemistry and Engineering, 2022, 10, 8704-8714.	3.2	7
1152	Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. ACS Catalysis, 2022, 12, 9213-9225.	5.5	9
1153	Spatio-Temporal Modification of Lignin Biosynthesis in Plants: A Promising Strategy for Lignocellulose Improvement and Lignin Valorization. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	8
1154	Biowaste-derived, nanohybrid-reinforced double-function slow-release fertilizer with metal-adsorptive function. Chemical Engineering Journal, 2022, 450, 138084.	6.6	7
1155	Machine Learning Optimization of Lignin Properties in Green Biorefineries. ACS Sustainable Chemistry and Engineering, 2022, 10, 9469-9479.	3.2	12

		CITATION REPORT		
#	Article		IF	CITATIONS
1156	Multi-pass flow-through reductive catalytic fractionation. Joule, 2022, 6, 1859-1875.		11.7	20
1157	Recent global insight into mitigation of plastic pollutants, sustainable biodegradable alter and recycling strategies. International Journal of Environmental Science and Technology, 2 8175-8198.	matives, 2023, 20,	1.8	9
1158	Stabilization of Hybrid Adhesives and Sealants by Thermodynamic Tuning of Molecularly C Lignin Bio-Additives: Small Changes, Big Effects. Biomacromolecules, 2022, 23, 3174-318	Optimized 35.	2.6	5
1159	Promoting Effect of Ni on the Catalytic Production of Alanine from Lactic Acid over RuNi/A Industrial & Engineering Chemistry Research, 2022, 61, 10285-10293.	AC Catalyst.	1.8	5
1160	Field and saccharification performances of poplars severely downregulated in <i>CAD1Phytologist, 2022, 236, 2075-2090.</i>	>. New	3.5	9
1161	Delignification of oil palm empty fruit bunch under mild conditions by air oxygen and man gluconate. Voprosy Khimii I Khimicheskoi Tekhnologii, 2022, , 102-108.	nganese	0.1	0
1162	Valorization of lignocellulosic biomass for polyhydroxyalkanoate production: Status and perspectives. Bioresource Technology, 2022, 360, 127575.		4.8	25
1163	Improving enzymatic saccharification of corn stover via thioglycolic acid-mediated Fenton pretreatment. Journal of Cleaner Production, 2022, 365, 132804.	1	4.6	1
1164	Solvent-free preparation of thermoplastic bio-materials from microcrystalline cellulose (Methods through reactive extrusion. International Journal of Biological Macromolecules, 2022, 217		3.6	1
1165	Selective catalytic conversion of Kraft lignin into monoaromatic hydrocarbons over niobiu catalysts. Fuel Processing Technology, 2022, 235, 107382.	um oxide	3.7	8
1166	Cooperative catalytic effects between aqueous acidic ionic liquid solutions and polyoxometalate-ionic liquid in the oxidative depolymerization of alkali lignin. Journal of Environmental Chemical Engineering, 2022, 10, 108260.		3.3	4
1167	Lignin emulsifying rosin for improved sizing performance and mechanical properties of lique packaging board. Industrial Crops and Products, 2022, 187, 115276.	uid	2.5	7
1168	Catalytic conversion of lignocellulosic biomass into chemicals and fuels. Green Energy and Environment, 2023, 8, 10-114.	d	4.7	151
1169	The Practical Utility of Imidazolium Hydrogen Sulfate Ionic Liquid in Fabrication of Lignin-E Spheres: Structure Characteristic and Antibacterial Activity. Frontiers in Chemistry, 0, 10,		1.8	2
1170	Kinetic Study and Model Assessment for <i>n</i> Butyl Levulinate Production from Alcoho 5-(Hydroxymethyl)furfural over Amberlite IR-120. Industrial & Engineering Chemistry 2022, 61, 10818-10836.	olysis of Research,	1.8	4
1171	Identifying at molecular scale the pyrolysis heavy components from two lignin monomers. 328, 125333.	. Fuel, 2022,	3.4	4
1172	High-Throughput Computational Solvent Screening for Lignocellulosic Biomass Processing Electronic Journal, 0, , .	g. SSRN	0.4	0
1174	Constructing singleâ€atom Ni on Nâ€doped carbon via chelationâ€anchored strategy for hydrogenolysis of lignin. AICHE Journal, 2023, 69, .	the	1.8	15

#	Article	IF	CITATIONS
1175	Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catalysis, 2022, 12, 10400-10440.	5.5	26
1176	Reductive Catalytic Fractionation of Wheat Straw Biomass. ACS Sustainable Chemistry and Engineering, 2022, 10, 11130-11142.	3.2	16
1177	Producing performance-advantaged bioplastics. Nature Chemistry, 2022, 14, 967-969.	6.6	3
1178	Density Functional Theory with Implicit Solvents for Accurate Estimation of Aqueous and Organic Solvation Free Energies of Lignin Fragments. ACS Sustainable Chemistry and Engineering, 2022, 10, 10870-10878.	3.2	5
1179	The Catabolic System of Acetovanillone and Acetosyringone in <i>Sphingobium</i> sp. Strain SYK-6 Useful for Upgrading Aromatic Compounds Obtained through Chemical Lignin Depolymerization. Applied and Environmental Microbiology, 2022, 88, .	1.4	3
1180	Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
1181	First-Generation Organic Reaction Intermediates in Zeolite Chemistry and Catalysis. Chemical Reviews, 2022, 122, 14275-14345.	23.0	43
1182	Simultaneous Generation of Methyl Esters and CO in Lignin Transformation. Angewandte Chemie, 0, , .	1.6	0
1183	Transformation of Buxus sinica into high-quality biocomposites via an innovative and environmentally-friendly physical approach. Applied Surface Science, 2022, 606, 154595.	3.1	7
1184	On the Oxidative Valorization of Lignin to Highâ€Value Chemicals: A Critical Review of Opportunities and Challenges. ChemSusChem, 2022, 15, .	3.6	25
1185	Electrocatalytic Radical-Polar Crossover Hydroetherification of Alkenes with Phenols. ACS Catalysis, 2022, 12, 10572-10580.	5.5	27
1186	A unified view on catalytic conversion of biomass and waste plastics. Nature Reviews Chemistry, 2022, 6, 635-652.	13.8	134
1187	Lignin-Based Water-Soluble Polymers Exhibiting Biodegradability and Activity as Flocculating Agents. ACS Sustainable Chemistry and Engineering, 2022, 10, 11117-11129.	3.2	6
1188	The temptation from homogeneous linear catechyl lignin. Trends in Chemistry, 2022, 4, 948-961.	4.4	21
1189	Fractionation of Lignocellulosic Fibrous Straw Digestate by Combined Hydrothermal and Enzymatic Treatment. Energies, 2022, 15, 6111.	1.6	5
1190	Laboratory- to Pilot-Scale Fractionation of Lignocellulosic Biomass Using an Acetone Organosolv Process. ACS Sustainable Chemistry and Engineering, 2022, 10, 10503-10513.	3.2	18
1191	Thermochemical depolymerization of lignin: Process analysis with state-of-the-art soft ionization mass spectrometry. Frontiers in Chemical Engineering, 0, 4, .	1.3	1
1192	Deep eutectic solvent with Lewis acid for highly efficient biohydrogen production from corn straw. Bioresource Technology, 2022, 362, 127788.	4.8	12

