Advances in One-Pot Synthesis through Borrowing Hyd

Chemical Reviews 118, 1410-1459 DOI: 10.1021/acs.chemrev.7b00340

Citation Report

#	Article	IF	CITATIONS
1	One-pot synthesis of 1,5-diketones from 3-acetyl-4-hydroxycoumarin and effective cyclization to unexpected 3,4-dihydropyridines. Organic and Biomolecular Chemistry, 2018, 16, 3428-3437.	2.8	11
2	Ruthenium-Catalyzed α-Olefination of Nitriles Using Secondary Alcohols. ACS Catalysis, 2018, 8, 2473-2478.	11.2	59
3	Electrochemical Analysis of Catalytic and Oxygen Interfacial Transfer Effects on MnO ₂ Deposited on Gold Electrodes. Journal of Physical Chemistry C, 2018, 122, 10939-10947.	3.1	8
4	Mechanistic studies on the N-alkylation of amines with alcohols catalysed by iridium(i) complexes with functionalised N-heterocyclic carbene ligands. Catalysis Science and Technology, 2018, 8, 2381-2393.	4.1	29
5	Divergent reactions of oxindoles with amino alcohols <i>via</i> the borrowing hydrogen process: oxindole ring opening <i>vs.</i> C3 alkylation. Organic Chemistry Frontiers, 2018, 5, 1622-1627.	4.5	13
6	Efficient nickel-catalysed <i>N</i> -alkylation of amines with alcohols. Catalysis Science and Technology, 2018, 8, 5498-5505.	4.1	49
7	Câ€N Bond Formation Catalyzed by Ruthenium Nanoparticles Supported on Nâ€Doped Carbon via Acceptorless Dehydrogenation to Secondary Amines, Imines, Benzimidazoles and Quinoxalines. ChemCatChem, 2018, 10, 5627-5636.	3.7	52
8	Silverâ€Catalyzed Arylation of (Hetero)arenes via Oxidative Benzylic Câ^'C Bond Cleavage of Benzyl Alcohols/ Benzaldehyde. ChemistrySelect, 2018, 3, 12336-12340.	1.5	5
9	High-Yield Synthesis of a Long-Sought, Labile Ru-NHC Complex and Its Application to the Concise Synthesis of Second-Generation Olefin Metathesis Catalysts. Organometallics, 2018, 37, 4551-4555.	2.3	25
10	Sustainable Alkylation of Unactivated Esters and Amides with Alcohols Enabled by Manganese Catalysis. Organic Letters, 2018, 20, 7779-7783.	4.6	63
11	Nickel-Catalyzed Cross-Electrophile Coupling between Benzyl Alcohols and Aryl Halides Assisted by Titanium Co-reductant. Organic Letters, 2018, 20, 7846-7850.	4.6	67
12	Niâ€Catalyzed αâ€Alkylation of Unactivated Amides and Esters with Alcohols by Hydrogen Autoâ€Transfer Strategy. ChemSusChem, 2018, 11, 3911-3916.	6.8	49
13	Amination of 1-hexanol on bimetallic AuPd/TiO ₂ catalysts. Green Chemistry, 2018, 20, 4695-4709.	9.0	22
14	Smart Tandem Catalyst Developed with Sundew's Predation Strategy, Capable of Catching, Decomposing and Assimilating Preys. ChemCatChem, 2018, 10, 5231-5241.	3.7	13
15	Stabilized Ru[(H ₂ 0) ₆] ³⁺ in Confined Spaces (MOFs and Zeolites) Catalyzes the Imination of Primary Alcohols under Atmospheric Conditions with Wide Scope. ACS Catalysis, 2018, 8, 10401-10406.	11.2	31
16	Bifunctional Iron Complexes Catalyzed Alkylation of Indoles. Advanced Synthesis and Catalysis, 2018, 360, 4640-4645.	4.3	53
17	Zinc Oxide atalyzed Dehydrogenation of Primary Alcohols into Carboxylic Acids. Chemistry - A European Journal, 2018, 24, 17832-17837.	3.3	36
18	Ni-Catalyzed dehydrogenative coupling of primary and secondary alcohols with methyl- <i>N</i> -heteroaromatics. Organic Chemistry Frontiers. 2018, 5, 3250-3255.	4.5	42

#	Article	IF	CITATIONS
19	Cyclodextrin-assisted low-metal Ni-Pd/Al2O3 bimetallic catalysts for the direct amination of aliphatic alcohols. Journal of Catalysis, 2018, 368, 172-189.	6.2	23
20	Cooperative Palladium/Lewis Acid-Catalyzed Transfer Hydrocyanation of Alkenes and Alkynes Using 1-Methylcyclohexa-2,5-diene-1-carbonitrile. Journal of the American Chemical Society, 2018, 140, 16353-16359.	13.7	69
21	Recent Advances in Catalyzed Sequential Reactions and the Potential Use of Tetrapyrrolic Macrocycles as Catalysts. Molecules, 2018, 23, 2796.	3.8	15
22	Efficient Synthesis of <i>α,β</i> â€Unsaturated Ketones from Primary Alcohols and Ketones over Mg ²⁺ â€Modified NiGa Hydrotalcites. ChemistrySelect, 2018, 3, 11284-11292.	1.5	2
23	Well-Defined Phosphine-Free Iron-Catalyzed <i>N</i> -Ethylation and <i>N</i> -Methylation of Amines with Ethanol and Methanol. Organic Letters, 2018, 20, 5985-5990.	4.6	105
24	Stereoselective Synthesis of Cyclohexanes via an Iridium Catalyzed (5 + 1) Annulation Strategy. Journal of the American Chemical Society, 2018, 140, 11916-11920.	13.7	66
25	Methylation of Amines and Ketones with Methanol Catalyzed by an Iridium Complex Bearing a 2-Hydroxypyridylmethylene Fragment. Organometallics, 2018, 37, 3353-3359.	2.3	70
26	Valorization of Biomass Derived Terpene Compounds by Catalytic Amination. Catalysts, 2018, 8, 365.	3.5	14
27	New Manganeseâ€Terpyridineâ€Based Catalytic System for the Dehydrogenative Coupling of Alcohols and Amines for the Synthesis of Aldimines. ChemistrySelect, 2018, 3, 9443-9447.	1.5	7
28	Binuclear Fused 5â€membered Palladacycle and Palladium Complex of Amidoâ€Functionalized Nâ€heterocyclic Carbene Precatalysts for the Oneâ€Pot Tandem Hiyama Alkynylation/Cyclization Reactions. ChemistrySelect, 2018, 3, 9361-9367.	1.5	8
29	Controlling reactive pathways in complex one-pot reactions using a novel shape-selective catalyst with multifunctional active-sites. Chemical Communications, 2018, 54, 11689-11692.	4.1	9
30	Manganese-Catalyzed β-Alkylation of Secondary Alcohols with Primary Alcohols under Phosphine-Free Conditions. ACS Catalysis, 2018, 8, 7201-7207.	11.2	150
31	Development of efficient one-pot three-component assembly of trityl olmesartan medoxomil. Bioorganic and Medicinal Chemistry, 2018, 26, 4348-4359.	3.0	1
32	Direct access to <i>N</i> -alkylated amines and imines <i>via</i> acceptorless dehydrogenative coupling catalyzed by a cobalt(<scp>ii</scp>)-NNN pincer complex. Catalysis Science and Technology, 2018, 8, 3469-3473.	4.1	82
33	Preparation of pyridyltriazole ruthenium complexes as effective catalysts for the selective alkylation and one-pot C–H hydroxylation of 2-oxindole with alcohols and mechanism exploration. Organic Chemistry Frontiers, 2018, 5, 2668-2675.	4.5	60
34	Ruthenium-catalyzed synthesis of arylethyl 1,3,5-triazines from arylallyl alcohols and biguanides. Organic and Biomolecular Chemistry, 2018, 16, 6140-6145.	2.8	22
35	Enantiokonvergente biokatalytische Redoxisomerisierung. Angewandte Chemie, 2018, 130, 12328-12333.	2.0	7
36	Enantioconvergent Biocatalytic Redox Isomerization. Angewandte Chemie - International Edition, 2018, 57, 12151-12156.	13.8	22

#	Article	IF	CITATIONS
37	Reaction Route and Mechanism of the Direct N-Alkylation of Sulfonamides on Acidic Mesoporous Zeolite β-Catalyst. ACS Catalysis, 2018, 8, 9043-9055.	11.2	25
38	In Water and under Mild Conditions: αâ€Alkylation of Ketones with Alcohols by Phaseâ€Transferâ€Assisted Borrowing Hydrogen Catalysis. Chemistry - A European Journal, 2018, 24, 15529-15532.	3.3	17
39	Low-Valent Titanium-Mediated Radical Conjugate Addition Using Benzyl Alcohols as Benzyl Radical Sources. Organic Letters, 2018, 20, 5389-5392.	4.6	53
40	Solvent-free direct α-alkylation of ketones by alcohols catalyzed by nickel supported on silica–alumina. Green Chemistry, 2018, 20, 4210-4216.	9.0	38
41	Design and Synthesis of Zirconiumâ€Containing Coordination Polymer Based on Unsymmetric Indolyl Dicarboxylic Acid and Catalytic Application on Borrowing Hydrogen Reaction. Advanced Synthesis and Catalysis, 2018, 360, 4293-4300.	4.3	41
42	Ru-Catalyzed Cross-Dehydrogenative Coupling between Primary Alcohols to Guerbet Alcohol Derivatives: with Relevance for Fragrance Synthesis. Journal of Organic Chemistry, 2018, 83, 10864-10870.	3.2	22
43	Cp*Co ^{III} atalyzed Efficient Dehydrogenation of Secondary Alcohols. Chemistry - an Asian Journal, 2018, 13, 2445-2448.	3.3	24
44	A borrowing hydrogen methodology: palladium-catalyzed dehydrative <i>N</i> -benzylation of 2-aminopyridines in water. Green Chemistry, 2018, 20, 3044-3049.	9.0	34
45	Regioselective deuteration of alcohols in D ₂ O catalysed by homogeneous manganese and iron pincer complexes. Green Chemistry, 2018, 20, 2706-2710.	9.0	30
46	Iron-Catalyzed Methylation Using the Borrowing Hydrogen Approach. ACS Catalysis, 2018, 8, 6440-6445.	11.2	217
47	SNS-Ligands for Ru-Catalyzed Homogeneous Hydrogenation and Dehydrogenation Reactions. Organic Process Research and Development, 2018, 22, 862-870.	2.7	25
48	Cleave and couple: toward fully sustainable catalytic conversion of lignocellulose to value added building blocks and fuels. Chemical Communications, 2018, 54, 7725-7745.	4.1	58
49	Iron-Catalyzed Anti-Markovnikov Hydroamination and Hydroamidation of Allylic Alcohols. Journal of the American Chemical Society, 2019, 141, 13506-13515.	13.7	66
50	Borane-Catalyzed Chemoselectivity-Controllable N-Alkylation and <i>ortho</i> C-Alkylation of Unprotected Arylamines Using Benzylic Alcohols. ACS Catalysis, 2019, 9, 8397-8403.	11.2	48
51	The α-alkylation of ketones with alcohols in pure water catalyzed by a water-soluble Cp*Ir complex bearing a functional ligand. New Journal of Chemistry, 2019, 43, 14057-14065.	2.8	14
52	Iron-Catalyzed Ligand Free α-Alkylation of Methylene Ketones and β-Alkylation of Secondary Alcohols Using Primary Alcohols. Journal of Organic Chemistry, 2019, 84, 11676-11686.	3.2	42
53	Plasmaâ€Made (Ni 0.5 Cu 0.5)Fe 2 O 4 Nanoparticles for Alcohol Amination under Microwave Heating. ChemCatChem, 2019, 11, 3959-3972.	3.7	4
54	Bidentate Ru(II)â€NC Complexes as Catalysts for α â€Alkylation of Unactivated Amides and Esters. ChemCatChem, 2019, 11, 4841-4847.	3.7	16

#	Article	IF	CITATIONS
55	Iron-Catalyzed Borrowing Hydrogen β- <i>C</i> (sp ³)-Methylation of Alcohols. ACS Catalysis, 2019, 9, 8575-8580.	11.2	80
56	Nickel-catalyzed synthesis of 9-monoalkylated fluorenes from 9-fluorenone hydrazone and alcohols. Synthetic Communications, 0, , 1-8.	2.1	Ο
57	Asymmetric Multifunctional Modular Organocatalysis: One-Pot Direct Strategy to Enantiopure α,β-Disubstituted γ-Butyrolactones. Organic Letters, 2019, 21, 5962-5966.	4.6	21
58	Iridium-catalyzed diastereoselective amination of alcohols with chiral <i>tert</i> -butanesulfinamide by the use of a borrowing hydrogen methodology. Organic and Biomolecular Chemistry, 2019, 17, 7651-7654.	2.8	16
59	Easy Ruthenium atalysed Oxidation of Primary Amines to Nitriles under Oxidantâ€Free Conditions. Chemistry - A European Journal, 2019, 25, 13271-13274.	3.3	20
60	Ruthenium and Ironâ€Catalysed Decarboxylative N â€alkylation of Cyclic αâ€Amino Acids with Alcohols: Sustainable Routes to Pyrrolidine and Piperidine Derivatives. ChemSusChem, 2019, 12, 3801-3807.	6.8	19
61	A step forward in solvent knitting strategies: ruthenium and gold phosphine complex polymerization results in effective heterogenized catalysts. Catalysis Science and Technology, 2019, 9, 4552-4560.	4.1	14
62	Palladacycle-Phosphine Catalyzed Methylation of Amines and Ketones Using Methanol. Journal of Organic Chemistry, 2019, 84, 10472-10480.	3.2	52
63	Catalytic Asymmetric Synthesis of Cyclohexanes by Hydrogen Borrowing Annulations. Angewandte Chemie - International Edition, 2019, 58, 12558-12562.	13.8	54
64	Nickel-Catalyzed Direct Alkenylation of Methyl Heteroarenes with Primary Alcohols. Journal of Organic Chemistry, 2019, 84, 9819-9825.	3.2	38
65	Stereoconvergent, Redoxâ€Neutral Access to Tetrahydroquinoxalines through Relay Epoxide Opening/Amination of Alcohols. Angewandte Chemie - International Edition, 2019, 58, 14082-14088.	13.8	52
66	Stereoconvergent, Redoxâ€Neutral Access to Tetrahydroquinoxalines through Relay Epoxide Opening/Amination of Alcohols. Angewandte Chemie, 2019, 131, 14220-14226.	2.0	22
67	Merrifield resin-supported quinone as an efficient biomimetic catalyst for metal-free, base-free, chemoselective synthesis of 2,4,6-trisubstituted pyridines. Green Chemistry, 2019, 21, 5683-5690.	9.0	56
68	Iridium Supported on Phosphorusâ€Doped Porous Organic Polymers: Active and Recyclable Catalyst for Acceptorless Dehydrogenation and Borrowing Hydrogen Reaction. Advanced Synthesis and Catalysis, 2019, 361, 5695-5703.	4.3	37
69	Catalytic Asymmetric Synthesis of Cyclohexanes by Hydrogen Borrowing Annulations. Angewandte Chemie, 2019, 131, 12688-12692.	2.0	26
70	Iridium Catalyzed Synthesis of Tetrahydro-1H-Indoles by Dehydrogenative Condensation. Inorganics, 2019, 7, 97.	2.7	7
71	Geometric isomerization and geometry controlled catalytic alcohol aminations of ruthenium hydride compounds containing bidentate pyrrolyl-imines. Journal of Organometallic Chemistry, 2019, 902, 120957.	1.8	4
72	Titanium-Catalyzed Cyano-Borrowing Reaction for the Direct Amination of Cyanohydrins with Ammonia. Organic Letters, 2019, 21, 8429-8433.	4.6	11

