Homogeneously Catalyzed Electroreduction of Carbon and Catalysts

Chemical Reviews 118, 4631-4701

DOI: 10.1021/acs.chemrev.7b00459

Citation Report

#	Article	IF	CITATIONS
1	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie - International Edition, 2018, 57, 4603-4606.	7.2	109
2	A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO ₂ Reduction in Water. Angewandte Chemie - International Edition, 2018, 57, 7769-7773.	7.2	101
3	Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nature Catalysis, 2018, 1, 244-254.	16.1	373
4	Fe-Mediated Nitrogen Fixation with a Metallocene Mediator: Exploring p <i>K</i> _a Effects and Demonstrating Electrocatalysis. Journal of the American Chemical Society, 2018, 140, 6122-6129.	6.6	132
5	A Highly Active Nâ€Heterocyclic Carbene Manganese(I) Complex for Selective Electrocatalytic CO ₂ Reduction to CO. Angewandte Chemie, 2018, 130, 4693-4696.	1.6	23
6	Highly Selective Molecular Catalysts for the CO ₂ -to-CO Electrochemical Conversion at Very Low Overpotential. Contrasting Fe vs Co Quaterpyridine Complexes upon Mechanistic Studies. ACS Catalysis, 2018, 8, 3411-3417.	5.5	141
7	Near-surface microrheology reveals dynamics and viscoelasticity of soft matter. Soft Matter, 2018, 14, 9764-9776.	1.2	10
8	Assessing the Performance of Cobalt Phthalocyanine Nanoflakes as Molecular Catalysts for Li-Promoted Oxalate Formation in Li–CO ₂ –Oxalate Batteries. Journal of Physical Chemistry C, 2018, 122, 25776-25784.	1.5	22
9	Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry. Molecules, 2018, 23, 2835.	1.7	28
10	Visible-Light-Driven Conversion of CO ₂ to CH ₄ with an Organic Sensitizer and an Iron Porphyrin Catalyst. Journal of the American Chemical Society, 2018, 140, 17830-17834.	6.6	150
11	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie, 2018, 130, 15702-15706.	1.6	63
12	Composition Tailoring via N and S Coâ€doping and Structure Tuning by Constructing Hierarchical Pores: Metalâ€Free Catalysts for Highâ€Performance Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2018, 57, 15476-15480.	7.2	162
13	Photoiodocarboxylation of Activated Câ•€ Double Bonds with CO ₂ and Lithium Iodide. Journal of Organic Chemistry, 2018, 83, 13381-13394.	1.7	12
14	Reaction Mechanisms of Wellâ€Defined Metal–N ₄ Sites in Electrocatalytic CO ₂ Reduction. Angewandte Chemie, 2018, 130, 16577-16580.	1.6	44
15	Reaction Mechanisms of Wellâ€Defined Metal–N ₄ Sites in Electrocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2018, 57, 16339-16342.	7.2	328
16	A Review on Recent Advances for Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal–Organic Framework (MOF) and Non-MOF Catalysts: Challenges and Future Prospects. ACS Sustainable Chemistry and Engineering, 2018, 6, 15895-15914.	3.2	188
17	Electroreduction of Carbon Dioxide to Formate by Homogeneous Ir Catalysts in Water. ACS Catalysis, 2018, 8, 11296-11301.	5.5	37
18	Covalent-Organic Frameworks Composed of Rhenium Bipyridine and Metal Porphyrins: Designing Heterobimetallic Frameworks with Two Distinct Metal Sites. ACS Applied Materials & Map; Interfaces, 2018–10–37919-37927	4.0	112

#	Article	IF	CITATIONS
19	Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy, 2018, 54, 238-250.	8.2	114
20	Pyrazolium Ionic Liquid Co-catalysts for the Electroreduction of CO2. ACS Applied Energy Materials, 2018, , .	2.5	7
21	A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO ₂ and a Proton Donor Promotes the Electrochemical Reduction of CO ₂ to CO Catalyzed by a Rhenium Bipyridine-Type Complex. Journal of the American Chemical Society, 2018, 140, 12451-12456.	6.6	111
22	Carbon Dioxide Electroreduction Catalyzed by Organometallic Complexes. Advances in Organometallic Chemistry, 2018, 70, 1-69.	0.5	5
23	An electron-reservoir Re(I) complex for enhanced efficiency for reduction of CO2 to CO. Journal of Catalysis, 2018, 363, 191-196.	3.1	22
24	A Hybrid Co Quaterpyridine Complex/Carbon Nanotube Catalytic Material for CO ₂ Reduction in Water. Angewandte Chemie, 2018, 130, 7895-7899.	1.6	24
25	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	3.7	105
26	Solvent and Ligand Substitution Effects on the Electrocatalytic Reduction of CO ₂ with [Mo(CO) ₄ (<i>x,x</i> ′â€dimethylâ€2,2′â€bipyridine)] (<i>x</i> =4–6) Enhanced at a Gold Ca Surface. ChemElectroChem, 2018, 5, 3155-3161.	ith o dic	17
27	Electrocatalytic CO2 Reduction with Cis and Trans Conformers of a Rigid Dinuclear Rhenium Complex: Comparing the Monometallic and Cooperative Bimetallic Pathways. Inorganic Chemistry, 2018, 57, 9564-9575.	1.9	40
28	How to teach an old dog new (electrochemical) tricks: aziridine-functionalized CNTs as efficient electrocatalysts for the selective CO ₂ reduction to CO. Journal of Materials Chemistry A, 2018, 6, 16382-16389.	5.2	31
29	Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts. Coordination Chemistry Reviews, 2018, 374, 173-217.	9.5	131
30	Exploring the scope of capacitance-assisted electrochemical carbon dioxide capture. Dalton Transactions, 2018, 47, 10447-10452.	1.6	2
31	Magnesium-regulated oxygen vacancies of nickel layered double hydroxides for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2018, 6, 18378-18383.	5.2	29
32	Redox "Innocence―of Re(I) in Electrochemical CO2 Reduction Catalyzed by Nanographene–Re Complexes. Inorganic Chemistry, 2018, 57, 10548-10556.	1.9	11
33	A Carbon Nitride/Fe Quaterpyridine Catalytic System for Photostimulated CO ₂ -to-CO Conversion with Visible Light. Journal of the American Chemical Society, 2018, 140, 7437-7440.	6.6	160
34	Fe4S4 clusters as small molecule catalysts. Nature Catalysis, 2018, 1, 383-384.	16.1	1
35	[OSSO]-Type Iron(III) Complexes for the Low-Pressure Reaction of Carbon Dioxide with Epoxides: Catalytic Activity, Reaction Kinetics, and Computational Study. ACS Catalysis, 2018, 8, 6882-6893.	5.5	103
36	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34

# 37	ARTICLE Thermodynamic Analysis of Metal–Ligand Cooperativity of PNP Ru Complexes: Implications for CO ₂ Hydrogenation to Methanol and Catalyst Inhibition. Journal of the American Chemical Society, 2019, 141, 14317-14328.	IF 6.6	CITATIONS
38	CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nature Communications, 2019, 10, 3602.	5.8	307
39	Underevaluated Solvent Effects in Electrocatalytic CO 2 Reduction by Fe III Chloride Tetrakis(pentafluorophenyl)porphyrin. Chemistry - A European Journal, 2019, 26, 4007.	1.7	28
40	Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. Advanced Energy Materials, 2019, 9, 1900889.	10.2	53
41	Carbonaceous materials for efficient electrocatalysis. , 2019, , 375-394.		2
42	Controlling the nucleophilic properties of cobalt salen complexes for carbon dioxide capture. RSC Advances, 2019, 9, 23254-23260.	1.7	8
43	An Iron Quaterpyridine Complex as Precursor for the Electrocatalytic Reduction of CO ₂ to Methane. ChemSusChem, 2019, 12, 4500-4505.	3.6	23
44	Rhenium bipyridine catalysts with hydrogen bonding pendant amines for CO ₂ reduction. Dalton Transactions, 2019, 48, 14251-14255.	1.6	34
45	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO 2. Angewandte Chemie, 2019, 131, 14238-14241.	1.6	20
46	Opportunities and Challenges for Catalysis in Carbon Dioxide Utilization. ACS Catalysis, 2019, 9, 7937-7956.	5.5	271
47	CO ₂ fixation and transformation on a thiolate-bridged dicobalt scaffold under oxidising conditions. Inorganic Chemistry Frontiers, 2019, 6, 2185-2193.	3.0	8
48	Synergistic catalysis between atomically dispersed Fe and a pyrrolic-N-C framework for CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 1411-1415.	4.1	21
49	Bipyridineâ€Assisted Assembly of Au Nanoparticles on Cu Nanowires To Enhance the Electrochemical Reduction of CO ₂ . Angewandte Chemie - International Edition, 2019, 58, 14100-14103.	7.2	85
50	Bifunctional wood for electrocatalytic CO2 reduction to formate and electroanalytical detection of myricetin and cadmium (II). Electrochimica Acta, 2019, 319, 569-576.	2.6	10
51	Unified Benchmarking of Electrocatalysts in Noninnocent Second Coordination Spheres for CO ₂ Reduction. ACS Energy Letters, 2019, 4, 1999-2004.	8.8	29
52	Scalable Production of Efficient Single-Atom Copper Decorated Carbon Membranes for CO ₂ Electroreduction to Methanol. Journal of the American Chemical Society, 2019, 141, 12717-12723.	6.6	545
53	Molecular electrocatalysts can mediate fast, selective CO ₂ reduction in a flow cell. Science, 2019, 365, 367-369.	6.0	601
54	Graphite Conjugation Eliminates Redox Intermediates in Molecular Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 14160-14167.	6.6	42

# 55	ARTICLE Semiconductor Quantum Dots: An Emerging Candidate for CO ₂ Photoreduction. Advanced Materials, 2019, 31, e1900709.	IF 11.1	Citations 316
56	Efficient Electrocatalytic CO ₂ Reduction Driven by Ionic Liquid Bufferâ€Like Solutions. ChemSusChem, 2019, 12, 4170-4175.	3.6	19
57	The Impact of a Proton Relay in Binuclear α-Diimine-Mn(CO) ₃ Complexes on the CO ₂ Reduction Catalysis. Inorganic Chemistry, 2019, 58, 10444-10453.	1.9	25
58	Thermodynamic Cycles Relevant to Hydrogenation of CO ₂ to Formic Acid in Water and Acetonitrile. Chemistry Letters, 2019, 48, 627-629.	0.7	9
59	Use of CO2 as Source of Carbon for Energy-Rich Cn Products. , 2019, , 211-238.		1
60	Electrochemical and Photoelectrochemical Transformations of Aqueous CO2. , 2019, , 239-286.		0
61	Electrode Materials Engineering in Electrocatalytic CO ₂ Reduction: Energy Input and Conversion Efficiency. Advanced Materials, 2020, 32, e1903796.	11.1	87
62	Bio-proton coupled semiconductor/metal-complex hybrid photoelectrocatalytic interface for efficient CO ₂ reduction. Green Chemistry, 2019, 21, 339-348.	4.6	27
63	Photon-Induced, Timescale, and Electrode Effects Critical for the in Situ X-ray Spectroscopic Analysis of Electrocatalysts: The Water Oxidation Case. Journal of Physical Chemistry C, 2019, 123, 28533-28549.	1.5	24
64	Molecular Control of Heterogeneous Electrocatalysis through Graphite Conjugation. Accounts of Chemical Research, 2019, 52, 3432-3441.	7.6	81
65	DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety. Journal of Chemical Sciences, 2019, 131, 1.	0.7	3
66	Decoration of copper foam with Ni nanorods and copper oxide nanosheets to produce a high-stability electrocatalyst for the reduction of CO2: Characterization of the electrosynthesis of isonicotinic acid. Comptes Rendus Chimie, 2019, 22, 678-685.	0.2	0
67	Quantum Interference and Substantial Property Tuning in Conjugated <i>Z</i> - <i>ortho</i> -Regio-Resistive Organic (ZORRO) Junctions. Nano Letters, 2019, 19, 8956-8963.	4.5	10
68	Ten years of carbonâ€based metalâ€free electrocatalysts. , 2019, 1, 19-31.		114
69	Capacity Allocation and Compensation in a Dual-Channel Supply Chain under Uncertain Environment. Mathematical Problems in Engineering, 2019, 2019, 1-12.	0.6	1
70	Biosynthesized silver nanorings as a highly efficient and selective electrocatalysts for CO ₂ reduction. Nanoscale, 2019, 11, 18595-18603.	2.8	12
71	Immobilized Molecular Wires on Carbon-Cloth Electrodes Facilitate CO ₂ Electrolysis. ACS Catalysis, 2019, 9, 9393-9397.	5.5	18
72	An Investigation of Electrocatalytic CO2 Reduction Using a Manganese Tricarbonyl Biquinoline Complex. Frontiers in Chemistry, 2019, 7, 628.	1.8	26

#	Article	IF	CITATIONS
73	Re(tBu-bpy)(CO) ₃ Cl Supported on Multi-Walled Carbon Nanotubes Selectively Reduces CO ₂ in Water. Journal of the American Chemical Society, 2019, 141, 17270-17277.	6.6	64
74	Single Mn atom as a promising electrocatalyst for CO reduction to C2H5OH and C3H6: A computational study. Applied Surface Science, 2019, 498, 143868.	3.1	15
75	SnSe ₂ Nanorods on Carbon Cloth as a Highly Selective, Active, and Flexible Electrocatalyst for Electrochemical Reduction of CO ₂ into Formate. ACS Applied Energy Materials, 2019, 2, 7655-7662.	2.5	39
76	A cyanide-bridged di-manganese carbonyl complex that photochemically reduces CO ₂ to CO. Dalton Transactions, 2019, 48, 1226-1236.	1.6	28
77	Reduction of CO ₂ by a masked two-coordinate cobalt(<scp>i</scp>) complex and characterization of a proposed oxodicobalt(<scp>ii</scp>) intermediate. Chemical Science, 2019, 10, 918-929.	3.7	44
78	Bio-inspired design: bulk iron–nickel sulfide allows for efficient solvent-dependent CO ₂ reduction. Chemical Science, 2019, 10, 1075-1081.	3.7	64
79	Electrochemical CO ₂ reduction by a cobalt bipyricorrole complex: decrease of an overpotential value derived from monoanionic ligand character of the porphyrinoid species. Chemical Communications, 2019, 55, 493-496.	2.2	17
80	A new tri-nuclear Cu-carbonate cluster utilizing CO ₂ as a C1-building block – reactive intermediates, a probable mechanism, and EPR and magnetic studies. Dalton Transactions, 2019, 48, 3576-3582.	1.6	6
81	Electrochemical CO ₂ reduction in water at carbon cloth electrodes functionalized with a <i>fac</i> -Mn(apbpy)(CO) ₃ Br complex. Chemical Communications, 2019, 55, 775-777.	2.2	38
82	Insights into the Photoassisted Electrocatalytic Reduction of CO ₂ over a Twoâ€dimensional MoS ₂ Nanostructure Loaded on SnO ₂ Nanoparticles. ChemElectroChem, 2019, 6, 3077-3084.	1.7	9
83	Bifunctional electrocatalysis for CO ₂ reduction <i>via</i> surface capping-dependent metal–oxide interactions. Chemical Communications, 2019, 55, 8864-8867.	2.2	17
84	Structural features of molecular electrocatalysts in multi-electron redox processes for renewable energy – recent advances. Sustainable Energy and Fuels, 2019, 3, 2159-2175.	2.5	31
85	g-C3N4 foam/Cu2O QDs with excellent CO2 adsorption and synergistic catalytic effect for photocatalytic CO2 reduction. Environment International, 2019, 130, 104898.	4.8	86
86	Carbonylation of Câ^'N Bonds in Tertiary Amines Catalyzed by Lowâ€Valent Iron Catalysts. Angewandte Chemie - International Edition, 2019, 58, 10884-10887.	7.2	27
87	Carbonylation of Câ^'N Bonds in Tertiary Amines Catalyzed by Lowâ€Valent Iron Catalysts. Angewandte Chemie, 2019, 131, 11000-11003.	1.6	10
88	Synthesis of a Redox-Active NNP-Type Pincer Ligand and Its Application to Electrocatalytic CO2 Reduction With First-Row Transition Metal Complexes. Frontiers in Chemistry, 2019, 7, 330.	1.8	23
89	Electronic Effects of Substituents on fac-M(bpy-R)(CO)3 (M = Mn, Re) Complexes for Homogeneous CO2 Electroreduction. Frontiers in Chemistry, 2019, 7, 417.	1.8	28
90	Recent Advances in the Chemical Fixation of Carbon Dioxide: A Green Route to Carbonylated Heterocycle Synthesis. Catalysts, 2019, 9, 511.	1.6	54