#	Article	IF	CITATIONS
1193	Deciphering the nonlinear variation of subunits during the delignification of bamboo. Process Biochemistry, 2022, 121, 413-424.	1.8	1
1194	Comparison of lignin distribution, structure, and morphology in wheat straw and wood. Industrial Crops and Products, 2022, 187, 115432.	2.5	41
1195	A sustainable and environmental benign catalytic process for the production of valuable flavors and fragrances from lignin platform chemicals. Industrial Crops and Products, 2022, 187, 115460.	2.5	0
1196	Effect of alkaline and deep eutectic solvents pretreatments on the recovery of lignin with antioxidant activity from grape stalks. International Journal of Biological Macromolecules, 2022, 220, 406-414.	3.6	13
1197	Oxidative depolymerization of kraft lignin assisted by potassium tert-butoxide and its effect on color and UV absorption. Industrial Crops and Products, 2022, 187, 115539.	2.5	7
1198	Tailored one-pot lignocellulose fractionation to maximize biorefinery toward controllable producing lignin nanoparticles and facilitating enzymatic hydrolysis. Chemical Engineering Journal, 2022, 450, 138315.	6.6	33
1199	Catalytic depolymerization of lignin via transfer hydrogenation strategy over skeletal CuZnAl catalyst. Fuel Processing Technology, 2022, 237, 107448.	3.7	9
1200	Unleashing lignin potential through the dithionite-assisted organosolv fractionation of lignocellulosic biomass. Chemical Engineering Journal, 2022, 450, 138179.	6.6	6
1201	Biocatalyst and continuous microfluidic reactor for an intensified production of n-butyl levulinate: Kinetic model assessment. Chemical Engineering Journal, 2023, 451, 138541.	6.6	7
1202	Towards jet fuel from technical lignins: Feedstock-catalyst-product interactions revealed during catalytic hydrogenolysis. Chemical Engineering Journal, 2023, 451, 138464.	6.6	8
1203	Biochar as a Renewable Substitute for Carbon Black in Lithium-Ion Battery Electrodes. ACS Sustainable Chemistry and Engineering, 2022, 10, 12226-12233.	3.2	16
1204	Emerging Modification Technologies of Ligninâ€based Activated Carbon toward Advanced Applications. ChemSusChem, 2022, 15, .	3.6	8
1205	Enhanced selective cleavage of aryl C-O bond by atomically dispersed Pt on α-MoC for hydrodeoxygenation of anisole. Molecular Catalysis, 2022, 531, 112652.	1.0	2
1206	Green and stable lignin-based nanofillers reinforced poly(l-lactide) with supertough and strong performance. International Journal of Biological Macromolecules, 2022, 221, 1041-1052.	3.6	8
1207	Ionic liquids enhance the electrocatalysis of lignin model compounds towards generating valuable aromatic molecules. Journal of Molecular Liquids, 2022, 367, 120407.	2.3	4
1208	Microwave-Assisted Fractionation of Poplar Sawdust into High-Yield Noncondensed Lignin and Carbohydrates in Methanol/P-Toluenesulfonic Acid. SSRN Electronic Journal, 0, , .	0.4	0
1209	Understanding the Influences of Poplar Recalcitrance During Combinatorial Pretreatment on Ethanol Production. SSRN Electronic Journal, 0, , .	0.4	0
1210	Electro-oxidative depolymerization of lignin for production of value-added chemicals. Green Chemistry, 2022, 24, 8585-8605.	4.6	17

ARTICLE IF CITATIONS Lignin to value-added chemicals and advanced materials: extraction, degradation, and 33 1211 4.6 functionalization. Green Chemistry, 2022, 24, 7705-7750. Applications of Nanotechnology in Biofuel Production. Clean Energy Production Technologies, 2022, , 297-332. 0.3 Fractionation Strategies., 2022, , 7-33. 0 1213 Unravelling stereoisomerism in acid catalysed lignin conversion: an integration of experimental 1214 trends and theoretical evaluations. Green Chemistry, 2022, 24, 7000-7011. Aminated and amidated structures introduced by ethylenediamine pretreatment endow lignin with 1215 7 4.6 bright fluorescence. Green Chemistry, 2022, 24, 9040-9054. Isolation and purification of 4-propylguaiacol and 4-propylsyringol by extraction and crystallization from the products of reductive catalytic fractionation processes. Green Chemistry, 2022, 24, 7355-7361. 4.6 1217 Zero-Waste Biorefinery., 2022, , 21-41. 0 Catalyst choice impacts aromatic monomer yields and selectivity in hydrogen-free reductive catalytic 1.9 14 fractionation. Reaction Chemistry and Engineering, 2022, 7, 2527-2533. <i>Operando</i> PEPICO unveils the catalytic fast pyrolysis mechanism of the three methoxyphenol 1219 1.3 6 isomers. Physical Chemistry Chemical Physics, 2022, 24, 21786-21793. <u>Sürdürülebilir Gıda A</u>mbalajlama Uygulamaları için Alkali Lignin ve Ozonla İÅŸlem GörmüÅŸ Alkali Lignin Kullanımı. Hacettepe Journal of Biology and Chemistry, 0, , . Extraction of monophenols and fractionation of depolymerized lignin oil with nanofiltration 1221 6.6 6 membranes. Chemical Engineering Journal, 2023, 452, 139418. High-throughput computational solvent screening for lignocellulosic biomass processing. Chemical 6.6 Engineering Journal, 2023, 452, 139476. Continuous hydrodeoxygenation of lignin to jet-range aromatic hydrocarbons. Joule, 2022, 6, 1223 11.7 26 2324-2337. Visibleâ€Lightâ€Driven Lignin Valorization into Valueâ€Added Chemicals and Sustainable Hydrogen Using Zn_{1â€<i>x</i>}Cd_{<i>x</i>}S Solid Solutions as Photocatalyst. ChemPhotoChem, 1.5 2022, 6, . Structural materials with afterglow room temperature phosphorescence activated by lignin 1226 5.845 oxidation. Nature Communications, 2022, 13, . Strong Oxophilicity of Zr Species in Zr⁴⁺-Exchanged Montmorillonite Boosted Meerwein–Ponndorf–Verley Reduction of Renewable Carbonyl Compounds. ACS Sustainable 1227 3.2 Chemistry and Engineering, 2022, 10, 12197-12206. Biobased Polymer Composites: A Review. Journal of Composites Science, 2022, 6, 255. 1228 1.4 31 Metal–Organic-Framework-Derived Copper Catalysts for the Hydrogenolysis of Lignin into 1229 5.5 Monomeric Phenols. ACS Catalysis, 2022, 12, 11899-11909.