ARTICLE IF CITATIONS Dual functions of CoO decoration in PtCo/CeO2 catalysts for the hydrogen-borrowing amination of 73 6.2 33 alcohols to primary amines. Journal of Catalysis, 2019, 378, 392-401. Stereoselective synthesis of alicyclic ketones: A hydrogen borrowing approach. Tetrahedron, 2019, 75, 74 130680. Ni⁰/Ni^{Î'+} Synergistic Catalysis on a Nanosized Ni Surface for Simultaneous Formation of Câ \in N Bonds. ACS Catalysis, 2019, 9, 11438-11446. 75 11.2 32 General Synthesis of <i>N</i>-Alkylation of Amines with Secondary Alcohols via Hydrogen Autotransfer. Organic Letters, 2019, 21, 8899-8903. Computational Insight into the Mechanism of Ruthenium(II)-Catalyzed α-Alkylation of Arylmethyl 77 2.5 2 Nitriles Using Alcohols. Journal of Physical Chemistry A, 2019, 123, 10263-10272. Amination of \hat{l}^2 -hydroxyl acid esters via cooperative catalysis enables access to bio-based \hat{l}^2 -amino acid esters. Communications Chemistry, 2019, 2, . 4.5 N–Alkylation of Amines Catalyzed by a Ruthenium–Pincer Complex in the Presence of in situ Generated 80 2.4 39 Sodium Álkoxide. European Journal of Órganic Chemistry, 2019, 2019, 6855-6866. Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to Î³-Valerolactone. ACS Applied Materials & amp; Interfaces, 2019, 11, 41458-41471. 8.0 Direct Synthesis of Cycloalkanes from Diols and Secondary Alcohols or Ketones Using a 82 13.7 75 Homogéneous Mangánese Catalyst. Journal of the American Chemical Society, 2019, 141, 17487-17492. Solventâ€Free Nâ€Alkylation of Amides with Alcohols Catalyzed by Nickel on Silica–Alumina. European 2.4 Journal of Organic Chemistry, 2019, 2019, 6842-6846. Cobalt atalyzed Dehydrogenative Coupling of Amines into Imines. European Journal of Organic 84 2.4 16 Chemistry, 2019, 2019, 7164-7168. Unsymmetrical triazolyl-naphthyridinyl-pyridine bridged highly active copper complexes supported on 56 redúced graphene oxide and théir applicátion in water. Green Chemistry, 2019, 21, 5345-5351. Controlling the selectivity and efficiency of the hydrogen borrowing reaction by switching between 86 3.3 24 rhodium and iridium catalysts. Dalton Transactions, 2019, 48, 13989-13999. Alkylation of the Methyl Group of 2-Methylquinolines and Similar Methyl-<i>N</i>-Heteroaromatics with a Ru/In Dual Catalyst. Chemistry Letters, 2019, 48, 1192-1195. 87 1.3 α-C–H borylation of secondary alcohols <i>via</i> Ru/Fe relay catalysis: building a platform for 88 4.1 18 alcoholic C†"H/Câ€"O functionalizations. Chemical Communications, 2019, 55, 11884-11887. Immobilization of manganese dioxide nanoparticles on modified poly 2,4-dichlorostyrene microspheres: a highly efficient and recyclable catalyst for borrowing hydrogen reactions. Organic Chemistry Frontiers, 2019, 6, 3420-3427. 89 54 One-Pot Conversion of Allylic Alcohols to α-Methyl Ketones via Iron-Catalyzed 90 4.6 28 Isomerization–Methylation. Organic Letters, 2019, 21, 7914-7918. Nonbifunctional Outer-Sphere Strategy Achieved Highly Active α-Alkylation of Ketones with Alcohols by <i>N</i>/i>-Heterocyclic Carbene Manganese (NHC-Mn). Organic Letters, 2019, 21, 8065-8070.

#	Article	IF	CITATIONS
92	The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2018. Coordination Chemistry Reviews, 2019, 401, 213051.	18.8	10
93	DFT Study of PNP-Mn-Catalyzed Acceptorless Dehydrogenative Coupling of Primary Alcohols with Hydrazine to Give Alkene or Azine. Organometallics, 2019, 38, 3590-3601.	2.3	6
94	Ligand-controlled phosphine-free Co(II)-catalysed cross-coupling of secondary and primary alcohols. Tetrahedron, 2019, 75, 130640.	1.9	23
95	Iron-Catalyzed β-Alkylation of Alcohols. Organic Letters, 2019, 21, 8404-8408.	4.6	44
96	A bifunctional strategy for N-heterocyclic carbene-stabilized iridium complex-catalyzed <i>N</i> -alkylation of amines with alcohols in aqueous media. Green Chemistry, 2019, 21, 219-224.	9.0	70
97	Fast continuous alcohol amination employing a hydrogen borrowing protocol. Green Chemistry, 2019, 21, 59-63.	9.0	31
98	Development and mechanistic investigation of the manganese(<scp>iii</scp>) salen-catalyzed dehydrogenation of alcohols. Chemical Science, 2019, 10, 1150-1157.	7.4	53
99	Ruthenium-Catalyzed β-Alkylation of Secondary Alcohols and α-Alkylation of Ketones via Borrowing Hydrogen: Dramatic Influence of the Pendant <i>N</i> -Heterocycle. Organometallics, 2019, 38, 654-664.	2.3	63
100	B(C ₆ F ₅) ₃ -Catalyzed redox-neutral β-alkylation of tertiary amines using <i>p</i> -quinone methides <i>via</i> borrowing hydrogen. Chemical Communications, 2019, 55, 1217-1220.	4.1	55
101	Manganese catalyzed \hat{l}_{\pm} -methylation of ketones with methanol as a C1 source. Chemical Communications, 2019, 55, 314-317.	4.1	90
102	Sustainable Alkylation of Nitriles with Alcohols by Manganese Catalysis. Journal of Organic Chemistry, 2019, 84, 7927-7935.	3.2	68
103	Sequential Catalytic Modification of the Lignin α-Ethoxylated β-O-4 Motif To Facilitate C–O Bond Cleavage by Ruthenium-Xantphos Catalyzed Hydrogen Transfer. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	8
104	Manganese(I)-Catalyzed Cross-Coupling of Ketones and Secondary Alcohols with Primary Alcohols. ACS Omega, 2019, 4, 10741-10754.	3.5	69
105	αâ€Alkylation of Ketones with Secondary Alcohols Catalyzed by Wellâ€Defined Cp*Co ^{III} omplexes. ChemSusChem, 2019, 12, 3463-3467.	6.8	60
106	Nickel-catalyzed borrowing hydrogen annulations: access to diversified N-heterocycles. Chemical Communications, 2019, 55, 7844-7847.	4.1	53
107	Primary Benzylamines by Efficient N-Alkylation of Benzyl Alcohols Using Commercial Ni Catalysts and Easy-to-Handle Ammonia Sources. ACS Sustainable Chemistry and Engineering, 2019, 7, 11267-11274.	6.7	50
108	The N-alkylation of sulfonamides with alcohols in water catalyzed by a water-soluble metal–ligand bifunctional iridium complex [Cp*Ir(biimH2)(H2O)][OTf]2. New Journal of Chemistry, 2019, 43, 10755-10762.	2.8	17
109	Homogenous Meets Heterogenous and Electroâ€Catalysis: Ironâ€Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications. ChemCatChem, 2019, 11, 3602-3625.	3.7	22

#	Article	IF	CITATIONS
110	A Microwave-Assisted Sml ₂ -Catalyzed Direct <i>N</i> Alkylation of Anilines with Alcohols. Journal of Organic Chemistry, 2019, 84, 7488-7494.	3.2	16
111	α-Alkylation of Nitriles with Alcohols Catalyzed by NNN′ Pincer Ru(II) Complexes Bearing Bipyridyl Imidazoline Ligands. Organometallics, 2019, 38, 2156-2166.	2.3	29
112	Iron-Catalyzed Tandem Three-Component Alkylation: Access to α-Methylated Substituted Ketones. Organic Letters, 2019, 21, 3057-3061.	4.6	52
113	Cyano-borrowing reaction: nickel-catalyzed direct conversion of cyanohydrins and aldehydes/ketones to β-cyano ketone. Chemical Science, 2019, 10, 5787-5792.	7.4	19
114	Choline Chloride-Based Deep Eutectic Systems in Sequential Friedläder Reaction and Palladium-Catalyzed sp ³ CH Functionalization of Methyl Ketones. ACS Omega, 2019, 4, 8046-8055.	3.5	26
115	αâ€Methylation of Ketones with Methanol Catalyzed by Ni/SiO ₂ â€Al ₂ O ₃ . European Journal of Organic Chemistry, 2019, 2019, 3694-3698.	2.4	21
116	Baseâ€Promoted αâ€Alkylation of Arylacetonitriles with Alcohols. Chemistry - an Asian Journal, 2019, 14, 2215-2219.	3.3	25
117	Alkylation of Aromatic Amines with Trialkyl Amines Catalyzed by a Defined Iridium Complex with a 2-Hydroxypyridylmethylene Fragment. Organometallics, 2019, 38, 2218-2226.	2.3	11
118	Iridium(I)-Catalyzed C–C and C–N Bond Formation Reactions via the Borrowing Hydrogen Strategy. Journal of Organic Chemistry, 2019, 84, 6286-6297.	3.2	69
119	Iridium-Catalyzed α-Methylation of α-Aryl Esters Using Methanol as the C1 Source. Organic Letters, 2019, 21, 3299-3303.	4.6	29
120	Manganese(I)-Catalyzed α-Alkenylation of Ketones Using Primary Alcohols. Organic Letters, 2019, 21, 3842-3847.	4.6	50
121	Baseâ€Mediated Transitionâ€Metalâ€Free Dehydrative Câ^'C and Câ^'N Bondâ€Forming Reactions from Alcohols. Chemical Record, 2019, 19, 2398-2435.	5.8	24
122	Manganese(III) Porphyrin atalyzed Dehydrogenation of Alcohols to form Imines, Tertiary Amines and Quinolines. Chemistry - A European Journal, 2019, 25, 6439-6446.	3.3	42
123	Reaction condition controlled nickel(<scp>ii</scp>)-catalyzed C–C cross-coupling of alcohols. Organic and Biomolecular Chemistry, 2019, 17, 3567-3574.	2.8	65
124	Cooperative iridium complex-catalyzed synthesis of quinoxalines, benzimidazoles and quinazolines in water. Green Chemistry, 2019, 21, 1999-2004.	9.0	106
125	Iron atalysed Reductive Amination of Carbonyl Derivatives with ωâ€Amino Fatty Acids to Access Cyclic Amines. ChemSusChem, 2019, 12, 3008-3012.	6.8	17
126	Manganese-catalyzed direct C–C coupling of α-C–H bonds of amides and esters with alcohols <i>via</i> hydrogen autotransfer. Dalton Transactions, 2019, 48, 7094-7099.	3.3	36
127	Switchable Access to Amines and Imines from Reductive Coupling of Nitroarenes with Alcohols Catalyzed by Biomass-Derived Cobalt Nanoparticles. Catalysts, 2019, 9, 116.	3.5	16

#	Article	IF	CITATIONS
128	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie - International Edition, 2019, 58, 6727-6731.	13.8	73
129	Ironâ€Catalyzed Borrowing Hydrogen <i>C</i> â€Alkylation of Oxindoles with Alcohols. ChemSusChem, 2019, 12, 2345-2349.	6.8	57
130	Multi‣tep Reactions Involving Ironâ€Catalysed Reduction and Hydrogen Borrowing Reactions. European Journal of Inorganic Chemistry, 2019, 2019, 2471-2487.	2.0	21
131	Phosphine Ligandâ€Free Ruthenium Complexes as Efficient Catalysts for the Synthesis of Quinolines and Pyridines by Acceptorless Dehydrogenative Coupling Reactions. ChemCatChem, 2019, 11, 2500-2510.	3.7	54
132	Phosphineâ€NHC Manganese Hydrogenation Catalyst Exhibiting a Nonâ€Classical Metalâ€Ligand Cooperative H ₂ Activation Mode. Angewandte Chemie, 2019, 131, 6799-6803.	2.0	15
133	A Highly Active PN ³ Manganese Pincer Complex Performing N-Alkylation of Amines under Mild Conditions. Organic Letters, 2019, 21, 3142-3147.	4.6	57
134	Ketone Synthesis by a Nickel-Catalyzed Dehydrogenative Cross-Coupling of Primary Alcohols. Journal of the American Chemical Society, 2019, 141, 6869-6874.	13.7	50
135	Switching the <i>N</i> â€Alkylation of Arylamines with Benzyl Alcohols to Imine Formation Enables the Oneâ€Pot Synthesis of Enantioenriched αâ€ <i>N</i> â€Alkylaminophosphonates. European Journal of Organic Chemistry, 2019, 2019, 3105-3111.	2.4	22
136	Ruthenium(II)-NHC-catalyzed (NHC = perhydrobenzimidazol-2-ylidene) alkylation of amines using the hydrogen borrowing methodology under solvent-free conditions. Transition Metal Chemistry, 2019, 44, 565-573.	1.4	4
137	N-Methylation of amines and nitroarenes with methanol using heterogeneous platinum catalysts. Journal of Catalysis, 2019, 371, 47-56.	6.2	48
138	Nanolayered cobalt–molybdenum sulphides (Co–Mo–S) catalyse borrowing hydrogen C–S bond formation reactions of thiols or H ₂ S with alcohols. Chemical Science, 2019, 10, 3130-3142.	7.4	33
139	Cp*Co(<scp>iii</scp>)-catalyzed <i>N</i> -alkylation of amines with secondary alcohols. Organic Chemistry Frontiers, 2019, 6, 852-857.	4.5	48
140	Palladium on carbon-catalyzed α-alkylation of ketones with alcohols as electrophiles: Scope and mechanism. Journal of Catalysis, 2019, 371, 153-160.	6.2	15
141	Manganese-Catalyzed <i>N</i> -Alkylation of Sulfonamides Using Alcohols. Journal of Organic Chemistry, 2019, 84, 3715-3724.	3.2	49
142	Catalytic Cross-Coupling of Secondary Alcohols. Journal of the American Chemical Society, 2019, 141, 3822-3827.	13.7	87
143	Utilization of a Hydrogen Source from Renewable Lignocellulosic Biomass for Hydrogenation of Nitroarenes. ChemCatChem, 2019, 11, 4189-4195.	3.7	6
144	Mannitol-assisted synthesis of ultrathin Bi2MoO6 architectures: excellent selective adsorption and photocatalytic performance. Journal of Nanoparticle Research, 2019, 21, 1.	1.9	13
145	The impact of the nature of amine reactants in the palladium catalyzed conversion of phenol to N-substituted anilines. Journal of Catalysis, 2019, 371, 207-213.	6.2	18