		REPORT	
#	Article	IF	CITATIONS
91	A mechanistic study of B ₃₆ -supported atomic Au promoted CO ₂ electroreduction to formic acid. Journal of Materials Chemistry A, 2019, 7, 13935-13940.	5.2	25
92	Design and Optimization of Catalysts Based on Mechanistic Insights Derived from Quantum Chemical Reaction Modeling. Chemical Reviews, 2019, 119, 6509-6560.	23.0	130
93	Recent Trends, Benchmarking, and Challenges of Electrochemical Reduction of CO ₂ by Molecular Catalysts. Advanced Energy Materials, 2019, 9, 1900090.	10.2	144
94	Elektrochemischer Durchlaufgenerator fÃ1⁄4r hypervalente Iodreagenzien: Synthetische Anwendungen. Angewandte Chemie, 2019, 131, 9916-9920.	1.6	22
95	On decomposition, degradation, and voltammetric deviation: the electrochemist's field guide to identifying precatalyst transformation. Chemical Society Reviews, 2019, 48, 2927-2945.	18.7	92
96	Electrocatalytic CO ₂ Reduction at Lower Overpotentials Using Iron(III) Tetra(<i>meso</i> -thienyl)porphyrins. ACS Applied Energy Materials, 2019, 2, 4022-4026.	2.5	28
97	Family-dependent magnetism in atomic boron adsorbed armchair graphene nanoribbons. Journal of Materials Chemistry C, 2019, 7, 6241-6245.	2.7	16
98	Continuousâ€Flow Electrochemical Generator of Hypervalent Iodine Reagents: Synthetic Applications. Angewandte Chemie - International Edition, 2019, 58, 9811-9815.	7.2	106
99	Electrocatalytic Reduction of CO ₂ to Methanol by Iron Tetradentate Phosphine Complex Through Amidation Strategy. ChemSusChem, 2019, 12, 2195-2201.	3.6	27
100	Controlling Hydrogen Evolution during Photoreduction of CO ₂ to Formic Acid Using [Rh(R-bpy)(Cp*)Cl] ⁺ Catalysts: A Structure–Activity Study. Inorganic Chemistry, 2019, 58, 6893-6903.	1.9	31
101	Zinc: A promising material for electrocatalyst-assisted microbial electrosynthesis of carboxylic acids from carbon dioxide. Water Research, 2019, 159, 87-94.	5.3	43
102	5 Ultramicropore-rich renewable porous carbon from biomass tar with excellent adsorption capacity and selectivity for CO2 capture. Chemical Engineering Journal, 2019, 373, 171-178.	6.6	68
103	Computational prediction of pentadentate iron and cobalt complexes as a mimic of mono-iron hydrogenase for the hydrogenation of carbon dioxide to methanol. Dalton Transactions, 2019, 48, 8034-8038.	1.6	4
104	From molecular metal complex to metal-organic framework: The CO2 reduction photocatalysts with clear and tunable structure. Coordination Chemistry Reviews, 2019, 390, 86-126.	9.5	196
105	Advances in the electrochemical catalytic reduction of CO2 with metal complexes. Current Opinion in Electrochemistry, 2019, 15, 109-117.	2.5	48
106	Hydrogenation of CO ₂ to Methanol Catalyzed by Cp*Co Complexes: Mechanistic Insights and Ligand Design. Inorganic Chemistry, 2019, 58, 5494-5502.	1.9	16
107	Plausible roles of carbonate in catalytic water oxidation. Advances in Inorganic Chemistry, 2019, 74, 343-360.	0.4	14
108	Rhenium(I) Phosphazane Complexes for Electrocatalytic CO ₂ Reduction. Organometallics, 2019, 38, 1664-1676.	1.1	16

#	Article	IF	CITATIONS
109	Recent advances in electrochemical reduction of CO2. Current Opinion in Green and Sustainable Chemistry, 2019, 16, 77-84.	3.2	17
110	CO2 Electroreduction in Ionic Liquids. Frontiers in Chemistry, 2019, 7, 102.	1.8	59
111	Electrochemical CO ₂ Reduction Using Electrons Generated from Photoelectrocatalytic Phenol Oxidation. Advanced Energy Materials, 2019, 9, 1900364.	10.2	31
112	Intrinsic Carbonâ€Defectâ€Driven Electrocatalytic Reduction of Carbon Dioxide. Advanced Materials, 2019, 31, e1808276.	11.1	263
113	Ligand-centered electrochemical processes enable CO ₂ reduction with a nickel bis(triazapentadienyl) complex. Sustainable Energy and Fuels, 2019, 3, 1172-1181.	2.5	7
114	Thermodynamic Considerations for Optimizing Selective CO ₂ Reduction by Molecular Catalysts. ACS Central Science, 2019, 5, 580-588.	5.3	86
115	A donor-chromophore-catalyst assembly for solar CO ₂ reduction. Chemical Science, 2019, 10, 4436-4444.	3.7	23
116	General Review on the Components and Parameters of Photoelectrochemical System for CO ₂ Reduction with in Situ Analysis. ACS Sustainable Chemistry and Engineering, 2019, 7, 7431-7455.	3.2	87
117	A look at periodic trends in d-block molecular electrocatalysts for CO ₂ reduction. Dalton Transactions, 2019, 48, 9454-9468.	1.6	58
118	Electrochemical Reduction of CO2 by a Gas-Diffusion Electrode Composed of fac-Re(diimine)(CO)3Cl and Carbon Nanotubes. Journal of Physical Chemistry C, 2019, 123, 12073-12080.	1.5	8
119	The <i>Trans</i> Effect in Electrocatalytic CO ₂ Reduction: Mechanistic Studies of Asymmetric Ruthenium Pyridyl-Carbene Catalysts. Journal of the American Chemical Society, 2019, 141, 6658-6671.	6.6	51
120	Synergistic Effects of Imidazolium-Functionalization on <i>fac</i> -Mn(CO) ₃ Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2019, 141, 6569-6582.	6.6	104
121	A rational design of manganese electrocatalysts for Lewis acid-assisted carbon dioxide reduction. Physical Chemistry Chemical Physics, 2019, 21, 8849-8855.	1.3	12
122	Electrocatalysis at Organic–Metal Interfaces: Identification of Structure–Reactivity Relationships for CO ₂ Reduction at Modified Cu Surfaces. Journal of the American Chemical Society, 2019, 141, 7355-7364.	6.6	133
123	Electro-catalytic and photo-catalytic reformation of CO ₂ –reactions and efficiencies processes (Review). IOP Conference Series: Materials Science and Engineering, 0, 503, 012009.	0.3	2
124	Molecular approach to catalysis of electrochemical reaction in porous films. Current Opinion in Electrochemistry, 2019, 15, 58-65.	2.5	33
125	Electronic Structure Engineering of 2D Carbon Nanosheets by Evolutionary Nitrogen Modulation for Synergizing CO ₂ Electroreduction. ACS Applied Energy Materials, 2019, 2, 3151-3159.	2.5	7
126	Small-molecule activation with iron porphyrins using electrons, photons and protons: some recent advances and future strategies. Dalton Transactions, 2019, 48, 5869-5878.	1.6	15

#	Article	IF	CITATIONS
127	Recent Advances in Carbonâ€Based Metalâ€Free Electrocatalysts. Advanced Materials, 2019, 31, e1806403.	11.1	222
128	A molecular noble metal-free system for efficient visible light-driven reduction of CO ₂ to CO. Dalton Transactions, 2019, 48, 9596-9602.	1.6	37
129	Graphene-based materials for electrochemical CO2 reduction. Journal of CO2 Utilization, 2019, 30, 168-182.	3.3	87
130	Cobalt Complex of a Tetraamido Macrocyclic Ligand as a Precursor for Electrocatalytic Hydrogen Evolution. Organometallics, 2019, 38, 1397-1406.	1.1	11
131	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	5.8	179
132	A General and Facile Approach for the Electrochemical Reduction of Carbon Dioxide Inspired by Deep Eutectic Solvents. ChemSusChem, 2019, 12, 1635-1639.	3.6	36
133	Transformation of CO ₂ into α-Alkylidene Cyclic Carbonates at Room Temperature Cocatalyzed by Cul and Ionic Liquid with Biomass-Derived Levulinate Anion. ACS Sustainable Chemistry and Engineering, 2019, 7, 5614-5619.	3.2	43
134	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	23.0	1,591
135	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	23.0	615
136	Metal–bipyridine complexes as electrocatalysts for the reduction of CO ₂ : a density functional theory study. Physical Chemistry Chemical Physics, 2019, 21, 23742-23748.	1.3	9
137	A long-life Li–CO ₂ battery employing a cathode catalyst of cobalt-embedded nitrogen-doped carbon nanotubes derived from a Prussian blue analogue. Chemical Communications, 2019, 55, 12781-12784.	2.2	21
138	Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature, 2019, 575, 639-642.	13.7	658
139	The good, the neutral, and the positive: buffer identity impacts CO ₂ reduction activity by nickel(<scp>ii</scp>) cyclam. Dalton Transactions, 2019, 48, 15810-15821.	1.6	26
140	Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: a DFT study. Journal of Materials Chemistry A, 2019, 7, 23091-23097.	5.2	75
141	Molecular Electrochemical Catalysis of the CO ₂ -to-CO Conversion with a Co Complex: A Cyclic Voltammetry Mechanistic Investigation. Organometallics, 2019, 38, 1280-1285.	1.1	24
142	Mechanistic Insights into the Electrochemical Reduction of CO ₂ Catalyzed by Iron Cyclopentadienone Complexes. Organometallics, 2019, 38, 1236-1247.	1.1	23
143	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie, 2019, 131, 3809-3813.	1.6	22
144	Mechanistic Insights into Lightâ€Activated Catalysis for Water Oxidation. European Journal of Inorganic Chemistry, 2019, 2019, 2027-2039.	1.0	20

#	Article	IF	CITATIONS
145	Solvent-Controlled CO ₂ Reduction by a Triphos–Iron Hydride Complex. Organometallics, 2019, 38, 289-299.	1.1	17
146	Chemical Versatility of [FeFe]-Hydrogenase Models: Distinctive Activity of [μ-C6H4-1,2-(κ2-S)2][Fe2(CO)6] for Electrocatalytic CO2Reduction. ACS Catalysis, 2019, 9, 768-774.	5.5	21
147	Manganese N-Heterocyclic Carbene Pincers for the Electrocatalytic Reduction of Carbon Dioxide. Organometallics, 2019, 38, 1248-1253.	1.1	46
148	Improved Electrocatalytic CO ₂ Reduction with Palladium bis(NHC) Pincer Complexes Bearing Cationic Side Chains. Organometallics, 2019, 38, 1330-1343.	1.1	16
149	Photocatalytic Reduction of CO2 to CO and Formate: Do Reaction Conditions or Ruthenium Catalysts Control Product Selectivity?. ACS Applied Energy Materials, 2019, 2, 37-46.	2.5	42
150	Benzimidazoles as Metal-Free and Recyclable Hydrides for CO ₂ Reduction to Formate. Journal of the American Chemical Society, 2019, 141, 272-280.	6.6	67
151	Zn–Cu Alloy Nanofoams as Efficient Catalysts for the Reduction of CO ₂ to Syngas Mixtures with a Potentialâ€Independent H ₂ /CO Ratio. ChemSusChem, 2019, 12, 511-517.	3.6	49
152	Selective Earth-Abundant System for CO ₂ Reduction: Comparing Photo- and Electrocatalytic Processes. ACS Catalysis, 2019, 9, 2091-2100.	5.5	80
153	Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chemical Reviews, 2019, 119, 2453-2523.	23.0	260
154	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(η ³ -allyl)(CO) ₂ (<i>x</i> , <i>x</i> â€2-dimethyl-2,2â€2-bipyridine)(NCS)] (<i>x</i>)	Ŧ <mark>j·</mark> ŧTQq1	1 ¹ 0.78431
154 155	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(η ³ -allyl)(CO) ₂ (<i>x</i> , <i>x</i> â€ ² -dimethyl-2,2â€ ² -bipyridine)(NCS)] (<i>x</i>) =) In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773.	†j∙È⊺Qq1 7.2	1 ¹ 0.78431 188
154 155 156	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(η ³ -allyl)(CO) ₂ (<i>x</i> , <i>x</i> â€2-dimethyl-2,2â€2-bipyridine)(NCS)] (<i>x</i>) =) In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773. Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO ₂ to CO. Organometallics, 2019, 38, 1292-1299.	Tj·ÈTQq1 7.2 1.1	1 ¹ 0.78431 188 44
154 155 156 157	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(İ- ³ -allyl)(CO) ₂ (<i>x</i> , <i>x</i>) In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773. Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO ₂ to CO. Organometallics, 2019, 38, 1292-1299. Synergistic Metal–Ligand Redox Cooperativity for Electrocatalytic CO ₂ Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics, 2019, 38, 1317-1329.	Tj⁺ÈTQq1 7.2 1.1 1.1	1 ¹ 0.78431 188 44 37
154 155 156 157 158	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(Î- ³ -allyl)(CO) ₂ (<i>>x</i> >, <i>>x</i> >, i>x>â€2-dimethyl-2,2â€2-bipyridine)(NCS)] (<i>>x</i> > =) In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773. Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO ₂ to CO. Organometallics, 2019, 38, 1292-1299. Synergistic Metal–Ligand Redox Cooperativity for Electrocatalytic CO ₂ Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics, 2019, 38, 1317-1329. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622.	Tj ÈTQq1 7.2 1.1 1.1 23.0	1 ¹ 0.78431 188 44 37 849
154 155 156 157 158	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(İ- ³ -allyl)(CO) ₂ (<i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>>x</i> >, <i>x</i> x>, <i>x</i> x, <i>x</i> xx, <i>x</i> xxx	tj∙ÈtQq1 7.2 1.1 1.1 23.0 23.0	1 ¹ 0.78431 188 44 37 849 492
154 155 156 157 158 159	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(I-(sup>3-allyl)(CO) In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773. Manganese-Based Catalysts with Varying Ligand Substituents for the Electrochemical Reduction of CO ₂ to CO. Organometallics, 2019, 38, 1292-1299. Synergistic Metalã€ ^a Ligand Redox Cooperativity for Electrocatalytic CO ₂ Reduction Promoted by a Ligand-Based Redox Couple in Mn and Re Tricarbonyl Complexes. Organometallics, 2019, 38, 1317-1329. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chemical Reviews, 2020, 120, 526-622. Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249. Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH. Applied Catalysis B: Environmental, 2020, 261, 118243.	tj ÈTQq1 7.2 1.1 1.1 23.0 23.0 10.8	1 ¹ 0.78431 188 44 37 849 492 97
 155 156 157 158 159 160 161 	Group 6 Metal Complexes as Electrocatalysts of CO ₂ Reduction: Strong Substituent Control of the Reduction Path of [Mo(i-(sup>3-allyl)(CO) ₂ (<i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x</i> , <i>x<td>tj ÈTQq1 7.2 1.1 1.1 23.0 23.0 10.8 9.5</td><td>1¹0.78431 188 44 37 849 492 97 66</td></i>	tj ÈTQq1 7.2 1.1 1.1 23.0 23.0 10.8 9.5	1 ¹ 0.78431 188 44 37 849 492 97 66

#	Article	IF	CITATIONS
163	Twoâ€Dimensional Electrocatalysts for Efficient Reduction of Carbon Dioxide. ChemSusChem, 2020, 13, 59-77.	3.6	31
164	Current achievements and the future direction of electrochemical CO ₂ reduction: A short review. Critical Reviews in Environmental Science and Technology, 2020, 50, 769-815.	6.6	106
165	Carbon nitride embedded with transition metals for selective electrocatalytic CO2 reduction. Applied Catalysis B: Environmental, 2020, 268, 118391.	10.8	64
166	Construction of secondary coordination sphere boosts electrochemical CO2 reduction of iron porphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 465-472.	0.4	8
167	Cobalt-Group 13 Complexes Catalyze CO ₂ Hydrogenation via a Co(â^'l)/Co(l) Redox Cycle. ACS Catalysis, 2020, 10, 2459-2470.	5.5	55
168	Nickel-nitrogen-modified porous carbon/carbon nanotube hybrid with necklace-like geometry: An efficient and durable electrocatalyst for selective reduction of CO2 to CO in a wide negative potential region. Electrochimica Acta, 2020, 334, 135583.	2.6	21
169	Unusual Reactivity of a Thiazole-Based Mn Tricarbonyl Complex for CO ₂ Activation. Organometallics, 2020, 39, 988-994.	1.1	6
170	CO ₂ Reduction: From Homogeneous to Heterogeneous Electrocatalysis. Accounts of Chemical Research, 2020, 53, 255-264.	7.6	391
171	Highly efficient utilization of single atoms via constructing 3D and free-standing electrodes for CO2 reduction with ultrahigh current density. Nano Energy, 2020, 70, 104454.	8.2	106
172	Reduction-induced CO dissociation by a [Mn(bpy)(CO) ₄][SbF ₆] complex and its relevance in electrocatalytic CO ₂ reduction. Dalton Transactions, 2020, 49, 891-900.	1.6	14
173	Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy and Environmental Science, 2020, 13, 374-403.	15.6	303
174	Isolating substituent effects in Re(I)-phenanthroline electrocatalysts for CO2 reduction. Inorganica Chimica Acta, 2020, 503, 119397.	1.2	11
176	NO and NO2 as non-innocent ligands: A comparison. Coordination Chemistry Reviews, 2020, 404, 213114.	9.5	23
177	Pdâ€Catalyzed Reductive Cyclization of Nitroarenes with CO 2 as the CO Source. European Journal of Organic Chemistry, 2020, 2020, 57-60.	1.2	13
178	Pore size effect of graphyne supports on CO ₂ electrocatalytic activity of Cu single atoms. Physical Chemistry Chemical Physics, 2020, 22, 1181-1186.	1.3	37
179	Advances and challenges in electrochemical CO ₂ reduction processes: an engineering and design perspective looking beyond new catalyst materials. Journal of Materials Chemistry A, 2020, 8, 1511-1544.	5.2	305
180	A new polypyridylâ€based Ru (II) complex as a highly efficient electrocatalyst for CO 2 reduction. Applied Organometallic Chemistry, 2020, 34, e5389.	1.7	2
181	High efficiency and selectivity from synergy: Bi nanoparticles embedded in nitrogen doped porous carbon for electrochemical reduction of CO2 to formate. Electrochimica Acta, 2020, 334, 135563.	2.6	37