#	Article	IF	CITATIONS
1230	Revisiting alkaline cupric oxide oxidation method for lignin structural analysis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	0
1231	Catalytic hydrogenolysis of lignin to phenolic monomers over Ru supported N,S-co-doped biochar: The importance of doping atmosphere. Frontiers in Chemistry, 0, 10, .	1.8	1
1232	Electrospun Lignin-Based Phase-Change Nanofiber Films for Solar Energy Storage. ACS Sustainable Chemistry and Engineering, 2022, 10, 13081-13090.	3.2	18
1233	Synthesis of Phenols from Aryl Ammonium Salts under Mild Conditions. Journal of Organic Chemistry, 2022, 87, 12677-12687.	1.7	3
1234	The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-A review. Green Energy and Environment, 2023, 8, 1553-1566.	4.7	9
1235	A Life Cycle Greenhouse Gas Model of a Yellow Poplar Forest Residue Reductive Catalytic Fractionation Biorefinery. Environmental Engineering Science, 2022, 39, 821-833.	0.8	6
1236	Oxidative Câ^'C bond cleavage of lignin via electrocatalysis. Frontiers in Chemistry, 0, 10, .	1.8	1
1237	Bioâ€renewable polymers based on ligninâ€derived phenol monomers: Synthesis, applications, and perspectives. SusMat, 2022, 2, 535-568.	7.8	17
1238	Lignocellulose molecular assembly and deconstruction properties of lignin-altered rice mutants. Plant Physiology, 2023, 191, 70-86.	2.3	3
1239	Ligand-Enabled C–H Hydroxylation with Aqueous H ₂ O ₂ at Room Temperature. Journal of the American Chemical Society, 2022, 144, 18109-18116.	6.6	26
1240	Catalytic Oxidation of Flax Shives into Vanillin and Pulp. Catalysts, 2022, 12, 1003.	1.6	4
1241	Effective depolymerization of alkali lignin using an attapulgite-Ce0.75Zr0.25O2(ATP-CZO)-supported cobalt catalyst in ethanol/isopropanol media. Chinese Journal of Chemical Engineering, 2023, 57, 50-62.	1.7	0
1242	Energyâ€Resolved Mass Spectrometry as a Tool for Identification of Lignin Depolymerization Products. ChemSusChem, 2023, 16, .	3.6	2
1243	Deep eutectic solvents in the transformation of biomass into biofuels and fine chemicals: a review. Environmental Chemistry Letters, 2023, 21, 183-230.	8.3	29
1244	Towards efficient enzymatic saccharification of pretreated lignocellulose: Enzyme inhibition by lignin-derived phenolics and recent trends in mitigation strategies. Biotechnology Advances, 2022, 61, 108044.	6.0	31
1245	Effect of P on hydrodeoxygenation performance of Ni–P/SiO ₂ catalysts for upgrading of <i>m</i> -cresol. New Journal of Chemistry, 2022, 46, 22672-22685.	1.4	1
1246	A sustainable and profitable biorefinery strategy for efficiently converting lignocellulose to furfural, glucose and phenolic compounds. Green Chemistry, 2022, 24, 8494-8502.	4.6	9
1247	Lignin alkaline oxidation using reversibly-soluble bases. Green Chemistry, 2022, 24, 8733-8741.	4.6	8

		CITATION RI	EPORT	
#	Article		IF	Citations
1248	Probing elemental speciation in hydrochar produced from hydrothermal liquefaction of digestates using quantitative X-ray diffraction. Sustainable Energy and Fuels, 2022, 6, 5		2.5	7
1249	Lignosulfonate in situ-modified reduced graphene oxide biosensors for the electrochem of dopamine. RSC Advances, 2022, 12, 31083-31090.	ical detection	1.7	4
1250	High lignin-containing nanocelluloses prepared <i>via</i> TEMPO-mediated oxidation and polyethylenimine functionalization for antioxidant and antibacterial applications. RSC A 2022, 12, 30030-30040.		1.7	3
1251	Facile Catalystâ€Free Approach toward Fully Biobased Reprocessable Lignin Thermosets Macromolecular Chemistry and Physics, 2023, 224, .	j.	1.1	2
1252	Hydrogenation of Flax Shives in Ethanol over a Ni/C Catalyst. Catalysts, 2022, 12, 1177		1.6	5
1253	From Lignin to Chemicals: An Expedition from Classical to Modern Catalytic Valorization Technologies. Chemie-Ingenieur-Technik, 2022, 94, 1611-1627.	h	0.4	4
1254	Catalytic hydrodeoxygenation of phenolic compounds over Ru-MoFeP/Al2O3 catalyst. C 2023, 408, 50-57.	Catalysis Today,	2.2	6
1255	A review on lignin pyrolysis: pyrolytic behavior, mechanism, and relevant upgrading for i process efficiency. , 2022, 15, .	mproving		32
1256	Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Cher 2023, 123, 2609-2734.	nical Reviews,	23.0	53
1257	Hydrodeoxygenation of lignin biophenolics to cyclohexanes over sub-nanometric Ru mu catalyst. Renewable Energy, 2022, 201, 724-733.	ltifunctional	4.3	5
1258	Preparation, characterization of light-colored lignin from corn stover by new ternary dee solvent extraction. International Journal of Biological Macromolecules, 2022, 222, 2512	2p eutectic 2522.	3.6	10
1259	Hydrogenolysis of Lignin and C–O Linkages Containing Lignin-Related Compounds ov CoRuP/SiO2 Catalyst. Catalysts, 2022, 12, 1328.	er an Amorphous	1.6	1
1260	Catalyst Deactivation and Its Mitigation during Catalytic Conversions of Biomass. ACS (12, 13555-13599.	Catalysis, 2022,	5.5	17
1261	Exploring the compatibility between hydrothermal depolymerization of alkaline lignin fr sugarcane bagasse and metabolization of the aromatics by bacteria. International Journ Biological Macromolecules, 2022, 223, 223-230.		3.6	0
1262	Catalytic oxidation of native lignin to phenolic monomers: Insight into aldehydes formates stabilization. Catalysis Communications, 2022, 172, 106532.	tion and	1.6	5
1263	Hydrodeoxygenation of lignin-derived phenolics to cycloalkanes over Ni–Co alloy cou oxophilic NbO. Applied Energy, 2022, 328, 120199.	pled with	5.1	17
1264	Production of polyhydroxyalkanoates containing monomers conferring amorphous and properties from renewable resources: Current status and future perspectives. Bioresour Technology, 2022, 366, 128114.		4.8	7
1265	A comprehensive review on the biological conversion of lignocellulosic biomass into hyd Pretreatment strategy, technology advances and perspectives. Bioresource Technology 128166.	lrogen: , 2022, 365,	4.8	25