#	Article	IF	CITATIONS
146	Facile Arene Ligand Exchange in <i>p</i> -Cymene Ruthenium(II) Complexes of Tertiary <i>P</i> -Chiral Ferrocenyl Phosphines. ACS Omega, 2019, 4, 22540-22548.	3.5	8
147	Formal Deoxygenative Hydrogenation of Lactams Using PN ^H P-Pincer Ruthenium Complexes under Nonacidic Conditions. Organic Letters, 2019, 21, 9954-9959.	4.6	19
148	Hydrogenation and <i>N</i> -alkylation of anilines and imines <i>via</i> transfer hydrogenation with homogeneous nickel compounds. Dalton Transactions, 2019, 48, 17579-17587.	3.3	15
149	<i>t</i> -BuOK-catalysed alkylation of fluorene with alcohols: a highly green route to 9-monoalkylfluorene derivatives. RSC Advances, 2019, 9, 35913-35916.	3.6	3
150	Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first row transition metals. Organic and Biomolecular Chemistry, 2019, 17, 1595-1607.	2.8	291
151	Catalytic Isofunctional Reactions—Expanding the Repertoire of Shuttle and Metathesis Reactions. Angewandte Chemie - International Edition, 2019, 58, 10074-10103.	13.8	87
152	Katalytische, isofunktionelle Reaktionen – Erweiterung des Repertoires an Shuttle―und Metathesereaktionen. Angewandte Chemie, 2019, 131, 10178-10209.	2.0	17
153	Sustainable Manganese-Catalyzed Solvent-Free Synthesis of Pyrroles from 1,4-Diols and Primary Amines. Organic Letters, 2019, 21, 70-74.	4.6	61
154	Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chemical Reviews, 2019, 119, 2876-2953.	47.7	320
155	Manganeseâ€Catalyzed Multicomponent Synthesis of Pyrroles through Acceptorless Dehydrogenation Hydrogen Autotransfer Catalysis: Experiment and Computation. ChemSusChem, 2019, 12, 3083-3088.	6.8	54
156	First-Row Transition Metal (De)Hydrogenation Catalysis Based On Functional Pincer Ligands. Chemical Reviews, 2019, 119, 2681-2751.	47.7	608
157	Biocatalytic <i>N</i> -Alkylation of Amines Using Either Primary Alcohols or Carboxylic Acids via Reductive Aminase Cascades. Journal of the American Chemical Society, 2019, 141, 1201-1206.	13.7	91
158	Synthesis of Quinolines Through Acceptorless Dehydrogenative Coupling Catalyzed by Rhenium PN(H)P Complexes. ChemSusChem, 2019, 12, 3078-3082.	6.8	41
159	Cobaltâ€Catalyzed Reductive Alkylation of Amines with Carboxylic Acids. ChemSusChem, 2019, 12, 3089-3093.	6.8	20
160	3d-Metal Catalyzed N- and C-Alkylation Reactions via Borrowing Hydrogen or Hydrogen Autotransfer. Chemical Reviews, 2019, 119, 2524-2549.	47.7	606
161	Synthesis and Structures of Arene Ruthenium (II)–NHC Complexes: Efficient Catalytic αâ€alkylation of ketones via Hydrogen Auto Transfer Reaction. Applied Organometallic Chemistry, 2019, 33, e4696.	3.5	22
162	Thermoregulated ionic liquid-coordinating ruthenium complexes for asymmetric hydrogenation of aromatic ketones. Catalysis Communications, 2019, 121, 43-47.	3.3	7
163	Dual-catalytic transition metal systems for functionalization of unreactive sites of molecules. Nature Catalysis, 2019, 2, 114-122.	34.4	66

\sim				
	ITAT	121	FDC	NDΤ
\sim	יהיי	IVL		

#	Article	IF	CITATIONS
164	A Unified Mechanism to Account for Manganese―or Rutheniumâ€Catalyzed Nitrile αâ€Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study. Chemistry - A European Journal, 2019, 25, 3939-3949.	3.3	14
165	Recent Advances in Methylation: A Guide for Selecting Methylation Reagents. Chemistry - A European Journal, 2019, 25, 3405-3439.	3.3	169
166	Thienylbenzotriazole promoted highly active gold nanoparticles supported on N-doped graphene as efficient catalysts in water and a mechanism exploration. Organic Chemistry Frontiers, 2019, 6, 62-69.	4.5	47
167	Iron Catalysis in Reduction and Hydrometalation Reactions. Chemical Reviews, 2019, 119, 2550-2610.	47.7	338
168	Nickel-Catalyzed Alkylation of Ketone Enolates: Synthesis of Monoselective Linear Ketones. Journal of Organic Chemistry, 2019, 84, 769-779.	3.2	54
169	Câ€Alkylation of Secondary Alcohols by Primary Alcohols through Manganeseâ€Catalyzed Double Hydrogen Autotransfer. ChemSusChem, 2019, 12, 3099-3102.	6.8	74
170	A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics, 2019, 38, 36-46.	2.3	210
171	Ruthenium catalyzed amination cyclization of 1,2,4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis. Chinese Chemical Letters, 2020, 31, 103-106.	9.0	7
172	The synthesis and structure of pyridine-oxadiazole iridium complexes and catalytic applications: Non-coordinating-anion-tuned selective C N bond formation. Chinese Chemical Letters, 2020, 31, 701-705.	9.0	37
173	Manganese(I) atalyzed βâ€Methylation of Alcohols Using Methanol as C 1 Source. Angewandte Chemie, 2020, 132, 221-226.	2.0	15
174	Manganese(I) atalyzed βâ€Methylation of Alcohols Using Methanol as C ₁ Source. Angewandte Chemie - International Edition, 2020, 59, 215-220.	13.8	95
175	Active ruthenium(II)-NHC complexes for alkylation of amines with alcohols using solvent-free conditions. Polyhedron, 2020, 175, 114234.	2.2	8
176	Lewis Base Catalysis Promoted Nucleophilic Substitutions – Recent Advances and Future Directions. European Journal of Organic Chemistry, 2020, 2020, 10-27.	2.4	30
177	Nickel-Catalyzed Amination of α-Aryl Methyl Ethers. Synlett, 2020, 31, 492-496.	1.8	6
178	Ligand-Free Ru-Catalyzed Direct sp ³ C–H Alkylation of Fluorene Using Alcohols. Journal of Organic Chemistry, 2020, 85, 2277-2290.	3.2	19
179	Cobalt-catalyzed alkylation of methyl-substituted N-heteroarenes with primary alcohols: direct access to functionalized N-heteroaromatics. Chemical Communications, 2020, 56, 249-252.	4.1	26
180	Cycloamination strategies for renewable N-heterocycles. Green Chemistry, 2020, 22, 582-611.	9.0	100
181	In water alkylation of amines with alcohols through a borrowing hydrogen process catalysed by ruthenium nanoparticles. Green Chemistry, 2020, 22, 327-331.	9.0	27

#	Article	IF	CITATIONS
182	Direct Amination of Isohexides via Borrowing Hydrogen Methodology: Regio―and Stereoselective Issues. European Journal of Organic Chemistry, 2020, 2020, 599-608.	2.4	9
183	Tuning acylthiourea ligands in Ru(II) catalysts for altering the reactivity and chemoselectivity of transfer hydrogenation reactions, and synthesis of 3-isopropoxy-1H-indole through a new synthetic approach. Journal of Organometallic Chemistry, 2020, 908, 121087.	1.8	13
184	Scandium(III) Triflate Catalyzed Direct Synthesis of <i>N</i> -Unprotected Ketimines. Organic Letters, 2020, 22, 120-125.	4.6	28
185	Synthesis and characterization of N,N-chelate manganese complexes and applications in C N coupling reactions. Inorganica Chimica Acta, 2020, 502, 119358.	2.4	17
186	Manganeseâ€Catalyzed βâ€Methylation of Alcohols by Methanol. Angewandte Chemie - International Edition, 2020, 59, 1485-1490.	13.8	84
187	A Zirconium Indazole Carboxylate Coordination Polymer as an Efficient Catalyst for Dehydrogenation yclization and Oxidative Coupling Reactions. ChemPlusChem, 2020, 85, 123-129.	2.8	29
188	Manganese atalyzed βâ€Methylation of Alcohols by Methanol. Angewandte Chemie, 2020, 132, 1501-1506.	2.0	25
189	Scalable preparation of stable and reusable silica supported palladium nanoparticles as catalysts for N-alkylation of amines with alcohols. Journal of Catalysis, 2020, 382, 141-149.	6.2	30
190	Cyano-borrowing: titanium-catalyzed direct amination of cyanohydrins with amines and enantioselective examples. Chemical Communications, 2020, 56, 651-654.	4.1	15
191	Nickel-Catalyzed Direct Synthesis of Quinoxalines from 2-Nitroanilines and Vicinal Diols: Identifying Nature of the Active Catalyst. Journal of Organic Chemistry, 2020, 85, 2775-2784.	3.2	59
192	Boron-Catalyzed <i>N</i> -Alkylation of Arylamines and Arylamides with Benzylic Alcohols. Journal of Organic Chemistry, 2020, 85, 806-819.	3.2	21
193	Manganese-Catalyzed <i>α-</i> Olefination of Nitriles with Secondary Alcohols. ACS Catalysis, 2020, 10, 947-954.	11.2	47
194	NHCâ€assisted Ni(II) atalyzed acceptorless dehydrogenation of amines and secondary alcohols. Applied Organometallic Chemistry, 2020, 34, e5379.	3.5	7
195	A Borrowing Hydrogen Strategy for Dehydrative Coupling of Aminoisoquinolines with Benzyl Alcohols in Water. European Journal of Organic Chemistry, 2020, 2020, 539-547.	2.4	7
196	Electroactivated alkylation of amines with alcohols <i>via</i> both direct and indirect borrowing hydrogen mechanisms. Green Chemistry, 2020, 22, 860-869.	9.0	8
197	Pyridine mediated transition-metal-free direct alkylation of anilines using alcohols <i>via</i> borrowing hydrogen conditions. Chemical Communications, 2020, 56, 13607-13610.	4.1	19
198	Transition metal free α-C-alkylation of ketones using secondary alcohols. Tetrahedron, 2020, 76, 131571.	1.9	18
199	B(C ₆ F ₅) ₃ -Catalyzed β-Functionalization of Pyrrolidines Using Isatins via Borrowing Hydrogen: Divergent Access to Substituted Pyrrolidines and Pyrroles. Organic Letters, 2020, 22, 7797-7803.	4.6	35

#	Article	IF	CITATIONS
200	Ruthenium-Catalyzed α-Alkylation of Ketones Using Secondary Alcohols to β-Disubstituted Ketones. Organic Letters, 2020, 22, 7879-7884.	4.6	35
201	Redox-Triggered Ruthenium-Catalyzed Remote C–H Acylation with Primary Alcohols. ACS Catalysis, 2020, 10, 12987-12995.	11.2	20
202	Cyclometalated Iridium Complex-Catalyzed <i>N</i> -Alkylation of Amines with Alcohols via Borrowing Hydrogen in Aqueous Media. ACS Omega, 2020, 5, 27723-27732.	3.5	36
203	lridium complexes with a new type of <i>N</i> ^ <i>N</i> ′â€donor anionic ligand catalyze the <i>N</i> â€benzylation of amines via borrowing hydrogen. Applied Organometallic Chemistry, 2020, 34, e6003.	3.5	5
204	Nickel-catalyzed <i>C</i> -alkylation of thioamide, amides and esters by primary alcohols through a hydrogen autotransfer strategy. Chemical Communications, 2020, 56, 14083-14086.	4.1	12
205	Thiazolineâ€Iridium (III) Complexes and Immobilized Nanomaterials as Selective Catalysts in <i>N</i> â€Alkylation of Amines with Alcohols. Applied Organometallic Chemistry, 2020, 34, e5970.	3.5	4
206	Redox surrogate methods for sustainable amine N-alkylation. Current Opinion in Chemical Engineering, 2020, 30, 60-68.	7.8	4
207	Synthesis and catalytic applications of Ru and Ir complexes containing N,O-chelating ligand. Journal of Organometallic Chemistry, 2020, 925, 121486.	1.8	6
208	Synthesis of N-methylated amines from acyl azides using methanol. Organic and Biomolecular Chemistry, 2020, 18, 5891-5896.	2.8	6
209	Carbon-Based Metallic Cobalt Pyrite Nanotubes as Stable Electrode Materials for Electrochemical Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 8335-8342.	5.0	6
210	Recent Progress with Pincer Transition Metal Catalysts for Sustainability. Catalysts, 2020, 10, 773.	3.5	71
211	Copper atalyzed Aerobic Oxidation of Amines to Benzothiazoles via Cross Coupling of Amines and Arene Thiolation Sequence. Advanced Synthesis and Catalysis, 2020, 362, 3576-3582.	4.3	12
212	Hydrazone complexes of ruthenium(II): Synthesis, crystal structures and catalytic applications in N-alkylation reactions. Journal of Organometallic Chemistry, 2020, 923, 121411.	1.8	4
213	Implementation of Cooperative Designs in Polarized Transition Metal Systems—Significance for Bond Activation and Catalysis. ACS Catalysis, 2020, 10, 14024-14055.	11.2	57
214	Direct Catalytic Symmetrical, Unsymmetrical N,N-Dialkylation and Cyclization of Acylhydrazides Using Alcohols. Organic Letters, 2020, 22, 6617-6622.	4.6	23
215	Zincâ€Catalyzed Nâ€Alkylation of Aromatic Amines with Alcohols: A Ligandâ€Free Approach. Advanced Synthesis and Catalysis, 2020, 362, 4409-4414.	4.3	34
216	Rhodium catalysed C-3/5 methylation of pyridines using temporary dearomatisation. Chemical Science, 2020, 11, 8595-8599.	7.4	30
217	Iridium Complex-Catalyzed C2-Extension of Primary Alcohols with Ethanol via a Hydrogen Autotransfer Reaction. Journal of Organic Chemistry, 2020, 85, 11952-11958.	3.2	17

#	Article	IF	CITATIONS
218	Synthesis of PEG-Functionalized Amines Using Ruthenium-Catalyzed Hydrogen Borrowing. Organic Letters, 2020, 22, 5890-5894.	4.6	4
219	Ruthenium Catalyzed Divergent Alkylation and Olefination of Methyl 1,3,5â€Triazines with Alcohols. European Journal of Organic Chemistry, 2020, 2020, 4942-4949.	2.4	10
220	Dynamic Kinetic Asymmetric Amination of Alcohols Assisted by Microwave: Stereoconvergent Access to Tetralin- and Indane-Derived Chiral Amines. ACS Catalysis, 2020, 10, 9464-9475.	11.2	24
221	Methanol as the Hydrogen Source in the Selective Transfer Hydrogenation of Alkynes Enabled by a Manganese Pincer Complex. Organic Letters, 2020, 22, 6067-6071.	4.6	54
222	Synthesis and structural characterization of facile ruthenium(II) hydrazone complexes: Efficient catalysts in α-alkylation of ketones with primary alcohols via hydrogen auto transfer. Inorganica Chimica Acta, 2020, 512, 119887.	2.4	10
223	Nanoporous palladium catalyzed one-pot synthesis N-alkyl amines by hydrogen transfer reaction under mild conditions. Inorganic Chemistry Communication, 2020, 120, 108143.	3.9	3
224	Antiâ€Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γâ€Amino Alcohols. Angewandte Chemie - International Edition, 2020, 59, 21959-21964.	13.8	48
225	Antiâ€Markovnikov Hydroamination of Racemic Allylic Alcohols to Access Chiral γâ€Amino Alcohols. Angewandte Chemie, 2020, 132, 22143-22148.	2.0	17
226	Direct Synthesis of Pyrrolo[1,2-α]quinoxalines <i>via</i> Iron-Catalyzed Transfer Hydrogenation between 1-(2-Nitrophenyl)pyrroles and Alcohols. Journal of Organic Chemistry, 2020, 85, 15314-15324.	3.2	29
227	Ligand-tuned cobalt-containing coordination polymers and applications in water. Green Chemistry, 2020, 22, 8452-8461.	9.0	34
228	Iridium-Catalyzed C-Alkylation of Methyl Group on <i>N</i> -Heteroaromatic Compounds using Alcohols. Organic Letters, 2020, 22, 7295-7299.	4.6	17
229	Arylboronic Acid Catalyzed <i>C</i> -Alkylation and Allylation Reactions Using Benzylic Alcohols. Organic Letters, 2020, 22, 7547-7551.	4.6	21
230	Synthesis of Tetrahydroquinolines via Borrowing Hydrogen Methodology Using a Manganese PN ³ Pincer Catalyst. Organic Letters, 2020, 22, 7964-7970.	4.6	20
231	A phosphine-free iron complex-catalyzed synthesis of cycloalkanes <i>via</i> the borrowing hydrogen strategy. Chemical Communications, 2020, 56, 12909-12912.	4.1	17
232	Role of dissolved oxygen in nitroarene reduction by a heterogeneous silver textile catalyst in water. New Journal of Chemistry, 2020, 44, 17780-17790.	2.8	7
233	Mechanism and Origin of Chemoselectivity of Ru-Catalyzed Cross-Coupling of Secondary Alcohols to β-Disubstituted Ketones. Journal of Organic Chemistry, 2020, 85, 12444-12455.	3.2	17
234	Highly Productive α-Alkylation of Ketones with Alcohols Mediated by an Ir–Oxalamidato/Solid Base Catalyst System. Organic Process Research and Development, 2020, 24, 2772-2779.	2.7	11
235	Effects of ruthenium hydride species on primary amine synthesis by direct amination of alcohols over a heterogeneous Ru catalyst. Chemical Science, 2020, 11, 9884-9890.	7.4	31