#	Article	IF	CITATIONS
182	Highly Efficient Electrocatalytic Reduction of CO ₂ to CO by a Molecular Chromium Complex. ACS Catalysis, 2020, 10, 1146-1151.	5.5	48
183	A Unified Electro- and Photocatalytic CO ₂ to CO Reduction Mechanism with Aminopyridine Cobalt Complexes. Journal of the American Chemical Society, 2020, 142, 120-133.	6.6	75
184	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	13.3	175
185	Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy. Journal of Electroanalytical Chemistry, 2020, 857, 113704.	1.9	9
186	Ruthenium Complexes in Homogeneous and Heterogeneous Catalysis for Electroreduction of CO ₂ . ChemCatChem, 2020, 12, 1292-1296.	1.8	9
187	Tertiary Amine-Assisted Electroreduction of Carbon Dioxide to Formate Catalyzed by Iron Tetraphenylporphyrin. ACS Energy Letters, 2020, 5, 72-78.	8.8	48
188	Photoâ€Assisted Electrocatalytic Reduction of CO 2 : A New Strategy for Reducing Catalytic Overpotentials. ChemCatChem, 2020, 12, 386-393.	1.8	14
189	Basic Strategies and Types of Applications in Organic Electrochemistry. ChemElectroChem, 2020, 7, 395-405.	1.7	133
190	Unexpected Effect of Intramolecular Phenolic Group on Electrocatalytic CO 2 Reduction. ChemCatChem, 2020, 12, 1591-1595.	1.8	23
191	Atropisomeric Hydrogen Bonding Control for CO ₂ Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angewandte Chemie, 2020, 132, 22637-22641.	1.6	20
192	Nobleâ€Metalâ€Free Doped Carbon Nanomaterial Electrocatalysts. Chemistry - A European Journal, 2020, 26, 15397-15415.	1.7	28
193	Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO ₂ Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 4319-4333.	1.0	33
194	Hierarchical NiCo2O4-MnO -NF monolithic catalyst synthesized by in-situ alternating anode and cathode electro-deposition strategy: Strong interfacial anchoring force promote catalytic performance. Applied Surface Science, 2020, 532, 147485.	3.1	6
195	Homogeneous and heterogeneous molecular catalysts for electrochemical reduction of carbon dioxide. RSC Advances, 2020, 10, 38013-38023.	1.7	24
196	Immobilization of a Molecular Re Complex on MOFâ€derived Hierarchical Porous Carbon for CO ₂ Electroreduction in Water/Ionic Liquid Electrolyte. ChemSusChem, 2020, 13, 6418-6425.	3.6	9
197	Three-Dimensional Cathodes for Electrochemical Reduction of CO2: From Macro- to Nano-Engineering. Nanomaterials, 2020, 10, 1884.	1.9	23
198	Functionalization of Carbon Nanotubes with Nickel Cyclam for the Electrochemical Reduction of CO ₂ . ChemSusChem, 2020, 13, 6449-6456.	3.6	27
199	CO 2 to CO: Photo―and Electrocatalytic Conversion Based on Re(I) Bisâ€Arene Frameworks: Synergisms Between Catalytic Subunits. Helvetica Chimica Acta, 2020, 103, e2000147.	1.0	2

#	Article	IF	CITATIONS
201	Iron-Mediated C–C Bond Formation via Reductive Coupling with Carbon Dioxide. Organometallics, 2020, 39, 3562-3571.	1.1	13
202	Molecular catalysis of CO ₂ reduction: recent advances and perspectives in electrochemical and light-driven processes with selected Fe, Ni and Co aza macrocyclic and polypyridine complexes. Chemical Society Reviews, 2020, 49, 5772-5809.	18.7	233
203	Ligand-Controlled Product Selectivity in Electrochemical Carbon Dioxide Reduction Using Manganese Bipyridine Catalysts. Journal of the American Chemical Society, 2020, 142, 4265-4275.	6.6	114
204	Electroreduction of CO ₂ to Formate with Low Overpotential using Cobalt Pyridine Thiolate Complexes. Angewandte Chemie - International Edition, 2020, 59, 15726-15733.	7.2	38
205	Emergence of CO2 electrolyzers including supported molecular catalysts. Current Opinion in Electrochemistry, 2020, 24, 49-55.	2.5	15
206	Efficient Conversion of CO ₂ to Formate Using Inexpensive and Easily Prepared Post-Transition Metal Alloy Catalysts. Energy & Fuels, 2020, 34, 3467-3476.	2.5	23
207	Aromatic Esterâ€Functionalized Ionic Liquid for Highly Efficient CO ₂ Electrochemical Reduction to Oxalic Acid. ChemSusChem, 2020, 13, 4900-4905.	3.6	33
208	Heterogeneous Nature of Electrocatalytic CO/CO ₂ Reduction by Cobalt Phthalocyanines. ChemSusChem, 2020, 13, 6296-6299.	3.6	37
209	Co/FeC core–nitrogen doped hollow carbon shell structure with tunable shell-thickness for oxygen evolution reaction. Journal of Colloid and Interface Science, 2020, 580, 794-802.	5.0	15
210	From CO ₂ to Bioplastic – Coupling the Electrochemical CO ₂ Reduction with a Microbial Product Generation by Dropâ€in Electrolysis. ChemSusChem, 2020, 13, 4086-4093.	3.6	45
211	Electroreduction of CO 2 to Formate with Low Overpotential using Cobalt Pyridine Thiolate Complexes. Angewandte Chemie, 2020, 132, 15856-15863.	1.6	13
213	Electrochemical CO 2 and Proton Reduction by a Co(dithiacyclam) Complex. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 746-753.	0.6	9
214	Mn(III) Catalyzed Electrochemical Reduction of CO2 on Carbon Electrodes. Croatica Chemica Acta, 2020, 93, 41-47.	0.1	1
215	Metal–Ligand Cooperativity via Exchange Coupling Promotes Iron- Catalyzed Electrochemical CO ₂ Reduction at Low Overpotentials. Journal of the American Chemical Society, 2020, 142, 20489-20501.	6.6	77
216	Temperature Effects on CO ₂ Electroreduction Pathways in an Imidazolium-Based Ionic Liquid on Pt Electrode. Journal of Physical Chemistry C, 2020, 124, 26094-26105.	1.5	15
217	Inkâ€Assisted Synthetic Strategy for Stable and Advanced Composite Electrocatalysts with Single Fe Sites. Small, 2020, 16, e2006113.	5.2	4
218	Understanding the Efficiency and Selectivity of Two-Electron Production of Metalloporphyrin-Embedded Zirconium–Pyrogallol Scaffolds in Electrochemical CO2 Reduction. ACS Applied Materials & Interfaces, 2020, 12, 52588-52594.	4.0	3
219	Repurposing a Bio-Inspired NiFe Hydrogenase Model for CO ₂ Reduction with Selective Production of Methane as the Unique C-Based Product. ACS Energy Letters, 2020, 5, 3837-3842.	8.8	41

#	Article	IF	CITATIONS
220	Selective electrocatalytic reduction of carbon dioxide to formate by a trimetallic Sn-Co/Cu foam electrode. Journal of Electroanalytical Chemistry, 2020, 877, 114623.	1.9	7
221	Enhanced Electrocatalytic Activity of a Zinc Porphyrin for CO ₂ Reduction: Cooperative Effects of Triazole Units in the Second Coordination Sphere. Chemistry - A European Journal, 2020, 26, 16774-16781.	1.7	16
222	Design strategies and mechanism studies of CO2 electroreduction catalysts based on coordination chemistry. Coordination Chemistry Reviews, 2020, 422, 213436.	9.5	49
223	Luminescent Rhenium(I)tricarbonyl Complexes Containing Different Pyrazoles and Their Successive Deprotonation Products: CO ₂ Reduction Electrocatalysts. Inorganic Chemistry, 2020, 59, 11152-11165.	1.9	17
224	Grand Challenges for Catalytic Remediation in Environmental and Energy Applications Toward a Cleaner and Sustainable Future. Frontiers in Environmental Chemistry, 2020, 1, .	0.7	34
225	Efficient Carbon Dioxide Electroreduction over Ultrathin Covalent Organic Framework Nanolayers with Isolated Cobalt Porphyrin Units. ACS Applied Materials & Interfaces, 2020, 12, 37986-37992.	4.0	72
226	An <i>ab initio</i> multireference study of reductive eliminations from organoferrates(<scp>iii</scp>) in the gas-phase: it is all about the spin state. Physical Chemistry Chemical Physics, 2020, 22, 17677-17686.	1.3	2
227	Transfer hydrogenation of carbon dioxide via bicarbonate promoted by bifunctional C–N chelating Cp*lr complexes. Chemical Communications, 2020, 56, 10762-10765.	2.2	5
228	Beyond CO2 Reduction: Vistas on Electrochemical Reduction of Heavy Non-metal Oxides with Very Strong E—O Bonds (E = Si, P, S). Journal of the American Chemical Society, 2020, 142, 14772-14788.	6.6	22
229	Transition metal macrocycles for heterogeneous electrochemical CO2 reduction. Coordination Chemistry Reviews, 2020, 422, 213435.	9.5	88
230	Towards highly efficient electrochemical CO2 reduction: Cell designs, membranes and electrocatalysts. Applied Energy, 2020, 277, 115557.	5.1	104
231	Understanding the Improved Activity of Dendritic Sn1Pb3 Alloy for the CO2 Electrochemical Reduction: A Computational–Experimental Investigation. ACS Catalysis, 2020, 10, 10726-10734.	5.5	11
232	Graphene-encapsulated nickel–copper bimetallic nanoparticle catalysts for electrochemical reduction of CO ₂ to CO. Chemical Communications, 2020, 56, 11275-11278.	2.2	23
233	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 122, 12217-12314.	23.0	563
234	Imidazolium- and Pyrrolidinium-Based Ionic Liquids as Cocatalysts for CO ₂ Electroreduction in Model Molecular Electrocatalysis. Journal of Physical Chemistry C, 2020, 124, 23764-23772.	1.5	12
235	Electrocatalyst design for aprotic Li–CO ₂ batteries. Energy and Environmental Science, 2020, 13, 4717-4737.	15.6	65
236	Computational mechanistic insights into non-noble-metal-catalysed CO ₂ conversion. Dalton Transactions, 2020, 49, 16608-16616.	1.6	4
237	Molecular quaterpyridine-based metal complexes for small molecule activation: water splitting and CO ₂ reduction. Chemical Society Reviews, 2020, 49, 7271-7283.	18.7	57

#	Article	IF	CITATIONS
238	Construction of Thiazolo[5,4- <i>d</i>]thiazole-based Two-Dimensional Network for Efficient Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2020, 12, 46483-46489.	4.0	43
239	Systematic Trends in the Electrochemical Properties of Transition Metal Hydride Complexes Discovered by Using the Ligand Acidity Constant Equation. Journal of the American Chemical Society, 2020, 142, 17607-17629.	6.6	10
240	Recent advances in the use of catalysts based on natural products for the conversion of CO ₂ into cyclic carbonates. Green Chemistry, 2020, 22, 7665-7706.	4.6	110
241	Hydrogenation and electrocatalytic reduction of carbon dioxide to formate with a single Co catalyst. Chemical Communications, 2020, 56, 12142-12145.	2.2	5
242	Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nature Energy, 2020, 5, 703-710.	19.8	156
243	Transition metal-based catalysts for the electrochemical CO ₂ reduction: from atoms and molecules to nanostructured materials. Chemical Society Reviews, 2020, 49, 6884-6946.	18.7	305
244	Novel homogeneous selective electrocatalysts for CO ₂ reduction: an electrochemical and computational study of cyclopentadienyl-phenylendiamino-cobalt complexes. Sustainable Energy and Fuels, 2020, 4, 5609-5617.	2.5	5
245	Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nature Communications, 2020, 11, 4647.	5.8	117
246	Atropisomeric Hydrogen Bonding Control for CO ₂ Binding and Enhancement of Electrocatalytic Reduction at Iron Porphyrins. Angewandte Chemie - International Edition, 2020, 59, 22451-22455.	7.2	55
247	Electroreduction of Carbon Dioxide by Homogeneous Iridium Catalysts. Topics in Organometallic Chemistry, 2020, , 325-339.	0.7	0
248	Vitamin B ₁₂ on Graphene for Highly Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2020, 12, 41288-41293.	4.0	22
249	<i>Operando</i> characterization techniques for electrocatalysis. Energy and Environmental Science, 2020, 13, 3748-3779.	15.6	159
250	Carbon Dioxide Reduction Mediated by Iron Catalysts: Mechanism and Intermediates That Guide Selectivity. ACS Omega, 2020, 5, 21309-21319.	1.6	25
251	Anion exchange-induced single-molecule dispersion of cobalt porphyrins in a cationic porous organic polymer for enhanced electrochemical CO ₂ reduction <i>via</i> secondary-coordination sphere interactions. Journal of Materials Chemistry A, 2020, 8, 18677-18686.	5.2	20
252	Reprint of "Selective conversion of CO into ethanol on Cu(511) surface reconstructed from Cu(pc): Operando studies by electrochemical scanning tunneling microscopy, mass spectrometry, quartz crystal nanobalance, and infrared spectroscopy". Journal of Electroanalytical Chemistry, 2020, 875, 114757	1.9	0
253	Hierarchical Tuning of the Performance of Electrochemical Carbon Dioxide Reduction Using Conductive Two-Dimensional Metallophthalocyanine Based Metal–Organic Frameworks. Journal of the American Chemical Society, 2020, 142, 21656-21669.	6.6	129
254	Advances in Metal Phthalocyanine based Carbon Composites for Electrocatalytic CO ₂ Reduction. ChemCatChem, 2020, 12, 6103-6130.	1.8	38
255	A bioinspired molybdenum–copper molecular catalyst for CO ₂ electroreduction. Chemical Science, 2020, 11, 5503-5510.	3.7	40

#	Article	IF	CITATIONS
256	Electrocatalytic Reduction of CO ₂ to CH ₄ and CO in Aqueous Solution Using Pyridine-Porphyrins Immobilized onto Carbon Nanotubes. ACS Sustainable Chemistry and Engineering, 2020, 8, 9549-9557.	3.2	39
257	Electro-organic synthesis – a 21 st century technique. Chemical Science, 2020, 11, 12386-12400.	3.7	379
258	Harnessing Noninnocent Porphyrin Ligand to Circumvent Fe-Hydride Formation in the Selective Fe-Catalyzed CO ₂ Reduction in Aqueous Solution. ACS Catalysis, 2020, 10, 6332-6345.	5.5	37
259	Enhanced Molecular CO ₂ Electroreduction Enabled by a Flexible Hydrophilic Channel for Relay Proton Shuttling. ChemSusChem, 2020, 13, 3412-3417.	3.6	18
261	Core–shell structured catalysts for thermocatalytic, photocatalytic, and electrocatalytic conversion of CO ₂ . Chemical Society Reviews, 2020, 49, 2937-3004.	18.7	479
262	Photocatalytic CO ₂ Reduction Using a Robust Multifunctional Iridium Complex toward the Selective Formation of Formic Acid. Journal of the American Chemical Society, 2020, 142, 10261-10266.	6.6	90
263	Tuning nanocavities of Au@Cu ₂ O yolk–shell nanoparticles for highly selective electroreduction of CO ₂ to ethanol at low potential. RSC Advances, 2020, 10, 19192-19198.	1.7	33
264	Electrocatalytic Reduction of CO ₂ to Ethylene by Molecular Cuâ€Complex Immobilized on Graphitized Mesoporous Carbon. Small, 2020, 16, e2000955.	5.2	48
265	Electrocatalytic reduction of CO2 to CO over iron phthalocyanine-modified graphene nanocomposites. Carbon, 2020, 167, 658-667.	5.4	58
266	Direct oxidative carboxylation of olefins into cyclic carbonates at ambient pressure. Journal of CO2 Utilization, 2020, 40, 101204.	3.3	15
267	Metal-free sites with multidimensional structure modifications for selective electrochemical CO2 reduction. Nano Today, 2020, 33, 100891.	6.2	23
268	Atropisomeric Effects of Second Coordination Spheres on Electrocatalytic CO ₂ Reduction. ChemCatChem, 2020, 12, 4886-4892.	1.8	10
269	Revealing active sites in N-doped carbon for CO2 electroreduction by well-defined molecular model catalysts. Science Bulletin, 2020, 65, 781-782.	4.3	4
270	Mechanically Interlocked Carbon Nanotubes as a Stable Electrocatalytic Platform for Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 32615-32621.	4.0	25
271	Inâ€Situ Scanning Tunneling Microscopy of Cobaltâ€Phthalocyanine atalyzed CO 2 Reduction Reaction. Angewandte Chemie, 2020, 132, 16232-16237.	1.6	6
272	Inâ€Situ Scanning Tunneling Microscopy of Cobaltâ€Phthalocyanineâ€Catalyzed CO ₂ Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 16098-16103.	7.2	56
273	Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate. Journal of Alloys and Compounds, 2020, 841, 155789.	2.8	41
274	An NADH-Inspired Redox Mediator Strategy to Promote Second-Sphere Electron and Proton Transfer for Cooperative Electrochemical CO ₂ Reduction Catalyzed by Iron Porphyrin. Inorganic Chemistry, 2020, 59, 9270-9278.	1.9	30