ARTICLE IF CITATIONS # Defect engineering of Metal-Organic Framework for highly efficient hydrodeoxygenation of lignin 1266 6.6 17 derivates in water. Chemical Engineering Journal, 2023, 453, 139711. Bimetallic NiCo catalyzed enzymatic hydrolysis lignin hydrogenolysis to produce aromatic monomers. 3.4 Fuel, 2023, 333, 126357. Selective catalytic depolymerization of lignin to guaiacols over Mo-Mn/sepiolite in supercritical 1268 3.4 7 ethanol. Fuel, 2023, 333, 126365. Beneficial effect of surfactant in adsorption/desorption of lignocellulose-degrading enzymes 2.5 on/from lignin with different structure. Industrial Crops and Products, 2023, 191, 115904. Microwave-assisted fractionation of poplar sawdust into high-yield noncondensed lignin and 1270 6.6 8 carbohydrates in methanol/p-toluenesulfonic acid. Chemical Engineering Journal, 2023, 454, 140237. Effect of Zn on performance of Ni/SiO2 for hydrodeoxygenation of anisole. Journal of Fuel Chemistry 1271 and Technology, 2022, 50, 1341-1349. Insights into the Mechanism and Reactivity of Zeolite-Catalyzed Alkylphenol Dealkylation. ACS 1272 5.5 4 Catalysis, 2022, 12, 14227-14242. Valorizing Kraft Lignin by a Catalytic Reductive Depolymerization in Ethanol/Water with Formic Acid 1.8 as a Supplementary H2 Donor. Waste and Biomass Valorization, 2023, 14, 1447-1460. Reductive Catalytic Fractionation of Spruce Wood over Ru/C Bifunctional Catalyst in the Medium of 1274 9 1.6 Ethanol and Molecular Hydrogen. Catalysts, 2022, 12, 1384. Microwave-accelerated glycerolysis of sugarcane trash using Lewis acid, AlK(SO4)2, for bioethanol 1276 2.5 production. Industrial Crops and Products, 2022, 190, 115849. Advances in organosolv modified components occurring during the organosolv pretreatment of 1277 17 4.8 lignocellulosic biomass. Bioresource Technology, 2023, 368, 128356. A promising degumming method to prepare kenaf fibers by using recyclable deep eutectic solvents. 2.5 Industrial Crops and Products, 2023, 191, 115990. Acylation of phenols to phenolic esters with organic salts. Green Chemistry, 2022, 24, 9763-9771. 1279 4.6 3 Solvent effect on the production of spherical lignin nanoparticles. Green Chemistry, 2023, 25, 1280 4.6 993-1003. Lignin-derived electrode materials for supercapacitor applications: progress and perspectives. Journal 1281 5.253 of Materials Chemistry A, 2023, 11, 1061-1082. Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cís-muconic acid production from lignin-based aromatics. Metabolic Engineering, 2023, 75, 153-169. Efficient lignin conversion over Ni/(Fe/Zn/Čo/Mo/Cu)–WO₃/Al₂O₃for selectively yielding alkyl 1283 2.14 phenols. Catalysis Science and Technology, 2023, 13, 468-478. Lignin-derivable alternatives to petroleum-derived non-isocyanate polyurethane thermosets with 1284 enhanced toughness. Materials Advances, 2023, 4, 110-121.

#	Article	IF	CITATIONS
1285	Hydrogenolysis of lignin and Lignin-based molecules catalyzed by nickel and Sc(OTf)3. Results in Chemistry, 2023, 5, 100729.	0.9	1
1286	High yield production of 1,4-cyclohexanediol and 1,4-cyclohexanediamine from high molecular-weight lignin oil. Green Chemistry, 2023, 25, 211-220.	4.6	6
1287	Efficient fractionation and targeted valorization of industrial xylose residue by synergistic and mild alkaline deep eutectic solvent‑hydrogen peroxide pretreatment. Fuel Processing Technology, 2023, 241, 107591.	3.7	7
1288	Transforming Lignin Biomass to Value: Interplay Between Ligninolytic Enzymes and Lignocellulose Depolymerization. Bioenergy Research, 2023, 16, 1246-1263.	2.2	5
1289	Structure- and computational-aided engineering of an oxidase to produce isoeugenol from a lignin-derived compound. Nature Communications, 2022, 13, .	5.8	9
1290	Journey of lignin from a roadblock to bridge for lignocellulose biorefineries: A comprehensive review. Science of the Total Environment, 2023, 861, 160560.	3.9	30
1291	Fractionation of Technical Lignin from Enzymatically Treated Steam-Exploded Poplar Using Ethanol and Formic Acid. ACS Applied Polymer Materials, 2022, 4, 9388-9398.	2.0	1
1292	New Parameters to Model Microwave-Assisted Deep Eutectic Solvent Extraction of Lignin Using Analytical Pyrolysis–GC/MS. ACS Sustainable Chemistry and Engineering, 2022, 10, 15660-15669.	3.2	3
1293	A sustainable process to 100% bio-based nylons integrated chemical and biological conversion of lignocellulose. Green Energy and Environment, 2024, 9, 390-402.	4.7	1
1294	Recent Advances in Nonprecious Metal Catalysis. Organic Process Research and Development, 2022, 26, 3204-3215.	1.3	5
1295	Selective Photocatalytic Transformation of Lignin to Aromatic Chemicals by Crystalline Carbon Nitride in Water–Acetonitrile Solutions. International Journal of Environmental Research and Public Health, 2022, 19, 15707.	1.2	2
1296	Lignocellulose Biopolymers and Electronically Conducting Polymers: Toward Sustainable Energy Storage Applications. Energy & Fuels, 2022, 36, 14625-14656.	2.5	7
1297	Valorization of Lignocellulose by Producing Polyhydroxyalkanoates under Circular Bioeconomy Premises: Facts and Challenges. ACS Sustainable Chemistry and Engineering, 2022, 10, 16459-16475.	3.2	13
1298	Heterogeneous Iron-Catalyzed Aerobic Oxidative Cleavage of C–C Bonds in Alcohols to Esters. ACS Sustainable Chemistry and Engineering, 2022, 10, 16527-16537.	3.2	6
1299	Hydrogenolysisâ€Isomerization of Waste Polyolefin Plastics to Multibranched Liquid Alkanes. ChemSusChem, 2023, 16, .	3.6	9
1300	A wide array of lignin-related phenolics are oxidized by an evolved bacterial dye-decolourising peroxidase. New Biotechnology, 2023, 77, 176-184.	2.4	2
1301	Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. Journal of Flow Chemistry, 0, , .	1.2	0
1302	Impact of Molecular Weight of Oxidized Lignin on its Coagulation Performance in Aluminum Oxide Suspension. Waste and Biomass Valorization, 0, , .	1.8	0