#	Article	IF	CITATIONS
236	Asymmetric Synthesis of Î ³ -Secondary Amino Alcohols via a Borrowing-Hydrogen Cascade. Organic Letters, 2020, 22, 7278-7283.	4.6	30
237	Formamide-Catalyzed Nucleophilic Substitutions: Mechanistic Insight and Rationalization of Catalytic Activity. ACS Catalysis, 2020, 10, 11567-11577.	11.2	11
238	Alcohols as Fluoroalkyl Synthons: Ni atalyzed Dehydrogenative Approach to Access Polyfluoroalkyl Bisâ€indoles. Chemistry - A European Journal, 2020, 26, 16649-16654.	3.3	9
239	Mechanistic insight into the azo radical-promoted dehydrogenation of heteroarene towards N-heterocycles. Catalysis Science and Technology, 2020, 10, 6309-6318.	4.1	35
240	Bidentate geometry-constrained iminopyridyl nickel-catalyzed synthesis of amines or imines via borrowing hydrogen or dehydrogenative condensation. Tetrahedron Letters, 2020, 61, 152604.	1.4	7
241	Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chemical Society Reviews, 2020, 49, 8933-8987.	38.1	181
242	Manganese complex-catalysed α-alkylation of ketones with secondary alcohols enables the synthesis of β-branched carbonyl compounds. Chemical Communications, 2020, 56, 8376-8379.	4.1	46
243	Ruthenium Pincer Complex Catalyzed Selective Synthesis of Câ€3 Alkylated Indoles and Bisindolylmethanes Directly from Indoles and Alcohols. Advanced Synthesis and Catalysis, 2020, 362, 2902-2910.	4.3	55
244	Nickel(II)–N ^ĥ N ^ĥ O Pincer Type Complex-Catalyzed N-alkylation of Amines with Alcohols via the Hydrogen Autotransfer Reaction. Journal of Organic Chemistry, 2020, 85, 7125-7135.	3.2	49
245	Overcoming Selectivity Issues in Reversible Catalysis: A Transfer Hydrocyanation Exhibiting High Kinetic Control. Journal of the American Chemical Society, 2020, 142, 10914-10920.	13.7	37
246	Towards next generation "smart―tandem catalysts with sandwiched mussel-inspired layer switch. Materials Today Chemistry, 2020, 17, 100286.	3.5	11
247	A Bifunctional Metal/Acid Catalyst for One-pot Multistep Synthesis of Pharmaceuticals. Petroleum Chemistry, 2020, 60, 499-507.	1.4	1
248	One-pot synthesis of aniline N-alkylation from benzyl alcohol over Cu-Fe catalyst. Applied Catalysis A: General, 2020, 602, 117519.	4.3	11
249	Recent Progress on Catalytic Addition Reactions to <i>N</i> -Unsubstituted Imines. ACS Catalysis, 2020, 10, 6924-6951.	11.2	41
250	Roomâ€Temperature Guerbet Reaction with Unprecedented Catalytic Efficiency and Enantioselectivity. Angewandte Chemie, 2020, 132, 11480-11485.	2.0	25
251	Ruthenium Catalyzed Tandem Pictet–Spengler Reaction. Organic Letters, 2020, 22, 4979-4984.	4.6	19
252	Bridging the hydrodynamic Drude model and local transformation optics theory. Physical Review B, 2020, 101, .	3.2	2
253	Borrowing hydrogen activity of NH2-MIL-125 for N-alkylation of amines with alcohols under solvent and base free condition. Catalysis Communications, 2020, 144, 106085.	3.3	12

#	Article	IF	CITATIONS
254	Chromium atalyzed Alkylation of Amines by Alcohols. Angewandte Chemie - International Edition, 2020, 59, 11789-11793.	13.8	65
255	Iron-catalysed alkylation of 2-methyl and 4-methyl azaarenes with alcohols <i>via</i> C–H bond activation. Chemical Communications, 2020, 56, 4777-4780.	4.1	16
256	Chromiumâ€Catalyzed Alkylation of Amines by Alcohols. Angewandte Chemie, 2020, 132, 11887-11891.	2.0	9
257	N-Methylation of Amines with Methanol in Aqueous Solution Catalyzed by a Water-Soluble Metal–Ligand Bifunctional Dinuclear Iridium Catalyst. Journal of Organic Chemistry, 2020, 85, 5815-5824.	3.2	48
258	Superhydrophobic nickel/carbon core–shell nanocomposites for the hydrogen transfer reactions of nitrobenzene and N-heterocycles. Green Chemistry, 2020, 22, 1996-2010.	9.0	26
259	Conversion of racemic alcohols to optically pure amine precursors enabled by catalyst dynamic kinetic resolution: experiment and computation. Chemical Communications, 2020, 56, 9094-9097.	4.1	4
260	Recent Advances in Homogeneous Catalysis via Metal–Ligand Cooperation Involving Aromatization and Dearomatization. Catalysts, 2020, 10, 635.	3.5	43
261	Deoxygenative α-alkylation and α-arylation of 1,2-dicarbonyls. Chemical Science, 2020, 11, 9101-9108.	7.4	14
262	Ru(II) complexes containing (2-(pyren-1-ylmethylene)hydrazinyl)benzothiazole: Synthesis, solid-state structure, computational study and catalysis in N-alkylation reactions. Inorganica Chimica Acta, 2020, 512, 119864.	2.4	7
263	Iridium-Catalyzed Alkylation of Secondary Alcohols with Primary Alcohols: A Route to Access Branched Ketones and Alcohols. Journal of Organic Chemistry, 2020, 85, 9139-9152.	3.2	25
264	C-Alkylation of Various Carbonucleophiles with Secondary Alcohols under Co ^{III} -Catalysis. ACS Catalysis, 2020, 10, 8023-8031.	11.2	43
265	Enantioconvergent alkylation of ketones with racemic secondary alcohols <i>via</i> hydrogen borrowing catalysis. Chemical Communications, 2020, 56, 3543-3546.	4.1	37
266	A hydrogen borrowing annulation strategy for the stereocontrolled synthesis of saturated aza-heterocycles. Chemical Communications, 2020, 56, 3563-3566.	4.1	29
267	Tandem transformations and multicomponent reactions utilizing alcohols following dehydrogenation strategy. Organic and Biomolecular Chemistry, 2020, 18, 2193-2214.	2.8	53
268	New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews, 2020, 120, 2613-2692.	47.7	510
269	Synthesis, characterization, catalytic and biological application of half-sandwich ruthenium complexes bearing hemilabile (κ2-C,S)-thioether-functionalised NHC ligands. Dalton Transactions, 2020, 49, 3243-3252.	3.3	18
270	Manganese atalyzed Oneâ€Pot Conversion of Nitroarenes into <i>N</i> â€Methylarylamines Using Methanol. European Journal of Organic Chemistry, 2020, 2020, 1136-1140.	2.4	39
271	Iron-Catalyzed α-Alkylation of Ketones with Secondary Alcohols: Access to β-Disubstituted Carbonyl Compounds. Organic Letters, 2020, 22, 2064-2069.	4.6	56

#	Article	IF	Citations
272	Artificial reactor containing polymeric bilayer architectures for the formation of self-controlled tandem catalytic-ability. EXPRESS Polymer Letters, 2020, 14, 12-25.	2.1	8
273	Recent Catalytic Applications of (Cyclopentadienone)iron Complexes. European Journal of Organic Chemistry, 2020, 2020, 3192-3205.	2.4	28
274	A Phosphine-Free Manganese Catalyst Enables Stereoselective Synthesis of (1 + <i>n</i>)-Membered Cycloalkanes from Methyl Ketones and 1, <i>n</i> -Diols. ACS Catalysis, 2020, 10, 2615-2626.	11.2	60
275	Cyclometalated Ruthenium Pincer Complexes as Catalysts for the αâ€Alkylation of Ketones with Alcohols. Chemistry - A European Journal, 2020, 26, 6050-6055.	3.3	21
276	A Metallaphotoredox Method for the Expansion of Benzyl SAR on Electron-Deficient Amines. Organic Letters, 2020, 22, 1052-1055.	4.6	17
277	Chemo- and Regioselective Synthesis of Acyl-Cyclohexenes by a Tandem Acceptorless Dehydrogenation-[1,5]-Hydride Shift Cascade. Journal of the American Chemical Society, 2020, 142, 2514-2523.	13.7	30
278	Ru(II)â€ ^{<i>PBT</i>} <i>NN</i> ^{<i>X</i>} <i>N</i> complex bearing functional 2â€(pyridinâ€2â€yl)benzo[<i>d</i>]thiazole ligand catalyzed <i>î±</i> â€alkylation of nitriles with alcohols. Applied Organometallic Chemistry, 2020, 34, e5451.	3.5	6
279	Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Nonâ€bifunctional Pincer Nâ€heterocyclic Carbene Manganese. ChemSusChem, 2020, 13, 2557-2563.	6.8	48
280	C3-Alkylation of indoles and oxindoles by alcohols by means of borrowing hydrogen methodology. Tetrahedron Letters, 2020, 61, 151875.	1.4	19
281	Copper-catalyzed direct amination of benzylic hydrocarbons and inactive aliphatic alkanes with arylamines. Organic and Biomolecular Chemistry, 2020, 18, 3263-3268.	2.8	10
282	Asymmetric Guerbet Reaction to Access Chiral Alcohols. Angewandte Chemie, 2020, 132, 11505-11512.	2.0	20
283	Nickel-catalyzed hydrogen-borrowing strategy: chemo-selective alkylation of nitriles with alcohols. Chemical Communications, 2020, 56, 6850-6853.	4.1	38
284	A Vinyl Cyclopropane Ring Expansion and Iridium atalyzed Hydrogen Borrowing Cascade. Angewandte Chemie, 2020, 132, 11435-11440.	2.0	4
285	Roomâ€Temperature Guerbet Reaction with Unprecedented Catalytic Efficiency and Enantioselectivity. Angewandte Chemie - International Edition, 2020, 59, 11384-11389.	13.8	79
286	Spatial acid–base–Pd triple-sites of a hierarchical core–shell structure for three-step tandem reaction. Chemical Communications, 2020, 56, 6297-6300.	4.1	24
287	Ruthenium Catalyzed <i>N</i> â€Alkylation of Cyclic Amines with Primary Alcohols. European Journal of Organic Chemistry, 2020, 2020, 3030-3040.	2.4	5
288	A Vinyl Cyclopropane Ring Expansion and Iridium atalyzed Hydrogen Borrowing Cascade. Angewandte Chemie - International Edition, 2020, 59, 11339-11344.	13.8	14
289	Control of Absolute Stereochemistry in Transitionâ€Metal atalysed Hydrogenâ€Borrowing Reactions. Chemistry - A European Journal, 2020, 26, 12912-12926.	3.3	76

		CITATION REPORT		
#	Article		IF	CITATIONS
290	A Simple Iron-Catalyst for Alkenylation of Ketones Using Primary Alcohols. Molecules, 2	2020, 25, 1590.	3.8	9
291	Asymmetric Guerbet Reaction to Access Chiral Alcohols. Angewandte Chemie - Interna 2020, 59, 11408-11415.	itional Edition,	13.8	60
292	Sequential C–O decarboxylative vinylation/C–H arylation of cyclic oxalates <i>via< nickel-catalyzed multicomponent radical cascade. Chemical Science, 2020, 11, 4904-4</i>	:/i> a ŀ910.	7.4	53
293	BrÃ,nsted Acidâ€Catalysed Dehydrative Substitution Reactions of Alcohols. Chemistry Journal, 2021, 27, 106-120.	- A European	3.3	47
294	Ruthenium-catalyzed C–H bond functionalization in cascade and one-pot transform Coordination Chemistry Reviews, 2021, 428, 213602.	ations.	18.8	56
295	Ruthenium catalyzed $\hat{I}\pm$ -methylation of sulfones with methanol as a sustainable C1 so Chemistry Frontiers, 2021, 8, 120-126.	urce. Organic	4.5	17
296	Selective Construction of Câ^'C and C=C Bonds by Manganese Catalyzed Coupling of Phosphorus Ylides. Advanced Synthesis and Catalysis, 2021, 363, 1096-1104.	Alcohols with	4.3	9
297	Synthesis of Indanones and Spiroindanones by Diastereoselective Annulation Based of Autotransfer Strategy. Angewandte Chemie, 2021, 133, 5333-5338.	n a Hydrogen	2.0	6
298	General Synthesis of Secondary Alkylamines by Reductive Alkylation of Nitriles by Alde Ketones. Chemistry - A European Journal, 2021, 27, 1609-1614.	hydes and	3.3	13
299	Synthesis of Indanones and Spiroindanones by Diastereoselective Annulation Based of Autotransfer Strategy. Angewandte Chemie - International Edition, 2021, 60, 5273-52	n a Hydrogen 78.	13.8	34
300	Integrated Electroâ \in Biocatalysis for Amine Alkylation with Alcohols. ChemCatChem, 2	021, 13, 864-867.	3.7	10
301	Synthesis of an Fe–Pd bimetallic catalyst for <i>N</i> -alkylation of amines with alco hydrogen auto-transfer methodology. Green Chemistry, 2021, 23, 396-404.	hols <i>via</i> a	9.0	30
302	Gas sensing behavior of ZnO toward H2 at temperatures below 300°C and its depen and Pt-decoration. Applied Surface Science, 2021, 541, 148551.	dence on humidity	6.1	36
303	NaOH-Mediated Direct Synthesis of Quinoxalines from <i>o</i> -Nitroanilines and Alco Hydrogen-Transfer Strategy. Journal of Organic Chemistry, 2021, 86, 947-958.	hols via a	3.2	24
304	Tungstenâ€Catalyzed Direct <i>N</i> â€Alkylation of Anilines with Alcohols. ChemSus 860-865.	Chem, 2021, 14,	6.8	19
305	Chemoselective heterogeneous iridium catalyzed hydrogenation of cinnamalaniline. C and Technology, 2021, 11, 1481-1496.	atalysis Science	4.1	1
306	Iron-Catalyzed Hydrogen Transfer Reduction of Nitroarenes with Alcohols: Synthesis o Aza Heterocycles. Journal of Organic Chemistry, 2021, 86, 1023-1036.	f Imines and	3.2	42
307	Nickelâ^Copper bimetallic mesoporous nanoparticles: As an efficient heterogeneous c â€alkylation of amines with alcohols. Applied Organometallic Chemistry, 2021, 35, .	atalyst for N	3.5	4