#	Article	IF	CITATIONS
275	Effects of Tuning Intramolecular Proton Acidity on CO ₂ Reduction by Mn Bipyridyl Species. Organometallics, 2020, 39, 2425-2437.	1.1	12
276	Organic–Inorganic Hybrid Nanomaterials for Electrocatalytic CO ₂ Reduction. Small, 2020, 16, e2001847.	5.2	79
277	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	7.8	390
278	Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Applied Catalysis B: Environmental, 2020, 277, 119252.	10.8	50
279	Electrochemical Reduction of Carbamates and Carbamic Acids: Implications for Combined Carbon Capture and Electrochemical CO ₂ Recycling. Journal of the Electrochemical Society, 2020, 167, 086507.	1.3	13
280	Acridine Variations for Coordination Chemistry. Israel Journal of Chemistry, 2020, 60, 433-436.	1.0	0
281	Evaluation of the Electrocatalytic Reduction of Carbon Dioxide using Rhenium and Ruthenium Bipyridine Catalysts Bearing Pendant Amines in the Secondary Coordination Sphere. Organometallics, 2020, 39, 1480-1490.	1.1	30
282	Exploiting Metal–Ligand Cooperativity to Sequester, Activate, and Reduce Atmospheric Carbon Dioxide with a Neutral Zinc Complex. Inorganic Chemistry, 2020, 59, 4835-4841.	1.9	19
283	Nanoconfined Tin Oxide within N-Doped Nanocarbon Supported on Electrochemically Exfoliated Graphene for Efficient Electroreduction of CO ₂ to Formate and C1 Products. ACS Applied Materials & Interfaces, 2020, 12, 16178-16185.	4.0	41
284	Ligandâ€Assisted Electrochemical CO ₂ Reduction by Ruâ€Polypyridyl Complexes. European Journal of Inorganic Chemistry, 2020, 2020, 1814-1818.	1.0	12
285	Computational Insights on the Electrocatalytic Behavior of [Cp*Rh] Molecular Catalysts Immobilized on Graphene for Heterogeneous Hydrogen Evolution Reaction. Scientific Reports, 2020, 10, 5777.	1.6	4
286	Recent Advances in Atomicâ€Level Engineering of Nanostructured Catalysts for Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2020, 30, 1910534.	7.8	100
287	Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2020, 12, 14064-14070.	4.0	91
288	Carbon Capture and Conversion. Journal of the American Chemical Society, 2020, 142, 4955-4957.	6.6	85
289	Surprisingly big linker-dependence of activity and selectivity in CO ₂ reduction by an iridium(<scp>i</scp>) pincer complex. Chemical Communications, 2020, 56, 9126-9129.	2.2	10
290	Plasmonic Heterostructure Functionalized with a Carbene-Linked Molecular Catalyst for Sustainable and Selective Carbon Dioxide Reduction. ACS Applied Materials & Interfaces, 2020, 12, 33817-33826.	4.0	13
291	Highly Active Manganese-Based CO ₂ Reduction Catalysts with Bulky NHC Ligands: A Mechanistic Study. Inorganic Chemistry, 2020, 59, 10234-10242.	1.9	21
292	CO2 Electrochemical Reduction by Exohedral N-Pyridine Decorated Metal-Free Carbon Nanotubes. Energies, 2020, 13, 2703.	1.6	9

CITAT	TION	DEDODT
CITA	I I U N	REPORT

#	Article	IF	CITATIONS
293	Electrochemical Conversion of CO ₂ to CO by a Competent Fe ^I Intermediate Bearing a Schiff Base Ligand. ChemSusChem, 2020, 13, 4111-4120.	3.6	11
294	Highly active coral-like porous silver for electrochemical reduction of CO2 to CO. Journal of CO2 Utilization, 2020, 41, 101242.	3.3	16
295	Synthesis and characterization of pH-sensitive block polymer poly (propylene carbonate)-b-poly (acrylic acid) for sustained chlorpyrifos release. Materials Today Communications, 2020, 24, 100974.	0.9	3
296	Electrocatalytic CO 2 Reduction with a Halfâ€Sandwich Cobalt Catalyst: Selectivity towards CO. Chemistry - an Asian Journal, 2020, 15, 904-909.	1.7	5
297	Molecular enhancement of heterogeneous CO2 reduction. Nature Materials, 2020, 19, 266-276.	13.3	416
298	Sterically hindered Re- and Mn-CO2 reduction catalysts for solar energy conversion. Dalton Transactions, 2020, 49, 4230-4243.	1.6	9
299	Recent Progress in Selfâ€5upported Catalysts for CO ₂ Electrochemical Reduction. Small Methods, 2020, 4, 1900826.	4.6	48
300	Single-atom Ni integrated gas diffusion electrode for high performance carbon dioxide electroreduction. Science Bulletin, 2020, 65, 696-697.	4.3	2
301	Stable, yet "nakedâ€, azo radical anion ArNNAr ^{â^'} and dianion ArNNAr ^{2â^'} (Ar =) Tj activation. Chemical Communications, 2020, 56, 3285-3288.	ETQq0 0 (2.2	D rgBT /Overlc 6
302	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034.	23.0	825
302 303	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518.	23.0 1.1	825 24
302 303 304	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038.	23.0 1.1 1.7	825 24 52
302 303 304 305	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038. Understanding the Enhanced Catalytic CO ₂ Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 2020, 39, 1634-1641.	23.0 1.1 1.7 1.1	825 24 52 28
302 303 304 305	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038. Understanding the Enhanced Catalytic CO ₂ Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 2020, 39, 1634-1641. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. Journal of Materials Chemistry A, 2020, 8, 3541-3562.	23.0 1.1 1.7 1.1 5.2	 825 24 52 28 204
302 303 304 305 306 307	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)–Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038. Understanding the Enhanced Catalytic CO ₂ Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 2020, 39, 1634-1641. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. Journal of Materials Chemistry A, 2020, 8, 3541-3562. Mn-Based Molecular Catalysts for the Electrocatalytic Disproportionation of CO ₂ into CO and CO ₃ ACS Catalysis, 2020, 10, 1961-1968.	23.0 1.1 1.7 1.1 5.2 5.5	 825 24 52 28 204 25
 302 303 304 305 306 307 308 	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)〓Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038. Understanding the Enhanced Catalytic CO ₂ Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 2020, 39, 1634-1641. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. Journal of Materials Chemistry A, 2020, 8, 3541-3562. Mn-Based Molecular Catalysts for the Electrocatalytic Disproportionation of CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO ₂ into CO and CO	23.0 1.1 1.7 1.1 5.2 5.5 3.0	 825 24 52 28 204 25 7
 302 303 304 305 305 306 307 308 309 	Recent Advances in Carbon Dioxide Hydrogenation to Methanol via Heterogeneous Catalysis. Chemical Reviews, 2020, 120, 7984-8034. A Ru(II)âć "Mn(I) Supramolecular Photocatalyst for CO ₂ Reduction. Organometallics, 2020, 39, 1511-1518. Iron Porphyrin Allows Fast and Selective Electrocatalytic Conversion of CO ₂ to CO in a Flow Cell. Chemistry - A European Journal, 2020, 26, 3034-3038. Understanding the Enhanced Catalytic CO ₂ Reduction upon Adhering Cobalt Porphyrin to Carbon Nanotubes and the Inverse Loading Effect. Organometallics, 2020, 39, 1634-1641. Current progress in electrocatalytic carbon dioxide reduction to fuels on heterogeneous catalysts. Journal of Materials Chemistry A, 2020, 8, 3541-3562. Mn-Based Molecular Catalysts for the Electrocatalytic Disproportionation of CO ₂ into CO and CO ₃ ^{2àć"} . ACS Catalysis, 2020, 10, 1961-1968. Cu _{3. SNS triazole and imidazole pincers as electrocatalyst precursors for the production of solar fuels. Inorganic Chemistry Frontiers, 2020, 7, 1012-1015. Catalyst-free selective <i>N</i>} . Green Chemistry, 2020, 22, 1134-1138.	 23.0 1.1 1.7 1.1 5.2 5.5 3.0 4.6 	 825 24 52 28 204 25 7 51

#	ARTICLE	IF	CITATIONS
311	Electrochemical CO ₂ Reduction in a Continuous Non-Aqueous Flow Cell with [Ni(cyclam)] ²⁺ . Inorganic Chemistry, 2020, 59, 1883-1892.	1.9	26
312	Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: from bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Transactions, 2020, 49, 2381-2396.	1.6	103
313	Catalytic N ₂ -to-NH ₃ (or -N ₂ H ₄) Conversion by Well-Defined Molecular Coordination Complexes. Chemical Reviews, 2020, 120, 5582-5636.	23.0	234
314	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO 2 Reduction. Angewandte Chemie, 2020, 132, 11559-11566.	1.6	6
315	2â€Aminobenzenethiolâ€Functionalized Silverâ€Decorated Nanoporous Silicon Photoelectrodes for Selective CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 11462-11469.	7.2	24
316	Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re(3,3′-dihydroxy-2,2′-bipyridine)(CO)3Cl] and Catalytic Reduction of Carbon Dioxide. Inorganic Chemistry, 2020, 59, 5564-5578.	1.9	22
317	Homogeneous Electrochemical Reduction of CO ₂ to CO by a Cobalt Pyridine Thiolate Complex. Inorganic Chemistry, 2020, 59, 5292-5302.	1.9	30
318	The critical role of hydride (Hâ``) ligands in electrocatalytic CO2reduction to HCOOH by [Cu25H22(PH3)12]Cl nanocluster. Journal of Catalysis, 2020, 387, 95-101.	3.1	20
319	Atomically Dispersed Nickel(I) on an Alloyâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Array for Highâ€Performance Electrochemical CO ₂ Reduction Reaction. Angewandte Chemie, 2020, 132, 12153-12159.	1.6	27
320	Atomically Dispersed Nickel(I) on an Alloyâ€Encapsulated Nitrogenâ€Doped Carbon Nanotube Array for Highâ€Performance Electrochemical CO ₂ Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 12055-12061.	7.2	117
321	Toward Excellence of Transition Metalâ€Based Catalysts for CO ₂ Electrochemical Reduction: An Overview of Strategies and Rationales. Small Methods, 2020, 4, 2000033.	4.6	60
322	Enhanced Electrochemical CO ₂ Reduction by a Series of Molecular Rhenium Catalysts Decorated with Second-Sphere Hydrogen-Bond Donors. Inorganic Chemistry, 2020, 59, 6087-6099.	1.9	46
323	Electrocatalytic CO ₂ Reduction to Formate with Molecular Fe(III) Complexes Containing Pendent Proton Relays. Inorganic Chemistry, 2020, 59, 5854-5864.	1.9	37
324	Descriptor-Based Design Principle for Two-Dimensional Single-Atom Catalysts: Carbon Dioxide Electroreduction. Journal of Physical Chemistry Letters, 2020, 11, 3481-3487.	2.1	65
325	Kinetics of the <i>Trans</i> Effect in Ruthenium Complexes Provide Insight into the Factors That Control Activity and Stability in CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 8980-8999.	6.6	40
326	Construction of cobalt-copper bimetallic oxide heterogeneous nanotubes for high-efficient and low-overpotential electrochemical CO2 reduction. Journal of Energy Chemistry, 2021, 54, 1-6.	7.1	26
327	Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 271-278.	6.9	21
328	Cobalt porphyrin immobilized on the TiO2 nanotube electrode for CO2 electroreduction in aqueous solution. Journal of Energy Chemistry, 2021, 55, 219-227.	7.1	23

#	Article	IF	CITATIONS
329	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie, 2021, 133, 1232-1239.	1.6	0
330	Recent Advances in Electrochemical CO ₂ Reduction on Indiumâ€Based Catalysts. ChemCatChem, 2021, 13, 514-531.	1.8	50
331	Design, Identification, and Evolution of a Surface Ruthenium(II/III) Single Site for CO Activation. Angewandte Chemie - International Edition, 2021, 60, 1212-1219.	7.2	8
332	On the molecular properties of graphene-pyrazines conjugated Ru and Fe complexes: Computational insights. Materials Today Communications, 2021, 26, 101694.	0.9	0
333	First principles studies of mononuclear and dinuclear Pacman complexes for electrocatalytic reduction of CO2. Catalysis Science and Technology, 2021, 11, 637-645.	2.1	3
334	Consistent inclusion of continuum solvation in energy decomposition analysis: theory and application to molecular CO ₂ reduction catalysts. Chemical Science, 2021, 12, 1398-1414.	3.7	41
335	Recent Advances in Strategies for Improving the Performance of CO ₂ Reduction Reaction on Single Atom Catalysts. Small Science, 2021, 1, 2000028.	5.8	57
336	Phosphine Carboxylate—Probing the Edge of Stability of a Carbon Dioxide Adduct with Dihydrogenphosphide. Angewandte Chemie, 2021, 133, 3803-3811.	1.6	2
337	Boosting CO ₂ -to-CO conversion on a robust single-atom copper decorated carbon catalyst by enhancing intermediate binding strength. Journal of Materials Chemistry A, 2021, 9, 1705-1712.	5.2	49
338	Electro―and Photochemical Reduction of CO ₂ by Molecular Manganese Catalysts: Exploring the Positional Effect of Secondâ€6phere Hydrogenâ€Bond Donors. ChemSusChem, 2021, 14, 662-670.	3.6	26
339	Recent Progress of Snâ€Based Derivative Catalysts for Electrochemical Reduction of CO ₂ . Energy Technology, 2021, 9, .	1.8	42
340	Phosphine Carboxylate—Probing the Edge of Stability of a Carbon Dioxide Adduct with Dihydrogenphosphide. Angewandte Chemie - International Edition, 2021, 60, 3759-3767.	7.2	8
341	Morphology and composition-controllable synthesis of copper sulfide nanocrystals for electrochemical reduction of CO2 to HCOOH. Materials Letters, 2021, 284, 128919.	1.3	11
342	Biochemical and artificial pathways for the reduction of carbon dioxide, nitrite and the competing proton reduction: effect of 2 nd sphere interactions in catalysis. Chemical Society Reviews, 2021, 50, 3755-3823.	18.7	77
343	Electrocatalysis for CO ₂ conversion: from fundamentals to value-added products. Chemical Society Reviews, 2021, 50, 4993-5061.	18.7	559
344	An iron–nitrogen doped carbon and CdS hybrid catalytic system for efficient CO ₂ photochemical reduction. Chemical Communications, 2021, 57, 2033-2036.	2.2	16
345	A proton-responsive ligand becomes a dimetal linker for multisubstrate assembly <i>via</i> nitrate deoxygenation. Chemical Communications, 2021, 57, 2780-2783.	2.2	10
346	Enhance the activity of multi-carbon products for Cu via P doping towards CO2 reduction. Science China Chemistry, 2021, 64, 1096-1102.	4.2	22

#	Article	IF	CITATIONS
347	Spectroelectrochemistry: Tools for Electrochemical Mechanisms andÂElectrocatalysis. , 2021, , 1101-1124.		1
348	Electrocatalytic reduction of CO ₂ to CO and HCO ₂ ^{â^³} with Zn(<scp>ii</scp>) complexes displaying cooperative ligand reduction. Chemical Communications, 2021, 57, 9292-9295.	2.2	4
349	The Role of Organic Promoters in the Electroreduction of Carbon Dioxide. ACS Catalysis, 2021, 11, 1392-1405.	5.5	41
350	Mechanistic Insights into Co and Fe Quaterpyridine-Based CO ₂ Reduction Catalysts: Metal–Ligand Orbital Interaction as the Key Driving Force for Distinct Pathways. Journal of the American Chemical Society, 2021, 143, 744-763.	6.6	52
351	An amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO ₂ -to-CO reduction at low overpotential. Chemical Science, 2021, 12, 4779-4788.	3.7	19
352	Aqueous CO ₂ fixation: construction of pyridine skeletons in cooperation with ammonium cations. Green Chemistry, 2021, 23, 7950-7955.	4.6	8
353	Tunable metal–organic framework nanoarrays on carbon cloth constructed by a rational self-sacrificing template for efficient and robust oxygen evolution reactions. CrystEngComm, 2021, 23, 7090-7096.	1.3	6
354	Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review. Energy and Environmental Science, 2021, 14, 1959-2008.	15.6	243
355	Introduction to the Organometallic Chemistry of Carbon Dioxide. , 2021, , .		0
356	A relativistic DFT probe for small-molecule activation mediated by low-valent uranium metallocenes. New Journal of Chemistry, 2021, 45, 4270-4279.	1.4	0
357	MOF-based electrocatalysts for high-efficiency CO ₂ conversion: structure, performance, and perspectives. Journal of Materials Chemistry A, 2021, 9, 22710-22728.	5.2	20
358	Structure Sensitivity in Single-Atom Catalysis toward CO ₂ Electroreduction. ACS Energy Letters, 2021, 6, 713-727.	8.8	149
359	Standâ€Alone Photoelectrochemical Energy Conversions. Solar Rrl, 2021, 5, 2000517.	3.1	1
360	Selective electroreduction of CO ₂ to carbon-rich products with a simple binary copper selenide electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 7150-7161.	5.2	32
361	Understanding active sites in molecular (photo)electrocatalysis through complementary vibrational spectroelectrochemistry. Chemical Communications, 2021, 57, 2328-2342.	2.2	17
362	Electrocatalytic syngas generation with a redox non-innocent cobalt 2-phosphinobenzenethiolate complex. Dalton Transactions, 2021, 50, 10779-10788.	1.6	4
363	<i>C</i> -Methylenation of anilines and indoles with CO ₂ and hydrosilane using a pentanuclear zinc complex catalyst. Chemical Communications, 2021, 57, 8083-8086.	2.2	17
364	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249