#	Article	IF	CITATIONS
1303	Reductive Catalytic Fractionation of Lignocellulosic Biomass: Unveiling of the Reaction Mechanism. ACS Sustainable Chemistry and Engineering, 2023, 11, 67-77.	3.2	6
1304	Mechanistic insights into the photocatalytic valorization of lignin models via Câ^'O/Câ^'C cleavage or Câ^'C/Câ^'N coupling. Chem Catalysis, 2023, 3, 100470.	2.9	5
1305	Zeolitic Imidazolate Framework Decorated Molybdenum Carbide Catalysts for Hydrodeoxygenation of Guaiacol to Phenol. Catalysts, 2022, 12, 1605.	1.6	3
1306	Heuristic Computational Model for Predicting Lignin Solubility in Tailored Organic Solvents. ACS Sustainable Chemistry and Engineering, 2023, 11, 187-198.	3.2	2
1307	Lignin Stabilization and Carbohydrate Nature in Hâ€ŧransfer Reductive Catalytic Fractionation: The Role of Solvent Fractionation of Lignin Oil in Structural Profiling**. ChemSusChem, 2023, 16, .	3.6	5
1308	Organosolv Lignin as a Green Sizing Agent for Thermoformed Pulp Products. ACS Omega, 2022, 7, 46583-46593.	1.6	3
1309	Correlation between Lignin–Carbohydrate Complex Content in Grass Lignins and Phenolic Aldehyde Production by Rapid Spray Ozonolysis. ACS Engineering Au, 2023, 3, 84-90.	2.3	2
1310	Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel, 2023, 339, 126916.	3.4	10
1311	A Novel Solvent Combined Zinc Chloride and Organic Acid for Highly Efficient and Green Disassembly of Lignocelluloses Toward Lignin Valorization. Journal of Polymers and the Environment, 0, , .	2.4	0
1312	Toward a facile depolymerization of alkaline lignin into high-value platform chemicals via the synergetic combination of mechanocatalysis with photocatalysis or Fenton process. Catalysis Today, 2022, , .	2.2	3
1313	Tandem chemocatalysis and biological funneling to valorize lignin. Trends in Biotechnology, 2023, 41, 270-272.	4.9	8
1314	Interspersing CdS nanodots into iodine vacancy-rich BiOI sphere for photocatalytic lignin valorization. International Journal of Biological Macromolecules, 2023, 227, 1317-1324.	3.6	12
1315	Single-Standard Quantification Strategy for Lignin Dimers by Supercritical Fluid Chromatography with Charged Aerosol Detection. Analytical Chemistry, 0, , .	3.2	0
1316	Preparation and Characterization of a Bentonite-Based Hybrid Gel for Coal Spontaneous Combustion Prevention. ACS Omega, 2022, 7, 46536-46549.	1.6	7
1317	Lignin-First Biorefinery for Converting Lignocellulosic Biomass into Fuels and Chemicals. Energies, 2023, 16, 125.	1.6	10
1318	Cooperative catalysis of Co single atoms and nanoparticles enables selective CArâ^OCH3 cleavage for sustainable production of lignin-based cyclohexanols. Journal of Energy Chemistry, 2023, 79, 535-549.	7.1	22
1319	Nanogreen is the new future: the conversion of lignin and lignocellulosic wastes into nanomaterials. Environmental Science and Pollution Research, 2023, 30, 19564-19591.	2.7	6
1320	Pyrolysis-assisted catalytic hydrogenolysis of softwood lignin at elevated temperatures for the high yield production of monomers. Green Chemistry, 2023, 25, 2583-2595.	4.6	4

#	Article	IF	CITATIONS
1321	Critical Techniques for Overcoming the Diffusion Limitations in Heterogeneously Catalytic Depolymerization of Lignin. ChemSusChem, 2023, 16, .	3.6	1
1322	Prospects for utilizing microbial consortia for lignin conversion. Frontiers in Chemical Engineering, 0, 5, .	1.3	3
1323	Synergistic effect of natural rubber for imparting hydrophobicity in nanocellulose aerogel through one-pot synthesis and its application in oil/organic solvent sorption. Journal of Water Process Engineering, 2023, 51, 103471.	2.6	9
1324	A review of the extraction methods and advanced applications of lignin-silica hybrids derived from natural sources. International Journal of Biological Macromolecules, 2023, 230, 123175.	3.6	5
1325	Fabrication of ultraviolet resistant and anti-bacterial non-isocyanate polyurethanes using the oligomers from the reductive catalytic fractionated lignin oil. Industrial Crops and Products, 2023, 193, 116213.	2.5	6
1326	A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based compositesâ€, International Journal of Biological Macromolecules, 2023, 231, 123240.	3.6	9
1327	Assessing the availability of bamboo (Phyllostachys pubescens) fibers and parenchyma cells for producing lignin nanoparticles and fermentable sugars by rapid carboxylic acid-based deep eutectic solvents pretreatment. Industrial Crops and Products, 2023, 193, 116204.	2.5	13
1328	Understanding the influences of poplar recalcitrance during combinatorial pretreatment on ethanol production. Fuel Processing Technology, 2023, 242, 107636.	3.7	5
1329	Preparation and application of galactomannan-based green hydrogels initiated by lignin-Ag NPs. Materials Today Communications, 2023, 34, 105256.	0.9	3
1330	Effect of activated carbon nanoparticles on the performance of PES nanofiltration membranes to separate kraft lignin from black liquor. Journal of Water Process Engineering, 2023, 52, 103487.	2.6	9
1331	Consider lignin's hydroxyl groups content and type, its molecular weight and content when converting it into epoxy resin. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100750.	3.2	2
1332	Photocatalytic Depolymerization of Native Lignin toward Chemically Recyclable Polymer Networks. ACS Central Science, 2023, 9, 48-55.	5.3	10
1333	Electrochemical Biorefinery Towards Chemicals Synthesis and Bio-Oil Upgrading from Lignin. Engineering, 2022, , .	3.2	1
1334	New insights into the base catalyzed depolymerization of technical lignins: a systematic comparison. RSC Advances, 2023, 13, 4898-4909.	1.7	0
1335	Lignin and metal–organic frameworks: mutual partners on the road to sustainability. Journal of Materials Chemistry A, 2023, 11, 2595-2617.	5.2	8
1336	Lignocellulose biorefinery advances the liquid biofuel platform. , 2023, , 313-359.		1
1337	Translucent Lignin-Based Omniphobic Polyurethane Coating with Antismudge and UV-Blocking Dual Functionalities. ACS Sustainable Chemistry and Engineering, 2023, 11, 2613-2622.	3.2	6
1338	Oriented Conversion of a LA/HMF Mixture to GVL and FDCA in a Biphasic Solvent over a Ru Single-Atom/Nanoparticle Dual-Site Catalyst. ACS Catalysis, 2023, 13, 2268-2276.	5.5	11