#	Article	IF	CITATIONS
308	Recent advances on N-heterocyclic carbene transition metal complexes for dehydrogenative catalysis using alcohols. Catalysis Today, 2021, 370, 114-141.	4.4	25
309	Borrowing Hydrogen Reductive Coupling of Nitroarenes with Benzyl Alcohols to Imines Catalyzed by Pd Nanoparticles on N Doped Carbon Materials. Chinese Journal of Organic Chemistry, 2021, 41, 276.	1.3	4
310	Switchable Imine and Amine Synthesis Catalyzed by a Well-Defined Cobalt Complex. Organometallics, 2021, 40, 418-426.	2.3	21
311	Mimicking transition metals in borrowing hydrogen from alcohols. Chemical Science, 2021, 12, 8353-8361.	7.4	20
312	<i>N</i> -Methylation of Amines with Methanol in the Presence of Carbonate Salt Catalyzed by a Metal–Ligand Bifunctional Ruthenium Catalyst [(<i>p</i> -cymene)Ru(2,2′-bpyO)(H ₂ O)]. Journal of Organic Chemistry, 2021, 86, 2621-2631.	3.2	39
313	α-Alkylation of arylacetonitriles with primary alcohols catalyzed by backbone modified N-heterocyclic carbene iridium(<scp>i</scp>) complexes. Dalton Transactions, 2021, 50, 1788-1796.	3.3	13
314	Direct <i>N</i> -alkylation of sulfur-containing amines. Organic and Biomolecular Chemistry, 2021, 19, 4478-4482.	2.8	3
315	Synthesis of NHC-Iridium(III) Complexes Based on <i>N</i> -Iminoimidazolium Ylides and Their Use for the Amine Alkylation by Borrowing Hydrogen Catalysis. Organometallics, 2021, 40, 408-417.	2.3	16
316	Isonitrile ruthenium and iron PNP complexes: synthesis, characterization and catalytic assessment for base-free dehydrogenative coupling of alcohols. Dalton Transactions, 2021, 50, 10067-10081.	3.3	5
317	Designed pincer ligand supported Co(<scp>ii</scp>)-based catalysts for dehydrogenative activation of alcohols: Studies on <i>N</i> -alkylation of amines, α-alkylation of ketones and synthesis of quinolines. Dalton Transactions, 2021, 50, 8567-8587.	3.3	24
318	Zinc oxide-modified mordenite as an effective catalyst for the dehydrogenation of (bio)ethanol to acetaldehyde. Sustainable Energy and Fuels, 2021, 5, 2136-2148.	4.9	18
319	Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme. RSC Advances, 2021, 11, 10010-10017.	3.6	15
320	One pot tandem dual C and Cî€O bond reductions in the β-alkylation of secondary alcohols with primary alcohols by ruthenium complexes of amido and picolyl functionalized N-heterocyclic carbenes. Dalton Transactions, 2021, 50, 15640-15654.	3.3	14
321	Ruthenium-catalyzed N-alkylation of amino-1,3,5-triazines using alcohols. New Journal of Chemistry, 2021, 45, 15776-15779.	2.8	Ο
322	Electron-deficient boron-based catalysts for C–H bond functionalisation. Chemical Society Reviews, 2021, 50, 1945-1967.	38.1	66
323	Selective Catalytic Synthesis of α-Alkylated Ketones and β-Disubstituted Ketones via Acceptorless Dehydrogenative Cross-Coupling of Alcohols. Organic Letters, 2021, 23, 869-875.	4.6	48
324	The preparation of a Co@C ₃ N ₄ catalyst and applications in the synthesis of quinolines from 2-aminobenzyl alcohols with ketones. New Journal of Chemistry, 2021, 45, 6768-6772.	2.8	15
325	Porous cross-linked polymer copper and iridium catalyzed the synthesis of quinoxalines and functionalized ketones under solvent-free conditions. Materials Chemistry Frontiers, 2021, 5, 7861-7872.	5.9	20

#	Article	IF	CITATIONS
326	Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chemical Communications, 2021, 57, 8534-8549.	4.1	41
327	Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Organic Chemistry Frontiers, 2021, 8, 2673-2709.	4.5	92
328	Silica–sulfuric acid and alumina–sulfuric acid: versatile supported BrÃ,nsted acid catalysts. New Journal of Chemistry, 2021, 45, 16355-16388.	2.8	19
329	Homogeneous aluminum and iron catalysts for the synthesis of organic molecules and biodegradable polymers. , 2021, , 3-43.		0
330	Water-promoted dehydrative coupling of 2-aminopyridines in heptane <i>via</i> a borrowing hydrogen strategy. RSC Advances, 2021, 11, 23144-23150.	3.6	7
331	Recent advances in pincer–nickel catalyzed reactions. Dalton Transactions, 2021, 50, 3394-3428.	3.3	32
332	Transfer Hydrogenation of Ketones into Alcohols Catalyzed by a Novel Chiral Terpyridine Ruthenium(II) Complex. Chinese Journal of Organic Chemistry, 2021, 41, 1543.	1.3	0
333	Iridium Complexes as Efficient Catalysts for Construction of <i>α</i> â€6ubstituted Ketones via Hydrogen Borrowing of Alcohols in Water. European Journal of Organic Chemistry, 2021, 2021, 1355-1364.	2.4	10
334	Hydrogenâ€Borrowing Alkylation of 1,2â€Amino Alcohols in the Synthesis of Enantioenriched γâ€Aminobutyric Acids. Angewandte Chemie - International Edition, 2021, 60, 6981-6985.	13.8	17
335	Iron-catalyzed <i>N</i> -alkylation of aromatic amines via borrowing hydrogen strategy. Journal of Coordination Chemistry, 2021, 74, 877-884.	2.2	6
336	Rutheniumâ€Catalyzed Synthesis of αâ€Alkylated Ketones and Quinolines in an Aqueous Medium via a Hydrogenâ€Borrowing Strategy Using Ketones and Alcohols. Asian Journal of Organic Chemistry, 2021, 10, 626-633.	2.7	21
337	Hydrogenâ€Borrowing Alkylation of 1,2â€Amino Alcohols in the Synthesis of Enantioenriched γâ€Aminobutyric Acids. Angewandte Chemie, 2021, 133, 7057-7061.	2.0	4
338	Homoselective synthesis of 5â€substituted 1 <i>H</i> â€tetrazoles and oneâ€pot synthesis of 2,4,5â€trisubstuted imidazole compounds using BNPs@SiO ₂ â€TPPTSA as a stable and new reusable nanocatalyst. Applied Organometallic Chemistry, 2021, 35, e6144.	3.5	14
339	Atomâ€Economic Alk(en)ylations of Esters, Amides, and Methyl Heteroarenes Utilizing Alcohols Following Dehydrogenative Strategies. Asian Journal of Organic Chemistry, 2021, 10, 464-484.	2.7	15
340	Simple RuCl ₃ â€catalyzed <i>N</i> â€Methylation of Amines and Transfer Hydrogenation of Nitroarenes using Methanol. ChemCatChem, 2021, 13, 1722-1729.	3.7	41
341	Dimethylamination of Primary Alcohols Using a Homogeneous Iridium Catalyst: A Synthetic Method for <i>N</i> , <i>N</i> -Dimethylamine Derivatives. Journal of Organic Chemistry, 2021, 86, 4053-4060.	3.2	10
342	Electrochemically Enabled, Nickel-Catalyzed Dehydroxylative Cross-Coupling of Alcohols with Aryl Halides. Journal of the American Chemical Society, 2021, 143, 3536-3543.	13.7	129
343	Pharmaceutically relevant (hetero)cyclic compounds and natural products from lignin-derived monomers: Present and perspectives. IScience, 2021, 24, 102211.	4.1	32

#	Article	IF	CITATIONS
344	Challenges and Opportunities in Multicatalysis. ACS Catalysis, 2021, 11, 3891-3915.	11.2	149
345	Borrowing Hydrogen for Organic Synthesis. ACS Central Science, 2021, 7, 570-585.	11.3	203
346	Deoxygenative coupling of 2-aryl-ethanols catalyzed by unsymmetrical pyrazolyl-pyridinyl-triazole ruthenium. Molecular Catalysis, 2021, 503, 111391.	2.0	14
347	Pyrenedione-Catalyzed α-Olefination of Nitriles under Visible-Light Photoredox Conditions. Organic Letters, 2021, 23, 2019-2023.	4.6	13
349	Manganese-Catalyzed C(α)-Alkylation of Oxindoles with Secondary Alcohols via Borrowing Hydrogen. Organometallics, 2021, 40, 627-634.	2.3	25
350	Alkyl Phosphine Free, Metalâ€Ligand Cooperative Complex Catalyzed Alcohol Dehydrogenative Coupling Reactions. Asian Journal of Organic Chemistry, 2021, 10, 1218-1232.	2.7	16
351	Phosphine-Free Ruthenium Complex-Catalyzed Synthesis of Mono- or Dialkylated Acyl Hydrazides via the Borrowing Hydrogen Strategy. Journal of Organic Chemistry, 2021, 86, 6813-6825.	3.2	14
352	Recyclable covalent triazine framework-supported iridium catalyst for the N-methylation of amines with methanol in the presence of carbonate. Journal of Catalysis, 2021, 396, 281-290.	6.2	31
353	Transfer hydroarylation of ketones using directing-group-free, unstrained alcohols. CheM, 2021, 7, 841-842.	11.7	1
354	Cobalt(II)porphyrin-Mediated Selective Synthesis of 1,5-Diketones via an Interrupted-Borrowing Hydrogen Strategy Using Methanol as a C1 Source. Journal of Organic Chemistry, 2021, 86, 6744-6754.	3.2	14
355	Hydrogen borrowing catalysis using $1\hat{A}^{\circ}$ and $2\hat{A}^{\circ}$ alcohols: Investigation and scope leading to \hat{I}^{\pm} and \hat{I}^{2} branched products. Tetrahedron, 2021, 86, 132051.	1.9	9
356	Nano-CuO catalyzed one-pot C–H azidation/azide-alkyne cycloaddition for triazole-substituted 8-aminoquinolines. Tetrahedron, 2021, 85, 132033.	1.9	4
357	Efficient copper-catalyzed synthesis of C3-alkylated indoles from indoles and alcohols. Molecular Catalysis, 2021, 505, 111462.	2.0	13
358	Vanadium- and Chromium-Catalyzed Dehydrogenative Synthesis of Imines from Alcohols and Amines. Organometallics, 2021, 40, 1328-1335.	2.3	12
359	Shuttle arylation by Rh(I) catalyzed reversible carbon–carbon bond activation of unstrained alcohols. CheM, 2021, 7, 1108-1119.	11.7	20
360	Unconventional Gold-Catalyzed One-Pot/Multicomponent Synthesis of Propargylamines Starting from Benzyl Alcohols. Catalysts, 2021, 11, 513.	3.5	6
361	Ironâ€Catalyzed Nâ€Alkylation of Secondary Amines with Alcohols Using Borrowing Hydrogen Strategy. ChemistrySelect, 2021, 6, 4089-4097.	1.5	1
362	Iridium and copper supported on silicon dioxide as chemoselective catalysts for dehydrogenation and borrowing hydrogen reactions. Molecular Catalysis, 2021, 505, 111516.	2.0	13

#	Article	IF	CITATIONS
363	Rhenium(I)-Catalyzed C-Methylation of Ketones, Indoles, and Arylacetonitriles Using Methanol. Journal of Organic Chemistry, 2021, 86, 6943-6951.	3.2	16
364	Pd-Catalyzed Redox Divergent Coupling of Ketones with Terpenols. ACS Catalysis, 2021, 11, 6825-6834.	11.2	7
365	Tandem Acceptorless Dehydrogenative Coupling–Decyanation under Nickel Catalysis. Journal of Organic Chemistry, 2021, 86, 7552-7562.	3.2	10
366	Direct Catalytic N â€Alkylation of αâ€Amino Acid Esters and Amides Using Alcohols with High Retention of Stereochemistry. ChemSusChem, 2021, 14, 2303-2307.	6.8	6
367	Homogeneous manganese-catalyzed hydrogenation and dehydrogenation reactions. CheM, 2021, 7, 1180-1223.	11.7	142
368	Ir(NHC)â€Catalyzed Synthesis of βâ€Alkylated Alcohols via Borrowing Hydrogen Strategy: Influence of Bimetallic Structure. Advanced Synthesis and Catalysis, 2021, 363, 3090-3097.	4.3	13
369	Ru(II)-NHC catalysed N-Alkylation of amines with alcohols under solvent-free conditions. Inorganica Chimica Acta, 2021, 520, 120294.	2.4	11
370	Iridium and bis(4-nitrophenyl)phosphoric acid catalysed amination of diol by hydrogen-borrowing methodology for the synthesis of cyclic amine: Synthesis of clopidogrel. Molecular Catalysis, 2021, 508, 111576.	2.0	5
371	Metalâ€Free Synthesis of Alkenylazaarenes and 2â€Aminoquinolines through Baseâ€Mediated Aerobic Oxidative Dehydrogenation of Benzyl Alcohols. European Journal of Organic Chemistry, 2021, 2021, 2746-2751.	2.4	7
372	Efficient catalytic amination of diols to diamines over Cu/ZnO/γ-Al2O3. Molecular Catalysis, 2021, 508, 111608.	2.0	10
373	Synthesis of 1,8-Dioxo-decahydroacridine Derivatives <i>via</i> Ru-Catalyzed Acceptorless Dehydrogenative Multicomponent Reaction. Journal of Organic Chemistry, 2021, 86, 9733-9743.	3.2	9
374	Combining Organocatalyzed Aldolization and Reductive Amination: An Efficient Reaction Sequence for the Synthesis of Iminosugars. European Journal of Organic Chemistry, 2021, 2021, 3241-3250.	2.4	6
375	Synthesis of α-Alkylated Ketones via Selective Epoxide Opening/Alkylation Reactions with Primary Alcohols. Organic Letters, 2021, 23, 5229-5234.	4.6	13
376	<i>In-Situ</i> -Generated Active Hf-hydride in Zeolites for the Tandem N-Alkylation of Amines with Benzyl Alcohol. ACS Catalysis, 2021, 11, 8049-8061.	11.2	29
377	Manganese-Catalyzed Anti-Markovnikov Hydroamination of Allyl Alcohols via Hydrogen-Borrowing Catalysis. ACS Catalysis, 2021, 11, 7060-7069.	11.2	40
378	Catalytic Acceptorless Dehydrogenation of Amino Alcohols and 2-Hydroxybenzyl Alcohols for Annulation Reaction under Neutral Conditions. Journal of Organic Chemistry, 2021, 86, 8805-8828.	3.2	9
379	Synthesis of Enantioenriched Amines by Iron atalysed Amination of Alcohols Employing at Least One Achiral Substrate. Advanced Synthesis and Catalysis, 2021, 363, 5436-5442.	4.3	7
380	Pentamethylphenyl (Ph*) ketones: Unique building blocks for organic synthesis. Tetrahedron Letters, 2021, 74, 153151.	1.4	8