	CHAHON	REFORT	
#	Article	IF	CITATIONS
365	Recent advances in pincer–nickel catalyzed reactions. Dalton Transactions, 2021, 50, 3394-3428.	1.6	32
366	Effects of Appended Poly(ethylene glycol) on Electrochemical CO ₂ Reduction by an Iron Porphyrin Complex. Inorganic Chemistry, 2021, 60, 3843-3850.	1.9	13
367	Mechanism-of-Action Elucidation of Reversible Li–CO ₂ Batteries Using the Water-in-Salt Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 7396-7404.	4.0	30
368	Ionic liquid-based electrolytes for CO2 electroreduction and CO2 electroorganic transformation. National Science Review, 2022, 9, nwab022.	4.6	58
369	Selective Electrocatalytic CO ₂ Reduction to CO by an NHC-Based Organometallic Heme Analogue. ACS Catalysis, 2021, 11, 3257-3267.	5.5	12
370	Environmental Applications of Nanotechnology: Nano-enabled Remediation Processes in Water, Soil and Air Treatment. Water, Air, and Soil Pollution, 2021, 232, 1.	1.1	14
371	Selective CO ₂ Electrochemical Reduction Enabled by a Tricomponent Copolymer Modifier on a Copper Surface. Journal of the American Chemical Society, 2021, 143, 2857-2865.	6.6	104
372	Effects of van der Waals interactions on the structure and stability of Cu8-xPdx (x = 0, 4, 8) cluster isomers. Materials Today Communications, 2021, 26, 102024.	0.9	9
373	Organic Electrochemistry: Molecular Syntheses with Potential. ACS Central Science, 2021, 7, 415-431.	5.3	335
374	Are Amines the Holy Grail for Facilitating CO 2 Reduction?. Angewandte Chemie, 2021, 133, 9258-9263.	1.6	3
375	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	1.6	30
376	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	7.2	341
377	Homogeneous Electrocatalytic CO ₂ Reduction Using a Porphyrin Complex with Flexible Triazole Units in the Second Coordination Sphere. ACS Applied Energy Materials, 2021, 4, 3604-3611.	2.5	14
378	Oxalate production via oxidation of ascorbate rather than reduction of carbon dioxide. Nature Communications, 2021, 12, 1997.	5.8	9
379	Resolving Deactivation Pathways of Co Porphyrin-Based Electrocatalysts for CO ₂ Reduction in Aqueous Medium. ACS Catalysis, 2021, 11, 3715-3729.	5.5	39
380	Hybrid Photocathodes for Carbon Dioxide Reduction: Interfaces for Charge Separation and Selective Catalysis. ChemPhotoChem, 2021, 5, 595-610.	1.5	6
381	Are Amines the Holy Grail for Facilitating CO ₂ Reduction?. Angewandte Chemie - International Edition, 2021, 60, 9174-9179.	7.2	48
382	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	1.8	57

#	Article	IF	CITATIONS
383	Electrocatalytic <scp>CO₂</scp> Reduction with <scp>Reâ€Based</scp> Spiro Bipyridine Complexes: Effects of the Local Proton in the Second Coordination Sphere ^{â€} . Chinese Journal of Chemistry, 2021, 39, 1281-1287.	2.6	6
384	How increasing proton and electron conduction benefits electrocatalytic CO2 reduction. Matter, 2021, 4, 1555-1577.	5.0	22
385	Electrochemical reduction of CO2 in ionic liquid: Mechanistic study of Li–CO2 batteries via in situ ambient pressure X-ray photoelectron spectroscopy. Nano Energy, 2021, 83, 105830.	8.2	27
386	Electrochemically Driven Reduction of Carbon Dioxide Mediated by Monoâ€Reduced Moâ€Điimine Tetracarbonyl Complexes: Electrochemical, Spectroelectrochemical and Theoretical Studies. ChemElectroChem, 2021, 8, 1899-1910.	1.7	2
387	Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction. Journal of the American Chemical Society, 2021, 143, 7104-7113.	6.6	198
388	Reaction of a Molybdenum Bis(dinitrogen) Complex with Carbon Dioxide: A Combined Experimental and Computational Investigation. Inorganic Chemistry, 2021, 60, 7708-7718.	1.9	2
389	Influence of Intermolecular Hydrogen Bonding Interactions on the Electrocatalytic Reduction of CO ₂ to CO by 6,6′â€Amine Substituted Rhenium Bipyridine Complexes. ChemElectroChem, 2021, 8, 1864-1872.	, 1.7	8
390	Two Co(II)-Based MOFs Constructed from Resorcin[4]Arene Ligand: Syntheses, Structures, and Heterogeneous Catalyst for Conversion of CO2. Crystals, 2021, 11, 574.	1.0	2
391	Porous Bilayer Electrodeâ€Guided Gas Diffusion for Enhanced CO ₂ Electrochemical Reduction. Advanced Energy and Sustainability Research, 2021, 2, 2100083.	2.8	10
392	Organic Electrosynthesis Towards Sustainability: Fundamentals and Greener Methodologies. Chemical Record, 2021, 21, 2453-2471.	2.9	52
393	A redox cascade of NOxâ^' complexes: Structures and nitrogen deoxygenation thermodynamics. Polyhedron, 2021, 200, 115119.	1.0	2
394	Thermodynamic Trends for Reduction of CO by Molecular Complexes. Organometallics, 2021, 40, 2039-2050.	1.1	5
395	Translating Tactics from Direct CO ₂ Electroreduction to Electroorganic Coupling Reactions with CO ₂ . Advanced Energy and Sustainability Research, 2021, 2, 2100001.	2.8	13
396	Highly Scalable Conversion of Blood Protoporphyrin to Efficient Electrocatalyst for CO 2 â€ŧoâ€CO Conversion. Advanced Materials Interfaces, 2021, 8, 2100067.	1.9	4
397	Effective Homogeneous Catalysis of Electrochemical Reduction of Nitrous Oxide to Dinitrogen at Rhenium Carbonyl Catalysts. ACS Catalysis, 2021, 11, 6099-6103.	5.5	12
398	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	2.8	123
399	Heterogeneous carbon dioxide reduction reaction by cobalt complexes of 4′,4′′′aꀲ-disubstituted derivatives of quinquepyridine immobilized on carbon black. Electrochimica Acta, 2021, 380, 138224.	2.6	1
400	Polymer Chromophore–Catalyst Assembly for Photocatalytic CO2 Reduction. ACS Applied Energy Materials, 2021, 4, 7030-7039.	2.5	6

#	Article	IF	CITATIONS
401	Competition between Reversible Capture of CO ₂ and Release of CO ₂ ^{•–} Using Electrochemically Reduced Quinones in Acetonitrile Solutions. Journal of Physical Chemistry C, 2021, 125, 11916-11927.	1.5	11
402	Commercial Kevlar derived activated carbons for CO ₂ and C ₂ H ₄ sorption. Polish Journal of Chemical Technology, 2021, 23, 81-87.	0.3	4
403	Elucidating influence of the existence formation of anchored cobalt phthalocyanine on electrocatalytic CO2-to-CO conversion. Nano Energy, 2021, 84, 105904.	8.2	40
404	Mechanistic Elucidation of Dimer Formation and Strategies for Its Suppression in Electrochemical Reduction of <i>Fac</i> â€Mn(bpy)(CO) ₃ Br. ChemElectroChem, 2021, 8, 2108-2114.	1.7	17
405	Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. Journal of Applied Electrochemistry, 2021, 51, 1301-1311.	1.5	12
406	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie, 2021, 133, 16545-16551.	1.6	13
407	Recent Development of Electrocatalytic CO ₂ Reduction Application to Energy Conversion. Small, 2021, 17, e2100323.	5.2	53
408	The Synthesis of Hexaazatrinaphthyleneâ€Based 2D Conjugated Copper Metalâ€Organic Framework for Highly Selective and Stable Electroreduction of CO ₂ to Methane. Angewandte Chemie - International Edition, 2021, 60, 16409-16415.	7.2	87
409	Highly active electrocatalytic CO2 reduction with manganese N-heterocyclic carbene pincer by para electronic tuning. Chinese Chemical Letters, 2022, 33, 262-265.	4.8	15
410	A Porous Copper–Organic Framework Assembled by [Cu ₁₂] Nanocages: Highly Efficient CO ₂ Capture and Chemical Fixation and Theoretical DFT Calculations. Inorganic Chemistry, 2021, 60, 9122-9131.	1.9	35
411	A brief review of electrocatalytic reduction of CO ₂ —Materials, reaction conditions, and devices. Energy Science and Engineering, 2021, 9, 1012-1032.	1.9	60
412	Recent Advances in Carbon Dioxide Conversion: A Circular Bioeconomy Perspective. Sustainability, 2021, 13, 6962.	1.6	2
413	Effect of the 2-R-Allyl and Chloride Ligands on the Cathodic Paths of [Mo(η3-2-R-allyl)(α-diimine)(CO)2Cl] (R = H, CH3; α-diimine = 6,6′-Dimethyl-2,2′-bipyridine, Bis(p-tolylimino)acenaphthene). Organometallics, 2021, 40, 1598-1613.	1.1	2
414	Electrocatalytic and Photocatalytic Reduction of Carbon Dioxide by Earthâ€Abundant Bimetallic Molecular Catalysts. ChemPhysChem, 2021, 22, 1835-1843.	1.0	21
415	Shaping the Electrocatalytic Performance of Metal Complexes for CO ₂ Reduction. ChemElectroChem, 2021, 8, 3472-3481.	1.7	4
416	Selfâ€Supporting Electrodes for Gasâ€Involved Key Energy Reactions. Advanced Functional Materials, 2021, 31, 2104620.	7.8	39
417	Recent progress in electro- and photo-catalytic CO2 reduction using N-heterocyclic carbene transition metal complexes. Polyhedron, 2021, 203, 115147.	1.0	6
418	Turning manganese into gold: Efficient electrochemical CO2 reduction by a fac-Mn(apbpy)(CO)3Br complex in a gas–liquid interface flow cell. Chemical Engineering Journal, 2021, 416, 129050.	6.6	14

#	Article	IF	CITATIONS
419	Enhanced CO ₂ Reduction Performance of BiCuSeOâ€Based Hybrid Catalysts by Synergetic Photoâ€Thermoelectric Effect. Advanced Functional Materials, 2021, 31, 2105001.	7.8	16
420	Cooperative Catalysis of Ru(III)â€Porphyrin in CO ₂ â€Involved Synthesis of Oxazolidinones. Chemistry - an Asian Journal, 2021, 16, 2504-2510.	1.7	7
422	Photochemical CO2-to-Formate/CO Conversion Catalyzed by Half-Metallocene Ir(III) Catalyst and Its Mechanistic Investigation. Organometallics, 2021, 40, 2430-2442.	1.1	4
423	2D Heterostructure of Amorphous CoFeB Coating Black Phosphorus Nanosheets with Optimal Oxygen Intermediate Absorption for Improved Electrocatalytic Water Oxidation. ACS Nano, 2021, 15, 12418-12428.	7.3	67
424	Singleâ€Atom Electrocatalysts for Multiâ€Electron Reduction of CO ₂ . Small, 2021, 17, e2101443.	5.2	44
425	Graphite-supported single copper catalyst for electrochemical CO2 reduction: A first-principles approach. Computational and Theoretical Chemistry, 2021, 1201, 113277.	1.1	5
426	Chemical Reduction of Nill Cyclam and Characterization of Isolated Nil Cyclam with Cryogenic Vibrational Spectroscopy and Inert-Gas-Mediated High-Resolution Mass Spectrometry. Journal of Physical Chemistry A, 2021, 125, 6715-6721.	1.1	0
427	Recent Progress in (Photo-)-Electrochemical Conversion of CO2 With Metal Porphyrinoid-Systems. Frontiers in Chemistry, 2021, 9, 685619.	1.8	12
428	Polyoxometalate Interlayered Zinc–Metallophthalocyanine Molecular Layer Sandwich as Photocoupled Electrocatalytic CO ₂ Reduction Catalyst. Journal of the American Chemical Society, 2021, 143, 13721-13730.	6.6	49
429	Quick and Easy Method to Dramatically Improve the Electrochemical CO 2 Reduction Activity of an Iron Porphyrin Complex. Angewandte Chemie, 2021, 133, 22241-22245.	1.6	10
430	Tetrameric and Polymeric Zn(II) Coordination Complexes of 4-Diallylaminobenzoic Acid and Their Applications in the Electroreduction of CO ₂ and Schottky Diode Behavior. Crystal Growth and Design, 2021, 21, 5240-5250.	1.4	6
431	Electrocatalytic CO2 reduction on nanostructured metal-based materials: Challenges and constraints for a sustainable pathway to decarbonization. Journal of CO2 Utilization, 2021, 50, 101579.	3.3	29
432	A DFT study on the selectivity of CO2 reduction electrocatalyzed by heterofluorene bis-NHC Ni pincer complexes: Interplay of media and structure factor. Inorganic Chemistry Communication, 2021, 130, 108690.	1.8	3
433	Activating the Fe(I) State of Iron Porphyrinoid with Second-Sphere Proton Transfer Residues for Selective Reduction of CO ₂ to HCOOH via Fe(III/II)–COOH Intermediate(s). Journal of the American Chemical Society, 2021, 143, 13579-13592.	6.6	59
434	Revisiting photo and electro-catalytic modalities for sustainable conversion of CO2. Applied Catalysis A: General, 2021, 623, 118248.	2.2	13
435	Heterogeneous Molecular Catalysts of Metal Phthalocyanines for Electrochemical CO ₂ Reduction Reactions. Accounts of Chemical Research, 2021, 54, 3149-3159.	7.6	102
436	Intrinsic Descriptors for Coordination Environment and Synergistic Effects of Metal and Environment in Single-Atom-Catalyzed Carbon Dioxide Electroreduction. Journal of Physical Chemistry C, 2021, 125, 18180-18186.	1.5	6
437	A DFT study on carbon dioxide reduction of low-valent diuranium complex supported by a polypyrrolic macrocycle. Chemical Physics Letters, 2021, 776, 138652.	1.2	3

#	Article	IF	CITATIONS
438	Earth-Abundant Photocatalytic CO ₂ Reduction by Multielectron Chargeable Cobalt Porphyrin Catalysts: High CO/H ₂ Selectivity in Water Based on Phase Mismatch in Frontier MO Association. ACS Catalysis, 2021, 11, 10436-10449.	5.5	56
439	Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges. ChemElectroChem, 2021, 8, 4161-4180.	1.7	31
440	Quick and Easy Method to Dramatically Improve the Electrochemical CO ₂ Reduction Activity of an Iron Porphyrin Complex. Angewandte Chemie - International Edition, 2021, 60, 22070-22074.	7.2	29
441	A Semiâ€ertificial Photoelectrochemical Tandem Leaf with a CO ₂ â€ŧoâ€Formate Efficiency Approaching 1 %. Angewandte Chemie - International Edition, 2021, 60, 26303-26307.	7.2	34
442	Alkali metal cation effects on electrocatalytic CO2 reduction with iron porphyrins. Chinese Journal of Catalysis, 2021, 42, 1439-1444.	6.9	30
443	Prolonging the Triplet State Lifetimes of Rhenium Complexes with Imidazoleâ€Pyridine Framework for Efficient CO ₂ Photoreduction. Chemistry - A European Journal, 2021, 27, 15536-15544.	1.7	9
444	Constructing Catalytic Crown Ether-Based Covalent Organic Frameworks for Electroreduction of CO ₂ . ACS Energy Letters, 2021, 6, 3496-3502.	8.8	53
445	A Semiâ€artificial Photoelectrochemical Tandem Leaf with a CO ₂ â€toâ€Formate Efficiency Approaching 1 %. Angewandte Chemie, 2021, 133, 26507-26511.	1.6	4
446	Molecular Catalysis of Electrochemical Reactions: Competition between Reduction of the Substrate and Deactivation of the Catalyst by a Cosubstrate Application to N ₂ 0 Reduction. ChemElectroChem, 2021, 8, 3740-3744.	1.7	1
447	Singleâ€Atom Catalystsâ€Enabled Reductive Upgrading of CO ₂ . ChemCatChem, 2021, 13, 4859-4877.	1.8	10
448	A Water-Soluble Sodium Pectate Complex with Copper as an Electrochemical Catalyst for Carbon Dioxide Reduction. Molecules, 2021, 26, 5524.	1.7	1
449	Molecular Dynamics and Machine Learning in Catalysts. Catalysts, 2021, 11, 1129.	1.6	15
450	Sensitized Photocatalytic CO2 Reduction With Earth Abundant 3d Metal Complexes Possessing Dipicolyl-Triazacyclononane Derivatives. Frontiers in Chemistry, 2021, 9, 751716.	1.8	6
451	A TiO ₂ â€Co(terpyridine) ₂ Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO ₂ to Syngas. Angewandte Chemie - International Edition, 2021, 60, 23306-23312.	7.2	45
452	A TiO ₂ o(terpyridine) ₂ Photocatalyst for the Selective Oxidation of Cellulose to Formate Coupled to the Reduction of CO ₂ to Syngas. Angewandte Chemie, 2021, 133, 23494-23500.	1.6	11
453	Mechanistic insight into electrocatalytic CO2 reduction using Lewis acid-base pairs. Inorganica Chimica Acta, 2021, 526, 120528.	1.2	2
454	Boosting the faradaic efficiency for carbon dioxide to monoxide on a phthalocyanine cobalt based gas diffusion electrode to higher than 99% via microstructure regulation of catalyst layer. Electrochimica Acta, 2021, 392, 139023.	2.6	17
455	Advances in structural modification of perovskite semiconductors for visible light assisted photocatalytic CO2 reduction to renewable solar fuels: A review. Journal of Environmental Chemical Engineering, 2021, 9, 106264.	3.3	56