ARTICLE IF CITATIONS NMR Study on Laccase Polymerization of Kraft Lignin Using Different Enzymes Source. International 1339 1.8 3 Journal of Molecular Sciences, 2023, 24, 2359. Flow-through reductive catalytic fractionation of beech wood sawdust., 2023, 1, 459-469. 1340 Current trends and applications of ionic liquids in electrochemical devices., 2023, , 63-88. 0 1342 Depolymerisation - hydrogenation of condensed tannins as strategy for generating flavan-3-ol 1343 monomers. Green Chemistry, 0, , . One-Pot Protolignin Extraction by Targeted Unlocking Ligninâ€"Carbohydrate Esters via Nucleophilic 1344 2.8 16 Addition–Elimination Strategy. Research, 2023, 6, 0069. Mechanocatalytic hydrogenolysis of benzyl phenyl ether over supported nickel catalysts., 2023, 1, 1345 346-356. Soft Hydroxyapatite Composites Based on Triazineâ€"Trione Systems as Potential Biomedical Engineering 1346 4.0 0 Frameworks. ACS Applied Materials & amp; Interfaces, 2023, 15, 7329-7339. Ligninâ€Based Materials for Additive Manufacturing: Chemistry, Processing, Structures, Properties, and 5.6 Applications. Advanced Science, 2023, 10, . Biochemical and structural characterization of a sphingomonad diarylpropane lyase for cofactorless 1348 deformylation. Proceedings of the National Academy of Sciences of the United States of America, 2023, 3.3 4 120, . Ni- and Ni/Pd-Catalyzed Reductive Coupling of Lignin-Derived Aromatics to Access Biobased 1349 5.3 Plasticizers. ACS Central Science, 2023, 9, 159-165. Sustainable Valorization of Wood Residue for the Production of Biofuel Materials Via Continuous 1351 2 1.8 Flow Hydrothermal Liquefaction. Waste and Biomass Valorization, 2023, 14, 3081-3095. Characterization of the Ensemble of Lignin-Remodeling DyP-Type Peroxidases from Streptomyces 1.6 coelicolor A3(2). Energies, 2023, 16, 1557. Ultrafast microfluidic preparation of highly dispersed Ru/TiO2 catalyst for the hydrodeoxygenation 1353 3.4 3 of lignin-derived phenolic compounds. Fuel, 2023, 340, 127567. Research Progress on Conversion of Lignin to High Value-Added Nitrogen Chemicals. Hans Journal of 1354 Chemical Engineering and Technology, 2023, 13, 82-88. Valorization of lignin through reductive catalytic fractionation of fermented corn stover residues. 1355 4.8 11 Bioresource Technology, 2023, 373, 128752. Highly selective hydrogenation of arenes over Rh nanoparticles immobilized on α-Al2O3 support at 1.9 room temperature. Chemical Engineering Science, 202'3, 270, 118544. Biological valorization of lignin to flavonoids. Biotechnology Advances, 2023, 64, 108107. 1357 6.0 8 BsEXLX of engineered Trichoderma reesei strain as dual-active expansin to boost cellulases secretion for synergistic enhancement of biomass enzymatic saccharification in corn and Miscanthus straws. 4.8 Bioresource Technology, 2023, 376, 128844

#	Article	IF	CITATIONS
1359	Enzymatic hydrolysis lignin dissolution and low-temperature solvolysis in ethylene glycol. Chemical Engineering Journal, 2023, 463, 142256.	6.6	3
1360	Effect of chemically modified lignin addition on the physicochemical properties of PCL nanofibers. International Journal of Biological Macromolecules, 2023, 240, 124330.	3.6	4
1361	Discovery, disassembly, depolymerization and derivatization of catechyl lignin in Chinese tallow seed coats. International Journal of Biological Macromolecules, 2023, 239, 124256.	3.6	7
1362	Depolymerization of enzymatic hydrolysis lignin: Review of technologies and opportunities for research. Fuel, 2023, 342, 127796.	3.4	10
1363	Valorization of lignin for renewable non-isocyanate polyurethanes: a state-of-the-art review. Materials Today Sustainability, 2023, 22, 100367.	1.9	9
1364	The driving force of biomass value-addition: Selective catalytic depolymerization of lignin to high-value chemicals. Journal of Environmental Chemical Engineering, 2023, 11, 109719.	3.3	13
1365	A Review on Catalytic Depolymerization of Lignin towards High-Value Chemicals: Solvent and Catalyst. Fermentation, 2023, 9, 386.	1.4	7
1366	Catalytic hydrogenation of levulinic acid to γ-valerolactone over lignin-metal coordinated carbon nanospheres in water. International Journal of Biological Macromolecules, 2023, 240, 124451.	3.6	3
1367	Selected Kraft lignin fractions as precursor for carbon foam: Structure-performance correlation and electrochemical applications. International Journal of Biological Macromolecules, 2023, 240, 124460.	3.6	1
1368	Highly effective fractionation chemistry to overcome the recalcitrance of softwood lignocellulose. Carbohydrate Polymers, 2023, 312, 120815.	5.1	2
1369	Exploring how lignin structure influences the interaction between carbohydrate-binding module and lignin using AFM. International Journal of Biological Macromolecules, 2023, 232, 123313.	3.6	5
1370	Sustainable Resource Recovery from Dairy Waste: A Case Study of Hydrothermal Co-liquefaction of Acid Whey and Anaerobic Digestate Mixture. Energy & Fuels, 2023, 37, 2897-2911.	2.5	7
1371	Photocatalytic precise hydrogenation of furfural over ultrathin Pt/NiMg-MOF-74 nanosheets: Synergistic effect of surface optimized Nill sites and Pt clusters. Applied Surface Science, 2023, 616, 156553.	3.1	7
1372	Macromolecular structural characteristics and functional potential of tobacco stalk lignin from the phosphotungstic acid-assisted delignification process. Biomass and Bioenergy, 2023, 170, 106706.	2.9	1
1373	Understanding the Interactive Relationship between Aliphatic Series Deep Eutectic Solvents and Lignocellulosic Dimer Model Compounds. ACS Sustainable Chemistry and Engineering, 2023, 11, 2416-2426.	3.2	1
1374	Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. International Journal of Biological Macromolecules, 2023, 233, 123470.	3.6	78
1375	The chemical and physical properties of lignin bio-oils, facts and needs. Current Opinion in Green and Sustainable Chemistry, 2023, 40, 100781.	3.2	6
1376	Hydrogen Peroxide Treatment of Softwood-Derived Poly(Ethylene Glycol)-Modified Glycol Lignin at Room Temperature. Molecules, 2023, 28, 1542.	1.7	1