#	Article	IF	CITATIONS
381	(Cyclopentadienone)iron Complexes: Synthesis, Mechanism and Applications in Organic Synthesis. Chemistry - an Asian Journal, 2021, 16, 1703-1724.	3.3	13
382	Carbon–nitrogen bond formation using modified graphene oxide derivatives decorated with copper complexes and nanoparticles. Applied Organometallic Chemistry, 2021, 35, e6327.	3.5	5
383	Rutheniumâ€Catalyzed Threeâ€Component Alkylation: A Tandem Approach to the Synthesis of Nonsymmetric <i>N,Nâ€</i> Dialkyl Acyl Hydrazides with Alcohols. Advanced Synthesis and Catalysis, 2021, 363, 4009-4017.	4.3	14
384	A Protonâ€Responsive Pyridyl(benzamide)â€Functionalized NHC Ligand on Ir Complex for Alkylation of Ketones and Secondary Alcohols. Chemistry - A European Journal, 2021, 27, 10737-10748.	3.3	27
385	Cascade Reductive Friedel–Crafts Alkylation Catalyzed by Robust Iridium(III) Hydride Complexes Containing a Protic Triazolylidene Ligand. ACS Catalysis, 2021, 11, 8999-9007.	11.2	5
386	Recent Progress in the Synthesis of Heterocycles through Base Metalâ€Catalyzed Acceptorless Dehydrogenative and Borrowing Hydrogen Approach. European Journal of Organic Chemistry, 2021, 2021, 3690-3720.	2.4	37
387	Ru-Catalyzed Selective Catalytic Methylation and Methylenation Reaction Employing Methanol as the C1 Source. Journal of Organic Chemistry, 2021, 86, 10544-10554.	3.2	37
388	Unsymmetrical Pyrazolyâ€Pyridinylâ€Triazole Promoted High Active Copper Composites on Mesoporous Materials and Catalytic Applications. Asian Journal of Organic Chemistry, 2021, 10, 2213-2219.	2.7	2
389	Catalytic Diastereo―and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angewandte Chemie, 2021, 133, 18747-18752.	2.0	18
390	The Deuterated "Magic Methyl―Group: A Guide to Siteâ€Selective Trideuteromethyl Incorporation and Labeling by Using CD ₃ Reagents. Chemistry - A European Journal, 2021, 27, 11751-11772.	3.3	49
391	Catalytic Diastereo―and Enantioconvergent Synthesis of Vicinal Diamines from Diols through Borrowing Hydrogen. Angewandte Chemie - International Edition, 2021, 60, 18599-18604.	13.8	36
392	Selective C-C bonds formation, N-alkylation and benzo[d]imidazoles synthesis by a recyclable zinc composite. Chinese Chemical Letters, 2022, 33, 266-270.	9.0	27
393	Manganese(I) Catalyzed α-Alkenylation of Amides Using Alcohols with Liberation of Hydrogen and Water. Journal of Organic Chemistry, 2021, 86, 9994-10005.	3.2	10
394	Weakly Coordinating, Hydroxyl Directed Ruthenium Catalyzed C–H Alkylation of Ubiquitous Benzyl Alcohols with Maleimides. Organic Letters, 2021, 23, 6267-6271.	4.6	8
395	Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angewandte Chemie - International Edition, 2021, 60, 20689-20694.	13.8	26
396	Convenient and Reusable Manganeseâ€Based Nanocatalyst for Amination of Alcohols. ChemCatChem, 2021, 13, 4334-4341.	3.7	14
397	Tandem Catalytic Indolization/Enantioconvergent Substitution of Alcohols by Borrowing Hydrogen to Access Tricyclic Indoles. Angewandte Chemie, 2021, 133, 20857-20862.	2.0	3
398	Redox-enabled direct stereoconvergent heteroarylation of simple alcohols. Nature Communications, 2021, 12, 5035.	12.8	15

#	Article	IF	CITATIONS
399	Synthesis of 1,3-diketones via catalytic dehydrogenative rearrangement of esters. Chem Catalysis, 2021, 1, 494-496.	6.1	0
400	Firstâ€Row Transitionâ€Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account. Chemical Record, 2021, 21, 3839-3871.	5.8	19
401	Pincer-Nickel Catalyzed Selective Guerbet-Type Reactions. Organometallics, 2021, 40, 2870-2880.	2.3	20
402	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie - International Edition, 2021, 60, 25188-25202.	13.8	70
403	Synthesis of <i>N</i> â€Heterocycles via Oxidantâ€Free Dehydrocyclization of Alcohols Using Heterogeneous Catalysts. Angewandte Chemie, 2021, 133, 25392-25406.	2.0	8
404	Recent Advances in the Syntheses and Catalytic Applications of Homonuclear Ruâ€, Rhâ€, and Irâ€Complexes of C _{NHC} ^C Cyclometalated Ligands. Chemistry - A European Journal, 2021, 27, 16581-16600.	3.3	17
405	Magnetically Recyclable Heterogeneous Cobalt Ferrite Catalyst for the Direct Nâ€Alkylation of (Hetero)aryl Amines with Alcohols. ChemistrySelect, 2021, 6, 8766-8773.	1.5	4
406	Lignin-derived Zn single atom/N-codoped porous carbon for $\hat{I}\pm$ -alkylation of aromatic ketones with alcohols via borrowing hydrogen strategy. Nano Research, 2022, 15, 1874-1881.	10.4	28
407	Switching between borrowing hydrogen and acceptorless dehydrogenative coupling by base transition-metal catalysts. Tetrahedron, 2021, 99, 132451.	1.9	11
408	Rhodium(III)â€Catalyzed Aryl Borrowing Amination of Diaryl Methanols Containing Pyridineâ€Directing Groups. Advanced Synthesis and Catalysis, 2021, 363, 5279-5283.	4.3	10
409	New achievements on C-C bond formation in water catalyzed by metal complexes. Coordination Chemistry Reviews, 2021, 443, 213997.	18.8	18
410	Base Metal atalyzed Câ€Methylation Reactions Using Methanol. Advanced Synthesis and Catalysis, 2021, 363, 5028-5046.	4.3	30
411	Selective Câ€alkylation Between Alcohols Catalyzed by Nâ€Heterocyclic Carbene Molybdenum. Chemistry - an Asian Journal, 2021, 16, 3124-3128.	3.3	9
412	Effect of the ancillary ligand in N-heterocyclic carbene iridium(III) catalyzed N-alkylation of amines with alcohols. Polyhedron, 2021, 205, 115289.	2.2	8
413	New Borrowing Hydrogen Mechanism for Redox-Active Metals. ACS Catalysis, 2021, 11, 11906-11920.	11.2	11
414	Ru-MACHO-Catalyzed Direct Inter/Intramolecular Macrocyclization of Alcohols and Ketones. Organic Letters, 2021, 23, 7386-7390.	4.6	5
415	Recent advances in homogeneous base-metal-catalyzed transfer hydrogenation reactions. Tetrahedron, 2021, 98, 132435.	1.9	32
416	Cp*Ir complex bearing a flexible bridging and functional 2,2′-methylenebibenzimidazole ligand as an auto-tandem catalyst for the synthesis of N-methyl tertiary amines from imines via transfer hydrogenation/N-methylation with methanol. Journal of Catalysis, 2021, 402, 325-3 <u>34.</u>	6.2	23

ARTICLE IF CITATIONS Efficient photocatalytic H2 evolution and α-methylation of ketones from copper complex modified 417 12.7 18 polymeric carbon nitride. Chemical Engineering Journal, 2022, 427, 132042. Solid catalysts for environmentally benign synthesis., 2022, , 23-80. Nickel-catalyzed C3-alkylation of indoles with alcohols <i>via</i> a borrowing hydrogen strategy. 419 2.8 20 New Journal of Chemistry, 2021, 45, 10057-10062. Unveiling the catalytic nature of palladium-N-heterocyclic carbene catalysts in the î±-alkylation of 420 ketones with primáry alcohols. Dalton Transactions, 2021, 50, 10896-10908. Biorenewable carbon-supported Ru catalyst for <i>N</i>-alkylation of amines with alcohols and 421 2.8 13 selective hydrogenation of nitroarenes. New Journal of Chemistry, 2021, 45, 14687-14694. Cross Î²-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Organic and Biomolecular Chemistry, 2021, 19, 1950-1954. 2.8 The synthesis and structure of an amazing and stable carbonized material Cu-PC@OFM and its 423 catalytic applications in water with mechanism explorations. New Journal of Chemistry, 2021, 45, 2.8 15 9614-9620. Manganese catalyzed C-alkylation of methyl <i>N</i>-heteroarenes with primary alcohols. Chemical 424 4.1 Communications, 2021, 57, 3026-3029. <i>N</i>-Alkylation of Amines with Alcohols Catalyzed by Manganese(II) Chloride or 425 3.2 23 Bromopentacarbonylmanganese(I). Journal of Organic Chemistry, 2021, 86, 2254-2263. Solvent-Free N-Alkylation and Dehydrogenative Coupling Catalyzed by a Highly Active Pincer-Nickel 2.3 Complex. Organometallics, 2020, 39, 2162-2176. Diastereo- and Enantioselective Construction of Spirocycles by Nickel-Catalyzed Cascade Borrowing 427 13.7 39 Hydrogen Cyclization. Journal of the American Chemical Society, 2021, 143, 53-59. Dynamic Kinetic Cross-Electrophile Arylation of Benzyl Alcohols by Nickel Catalysis. Journal of the American Chemical Society, 2021, 143, 513-523. A multifaceted role of a mobile bismuth promoter in alcohol amination over cobalt catalysts. Green 429 9.0 19 Chemistry, 2020, 22, 4270-4278. Ligand-redox assisted nickel catalysis toward stereoselective synthesis of $(\langle i \rangle n \langle /i \rangle + 1)$ -membered cycloalkanes from $1,\langle i \rangle n \langle /i \rangle$ -diols with methyl ketones. Chemical Science, 2021, 12, 14217-14223. 7.4 Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade 431 2.0 2 Mediated by a Single Catalyst. Angewandte Chemie, 0, , . New Access Routes to Privileged and Chiral Ligands for Transitionâ€Metal Catalyzed Hydrogen Autotransfer (Borrowing Hydrogen), Dehydrogenative Condensation, and Alkene Isomerization Reactions. Helvetica Chimica Acta, 2021, 104, e2100175. Simultaneous Kinetic Resolution and Asymmetric Induction within a Borrowing Hydrogen Cascade 433 13.8 17 Mediated by a Single Catalyst. Angewandte Chemie - International Edition, 2022, 61, . Palladiumâ€Catalyzed Synthesis of αâ€Methyl Ketones from Allylic Alcohols and Methanol. Advanced 434 4.3 Synthesis and Catalysis, 2022, 364, 413-419.

#	Article	IF	CITATIONS
435	Manganese(I) catalyzed cross-coupling of secondary allylic alcohols and primary alcohols. Tetrahedron, 2021, 101, 132472.	1.9	5
436	pH-Mediated Selective Synthesis of N-Allylic Alkylation or N-Alkylation Amines with Allylic Alcohols via an Iridium Catalyst in Water. Journal of Organic Chemistry, 2021, 86, 15509-15521.	3.2	16
437	Poisoning effect of N-containing compounds on performance of Raney® nickel in transfer hydrogenation. Catalysis Communications, 2021, 161, 106361.	3.3	1
438	Pd(OAc)2/Cul-Catalyzed Tandem Reaction for Synthesis of Polysubstituted 3-Chalcogenylindoles. Chinese Journal of Organic Chemistry, 2019, 39, 3215.	1.3	0
439	Inter- and Intramolecular Cross-Dehydrogenative Coupling of Alcohols Through the Hydrogen-Borrowing Approach. , 2019, , 231-277.		0
440	Selective N-formylation of amines catalysed by Ag NPs festooned over amine functionalized SBA-15 utilizing CO2 as C1 source. Molecular Catalysis, 2021, 516, 111978.	2.0	11
441	Green and chemo selective amine methylation using methanol by an organometallic ruthenium complex. Journal of Organometallic Chemistry, 2022, 957, 122155.	1.8	7
443	Design of chiral ferrocenylphosphine-spiro phosphonamidite ligands for ruthenium-catalyzed highly enantioselective coupling of 1,2-diols with amines. Organic Chemistry Frontiers, 2021, 8, 6830-6836.	4.5	13
444	Ruâ€Catalyzed Switchable <i>N</i> â€Hydroxyethylation and <i>N</i> â€Acetonylation with Crude Glycerol. ChemSusChem, 2020, 13, 2007-2011.	6.8	6
445	Borrowing Hydrogen and Acceptorless Dehydrogenative Coupling in the Multicomponent Synthesis of Nâ€Heterocycles: A Comparison between Base and Noble Metal Catalysis. European Journal of Organic Chemistry, 2021, 2021, 6206-6223.	2.4	33
446	2-Pyridinylmethyl borrowing: base-promoted <i>C</i> -alkylation of (pyridin-2-yl)-methyl alcohols with ketones <i>via</i> cleavage of unstrained C(sp ³)–C(sp ³) bonds. Organic Chemistry Frontiers, 2022, 9, 299-304.	4.5	5
447	Dual-Responsive Bilayer Reactor Capable of Non-Tandem/Tandem Adjustable Catalytic Ability. Journal of Inorganic and Organometallic Polymers and Materials, 0, , 1.	3.7	0
448	Cobalt Catalyzed Nâ€Methylation of Amides using Methanol. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	6
449	Manganese(I) Catalyzed Alkenylation of Phosphine Oxides Using Alcohols with Liberation of Hydrogen and Water. Journal of Organic Chemistry, 2021, 86, 17848-17855.	3.2	6
450	BTPâ€Rh@g ₃ N ₄ as an efficient recyclable catalyst for dehydrogenation and borrowing hydrogen reactions. Applied Organometallic Chemistry, 2022, 36, e6504.	3.5	3
451	Coordinatively Unsaturated Hf-MOF-808 Prepared via Hydrothermal Synthesis as a Bifunctional Catalyst for the Tandem <i>N</i> -Alkylation of Amines with Benzyl Alcohol. ACS Sustainable Chemistry and Engineering, 2021, 9, 15793-15806.	6.7	23
452	Ruthenium Catalyzed Selective Acceptorless Dehydrogenation of Allylic Alcohols to <i>α</i> , <i>β</i> -Unsaturated Carbonyls. Chinese Journal of Organic Chemistry, 2021, 41, 4361.	1.3	0
453	Direct synthesis of ring-fused quinolines and pyridines catalyzed by <i>NN</i> _{<i>H</i>} <i>Y</i> -ligated manganese complexes (Y = NR ₂ or SR). Catalysis Science and Technology, 2021, 11, 8026-8036.	4.1	9

# 454	ARTICLE <i>N</i> -Alkylation of organonitrogen compounds catalyzed by methylene-linked bis-NHC half-sandwich ruthenium complexes. Organic and Biomolecular Chemistry, 2022, 20, 831-839.	IF 2.8	CITATIONS
455	Transition metal-catalyzed dehydrogenation of methanol and related transformations. , 2022, , 123-161.		5
456	Nickel and Palladium Catalysis: Stronger Demand than Ever. ACS Catalysis, 2022, 12, 1180-1200.	11.2	77
457	An outlook on the applications of pincer-metal complexes in catalytic dehydrogenation chemistry. , 2022, , 191-220.		1
458	Horizons in Asymmetric Organocatalysis: En Route to the Sustainability and New Applications. Catalysts, 2022, 12, 101.	3.5	10
459	Electronically tuneable orthometalated Ru ^{II} –NHC complexes as efficient catalysts for C–C and C–N bond formations <i>via</i> borrowing hydrogen strategy. Catalysis Science and Technology, 2022, 12, 67-74.	4.1	21
461	A Palladium Complex Dispersed in Ionic Liquid as an Efficient Catalytic Combination for the Synthesis of Benzazoles. Topics in Catalysis, 0, , 1.	2.8	5
462	Reusable Co-nanoparticles for general and selective <i>N</i> -alkylation of amines and ammonia with alcohols. Chemical Science, 2021, 13, 111-117.	7.4	35
463	Application of pincer metal complexes in catalytic transformations. , 2022, , 1-68.		0
464	Development of Greener Catalytic Synthetic Methods of Nitrogen-Containing Compounds Using <i>N</i> -Unprotected Ketimines. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2022, 80, 2-13.	0.1	0
465	Boosting Amination of 1â€Octanol to 1â€Octylamine via Metalâ€Metal Oxide Interactions in Ni _{<i>x</i>} Fe ₁ /Al ₂ O ₃ Catalysts. ChemCatChem, 2022, 14, .	3.7	3
466	Ru ^{II} -Complexes of heteroditopic chelating NHC ligands: effective catalysts for the β-alkylation of secondary alcohols and the synthesis of 2-alkylaminoquinoline derivatives following the dehydrogenative protocol. Organic and Biomolecular Chemistry, 2022, 20, 1945-1951.	2.8	9
468	Heterogeneously catalyzed direct cross-coupling of secondary alcohols to β-disubstituted ketones by Cu/γ-Al2O3. Inorganica Chimica Acta, 2022, 534, 120830.	2.4	1
469	Cr and Co-modified Cu/Al ₂ O ₃ as an efficient catalyst for the continuous synthesis of bis(2-dimethylaminoethyl)ether. Catalysis Science and Technology, 2022, 12, 2084-2096.	4.1	2
470	Ligand effect on the stability, reactivity, and acidity of imidazolium systems. Journal of Physical Organic Chemistry, 2023, 36, .	1.9	3
471	Catalytic self-transfer hydrogenolysis of lignin with endogenous hydrogen: road to the carbon-neutral future. Chemical Society Reviews, 2022, 51, 1608-1628.	38.1	89
472	Iridium supported on porous polypyridine-oxadiazole as high-activity and recyclable catalyst for the borrowing hydrogen reaction. Green Chemistry, 2022, 24, 2602-2612.	9.0	34
473	Niobium Oxide Supported on Cubic Spinel Cobalt Oxide as an Efficient Heterogeneous Catalyst for the Synthesis of Imines via Dehydrogenative Coupling of Amines and Alcohols. Catalysis Letters, 2022, 152, 3733-3746.	2.6	2