#	Article	IF	CITATIONS
456	Modulating carbon growth kinetics enables electrosynthesis of graphite derived from CO2 via a liquid–solid–solid process. Carbon, 2021, 184, 426-436.	5.4	17
457	Lowering Electrocatalytic CO ₂ Reduction Overpotential Using N-Annulated Perylene Diimide Rhenium Bipyridine Dyads with Variable Tether Length. Journal of the American Chemical Society, 2021, 143, 16849-16864.	6.6	15
458	Two-dimensional pyrite supported transition metal for highly-efficient electrochemical CO2 reduction: A theoretical screening study. Chemical Engineering Journal, 2021, 424, 130541.	6.6	31
459	High-entropy carbons: From high-entropy aromatic species to single-atom catalysts for electrocatalysis. Chemical Engineering Journal, 2021, 426, 131320.	6.6	14
460	Utilizing the charge-transfer model to design promising electrocatalysts. Current Opinion in Electrochemistry, 2021, 30, 100805.	2.5	4
461	A perspective on the electrocatalytic conversion of carbon dioxide to methanol with metallomacrocyclic catalysts. Journal of Energy Chemistry, 2022, 64, 263-275.	7.1	28
462	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 427, 131654.	6.6	18
463	Organic terpyridine molecule as an efficient cocatalyst for metal–free CO2 photoreduction mediated by mesoporous graphitic carbon nitride. Chemical Engineering Journal, 2022, 429, 132348.	6.6	16
464	Single- and mixed-metal–organic framework photocatalysts for carbon dioxide reduction. Inorganic Chemistry Frontiers, 2021, 8, 3178-3204.	3.0	41
465	Carbon dioxide based methodologies for the synthesis of fine chemicals. Organic and Biomolecular Chemistry, 2021, 19, 5725-5757.	1.5	20
466	Computational study on the reactivity of imidazolium-functionalized manganese bipyridyl tricarbonyl electrocatalysts [Mn[bpyMe(Im-R)](CO) ₃ Br] ⁺ (R = Me, Me ₂ and) Tj ETQq Chemistry Chemical Physics 2021 23 14940-14951	0 0 0 rgBT 1.3	Qverlock 10
467	Carbonâ€Supported Single Metal Site Catalysts for Electrochemical CO ₂ Reduction to CO and Beyond. Small, 2021, 17, e2005148.	5.2	86
468	Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246.	15.6	119
469	An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology, 2021, 16, 118-128.	15.6	255
470	Transition Metal Complexes as Catalysts for the Electroconversion of CO ₂ : An Organometallic Perspective. Angewandte Chemie - International Edition, 2021, 60, 11628-11686.	7.2	154
472	Immobilising molecular Ru complexes on a protective ultrathin oxide layer of p-Si electrodes towards photoelectrochemical CO ₂ reduction. Dalton Transactions, 2021, 50, 10482-10492.	1.6	9
473	Electrocatalytic CO2 Reduction Activity Over Transition Metal Anchored on Nitrogen-Doped Carbon: A Density Functional Theory Investigation. Catalysis Letters, 2021, 151, 2547-2559.	1.4	3
474	Nickel-mediated N–N bond formation and N ₂ O liberation <i>via</i> nitrogen oxyanion reduction. Chemical Science, 2021, 12, 10664-10672.	3.7	8

#	Article	IF	CITATIONS
475	Hierarchical MoO ₄ ^{2–} Intercalating α-Co(OH) ₂ Nanosheet Assemblies: Green Synthesis and Ultrafast Reconstruction for Boosting Electrochemical Oxygen Evolution. Energy & Fuels, 2021, 35, 2775-2784.	2.5	13
476	Übergangsmetallkomplexe als Katalysatoren für die elektrische Umwandlung von CO ₂ – eine metallorganische Perspektive. Angewandte Chemie, 2021, 133, 11732-11792.	1.6	24
477	Throughâ€Space Electrostatic Interactions Surpass Classical Throughâ€Bond Electronic Effects in Enhancing CO ₂ Reduction Performance of Iron Porphyrins. ChemSusChem, 2021, 14, 1308-1315.	3.6	20
478	Hydrogenation of CO ₂ to methanol catalyzed by a manganese pincer complex: insights into the mechanism and solvent effect. Dalton Transactions, 2021, 50, 7348-7355.	1.6	19
479	Recent Progress of 3d Transition Metal Singleâ€Atom Catalysts for Electrochemical CO ₂ Reduction. Advanced Materials Interfaces, 2021, 8, 2001904.	1.9	40
480	Recent advances in catalytic silylation of hydroxylâ€bearing compounds: A green technique for protection of alcohols using Si–O bond formations. Applied Organometallic Chemistry, 2021, 35, e6131.	1.7	7
481	Metalâ€Terpyridine Complexes in Catalytic Application – A Spotlight on the Last Decade. ChemCatChem, 2020, 12, 2890-2941.	1.8	56
482	More Than Just a Reagent: The Rise of Renewable Organohydrides for Catalytic Reduction of Carbon Dioxide. ChemSusChem, 2021, 14, 824-841.	3.6	13
483	Electrochemical Reduction of Carbon Dioxide to Methanol Using Metal-Organic Frameworks and Non-metal-Organic Frameworks Catalyst. Environmental Chemistry for A Sustainable World, 2020, , 91-131.	0.3	1
484	Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem, 2020, 2, 100034.	10.1	76
485	(1,2-Azole)bis(bipyridyl)ruthenium(II) Complexes: Electrochemistry, Luminescent Properties, And Electro- And Photocatalysts for CO ₂ Reduction. Inorganic Chemistry, 2021, 60, 692-704.	1.9	13
486	An Iron Pyridyl-Carbene Electrocatalyst for Low Overpotential CO ₂ Reduction to CO. ACS Catalysis, 2021, 11, 615-626.	5.5	38
487	Elucidation of Cooperativity in CO2 Reduction Using a Xanthene-Bridged Bimetallic Rhenium(I) Complex. ACS Catalysis, 2021, 11, 390-403.	5.5	18
488	Electrochemistry under Flow Conditions. RSC Green Chemistry, 2019, , 153-198.	0.0	4
489	A dinuclear porphyrin-macrocycle as efficient catalyst for the hydrogen evolution reaction. Chemical Communications, 2020, 56, 14179-14182.	2.2	18
490	Graphene-supported single-atom catalysts and applications in electrocatalysis. Nanotechnology, 2021, 32, 032001.	1.3	33
491	<i>fac</i> -Bromido/chlorido(0.50/0.50)[3-carbamoyl-1-(1,10-phenanthrolin-2-ylmethyl)pyridinium-l̂e ² <i>N</i> , <i>N</i> ,i <n< i="">,i>N<!--</td--><td>0.1</td><td>1</td></n<>	0.1	1
492	Standard Electrode Potentials for Electrochemical Hydrogen Production, Carbon Dioxide Reduction, and Oxygen Reduction Reactions in <i>N</i> , <i>N</i> Dimethylacetamide. Chemistry Letters, 2020, 49, 915-917.	0.7	5

#	Article	IF	CITATIONS
493	Carbonic anhydrase/formate dehydrogenase bienzymatic system for CO ₂ capture, utilization and storage. Reaction Chemistry and Engineering, 2021, 7, 181-191.	1.9	11
494	Transport in heterogeneous catalysis – Beyond reactant diffusion limitations. Journal of Catalysis, 2021, 404, 679-686.	3.1	4
495	Mediated Innerâ€Sphere Electron Transfer Induces Homogeneous Reduction of CO ₂ via Throughâ€Space Electronic Conjugation**. Angewandte Chemie, 2022, 134, .	1.6	4
496	Computational Study for CO ₂ -to-CO Conversion over Proton Reduction Using [Re[bpyMe(Im-R)](CO) ₃ Cl] ⁺ (R = Me, Me ₂ , and Me ₄) Electrocatalysts and Comparison with Manganese Analogues. ACS Catalysis, 2021, 11, 12989-13000.	5.5	5
497	Mediated Inner‧phere Electron Transfer Induces Homogeneous Reduction of CO2 via Through‧pace Electronic Conjugation. Angewandte Chemie - International Edition, 2021, , .	7.2	16
498	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	11.1	43
499	Single Nickel Atom-Modified Phosphorene Nanosheets for Electrocatalytic CO ₂ Reduction. ACS Applied Nano Materials, 2021, 4, 11017-11030.	2.4	24
500	Boosting CO ₂ Electroreduction via Construction of a Stable ZnS/ZnO Interface. ACS Applied Materials & Interfaces, 2022, 14, 20368-20374.	4.0	18
501	Thermocatalytic Hydrogen Production Through Decomposition of Methane-A Review. Frontiers in Chemistry, 2021, 9, 736801.	1.8	20
502	A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Ecletica Quimica, 2019, 44, 11.	0.2	6
503	Amyloidâ€like Nanofibrillation of Metalâ€Organic Complex Arrays Ruled by Their Precisely Designed Metal Sequences. Chemistry - an Asian Journal, 2020, 15, 766-769.	1.7	2
504	Implications of Surface Strain for Enhanced Carbon Dioxide Reduction on Copper-Silver Alloys. Journal of the Electrochemical Society, 2020, 167, 126509.	1.3	3
505	Di(Thioether Sulfonate)‧ubstituted Quinolinedione as a Rapidly Dissoluble and Stable Electron Mediator and Its Application in Sensitive Biosensors. Advanced Healthcare Materials, 2021, , 2101819.	3.9	3
506	Covalent Organic Framework (COF)â€Based Hybrids for Electrocatalysis: Recent Advances and Perspectives. Small Methods, 2021, 5, e2100945.	4.6	36
507	Maximizing Electroactive Sites in a Threeâ€Dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	83
508	Maximizing Electroactive Sites in a Threeâ€dimensional Covalent Organic Framework for Significantly Improved Carbon Dioxide Reduction Electrocatalysis. Angewandte Chemie, 0, , .	1.6	30
509	Catalysis by Oxometalates and Their Microheterogeneous Media. RSC Catalysis Series, 2020, , 165-204.	0.1	2
510	Selective Reduction of CO ₂ to a Tantalum Formate Complex and Release of Methyl Formate from the Tantalum(V) Center. Inorganic Chemistry, 2021, 60, 18291-18295.	1.9	2

#	Article	IF	CITATIONS
511	Development of Catalytic Reduction of Renewable Carbon Resources Using Well-Elaborated Organometallic Complexes with PNNP Tetradentate Ligands. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2020, 78, 856-866.	0.0	2
512	Iron Sulphur Cluster [Fe4S4(SPh)4]2– Catalyzed Electrochemical Reduction of CO2 on Carbon Electrodes in [Bu4N][BF4]-DMF Mixture. Current Analytical Chemistry, 2020, 16, 854-862.	0.6	Ο
513	Mechanistic understanding and design of non-noble metal-based single-atom catalysts supported on two-dimensional materials for CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 5813-5834.	5.2	28
514	Cobalt-N4 macrocyclic complexes for heterogeneous electrocatalysis of the CO2 reduction reaction. Chinese Journal of Catalysis, 2022, 43, 104-109.	6.9	12
515	Effects of Protonation State on Electrocatalytic CO ₂ Reduction by a Cobalt Aminopyridine Macrocyclic Complex. Inorganic Chemistry, 2021, 60, 17517-17528.	1.9	5
516	Tetrazole-Substituted isomeric ruthenium polypyridyl complexes for low overpotential electrocatalytic CO2 reduction. Journal of Catalysis, 2022, 405, 15-23.	3.1	7
517	Promoting Selective Generation of Formic Acid from CO ₂ Using Mn(bpy)(CO) ₃ Br as Electrocatalyst and Triethylamine/Isopropanol as Additives. Journal of the American Chemical Society, 2021, 143, 20491-20500.	6.6	24
518	Mechanistic Study of Tungsten Bipyridyl Tetracarbonyl Electrocatalysts for CO2 Fixation: Exploring the Roles of Explicit Proton Sources and Substituent Effects. Topics in Catalysis, 2022, 65, 325-340.	1.3	4
519	Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxide–Carbon Monoxide Transformation, Angewandte Chemie - International Edition, 2022, 61, .	7.2	15
	······································		
520	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218.	23.0	173
520 521	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	23.0 7.2	173 26
520 521 522	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, . Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of 1±,1²-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993.	23.0 7.2 1.8	173 26 2
520 521 522 523	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, . Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of 1±,1²-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxideâ€Carbon Monoxide Transformation. Angewandte Chemie, 0, , .	23.0 7.2 1.8 1.6	173 26 2 0
520 521 522 523	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61,. Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of 1±,1²-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxideâ€Carbon Monoxide Transformation. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , .	23.0 7.2 1.8 1.6	173 26 2 0
 520 521 522 523 524 525 	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chemical Reviews, 2022, 122, 3180-3218. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, . Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of 1±,1²-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxideâ€Carbon Monoxide Transformation. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , . Elucidation of the Roles of Ionic Liquid in CO2 Electrochemical Reduction to Value-Added Chemicals and Fuels. Molecules, 2021, 26, 6962.	23.0 7.2 1.8 1.6 1.6 1.7	173 26 2 0 4
 520 521 522 523 524 525 525 	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, . Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of i±,1²-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxideâ€Carbon Monoxide Transformation. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , . Elucidation of the Roles of Ionic Liquid in CO2 Electrochemical Reduction to Value-Added Chemicals and Fuels. Molecules, 2021, 26, 6962. Integrated Sn/CNT@N C hierarchical porous gas diffusion electrode by phase inversion for electrocatalytic reduction of CO2. Electrochimica Acta, 2022, 403, 139584.	 23.0 7.2 1.8 1.6 1.7 2.6 	173 26 2 0 4 11
 520 521 522 523 524 525 526 527 	Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, . Basicity as a Thermodynamic Descriptor of Carbanions Reactivity with Carbon Dioxide: Application to the Carboxylation of 14,12-Unsaturated Ketones. Frontiers in Chemistry, 2021, 9, 783993. Molecular Transition Metal Oxide Electrocatalysts for the Reversible Carbon Dioxideâ€Carbon Monoxide Transformation. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , . Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , . Elucidation of the Roles of Ionic Liquid in CO2 Electrochemical Reduction to Value-Added Chemicals and Fuels. Molecules, 2021, 26, 6962. Integrated Sn/CNT@N C hierarchical porous gas diffusion electrode by phase inversion for electrocatalytic reduction of CO2. Electrochimica Acta, 2022, 403, 139584. Systematic Variation of 3d Metal Centers in a Redox-Innocent Ligand Environment: Structures, Electrochemical Properties, and Carbon Dioxide Activation. Inorganic Chemistry, 2021, , .	 23.0 7.2 1.8 1.6 1.7 2.6 1.9 	173 26 2 0 4 11 6 5

#	Article	IF	CITATIONS
529	Copper(<scp>ii</scp>) tetrakis(pentafluorophenyl)porphyrin: highly active copper-based molecular catalysts for electrochemical CO ₂ reduction. Chemical Communications, 2022, 58, 2975-2978.	2.2	8
530	Promoting photocatalytic CO ₂ reduction through facile electronic modification of N-annulated perylene diimide rhenium bipyridine dyads. Chemical Science, 2022, 13, 1049-1059.	3.7	10
531	Nâ€Heterocyclic and Mesoionic Carbenes of Manganese and Rhenium in Catalysis. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	15
532	Revisiting the Fundamental Nature of Metal‣igand Bonding: An Impartial and Automated Fitting Procedure for Angular Overlap Model Parameters. Chemistry - A European Journal, 2022, 28, .	1.7	7
533	Electrocatalysis enabled transformation of earth-abundant water, nitrogen and carbon dioxide for a sustainable future. Materials Advances, 2022, 3, 1359-1400.	2.6	17
534	Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. Applied Catalysis B: Environmental, 2022, 305, 121022.	10.8	29
535	Switching Catalyst Selectivity via the Introduction of a Pendant Nitrophenyl Group. Inorganic Chemistry, 2022, 61, 1316-1326.	1.9	5
537	Electrochemical CO2 Reduction Catalyzed by Binuclear LRe2(CO)6Cl2 and LMn2(CO)6Br2 Complexes with an Internal Proton Source. Accounts of Chemical Research, 2022, , .	7.6	7
538	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
539	CO ₂ Electrolysis System under Industrially Relevant Conditions. Accounts of Chemical Research, 2022, 55, 231-240.	7.6	45
540	Dissection of Lightâ€Induced Charge Accumulation at a Highly Active Iron Porphyrin: Insights in the Photocatalytic CO ₂ Reduction. Angewandte Chemie, 2022, 134, .	1.6	9
541	Outer-coordination sphere in multi-H+/multi-e–molecular electrocatalysis. IScience, 2022, 25, 103628.	1.9	8
543	Highly selective and efficient electroreduction of CO ₂ in water by quaterpyridine derivativeâ€based molecular catalyst noncovalently tethered to carbon nanotubes. SmartMat, 2022, 3, 151-162.	6.4	12
544	Hydroxyâ€Groupâ€Functionalized Single Crystal of Copper(II)â€Porphyrin Complex for Electroreduction CO 2 to CH 4. ChemSusChem, 2022, , .	3.6	3
545	Selectivity in Electrochemical CO ₂ Reduction. Accounts of Chemical Research, 2022, 55, 134-144.	7.6	152
546	Heteroatom-Doped Metal-Free Carbon Nanomaterials as Potential Electrocatalysts. Molecules, 2022, 27, 670.	1.7	18
547	Synthesis and Electrocatalytic CO2 Reduction Activity of an Iron Porphyrin Complex Bearing a Hydroquinone Moiety. Chemistry Letters, 2022, 51, 224-226.	0.7	3
548	Group 6 transition metal-based molecular complexes for sustainable catalytic CO ₂ activation. Catalysis Science and Technology, 2022, 12, 390-408.	2.1	8