#	Article	IF	CITATIONS
1379	Lignin derived carbon fiber and nanofiber: Manufacturing and applications. Composites Part B: Engineering, 2023, 255, 110613.	5.9	22
1380	Anaerobic demethylation of guaiacyl-derived monolignols enabled by a designed artificial cobalamin methyltransferase fusion enzyme. RSC Advances, 2023, 13, 5770-5777.	1.7	0
1381	Sustainable lignin modifications and processing methods: green chemistry as the way forward. Green Chemistry, 2023, 25, 2042-2086.	4.6	15
1382	Reductive Catalytic Fractionation of Abies Wood into Bioliquids and Cellulose with Hydrogen in an Ethanol Medium over NiCuMo/SiO2 Catalyst. Catalysts, 2023, 13, 413.	1.6	2
1383	Synthesis, Curing and Thermal Behavior of Amine Hardeners from Potentially Renewable Sources. Polymers, 2023, 15, 990.	2.0	2
1384	Lignin as Feedstock for Nanoparticles Production. , 0, , .		2
1385	Selective hydrogenolysis of lignin in the presence of Ni3Fe1 alloy supported on zirconium phosphate. Chemical Engineering Science, 2023, 271, 118570.	1.9	6
1386	Production of Diethyl Maleate via Oxidative Depolymerization of Organosolv Lignin from Wheat Stalk over the Cooperative Acidic Ionic Liquid Pair. Journal of Agricultural and Food Chemistry, 2023, 71, 3800-3812.	2.4	5
1387	Reaction characteristics of metal-salt coordinated deep eutectic solvents during lignocellulosic pretreatment. Journal of Environmental Chemical Engineering, 2023, 11, 109531.	3.3	4
1388	Fascinating polyphenol lignin extracted from sawdust via a green and recyclable solvent route. International Journal of Biological Macromolecules, 2023, 234, 123780.	3.6	3
1389	Catalytic conversion network for lignocellulosic biomass valorization: a panoramic view. , 2023, 1, 188-206.		22
1390	Highly efficient metal-acid synergetic catalytic fractionation of lignocellulose under mild conditions over lignin-coordinated N-anchoring Co single-atom catalyst. Chemical Engineering Journal, 2023, 462, 142109.	6.6	12
1391	A Review of Biomass-Derived UV-Shielding Materials for Bio-Composites. Energies, 2023, 16, 2231.	1.6	7
1392	Synthesis of Aryl-methylene Ethers through Pd(0)-Catalyzed Coupling between Hydrobenzoxazoles and Dichloromethane. Organic Letters, 2023, 25, 1458-1463.	2.4	0
1393	The Role of Lignin Structure on Cellulase Adsorption and Enzymatic Hydrolysis. Biomass, 2023, 3, 96-107.	1.2	10
1394	Mild and selective etherification of wheat straw lignin and lignin model alcohols by moisture-tolerant zirconium catalysis. Green Chemistry, 2023, 25, 2401-2408.	4.6	6
1395	Visible-light-driven selective cleavage of C C bonds in lignin model substrates using carbon nitride-supported ruthenium single-atom catalyst. Chemical Engineering Journal, 2023, 462, 142282.	6.6	27
1396	Lignin Catalytic Oxidation by CuO/TiO2: Role of Catalyst in Phenolics Formation. Waste and Biomass Valorization, 2023, 14, 3789-3809.	1.8	4

#	Article	IF	CITATIONS
1397	Click Synthesis of Triazole Polymers Based on Lignin-Derived Metabolic Intermediate and Their Strong Adhesive Properties to Cu Plate. Polymers, 2023, 15, 1349.	2.0	1
1398	Efficient and eco-friendly isolation and purification of lignin from black liquor with choline chloride-based deep eutectic solvents. Nordic Pulp and Paper Research Journal, 2023, 38, 367-380.	0.3	1
1399	Interdependence of Solvent and Catalyst Selection on Low Pressure Hydrogen-Free Reductive Catalytic Fractionation. ACS Sustainable Chemistry and Engineering, 2023, 11, 4517-4522.	3.2	9
1400	Subâ€Micro Organosolv Lignin as Bioâ€Based Epoxy Polymer Component: A Sustainable Curing Agent and Additive. ChemSusChem, 2023, 16, .	3.6	5
1401	Toward a Hydrogenâ€Free Reductive Catalytic Fractionation of Wheat Straw Biomass**. ChemSusChem, 2023, 16, .	3.6	5
1402	Functional naturally derived materials to improve the environment: Chemical structures, modifications, applications, and future perspectives. Advances in Bioenergy, 2023, , 93-144.	0.5	0
1403	Synthesis of renewable isoindolines from bio-based furfurals. Green Chemistry, 2023, 25, 3297-3305.	4.6	9
1404	Efficient pretreatment of cornstalks for lignin valorization using p-toluene sulfonic acid coupling ethylene glycol. Biomass Conversion and Biorefinery, 0, , .	2.9	1
1405	A Review on Eco-friendly Isolation of Lignin by Natural Deep Eutectic Solvents from Agricultural Wastes. Journal of Polymers and the Environment, 2023, 31, 3283-3316.	2.4	6
1406	Quantification of Phenolic Hydroxyl Groups in Lignin via ¹⁹ F NMR Spectroscopy. ACS Sustainable Chemistry and Engineering, 2023, 11, 5644-5655.	3.2	3
1407	Modification with carboxymethylation-activated alkali lignin/glutaraldehyde hybrid modifier to improve physical and mechanical properties of fast-growing wood. Wood Science and Technology, 2023, 57, 583-603.	1.4	1
1408	The Future Biorefinery: The Impact of Upscaling the Reductive Catalytic Fractionation of Lignocellulose Biomass on the Quality of the Lignin Oil, Carbohydrate Products, and Pulp. ACS Sustainable Chemistry and Engineering, 2023, 11, 5440-5450.	3.2	8
1409	Recent Advances in Carbonâ€Nitrogen/Carbonâ€Oxygen Bond Formation Under Transitionâ€Metalâ€Free Conditions. Chemical Record, 2023, 23, .	2.9	4
1410	Orthogonal C–O Bond Construction with Organogermanes. Journal of the American Chemical Society, 2023, 145, 7729-7735.	6.6	11
1411	Effect of autohydrolysis and ionosolv treatments on eucalyptus fractionation and recovered lignin properties. RSC Advances, 2023, 13, 10338-10348.	1.7	1
1412	Reductive Partial Depolymerization of Acetone Organosolv Lignin to Tailor Lignin Molar Mass, Dispersity, and Reactivity for Polymer Applications. ACS Sustainable Chemistry and Engineering, 2023, 11, 6070-6080.	3.2	4
1413	Wood Chemistry. Springer Handbooks, 2023, , 179-279.	0.3	0
1414	Continuous Flow Hydrogenation of Ligninâ€model Aromatic Compounds over Carbonâ€supported Noble Metals. ChemSusChem, 2023, 16, .	3.6	О