#	Article	IF	CITATIONS
474	General Strategy for the Synthesis of Rare Sugars via Ru(II)-Catalyzed and Boron-Mediated Selective Epimerization of 1,2- <i>trans</i> -Diols to 1,2- <i>cis</i> -Diols. Journal of the American Chemical Society, 2022, 144, 3727-3736.	13.7	11
475	Tunable synthesis of furfurylamines or β-amino alcohols via Ru-catalyzed N–H functionalization using biomass-derived polyols. Green Synthesis and Catalysis, 2022, 3, 259-264.	6.8	7
476	Single Pd–S <i>_x</i> Sites <i>In Situ</i> Coordinated on CdS Surface as Efficient Hydrogen Autotransfer Shuttles for Highly Selective Visible-Light-Driven C–N Coupling. ACS Catalysis, 2022, 12, 4481-4490.	11.2	28
477	Synthesis of α-Hydroxy Acids via Dehydrogenative Cross-Coupling of a Sustainable C ₂ Chemical (Ethylene Glycol) with Alcohols. Journal of Organic Chemistry, 2022, 87, 4631-4639.	3.2	7
478	<i>N</i> â€Alkylation of αâ€Amino Esters and Amides through Hydrogen Borrowing. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
479	A Protic Mn(I) Complex Based on a Naphthyridine- <i>N</i> -oxide Scaffold: Protonation/Deprotonation Studies and Catalytic Applications for Alkylation of Ketones. Organometallics, 2022, 41, 1836-1846.	2.3	7
480	Alkynyl Borrowing: Silver-Catalyzed Amination of Secondary Propargylic Alcohols via C(sp ³)–C(sp) Bond Cleavage. Journal of Organic Chemistry, 2022, 87, 5395-5403.	3.2	3
481	Reductive Alkylation of Azides and Nitroarenes with Alcohols: A Selective Route to Mono- and Dialkylated Amines. Journal of Organic Chemistry, 2022, 87, 628-643.	3.2	6
482	Transaminase-Mediated Amine Borrowing <i>via</i> Shuttle Biocatalysis. Organic Letters, 2022, 24, 74-79.	4.6	2
483	Synthesis and Catalytic Properties of a Carbometalated Half-Sandwich Ru(II) Complex Bearing a Rigid Polyaromatic Tether. Organometallics, 2022, 41, 76-82.	2.3	3
485	Asymmetric Ruthenium atalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
486	Asymmetric Ruthenium atalyzed Hydroalkylation of Racemic Allylic Alcohols for the Synthesis of Chiral Amino Acid Derivatives. Angewandte Chemie, 2022, 134, .	2.0	2
487	Ligand-assisted nickel catalysis enabling sp ³ C–H alkylation of 9 <i>H</i> -fluorene with alcohols. Catalysis Science and Technology, 2022, 12, 4211-4216.	4.1	10
488	Recent Advances in the Catalytic N-Methylation and N-Trideuteromethylation Reactions Using Methanol and Deuterated Methanol. SSRN Electronic Journal, 0, , .	0.4	2
489	From Hydrogen Autotransfer Process to Deuterium Autotransfer Process: The N-Trideuteromethylation of Amines with Deuterated Methanol to Trideuteromethylated Amines Catalyzed by a Cp*Ir Complex Bearing a Flexible Bridging and Functional Ligand. SSRN Electronic Journal, 0, , .	0.4	0
490	Total Synthesis of ( + )-Swainsonine, (–)- Swainsonine, ( + )-8- <i>epi</i> - Swainso Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination Sequence . Natural Product Communications, 2022, 17, 1934578X2210916.	onine and 0.5	( + 0
491	Employing Ammonia for Diverse Amination Reactions: Recent Developments of Abundantly Available and Challenging Nitrogen Sources. European Journal of Organic Chemistry, 2022, 2022, .	2.4	4
492	From hydrogen autotransfer process to deuterium autotransfer process: The N-trideuteromethylation of amines with deuterated methanol to trideuteromethylated amines catalyzed by a Cp*Ir complex bearing a flexible bridging and functional ligand. Journal of Catalysis, 2022, 410, 333-338.	6.2	20

#	Article	IF	CITATIONS
493	Phenalenyl Radical: Smallest Polycyclic Odd Alternant Hydrocarbon Present in the Graphene Sheet. Chemical Reviews, 2022, 122, 11369-11431.	47.7	41
494	Manganese-catalyzed hydrogenation, dehydrogenation, and hydroelementation reactions. Chemical Society Reviews, 2022, 51, 4386-4464.	38.1	90
495	Water-soluble diphosphine ligands for rhodium-catalyzed branch-selective hydroaminomethylation of vinyl arenes with anilines in water. Green Chemistry, 2022, 24, 4420-4424.	9.0	9
496	A heteroditopic NHC and phosphine ligand supported ruthenium(<scp>ii</scp>)-complex: an effective catalyst for the <i>N</i> -alkylation of amides using alcohols. Catalysis Science and Technology, 2022, 12, 4050-4056.	4.1	8
497	Valorization of Ethanol: Ruthenium-Catalyzed Guerbet and Sequential Functionalization Processes. ACS Catalysis, 2022, 12, 6729-6736.	11.2	14
498	Wellâ€Defined Niâ^'SNS Complex Catalysed Borrowing Hydrogenative αâ€Alkylation of Ketones and Dehydrogenative Synthesis of Quinolines. Advanced Synthesis and Catalysis, 2022, 364, 2429-2437.	4.3	19
499	Synthesis of 3,4â€Dihydroâ€2Hâ€pyrroles from Ketones, Aldehydes, and Nitro Alkanes via Hydrogenative Cyclization. Chemistry - A European Journal, 0, , .	3.3	3
500	Monoâ€Nâ€Alkylation of Sulfonamides with Alcohols Catalyzed by Iridium Nâ€Heterocyclic Carbeneâ€Phosphine Complexes. Asian Journal of Organic Chemistry, 0, , .	2.7	2
501	<i>N</i> -Methylation of Amines with Methanol Catalyzed by Iridium(I) Complexes Bearing an N,O-Functionalized NHC Ligand. Organometallics, 2022, 41, 1364-1380.	2.3	5
502	Heterogenized manganese catalyst for C-, and N-alkylation of ketones and amines with alcohols by pyrolysis of molecularly defined complexes. Molecular Catalysis, 2022, 526, 112390.	2.0	2
503	Borrowing Hydrogen Amination Reactions: A Complex Analysis of Trends and Correlations of the Various Reaction Parameters. ACS Catalysis, 2022, 12, 7142-7198.	11.2	42
504	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized ruthenium nanoparticle catalyst for β-alkylated dimer alcohol formation <i>via</i> Guerbet reaction of primary alcohols. RSC Advances, 2022, 12, 16599-16603.	3.6	2
505	Guerbet-type β-alkylation of secondary alcohols catalyzed by chromium chloride and its corresponding NNN pincer complex. Catalysis Science and Technology, 2022, 12, 4753-4762.	4.1	22
506	Direct activation of alcohols <i>via</i> perrhenate ester formation for an intramolecular dehydrative Friedel–Crafts reaction. Organic Chemistry Frontiers, 2022, 9, 4277-4286.	4.5	10
507	Ligand-Controlled Ruthenium-Catalyzed Borrowing-Hydrogen and Interrupted-Borrowing-Hydrogen Methodologies: Functionalization of Ketones Using Methanol as a C1 Source. Journal of Organic Chemistry, 2023, 88, 5135-5146.	3.2	3
508	Dehydrogenative Intramolecular Macrolactonization of Dihydroxy Compounds Using Ru-MACHO Catalyst. Organic Letters, 2022, 24, 4394-4398.	4.6	5
509	Acridine-Based SNS–Ruthenium Pincer Complex-Catalyzed Borrowing Hydrogen-Mediated C–C Alkylation Reaction: Application to the Guerbet Reaction. Synlett, 2023, 34, 622-628.	1.8	4
510	Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. Journal of Catalysis, 2022, 413, 365-373.	6.2	10

#	Article	IF	Citations
511	Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. New Journal of Chemistry, 2022, 46, 15929-15936.	2.8	5
512	Tandem catalytic approaches for lignin depolymerization: a review. Biomass Conversion and Biorefinery, 2024, 14, 6143-6154.	4.6	6
513	Stereodivergent Construction of 1,4â€Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angewandte Chemie, 2022, 134, .	2.0	8
514	Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Organic Letters, 2022, 24, 4804-4809.	4.6	2
515	Stereodivergent Construction of 1,4â€Nonadjacent Stereocenters via Hydroalkylation of Racemic Allylic Alcohols Enabled by Copper/Ruthenium Relay Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	41
516	Half-Sandwich Iridium Complexes with Hydrazone Ligands: Synthesis and Catalytic Activity in <i>N</i> -Alkylation of Anilines or Nitroarenes with Alcohols via Hydrogen Autotransfer. Inorganic Chemistry, 2022, 61, 10310-10320.	4.0	11
517	Nickelâ€Catalysis Enabling αâ€Alkylation of Ketones by Secondary Alcohols. Advanced Synthesis and Catalysis, 2022, 364, 2815-2821.	4.3	10
518	Recent Advances for Alkylation of Ketones and Secondary Alcohols Using Alcohols in Homogeneous Catalysis. Advanced Synthesis and Catalysis, 2022, 364, 3100-3121.	4.3	15
519	Oneâ€Pot Catalytic Conversion of Ligninâ€Derivable Guaiacols and Syringols to Cyclohexylamines. ChemSusChem, 2022, 15, .	6.8	8
520	Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with a Spirocyclic NHC Ir ^{III} Pincer Complex. Angewandte Chemie, 2022, 134, .	2.0	1
521	Blue-Light-Induced Iron-Catalyzed α-Alkylation of Ketones. Organic Letters, 2022, 24, 5584-5589.	4.6	13
522	Iron-catalyzed reductive cyclization of nitroarenes: Synthesis of aza-heterocycles and DFT calculations. Chinese Chemical Letters, 2023, 34, 107758.	9.0	6
523	A Short Synthesis of <i>Ergot</i> Alkaloids and Evaluation of the 5-HT _{1/2} Receptor Selectivity of Lysergols and Isolysergols. Organic Letters, 2022, 24, 7255-7259.	4.6	12
524	[1,5]-Hydride Shift Triggered N-Dealkylative Cyclization into 2-Oxo-1,2,3,4-tetrahydroquinoline-3-carboxylates via Boronate Complexes. Molecules, 2022, 27, 5270.	3.8	0
525	Facile Benzylic Alkylation of Arenes with Alcohols by Catalysis with Spirocyclic NHC Ir ^{III} Pincer Complex. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
526	Feâ€Catalyzed Amidation of Allylic Alcohols by Borrowing Hydrogen Catalysis. Chemistry - A European Journal, 2022, 28, .	3.3	1
527	Iron-Catalyzed α-Methylation of Ketones Using Methanol as the C1 Source under Photoirradiation. Organic Letters, 2022, 24, 6219-6223.	4.6	21
528	Borrowing hydrogen amination: Whether a catalyst is required?. Journal of Catalysis, 2022, 413, 1070-1076.	6.2	8

#	Article	IF	CITATIONS
529	Synthesis of ruthenium complexes and their catalytic applications: A review. Arabian Journal of Chemistry, 2022, 15, 104165.	4.9	21
530	Heterogeneous Low-Valent Mn Catalysts for α-Alkylation of Ketones with Alcohols through Borrowing Hydrogen Methodology. ACS Catalysis, 2022, 12, 11767-11775.	11.2	11
531	High Active Palladium Composite and Catalytic Applications on the Synthesis of Substituted Aminopyridine Derivatives Through Borrowing Hydrogen Strategy. Catalysis Letters, 2023, 153, 2378-2387.	2.6	3
532	A reusable MOF supported single-site nickel-catalyzed direct N-alkylation of anilines with alcohols. Tetrahedron, 2022, 124, 132993.	1.9	0
533	Cobalt nanoparticles supported on microporous nitrogen-doped carbon for an efficient catalytic transfer hydrogenation reaction between nitroarenes and N-heterocycles. Catalysis Science and Technology, 2022, 12, 5549-5558.	4.1	3
534	A binuclear Cu(<scp>ii</scp>) complex as an efficient photocatalyst for <i>N</i> -alkylation of aromatic amines. Dalton Transactions, 2022, 51, 13288-13300.	3.3	3
535	Recent Advances in C—X Bond Metathesis Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 2376.	1.3	2
536	Copper-catalyzed transfer methylenation <i>via</i> C(sp ³)–C(sp ³) bond cleavage of alcohols. Organic Chemistry Frontiers, 2022, 9, 6547-6555.	4.5	2
537	Progressive study on ruthenium catalysis for de(hydrogenative) alkylation and alkenylation using alcohols as a sustainable source. Organic and Biomolecular Chemistry, 2022, 20, 7998-8030.	2.8	11
538	Stable and reusable Ni-based nanoparticles for general and selective hydrogenation of nitriles to amines. Chemical Science, 2022, 13, 10914-10922.	7.4	10
539	Primary amines from lignocellulose by direct amination of alcohol intermediates, catalyzed by RANEY® Ni. Catalysis Science and Technology, 2022, 12, 5908-5916.	4.1	8
540	Dimethylacetamide-stabilized ruthenium nanoparticles for catalysing α-alkylations of amides with alcohols. Chemical Communications, 2022, 58, 11851-11854.	4.1	2
541	Recent advances in <i>C</i> / <i>N</i> -alkylation with alcohols through hydride transfer strategies. Organic and Biomolecular Chemistry, 2022, 20, 7713-7745.	2.8	10
542	Engineering of Bi–S ₃ and sulfur-vacancy dual sites for efficient photocatalytic <i>N</i> -alkylation of amines. Journal of Materials Chemistry A, 2022, 10, 21349-21355.	10.3	5
543	Iron-catalysed quinoline synthesis <i>via</i> acceptorless dehydrogenative coupling. Organic Chemistry Frontiers, 2022, 9, 6573-6578.	4.5	7
544	Nickel-Catalyzed Sustainable and Selective Alkylation of Alcohols to α-Alkylated Ketones via Borrowing Hydrogen Approach. Synlett, 2023, 34, 635-644.	1.8	2
545	A Diamineâ€Oriented Biorefinery Concept Using Ammonia and Raney Ni as a Multifaceted Catalyst. Chemie-Ingenieur-Technik, 2022, 94, 1808-1817.	0.8	2
546	Novel Recyclable Catalysts for Selective Synthesis of Substituted Perimidines and Aminopyrimidines. Catalysis Letters, 2023, 153, 2388-2397.	2.6	3