#	Article	IF	CITATIONS
549	Electrochemical Ring-Opening Dicarboxylation of Strained Carbon–Carbon Single Bonds with CO ₂ : Facile Synthesis of Diacids and Derivatization into Polyesters. Journal of the American Chemical Society, 2022, 144, 2062-2068.	6.6	75
550	Recent progress in CO2 reduction using bimetallic electrodes containing copper. Electrochemistry Communications, 2022, 135, 107212.	2.3	20
551	Mo- and W-molecular catalysts for the H2 evolution, CO2 reduction and N2 fixation. Coordination Chemistry Reviews, 2022, 457, 214400.	9.5	6
552	Recent advances in electrocatalytic CO2 reduction with molecular complexes. Advances in Inorganic Chemistry, 2022, , 301-353.	0.4	2
553	Nickel-catalyzed electrochemical carboxylation of unactivated aryl and alkyl halides with CO2. Nature Communications, 2021, 12, 7086.	5.8	71
554	Strategies for breaking molecular scaling relationships for the electrochemical CO ₂ reduction reaction. Dalton Transactions, 2022, 51, 6993-7010.	1.6	14
555	<i>Operando</i> monitoring of mechanisms and deactivation of molecular catalysts. Green Chemistry, 2022, 24, 1951-1972.	4.6	13
556	Electrochemical activation of CO ₂ by MOF-(Fe, Ni, Mn) derivatives of 5-aminoisophthalic acid and the thiazole group influence on its catalytic activity. New Journal of Chemistry, 2022, 46, 6060-6067.	1.4	1
557	Visible-light-driven reduction of CO ₂ to CO in fully aqueous media using a water-soluble cobalt porphyrin. Sustainable Energy and Fuels, 2022, 6, 2160-2164.	2.5	9
558	Electrochemistry in Organometallic Chemistry. , 2022, , .		0
558 559	Electrochemistry in Organometallic Chemistry. , 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160.	1.4	0
558 559 560	Electrochemistry in Organometallic Chemistry. , 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011.	1.4	0 11 2
558 559 560 561	Electrochemistry in Organometallic Chemistry., 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO ₂ to CO. ACS Catalysis, 2022, 12, 3046-3057.	1.4 1.4 5.5	0 11 2 3
558 559 560 561 562	Electrochemistry in Organometallic Chemistry. , 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO ₂ to CO. ACS Catalysis, 2022, 12, 3046-3057. Biomimetic Metal-Free Hydride Donor Catalysts for CO ₂ Reduction. Accounts of Chemical Research, 2022, 55, 844-856.	1.4 1.4 5.5 7.6	0 11 2 3 13
558 559 560 561 562 563	Electrochemistry in Organometallic Chemistry., 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO ₂ to CO. ACS Catalysis, 2022, 12, 3046-3057. Biomimetic Metal-Free Hydride Donor Catalysts for CO ₂ Reduction. Accounts of Chemical Research, 2022, 55, 844-856. Electrochemical conversion of CO ₂ in nonâ€conventional electrolytes: Recent achievements and future challenges. Electrochemical Science Advances, 2023, 3, .	1.4 1.4 5.5 7.6 1.2	0 11 2 3 13 8
558 559 560 561 562 563	Electrochemistry in Organometallic Chemistry., 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO ₂ to CO. ACS Catalysis, 2022, 12, 3046-3057. Biomimetic Metal-Free Hydride Donor Catalysts for CO ₂ Reduction. Accounts of Chemical Research, 2022, 55, 844-856. Electrochemical conversion of CO ₂ in nonâ€conventional electrolytes: Recent achievements and future challenges. Electrochemical Science Advances, 2023, 3, . Revisiting Reduction of CO ₂ to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. Jacs Au, 2022, 2, 731-744.	1.4 1.4 5.5 7.6 1.2 3.6	0 11 2 3 13 8 11
 558 559 560 562 563 564 565 	Electrochemistry in Organometallic Chemistry. , 2022, , . Controllable dispersion of cobalt phthalocyanine molecules on graphene oxide for enhanced electrocatalytic reduction of CO ₂ to CO. New Journal of Chemistry, 2022, 46, 7153-7160. Electrocatalytic production of formaldehyde with formaldehyde dehydrogenase using a viologen redox mediator. New Journal of Chemistry, 2022, 46, 10004-10011. Multifaceted Role of the Noninnocent Mabiq Ligand in Promoting Selective Reduction of CO ₂ to CO. ACS Catalysis, 2022, 12, 3046-3057. Biomimetic Metal-Free Hydride Donor Catalysts for CO ₂ Reduction. Accounts of Chemical Research, 2022, 55, 844-856. Electrochemical conversion of CO ₂ in nonâ€conventional electrolytes: Recent achievements and future challenges. Electrochemical Science Advances, 2023, 3, . Revisiting Reduction of CO ₂ to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. Jacs Au, 2022, 2, 731-744. Review of photocatalytic and photo-electrocatalytic reduction of CO2 on carbon supported films. International Journal of Hydrogen Energy, 2022, 47, 30908-30936.	1.4 1.4 5.5 7.6 1.2 3.6 3.8	0 11 2 3 3 13 8 11 10

ARTICLE IF CITATIONS Manganese Carbonyl Complexes as Selective Electrocatalysts for CO₂ Reduction in Water 567 7.6 17 and Organic Solvents. Accounts of Chemical Research, 2022, 55, 955-965. Molecular Catalysts for the Reductive Homocoupling of CO₂ towards C₂₊ 1.6 Compounds. Angewandte Chemie, 2022, 134, . Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of 569 23.0 118 Homogeneous Catalysts?. Chemical Reviews, 2022, 122, 8594-8757. Molecular Catalysts for the Reductive Homocoupling of CO₂ towards C₂₊ Compounds. Angewandte Chemie - International Edition, 2022, 61, . An electrochromic coordination nanosheet for robust CO2 photoreduction via ligand-based 571 5.8 9 electron transfer. Nano Research, 2022, 15, 5902-5911. Unprecedented Electroreduction of CO₂ over Metal Organic Framework-Derived Intermetallic Nano-Alloy Cu_{0.85}Ni_{0.15}/C. ACS Applied Energy Materials, 2022, 5, 2.5 4945-4955. Electrocatalytic CO₂Reduction: from Discrete Molecular Catalysts to Their Integrated 573 1.7 25 Catalytic Materials. Chemistry - A European Journal, 2022, 28, . Electrocatalytic CO2 Reduction by Molecular Ruthenium Complexes with Polypyridyl Ligands. 574 1.7 Chemistry - an Asian Journal, 2022, , . Electrochemical CO2 conversion to fuels on metal-free N-doped carbon-based materials: 575 5 1.7 functionalities, mechanistic, and technoeconomic aspects. Materials Today Chemistry, 2022, 24, 100838. Toward an Understanding of the Reversible Li-CO₂ Batteries over Metal–N₄Functionalized Graphene Electrocatalysts. ACS Nano, 2022, 16, 1523-1532. Substituents and Cocatalyst Effect on the Catalytic Response and Overpotential of Re(I) Catalysts for 577 5 2.5 CO₂ Reduction. ACS Applied Energy Materials, 2021, 4, 13725-13734. Stable and Exclusive Formation of CO from CO₂ Photoreduction with H₂O Facilitated by Linear Fluorene and Naphthalene Diimide-Based Conjugated Polymers. ACS Applied Polymer Materials, 2022, 4, 521-526. An Iron Bis(carbene) Catalyst for Low Overpotential CO₂ Electroreduction to CO: Mechanistic Insights from Kinetic Zone Diagrams, Spectroscopy, and Theory. ACS Catalysis, 2021, 11, 579 5.5 9 15212-15222. A theoretical approach for homogeneous CO₂ reduction by Ni(cyclam): substituents with 580 intra-molecular hydrogen transfer. Inorganic Chemistry Frontiers, 2022, 9, 2691-2696. Immobilized Molecular Catalysts for CO₂Photoreduction. Advanced Sustainable Systems, 581 2.7 15 2022, 6, . Atomic―and Molecularâ€Level Modulation of Dispersed Active Sites for Electrocatalytic CO₂Reduction. Chemistry - an Asian Journal, 2022, 17, . Electrochemical CO₂ Reduction Catalyzed by Copper Molecular Complexes: The Influence 583 2.519 of Ligand Structure. Energy & amp; Fuels, 2022, 36, 4653-4676. Metal Oxide Based Photoelectrodes in Photoelectrocatalysis: Advances and Challenges. 584 1.3 ChemPlusChem, 2022, 87, e202200097.

#	Article	IF	CITATIONS
588	Deciphering Distinct Overpotential-Dependent Pathways for Electrochemical CO ₂ Reduction Catalyzed by an Iron–Terpyridine Complex. Inorganic Chemistry, 2022, 61, 6919-6933.	1.9	10
589	Mediated Electron Transfer in Electrosynthesis: Concepts, Applications, and Recent Influences from Photoredox Catalysis. RSC Green Chemistry, 2022, , 119-153.	0.0	1
590	Squalene–polyethyleneimine–dynamic constitutional frameworks enhancing the enzymatic activity of carbonic anhydrase. Catalysis Science and Technology, 2022, 12, 3094-3101.	2.1	5
591	Recent progress of Bi-based electrocatalysts for electrocatalytic CO ₂ reduction. Nanoscale, 2022, 14, 7957-7973.	2.8	35
592	Recent progress in cathodic reduction-enabled organic electrosynthesis: Trends, challenges, and opportunities. EScience, 2022, 2, 243-277.	25.0	67
593	Water coordinated on Cu(I)-based catalysts is the oxygen source in CO2 reduction to CO. Nature Communications, 2022, 13, 2577.	5.8	5
594	Electrochemical reduction of CO2 at the earth-abundant transition metal-oxides/copper interfaces. Catalysis Today, 2023, 409, 53-62.	2.2	7
595	Spherical shell CdS@NiO Z-scheme composites for solar-driven overall water splitting and carbon dioxide reduction. Materials Today Energy, 2022, 27, 101044.	2.5	5
596	CO2 electrocatalytic reduction on Cu nanoparticles loaded on nitrogen-doped carbon. Journal of Electroanalytical Chemistry, 2022, 915, 116353.	1.9	4
598	Electrocatalytic reduction of CO ₂ in water by a C-functionalized Ni-cyclam complex grafted onto carbon. Chemical Communications, 0, , .	2.2	3
599	Covalent organic frameworks based on tetraphenyl- <i>p</i> -phenylenediamine and metalloporphyrin for electrochemical conversion of CO ₂ to CO. Inorganic Chemistry Frontiers, 2022, 9, 3217-3223.	3.0	11
600	Development of catalysts and electrolyzers toward industrial-scale CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 19254-19277.	5.2	18
601	Performance Characteristics of Polymer Electrolyte Membrane CO ₂ Electrolyzer: Effect of CO ₂ Dilution, Flow Rate and Pressure. Journal of the Electrochemical Society, 2022, 169, 064510.	1.3	2
602	Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H ₂ production and CO ₂ reduction. Chemical Society Reviews, 2022, 51, 6965-7045.	18.7	116
604	CO2 Reduction Using Molecular Photocatalysts. Springer Handbooks, 2022, , 1429-1452.	0.3	1
605	Layered double hydroxide (LDH) nanomaterials with engineering aspects for photocatalytic CO2 conversion to energy efficient fuels: Fundamentals, recent advances, and challenges. Journal of Environmental Chemical Engineering, 2022, 10, 108151.	3.3	20
606	Electrochemical and light-driven CO2 reduction by amine-functionalized rhenium catalysts: A comparison between primary and tertiary amine substitutions. Polyhedron, 2022, 224, 115976.	1.0	2
607	Towards sustainable CO2 electrochemical transformation via coupling design strategy. Materials Today Sustainability, 2022, 19, 100179.	1.9	8

#	Article	IF	CITATIONS
608	Designing Self-Assembled Dye–Redox Shuttle Systems via Interfacial π-Stacking in Dye-Sensitized Solar Cells for Enhanced Low Light Power Conversion. Energy & Fuels, 0, , .	2.5	0
609	Bioinspired iron porphyrins with appended poly-pyridine/amine units for boosted electrocatalytic CO2 reduction reaction. EScience, 2022, 2, 623-631.	25.0	23
610	Templating Bicarbonate in the Second Coordination Sphere Enhances Electrochemical CO ₂ Reduction Catalyzed by Iron Porphyrins. Journal of the American Chemical Society, 2022, 144, 11656-11663.	6.6	45
611	Fully exposed nickel clusters with electron-rich centers for high-performance electrocatalytic CO2 reduction to CO. Science Bulletin, 2022, 67, 1477-1485.	4.3	13
612	Organic deliquescence: organic vapor-induced dissolution of molecular salts. RSC Advances, 2022, 12, 18307-18310.	1.7	2
613	Electronic structure analysis of electrochemical CO ₂ reduction by iron-porphyrins reveals basic requirements for design of catalysts bearing non-innocent ligands. Chemical Science, 2022, 13, 10029-10047.	3.7	15
614	Importance of steric bulkiness of iridium photocatalysts with PNNP tetradentate ligands for CO ₂ reduction. Chemical Communications, 2022, 58, 9218-9221.	2.2	7
615	Carbon dioxide electroreduction into formic acid and ethylene: a review. Environmental Chemistry Letters, 2022, 20, 3555-3612.	8.3	17
616	Exploring the Electrochemistry of Iron Dithiolene and Its Potential for Electrochemical Homogeneous Carbon Dioxide Reduction. ChemElectroChem, 2022, 9, .	1.7	1
617	Roleâ€Specialized Division of Labor in CO2ÂReduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie, 0, , .	1.6	1
618	Electroreduction of Carbonyl Compounds Catalyzed by a Manganese Complex. ACS Catalysis, 2022, 12, 8632-8640.	5.5	9
619	Roleâ€Specialized Division of Labor in CO ₂ Reduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
620	Introducing a Synergistic Ligand Containing an Exotic Metal in Metal–Organic Framework Nanoarrays Enabling Superior Electrocatalytic Water Oxidation Performance. Inorganic Chemistry, 0, , .	1.9	2
621	Synthesis, characterization, structural and photophysical properties of heteroleptic ruthenium complexes containing 2-(1H-benzo[d]imidazol-2-yl)quinoline ligand towards electrocatalytic CO2 reduction. Journal of Chemical Sciences, 2022, 134, .	0.7	0
622	Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie - International Edition, 2022, 61, .	7.2	26
623	Cuâ€Based Organicâ€Inorganic Composite Materials for Electrochemical CO ₂ Reduction. Chemistry - an Asian Journal, 2022, 17,	1.7	12
624	First-principles studies of monolayers MoSi2N4 decorated with transition metal single-atom for visible light-driven high-efficient CO2 reduction by strain and electronic engineering. Chemical Engineering Journal, 2022, 450, 138198.	6.6	11
625	Multifunctional Charge and Hydrogenâ€Bond Effects of Secondâ€Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO ₂ in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20

	CITATION	Report	
#	Article	IF	Citations
626	Electrocatalytic metal hydride generation using CPET mediators. Nature, 2022, 607, 499-506.	13.7	45
627	Extractive desulfurization of fuels using modified ionic liquids with magnetic graphene oxide from refused dry cell batteries. Fuel, 2022, 328, 125353.	3.4	2
628	Solar energy-driven electrolysis with molecular catalysts for the reduction of carbon dioxide coupled with the oxidation of 5-hydroxymethylfurfural. Catalysis Science and Technology, 2022, 12, 5495-5500.	2.1	14
629	Recent progress of electrochemical reduction of CO2 by single atom catalysts. Materials Reports Energy, 2022, 2, 100140.	1.7	2
630	Spatial Organization of Photocatalysts and Enzymes on Janus-Type DNA Nanosheets for Efficient CO ₂ Conversion. ACS Catalysis, 2022, 12, 9698-9705.	5.5	4
631	Molecular Engineering of Metal Complexes for Electrocatalytic Carbon Dioxide Reduction: From Adjustment of Intrinsic Activity to Molecular Immobilization. Angewandte Chemie, 2022, 134, .	1.6	3
632	CO2 Electroreduction in Organic Aprotic Solvents: A Mini Review. Journal of Chemistry, 2022, 2022, 1-12.	0.9	8
633	Porously Reduced 2â€Dimensional <scp>Bi₂O₂CO₃</scp> Petals for Strainâ€Mediated Electrochemical <scp>CO₂</scp> Reduction to <scp>HCOOH</scp> . Energy and Environmental Materials, 2024, 7, .	7.3	4
634	Development of electrochemical reactors for CO ₂ electroreduction – the viability of an electrochemical CO ₂ plant in Brazil. Progress in Energy, 0, , .	4.6	0
635	Atomically Thin, Ionic–Covalent Organic Nanosheets for Stable, Highâ€Performance Carbon Dioxide Electroreduction. Advanced Materials, 2022, 34, .	11.1	27
636	Insight Into Heterogeneous Electrocatalyst Design Understanding for the Reduction of Carbon Dioxide. Advanced Energy Materials, 2022, 12, .	10.2	24
637	Multifunctional Charge and Hydrogenâ€Bond Effects of Secondâ€Sphere Imidazolium Pendants Promote Capture and Electrochemical Reduction of CO ₂ in Water Catalyzed by Iron Porphyrins**. Angewandte Chemie, 0, , .	1.6	5
638	Temperature, pressure, and adsorptionâ€dependent redox potentials: I. Processes of CO ₂ reduction to valueâ€added compounds. Energy Science and Engineering, 2022, 10, 4520-4543.	1.9	3
639	Homogeneous catalysts for CO2 hydrogenation to methanol and methanol dehydrogenation to hydrogen generation. Coordination Chemistry Reviews, 2022, 472, 214767.	9.5	19
640	Recent Advances in Carbon Dioxide Adsorption, Activation and Hydrogenation to Methanol using Transition Metal Carbides. ChemSusChem, 2022, 15, .	3.6	8
641	Formate complexes of tri- and tetravalent titanium supported by a tris(phenolato)amine ligand. Dalton Transactions, 2022, 51, 14345-14351.	1.6	1
642	Nanomaterials and hybrid nanocomposites for CO ₂ capture and utilization: environmental and energy sustainability. RSC Advances, 2022, 12, 23869-23888.	1.7	90
643	Tandem electrocatalytic N2 fixation via proton-coupled electron transfer. Nature, 2022, 609, 71-76.	13.7	82