	CITATION RE	PORT	
#	Article	IF	Citations
1415	Lignin Degradation and Valorization by Filamentous Fungi. , 2023, , 1-31.		0
1416	Catalytic Strategies and Mechanism Analysis Orbiting the Center of Critical Intermediates in Lignin Depolymerization. Chemical Reviews, 2023, 123, 4510-4601.	23.0	45
1417	Catalystâ€Free Hydrogenolysis of Lignin <i>β</i> â€Oâ€4 Ketone Models with Water as an Hâ€transfer Reagent. ChemistrySelect, 2023, 8, .	0.7	2
1418	Engineering Innovations, Challenges, and Opportunities for Lignocellulosic Biorefineries: Leveraging Biobased Polymer Production. Annual Review of Chemical and Biomolecular Engineering, 2023, 14, 109-140.	3.3	10
1419	Structural Characterization of the Milled-Wood Lignin Isolated from Sweet Orange Tree (Citrus) Tj ETQq0 0 0 rgB	T /Overloc 2.0	k
1420	Synthesis and Computational Investigation of Antioxidants Prepared by Oxidative Depolymerization of Lignin and Aldol Condensation of Aromatic Aldehydes. ChemSusChem, 2023, 16, .	3.6	1
1421	Recovering Lignin in a Real-Case Industrial Kraft Pulp Mill: Pilot-Scale Experiment and Impact on the Mill Commodities. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	0
1422	Feedstock-agnostic reductive catalytic fractionation in alcohol and alcohol–water mixtures. Green Chemistry, 2023, 25, 3660-3670.	4.6	4
1423	RB-TnSeq identifies genetic targets for improved tolerance of Pseudomonas putida towards compounds relevant to lignin conversion. Metabolic Engineering, 2023, 77, 208-218.	3.6	5
1424	Gradient Alloyed Quantum Dots for Photocatalytic Lignin Valorization via Proton Coupled Electron Transfer. ACS Applied Nano Materials, 0, , .	2.4	1

1453	Antimicrobial and Antioxidant Properties of Lignin and Its Composites. , 2023, , 106-129.	
------	---	--

1455	Nanotechnology for valorizing the valuable products from lignin: a biorefinery approach. , 2023, , 205-233.		0
1464	Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives. Chemical Reviews, 2023, 123, 7193-7294.	23.0	39
1478	Depolymerization of Native Lignin into Vanillin, Vanillic Acid, and Other Related Compounds via Alkaline Aerobic Oxidation: Reaction Mechanisms and Process Control Using Organic Cations. , 0, , .		1
1490	Wood-Based Materials for Sustainable Applications. Environmental Footprints and Eco-design of Products and Processes, 2023, , 25-50.	0.7	0
1496	Biorefining renewable aromatic carbon. , 2023, , 407-440.		0
1513	Selective hydrogenation of phenols to cyclohexanols catalyzed by robust solid NHC–Rh coordination assemblies in water. Green Chemistry, 2023, 25, 7541-7546.	4.6	0
1516	A review on recent trends in selective hydrodeoxygenation of lignin derived molecules. , 2023, 1, 1608-1633.		4

		CITATION REPORT	
#	Article	IF	CITATIONS
1526	Preparation of Green N-Doped Biochar Materials with Biomass Pyrolysis and Their Application to Catalytic Systems. Biofuels and Biorefineries, 2023, , 345-367.	0.5	0
1537	Reductive Catalytic Fractionation of Lignocellulose and Application of Depolymerized Lignins for Synthesis of Biobased Polymeric Materials. ACS Symposium Series, 0, , 205-216.	0.5	0
1548	Extraction of Lignin and Modifications. , 2023, , 1-35.		0
1566	Selective demethylation reactions of biomass-derived aromatic ether polymers for bio-based lignin chemicals. Green Chemistry, 2023, 25, 10117-10143.	4.6	4
1568	Depolymerization strategies for lignin valorization. , 2024, , 263-289.		0
1578	Alkaline Pretreatment Toward Sustainable Biorefinery. , 2024, , 1-27.		0
1579	A guide to lignin valorization in biorefineries: traditional, recent, and forthcoming approaches to convert raw lignocellulose into valuable materials and chemicals. , 2024, 2, 37-90.		3
1601	Precise activation of Câ \in "C bonds for plastics recycling and upcycling. Chemical Science, 0, , .	3.7	0
1610	Recent advances in catalytic conversion of lignin to value-added chemicals using ionic liquids and deep eutectic solvents: a critical review. Green Chemistry, 2024, 26, 1062-1091.	4.6	1
1616	Lignin at Nanoscale Dimensions. , 2024, , 1-28.		0
1617	Biopolymer-based Green Supercapacitors: A Critical Review. , 2023, , 146-174.		0
1636	Lignocellulosic Waste to Biofuel-Paddy Straw to Bioethanol: Advancement in Technology. Clean Energy Production Technologies, 2024, , 87-107.	0.3	0
1663	Transforming lignin into value-added products: Perspectives on lignin chemistry, lignin-based biocomposites, and pathways for augmenting ligninolytic enzyme production. Advanced Composite and Hybrid Materials, 2024, 7, .	es 9.9	0