#	Article	IF	CITATIONS
644	Recent progress in electrochemical reduction of carbon monoxide toward multi-carbon products. Materials Today, 2022, 59, 182-199.	8.3	22
645	Cobalt Phthalocyanine Crossâ€Linked Polypyrrole for Efficient Electroreduction of Low Concentration CO ₂ To CO. ChemSusChem, 2022, 15, .	3.6	8
646	Facile Deoxygenative Reduction of a Bridging Carbonato Ligand with Silyl and Boryl 4,4'â€Bipyridinylidene Reagents. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2023, 649, .	0.6	0
647	Polymeric Carbon Nitride-based Single Atom Photocatalysts for CO2 Reduction to C1 Products. Chemical Research in Chinese Universities, 2022, 38, 1197-1206.	1.3	7
648	In situ/operando X-ray spectroscopy applied to electrocatalytic CO2 reduction: Status and perspectives. Current Opinion in Colloid and Interface Science, 2022, 61, 101635.	3.4	7
649	A general descriptor for guiding the electrolysis of CO2 in molten carbonate. Green Energy and Environment, 2024, 9, 748-757.	4.7	4
650	Transient Stabilization Effect of CO ₂ in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of αâ€Ketoesters. Angewandte Chemie, 2022, 134, .	1.6	2
651	Transient Stabilization Effect of CO ₂ in the Electrochemical Hydrogenation of Azo Compounds and the Reductive Coupling of αâ€Ketoesters. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
652	Accessing and Photo-Accelerating Low-Overpotential Pathways for CO ₂ Reduction: A Bis-Carbene Ruthenium Terpyridine Catalyst. ACS Catalysis, 2022, 12, 12596-12606.	5.5	3
653	Acetoacetate Production from CO2 and Acetone with Acetone Carboxylase from Photosynthetic Bacteria Rhodobacter Capsulatus. Catalysis Surveys From Asia, 2023, 27, 67-74.	1.0	1
654	Elucidating the mechanism of photochemical CO ₂ reduction to CO using a cyanide-bridged di-manganese complex. Dalton Transactions, 0, , .	1.6	3
655	A redox-active Mn(0) dicarbene metalloradical. Chemical Communications, 2022, 58, 12963-12966.	2.2	8
656	Hostâ€guest tuning of the CO ₂ reduction activity of an iron porphyrin cage. Natural Sciences, 2023, 3, .	1.0	3
657	Homogeneous Electrocatalytic Reduction of CO ₂ by a CrN ₃ O Complex: Electronic Coupling with a Redox-Active Terpyridine Fragment Favors Selectivity for CO. Inorganic Chemistry, 2022, 61, 16963-16970.	1.9	5
658	Electrochemical Reduction of Carbon Dioxide: Recent Advances on Au-Based Nanocatalysts. Catalysts, 2022, 12, 1348.	1.6	14
659	Advanced electrochemical energy storage and conversion on graphdiyne interface. , 2022, 1, e9120036.		24
660	Metal–organic framework derived single-atom catalysts for electrochemical CO ₂ reduction. RSC Advances, 2022, 12, 32518-32525.	1.7	9
661	Carbon conversion: opportunities in chemical productions. , 2023, , 479-524.		0

		Citation Report		
#	Article		IF	CITATIONS
662	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 231	1-2348.	23.0	22
663	Advanced In Situ Characterization Techniques for Direct Observation of Gas″nvolved I Reactions. Energy and Environmental Materials, 2023, 6, .	Electrochemical	7.3	8
664	CO2 Electroreduction on Carbon-Based Electrodes Functionalized with Molecular Orgar Complexes—A Mini Review. Catalysts, 2022, 12, 1448.	nometallic	1.6	2
665	Potential- and Buffer-Dependent Selectivity for the Conversion of CO ₂ to C Porphyrin-Peptide Electrocatalyst in Water. ACS Catalysis, 2022, 12, 14689-14697.	CO by a Cobalt	5.5	3
666	Electrocatalytic CO2 reduction with a binuclear bisâ€ŧerpyridine pyrazoleâ€bridged cob Chemistry - A European Journal, 0, , .	alt complex.	1.7	2
667	Iron porphyrin with appended guanidyl group for significantly improved electrocatalytic dioxide reduction activity and selectivity in aqueous solutions. Chinese Journal of Cataly 3089-3094.	carbon sis, 2022, 43,	6.9	5
668	Comprehensive Review for an Efficient Charge Transfer in Single Atomic Site Catalyst/O Polymers toward Photocatalytic CO ₂ Reduction. Advanced Materials Interf	rganic Faces, 2023, 10, .	1.9	8
669	Translating aqueous CO ₂ hydrogenation activity to electrocatalytic reduct homogeneous cobalt catalyst. Chemical Communications, 2023, 59, 338-341.	ion with a	2.2	1
670	Multiple C–C bond formation upon electrocatalytic reduction of CO ₂ by molecular macrocycle. Chemical Science, 2023, 14, 550-556.	an iron-based	3.7	4
671	Electrocatalytic hydrogen evolution reaction by a Ni(N ₂ O ₂) c on 2,2′-bipyridine. Inorganic Chemistry Frontiers, 2023, 10, 972-978.	omplex based	3.0	2
672	Molecular catalysts design: Intramolecular supporting site assisting to metal center for 6 CO2 photo- and electroreduction. Molecular Catalysis, 2023, 535, 112884.	efficient	1.0	2
673	Tunable trimetallic TM-NiFe catalysts for enhancing the products selectivity of CO2 elec Fuel, 2023, 335, 127026.	troreduction.	3.4	3
674	Electrochemical CO2 Reduction. RSC Green Chemistry, 2022, , 362-387.		0.0	0
675	Photocatalytic Reduction of CO2 to CO Using Manganese Complexes with Bipyridine M Electron-Donating Groups. Catalysis Letters, 0, , .	lodified	1.4	1
676	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Ef Photocatalytic CO ₂ Reduction**. Angewandte Chemie, 0, , .	ficient	1.6	0
677	Surface Immobilization of a Re(I) Tricarbonyl Phenanthroline Complex to Si(111) throug Sonochemical Hydrosilylation. ACS Applied Materials & amp; Interfaces, 2023, 15, 984-9	h 96.	4.0	4
678	Analyzing Structure–Activity Variations for Mn–Carbonyl Complexes in the Reduction CO ₂ to CO. Inorganic Chemistry, 2023, 62, 318-335.	on of	1.9	3
679	Time-Resolved Monitoring of Electrochemical Reactions Using In Situ Stimulated Raman ACS Sustainable Chemistry and Engineering, 2023, 11, 13-17.	Spectroscopy.	3.2	2

#	Article	IF	CITATIONS
680	Electric Double Layer Structure in Electrocatalytic Carbon Dioxide Reduction. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	7
681	Synergistic Porosity and Charge Effects in a Supramolecular Porphyrin Cage Promote Efficient Photocatalytic CO ₂ Reduction**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
682	Bioâ€Inspired Bimetallic Cooperativity Through a Hydrogen Bonding Spacer in CO ₂ Reduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	17
683	Surface ligand engineering on metal nanocatalysts for electrocatalytic CO2 reduction. Materials Reports Energy, 2023, 3, 100172.	1.7	0
684	Improved Itaconate Production with Ustilago cynodontis via Co-Metabolism of CO2-Derived Formate. Journal of Fungi (Basel, Switzerland), 2022, 8, 1277.	1.5	1
685	Bioâ€Inspired Bimetallic Cooperativity Through a Hydrogen Bonding Spacer in CO2ÂReduction. Angewandte Chemie, 0, , .	1.6	0
686	Can the CO ₂ Reduction Reaction Be Improved on Cu: Selectivity and Intrinsic Activity of Functionalized Cu Surfaces. ACS Catalysis, 2022, 12, 15737-15749.	5.5	17
687	Atomic design of bidirectional electrocatalysts for reversible Li-CO2 batteries. Materials Today, 2023, 63, 120-136.	8.3	9
688	Metal and metal oxide electrocatalysts for the electrochemical reduction of CO ₂ -to-C1 chemicals: are we there yet?. Green Chemistry Letters and Reviews, 2023, 16, .	2.1	10
689	Bimetal Cu and Fe modified g-C3N4 sheets grown on carbon skeleton for efficient and selective photocatalytic reduction of CO2 to CO. Journal of Environmental Chemical Engineering, 2023, 11, 109319.	3.3	5
690	CO ₂ or Carbonates – What is the Active Species in Electrochemical CO ₂ Reduction over Feâ€Porphyrin?. ChemCatChem, 2023, 15, .	1.8	4
691	One‣tep Phase Separation for Core‣hell Carbon@Indium Oxide@Bismuth Microspheres with Enhanced Activity for CO ₂ Electroreduction to Formate. Small, 2023, 19, .	5.2	7
692	Selectivity and activity modulation of electrocatalytic carbon dioxide reduction by atomically dispersed dual iron catalysts. Journal of Materials Chemistry A, 2023, 11, 2377-2390.	5.2	1
693	Synthesis, characterization, structural analysis and electrocatalytic performance of zinc(II) porphyrinates. Journal of Molecular Structure, 2023, 1279, 134973.	1.8	0
694	Selectivity of CO2, carbonic acid and bicarbonate electroreduction over Iron-porphyrin catalyst: A DFT study. Electrochimica Acta, 2023, 442, 141784.	2.6	3
695	Redox Mediators in Homogeneous Co-electrocatalysis. Journal of the American Chemical Society, 2023, 145, 2013-2027.	6.6	10
696	Emerging Ru-Co homogeneous-heterogeneous photocatalytic CO2 reduction systems. Materials Research Bulletin, 2023, 161, 112145.	2.7	4
697	Self-Supported Porous Carbon Nanofibers Decorated with Single Ni Atoms for Efficient CO ₂ Electroreduction. ACS Applied Materials & Interfaces, 2023, 15, 1376-1383.	4.0	11

#	Article	IF	CITATIONS
698	Highly Efficient Lightâ€Ðriven CO ₂ to CO Reduction by an Appropriately Decorated Iron Porphyrin Molecular Catalyst. ChemCatChem, 2023, 15, .	1.8	1
699	Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metalâ€Organic Framework Catalysts for CO ₂ Electroreduction. Angewandte Chemie, 2023, 135, .	1.6	0
700	Recent advances in the rational designing of metalloporphyrinoid-based CO2 reduction catalysts: From molecular structural tuning to the application in catalysis. Journal of Porphyrins and Phthalocyanines, 2023, 27, 23-46.	0.4	4
701	Unravelling intrinsic descriptors based on a two-stage activity regulation of bimetallic 2D c-MOFs for CO ₂ RR. Nanoscale, 2023, 15, 4991-5000.	2.8	6
702	Two-Electron-Induced Reorganization of Cobalt Coordination and Metal–Ligand Cooperative Redox Shifting Co(I) Reactivity toward CO ₂ Reduction. Inorganic Chemistry, 2023, 62, 2326-2333.	1.9	1
703	Advances and challenges of electrolyzers for large-scale CO2 electroreduction. Materials Reports Energy, 2023, 3, 100177.	1.7	7
704	Synthesis and Surface Attachment of Molecular Re(I) Complexes Supported by Functionalized Bipyridyl Ligands. Inorganic Chemistry, 2023, 62, 2359-2375.	1.9	7
705	Hydrosilylation and electroreduction of CO ₂ using a zirconocene hydride catalyst. New Journal of Chemistry, 2023, 47, 4504-4509.	1.4	1
706	Electrochemical Characterization and CO2 Reduction Reaction of a Family of Pyridazine-Bridged Dinuclear Mn(I) Carbonyl Complexes. Molecules, 2023, 28, 1138.	1.7	0
707	Synergistic Effect in a Metal–Organic Framework Boosting the Electrochemical CO ₂ Overall Splitting. Journal of the American Chemical Society, 2023, 145, 2439-2447.	6.6	19
708	Spin State in Homoleptic Iron(II) Terpyridine Complexes Influences Mixed Valency and Electrocatalytic CO ₂ Reduction. Inorganic Chemistry, 2023, 62, 6375-6386.	1.9	4
709	Synthesis, electronic structure and interaction of rhodium(I) and iridium(I) bisimine-acenaphthalene complexes with CO2. Polyhedron, 2023, 235, 116350.	1.0	0
710	In-situ growing nickel phthalocyanine supramolecular structure on carbon nanotubes for efficient electrochemical CO2 conversion. Applied Catalysis B: Environmental, 2023, 327, 122446.	10.8	5
711	Spectating the proton migration on catalyst with noninnocent ligand in aqueous electrochemical CO2 reduction. Applied Catalysis B: Environmental, 2023, 329, 122542.	10.8	3
712	CO2 adsorption mechanisms on activated nano-sized biocarbons: Investigation through in situ DRIFTS, quasi in-situ XPS and XRD. Separation and Purification Technology, 2023, 315, 123538.	3.9	2
713	Effect of electrochemical surface area on carbon dioxide electrolysis using anionic electrolyte membrane electrode assembly. Fuel, 2023, 346, 128309.	3.4	1
714	Ultrafine Cu nanoclusters confined within covalent organic frameworks for efficient electroreduction of CO2 to CH4 by synergistic strategy. EScience, 2023, 3, 100116.	25.0	8
715	Mechanistic Elucidations of Highly Dispersed Metalloporphyrin Metalâ€Organic Framework Catalysts for CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2023, 62, .	7.2	11

#	ARTICLE	IF	CITATIONS
716	Porphyrin Catalyst in Neutral Aqueous Solution: Insights from DFT Calculations. ChemistryOpen, 2023, 12, .	0.9	1
717	Thermally activated bipyridyl-based Mn-MOFs with Lewis acid–base bifunctional sites for highly efficient catalytic cycloaddition of CO ₂ with epoxides and Knoevenagel condensation reactions. Dalton Transactions, 2023, 52, 3671-3681.	1.6	5
718	Modulating the Catalytic Properties of Bimetallic Atomic Catalysts: Role of Dangling Bonds and Charging. ChemSusChem, 2023, 16, .	3.6	1
719	Exploring the Parameters Controlling Product Selectivity in Electrochemical CO ₂ Reduction in Competition with Hydrogen Evolution Employing Manganese Bipyridine Complexes. ACS Catalysis, 2023, 13, 3109-3119.	5.5	2
720	Alternating Metalâ€Ligand Coordination Improves Electrocatalytic CO ₂ Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie, 2023, 135, .	1.6	0
721	Alternating Metalâ€Ligand Coordination Improves Electrocatalytic CO ₂ Reduction by a Mononuclear Ru Catalyst**. Angewandte Chemie - International Edition, 2023, 62, .	7.2	4
722	Unlocking nanotubular bismuth oxyiodide toward carbon-neutral electrosynthesis. , 2023, 1, 290-300.		2
723	Durable Electrocatalytic CO ₂ Reduction Using Intermetallic Compound PdIn Nanoparticles and Their Application to a Solar Energy Harvesting System. ACS Applied Energy Materials, 2023, 6, 2793-2803.	2.5	0
724	Electrochemical C–N coupling of CO ₂ and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chemical Society Reviews, 2023, 52, 2193-2237.	18.7	47
725	Proton Transfer Dynamicsâ€Mediated CO ₂ Electroreduction. ChemSusChem, 2023, 16, .	3.6	5
726	Advanced electrocatalytic technologies for conversion of carbon dioxide into methanol by electrochemical reduction: Recent progress and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215081.	9.5	16
727	Sulphur vs NH Group: Effects on the CO2 Electroreduction Capability of Phenylenediamine-Cp Cobalt Complexes. Molecules, 2023, 28, 2364.	1.7	1
728	Revisiting Electrocatalytic CO ₂ Reduction in Nonaqueous Media: Promoting CO ₂ Recycling in Organic Molecules by Controlling H ₂ Evolution. Energy Technology, 2023, 11, .	1.8	2
729	Polyketones from Carbon Dioxide and Ethylene by Integrating Electrochemical and Organometallic Catalysis. ACS Catalysis, 2023, 13, 4053-4059.	5.5	6
730	Homogeneous Catalysis for the Conversion of CO ₂ , CO, CH ₃ OH, and CH ₄ to C ₂₊ Chemicals via C–C Bond Formation. ACS Catalysis, 2023, 13, 4231-4249.	5.5	13
731	Understanding the activity of single atom catalysts for CO ₂ reduction to C ₂ products: A high throughput computational screening. New Journal of Chemistry, 2023, 47, 7225-7231.	1.4	4
732	<i>In Situ</i> Attenuated Total Reflectance Infrared Spectroelectrochemistry (ATR-IR-SEC) for the Characterization of Molecular Redox Processes on Surface-Proximal Doped Silicon ATR Crystal Working Electrodes. Journal of Physical Chemistry C, 2023, 127, 6690-6701.	1.5	1
733	Ruthenium Complexes of Polyfluorocarbon Substituted Terpyridine and Mesoionic Carbene Ligands: An Interplay in CO ₂ Reduction. Chemistry - A European Journal, 2023, 29, .	1.7	2

#	Article	IF	CITATIONS
734	Copper–Supramolecular Pair Catalyst Promoting C ₂₊ Product Formation in Electrochemical CO ₂ Reduction. ACS Catalysis, 2023, 13, 5114-5121.	5.5	8
735	Photocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of a Titania Semiconductor. High Energy Chemistry, 2023, 57, 12-17.	0.2	0
736	Light-Driven Reduction of CO ₂ to CO in Water with a Cobalt Molecular Catalyst and an Organic Sensitizer. ACS Catalysis, 2023, 13, 5979-5985.	5.5	7
767	Introducing proton/electron mediators enhances the catalytic ability of an iron porphyrin complex for photochemical CO ₂ reduction. Chemical Communications, 2023, 59, 10741-10744.	2.2	1
778	Proton transfer kinetics of transition metal hydride complexes and implications for fuel-forming reactions. Chemical Society Reviews, 2023, 52, 7137-7169.	18.7	3
782	Overview of outer-sphere electron transfer mediators for electrosynthesis. Advances in Catalysis, 2023, , 57-102.	0.1	2
794	A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science, 0, , .	3.7	1
795	Coupling electrochemical CO ₂ reduction with value-added anodic oxidation reactions: progress and challenges. Materials Chemistry Frontiers, 0, , .	3.2	0
812	Cobalt macrocyclic complex-catalyzed selective electroreduction of CO ₂ to CO. Green Chemistry, 2023, 25, 10366-10371.	4.6	0
842	Nanomaterials in artificial photosynthesis. , 2024, , 655-683.		0