#	Article	IF	CITATIONS
548	Bidentate Ru(II)-NC Complex as a Catalyst for Semihydrogenation of Azoarenes to Hydrazoarenes with Ethanol. Organic Letters, 2022, 24, 7339-7343.	4.6	9
550	One pot tandem dehydrogenative cross-coupling of primary and secondary alcohols by ruthenium amido-functionalized 1,2,4-triazole derived N-heterocyclic carbene complexes. RSC Advances, 2022, 12, 28961-28984.	3.6	6
551	Transition Metal-Free Selective Aerobic <i>C-</i> Alkylation of Methyl <i>N</i> -Heteroarenes with Alcohols. Chinese Journal of Organic Chemistry, 2022, 42, 2914.	1.3	1
552	Sustainable Amination of Bio-Based Alcohols by Hydrogen Borrowing Catalysis. Catalysts, 2022, 12, 1306.	3.5	11
553	One-Pot Sequential Synthesis of 3,3′- or 2,3′-Bis(indolyl)methanes by Using 1,3-Dithiane as the Methylene Source. Journal of Organic Chemistry, 2022, 87, 14930-14939.	3.2	3
554	Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. , 2022, 1, 9140010.		25
555	Recent advances in the catalytic N-methylation and N-trideuteromethylation reactions using methanol and deuterated methanol. Coordination Chemistry Reviews, 2023, 474, 214827.	18.8	21
556	Homogeneous catalysis with polyhydride complexes. Chemical Society Reviews, 2022, 51, 9717-9758.	38.1	9
557	Ruthenium-catalyzed divergent deaminative and denitrative C–N cleavages: facile access to quinoxalines. Organic Chemistry Frontiers, 2022, 10, 22-29.	4.5	8
558	The preparation of N-containing functionalized porous organic polymers for selective synthesis of C3-alkylated indoles and triazine derivatives. New Journal of Chemistry, 2022, 46, 22797-22803.	2.8	4
559	Ruthenium-catalysed α-prenylation of ketones using prenol. Organic and Biomolecular Chemistry, 2023, 21, 273-278.	2.8	6
560	Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species. Chinese Journal of Organic Chemistry, 2022, 42, 3280.	1.3	0
561	Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angewandte Chemie, 2023, 135, .	2.0	0
562	Economical Access to Diverse Enantiopure Tetrahydropyridines and Piperidines Enabled by Catalytic Borrowing Hydrogen. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
563	Divergent upgrading pathways of sulfones with primary alcohols: nickel-catalyzed α-alkylation under N ₂ and metal-free promoted β-olefination in open air. Chemical Communications, 2023, 59, 615-618.	4.1	3
564	Efficient β-alkylation of secondary alcohols to α-substituted ketones catalyzed by functionalized Ir complexes <i>via</i> borrowing hydrogen in water. Organic Chemistry Frontiers, 2023, 10, 355-362.	4.5	5
565	High yield production of 1,4-cyclohexanediol and 1,4-cyclohexanediamine from high molecular-weight lignin oil. Green Chemistry, 2023, 25, 211-220.	9.0	6
566	Nickel-catalyzed alkylation of ketones and nitriles with primary alcohols. Organic and Biomolecular Chemistry, 2022, 20, 9753-9762.	2.8	5

#	Article	IF	CITATIONS
569	Ruthenium-Catalyzed Regioselective Synthesis of C3-Alkylated Indoles Following Transfer Hydrogenation or Borrowing Hydrogen Strategy. Synthesis, 2023, 55, 1460-1466.	2.3	5
570	Synthesis and odor characteristics of <scp> <i>N</i> â€substituted </scp> pyrrolyl ketones derived from <scp> <i>N</i> â€substituted </scp> acetylpyrroles and alcohols. Journal of Heterocyclic Chemistry, 0, , .	2.6	0
571	Ruthenium-Catalyzed Reductive Coupling of Epoxides with Primary Alcohols via Hydrogen Transfer Catalysis. Journal of Organic Chemistry, 2023, 88, 310-318.	3.2	1
572	Autotandem Catalyst: From Acylhydrazones to <i>N</i> ′, <i>N</i> ′-Methylaliphatic Acylhydrazides via Transfer Hydrogenation/ <i>N</i> -Methylation with Methanol Catalyzed by a Cp* Iridium Complex Bearing a Functional Ligand. Organic Letters, 2022, 24, 9081-9085.	4.6	9
573	N-Heterocyclic Carbene-Supported Nickel-Catalyzed Selective (Un)Symmetrical N-Alkylation of Aromatic Diamines with Alcohols. Journal of Organic Chemistry, 2023, 88, 1135-1146.	3.2	5
574	Ligandâ€Promoted [Pd]â€Catalyzed αâ€Alkylation of Ketones through a Borrowingâ€Hydrogen Approach. ChemistryOpen, 2023, 12, .	1.9	1
575	A strategic approach for Csp ³ –H functionalization of 9 <i>H</i> -fluorene: an acceptorless dehydrogenation and borrowing hydrogen approach. Catalysis Science and Technology, 2023, 13, 611-617.	4.1	3
576	Uncovering Structure–Activity Relationships in Pt/CeO ₂ Catalysts for Hydrogen-Borrowing Amination. ACS Catalysis, 2023, 13, 1207-1220.	11.2	9
577	The game between molecular photoredox catalysis and hydrogen: The golden age of hydrogen budge. Molecular Catalysis, 2023, 537, 112921.	2.0	0
578	Hydrogenation of C=N bonds on TiO2 surface: The effect of the Cu2O/TiO2 p-n heterojunction photocatalyst. Surfaces and Interfaces, 2023, 37, 102625.	3.0	1
579	Zn(II)-Catalyzed Selective <i>N</i> -Alkylation of Amines with Alcohols Using Redox Noninnocent Azo-Aromatic Ligand as Electron and Hydrogen Reservoir. Journal of Organic Chemistry, 2023, 88, 771-787.	3.2	11
580	Nickel Catalyzed Alkylation of Oxindoles with Alkyl Alcohols. ChemCatChem, 2023, 15, .	3.7	5
581	Reductive Deoxygenative Functionalization of Alcohols by <scp>Firstâ€Row</scp> Transition Metal Catalysis. Chinese Journal of Chemistry, 2023, 41, 1637-1652.	4.9	16
582	Modular Access to Quaternary α-Hydroxyl Acetates by Catalytic Cross-Coupling of Alcohols. ACS Catalysis, 2023, 13, 2061-2068.	11.2	2
583	Ni-catalyzed arylation of alkynes with organoboronic acids and aldehydes to access stereodefined allylic alcohols. Chemical Science, 2023, 14, 2040-2045.	7.4	3
584	1,4- <scp>d</scp> -Sorbitan: A Promising Biobased-Platform for the Synthesis of Chiral Amines. Journal of Organic Chemistry, 2023, 88, 2642-2647.	3.2	1
585	Expedient tandem dehydrogenative alkylation and cyclization reactions under Mn(<scp>i</scp>)-catalysis. Catalysis Science and Technology, 2023, 13, 2763-2771.	4.1	1
586	Visible light mediated Iron-Catalyzed synthesis of C-3 alkylated Indoles, bisindolylmethanes and flavanones using alcohols. Tetrahedron Letters, 2023, 119, 154428.	1.4	3

#	Article	IF	CITATIONS
587	metaâ \in Selective Câ $^{\circ}$ H Functionalization of Pyridines. Angewandte Chemie, 0, , .	2.0	0
588	Valorization of terpenols under iron catalysis. Journal of Catalysis, 2023, 421, 309-318.	6.2	1
589	Identifying active sites at the Cu/Ce interface for hydrogen borrowing reactions. Journal of Catalysis, 2023, 418, 163-177.	6.2	9
590	Ru(II)â€pâ€cymene complexes containing hydrazone ligands catalyzed αâ€alkylation of ketones and oneâ€pot synthesis of bioactive quinolines and 3â€(quinolin-2-yl)â€2Hâ€chromenâ€2â€one. Journal of Organometallic Chemistry, 2023, 987-988, 122622.	1.8	0
591	<i>N</i> -Alkylation and <i>N</i> -Methylation of Amines with Alcohols Catalyzed by Nitrile-Substituted NHC–Ir(III) and NHC–Ru(II) Complexes. ACS Omega, 2023, 8, 5332-5348.	3.5	6
592	Pyridinic-nitrogen on ordered mesoporous carbon: A versatile NAD(P)H mimic for borrowing-hydrogen reactions. Journal of Catalysis, 2023, 419, 80-98.	6.2	5
593	A new classification for the ever-expanding mechanistic landscape of catalyzed hydrogenations, dehydrogenations and transfer hydrogenations. Advances in Organometallic Chemistry, 2023, , 87-133.	1.0	2
594	Iridium-Catalyzed Enantioconvergent Borrowing Hydrogen Annulation of Racemic 1,4-Diols with Amines. Journal of the American Chemical Society, 2023, 145, 5007-5016.	13.7	20
595	Manganese-catalyzed cross-coupling of primary alcohols with biomass-derived ethanol for upgrading to linear alcohols under solvent-free conditions. Environmental Chemistry Letters, 2023, 21, 1271-1279.	16.2	3
596	The Preparation of Zr-containing Coordination Polymer as an Efficient Catalyst for Alkylation of Amines and Alcohols. Letters in Organic Chemistry, 2023, 20, .	0.5	0
597	Copper-Catalyzed Aza-Benzyl Transfer Michael Addition via C–C Bond Cleavage. Journal of Organic Chemistry, 2023, 88, 3523-3531.	3.2	0
598	Manganeseâ€Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
599	Manganeseâ€Catalyzed Chemoselective Coupling of Secondary Alcohols, Primary Alcohols and Methanol. Angewandte Chemie, 2023, 135, .	2.0	0
600	Irâ€Catalyzed αâ€Alkylation of Methyl Ketones with Primary Carbohydrate Alcohols. Advanced Synthesis and Catalysis, 2023, 365, 971-975.	4.3	2
601	Intimate ruthenium–platinum nanoalloys supported on carbon catalyze the hydrogenation and one-pot hydrogenation-coupling reaction of oxidized amino derivatives. Catalysis Science and Technology, 2023, 13, 2508-2516.	4.1	1
602	Tertiary Amines from RCF Lignin Mono- and Dimers: Catalytic N-Functionalized Antioxidants from Wood. ACS Sustainable Chemistry and Engineering, 2023, 11, 4776-4788.	6.7	7
603	Direct access to chiral aliphatic amines by catalytic enantioconvergent redox-neutral amination of alcohols. , 2023, 2, 572-580.		5
604	Polystyrene Supported Pyrazole-based Palladium Catalysts/Precatalysts for Acceptorless Dehydrogenative Coupling of Alcohols in Water. Catalysis Letters, 2024, 154, 737-748.	2.6	1

#	Article	IF	CITATIONS
605	Chemodivergent coupling of azoarenes with benzyl alcohols <i>via</i> a borrowing hydrogen strategy using a well-defined nickel catalyst. Catalysis Science and Technology, 2023, 13, 2705-2713.	4.1	2
606	Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chemical Reviews, 2023, 123, 4855-4933.	47.7	62
607	TiO ₂ (P25) nanoparticle catalyzed C-alkylation and quinoline synthesis <i>via</i> the borrowing hydrogen method. New Journal of Chemistry, 2023, 47, 8751-8758.	2.8	2
608	<i>metaâ€</i> Selective Câ^'H Functionalization of Pyridines. Angewandte Chemie - International Edition, 2023, 62, .	13.8	9
609	Alcohol Dehydrogenation-Triggered Selective C3-Alkylation of Indoles by Homogeneous Azo-aromatic Cobalt Catalysts. Journal of Organic Chemistry, 2023, 88, 5827-5843.	3.2	8
610	Bis-Triazolylidenes of Manganese and Rhenium and Their Catalytic Application in N-Alkylation of Amines with Alcohols. Organometallics, 2023, 42, 1803-1809.	2.3	2
611	From Three―to Sixâ€Membered Heterocycles Bearing a Quaternary Stereocenter: an Asymmetric Organocatalytic Approach. Chemical Record, 2023, 23, .	5.8	1
612	Divergent Synthesis of Alcohols and Ketones via Crossâ€Coupling of Secondary Alcohols under Manganese Catalysis. Angewandte Chemie, 2023, 135, .	2.0	0
613	Divergent Synthesis of Alcohols and Ketones via Cross oupling of Secondary Alcohols under Manganese Catalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
614	Nickelâ€Catalyzed Sequential Dehydrogenation and Cyclization of 2â€Amino(Nitro)â€benzyl Alcohols with Alkyl Alcohols: Synthesis of Câ€3â€&ubstituted Quinolines. ChemCatChem, 2023, 15, .	3.7	3
615	Iron-catalyzed intramolecular reductive cyclization of o-nitroarenes to indoles under visible light irradiation. Tetrahedron Letters, 2023, , 154543.	1.4	0
616	Ionic‣iquid Hydrogenâ€Bonding Promoted Alcohols Amination over Cobalt Catalyst via Dihydrogen Autotransfer Mechanism. ChemSusChem, 2023, 16, .	6.8	1
617	Palladium single-atom catalyst supported on ceria for α-alkylation of ketones with primary alcohols. Catalysis Science and Technology, 2023, 13, 3174-3181.	4.1	2
618	Analysis of thermodynamics, kinetics, and reaction pathways in the amination of secondary alcohols over Ru/SiO2. Journal of Catalysis, 2023, 424, 74-90.	6.2	1
619	Ir-Catalyzed Synthesis of Functionalized Pyrrolidines and Piperidines Using the Borrowing Hydrogen Methodology. Journal of Organic Chemistry, 2023, 88, 7512-7517.	3.2	1
620	Valorization of biomass-derived furans over molecular catalysts. , 2023, 1, 100008.		2
621	Chemoselective <i>α</i> â€Alkylation of Nitriles with Primary Alcohols by Manganese(I) atalysis. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
622	Ruthenium-catalysed <i>N</i> -alkylation of anilines with primary carbohydrate alcohols <i>via</i> borrowing hydrogen strategy. Chemical Communications, 2023, 59, 7052-7055.	4.1	5

#	Article	IF	CITATIONS
623	Phosphineâ€Free Pincer Rutheniumâ€Catalyzed <i>î±</i> â€Alkylation of Ketones with Secondary Alcohols to form <i>β</i> â€Branched Ketones. ChemCatChem, 2023, 15, .	3.7	1
624	βâ€Arylation of Racemic Secondary Benzylic Alcohols to Access Enantioenriched βâ€Arylated Alcohols. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
625	βâ€Arylation of Racemic Secondary Benzylic Alcohols to Access Enantioenriched βâ€Arylated Alcohols. Angewandte Chemie, 2023, 135, .	2.0	0
626	Ni(II)-Catalyzed Transfer Hydrogenation of Azoarenes with NH ₃ BH ₃ . Organic Letters, 2023, 25, 4198-4202.	4.6	2
627	Enantioselective Câ^'P Bond Formation through C(<i>sp</i> ³)â^'H Functionalization. Advanced Synthesis and Catalysis, 2023, 365, 2152-2158.	4.3	1
628	Recent Advances in H2-Mediated C–C Coupling. , 2023, , .		0
629	Ir–Na cooperativity controls the diastereoselectivity of borrowing hydrogen C–C alkylation on isosorbide: synthesis methodology and mechanistic investigation. Organic Chemistry Frontiers, 2023, 10, 4732-4739.	4.5	4
630	Synthesis of Tetrahydroâ€Î²â€€arbolines by a Manganeseâ€Catalysed Oxidative Pictet–Spengler Reaction. Chemistry - A European Journal, 2023, 29, .	3.3	2
631	Catalytic activity of Cu-BTC metal organic framework for borrowing hydrogen and tandem reactions of an alcohol under solvent and base free condition. Inorganica Chimica Acta, 2023, 554, 121546.	2.4	0
632	Nickel-Catalyzed Alkylation of Oxindoles with Secondary Alcohols. Journal of Organic Chemistry, 2023, 88, 7162-7171.	3.2	3
633	βâ€Alkylation through Dehydrogenative Coupling of Primary Alcohols and Secondary Alcohols Catalyzed by Thioetherâ€Functionalized Nâ€Heterocyclic Carbene Ruthenium Complexes. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	2
634	Alkylation of amines with allylic alcohols and deep eutectic solvents as metal-free and green promoters. Green Chemistry, 2023, 25, 5601-5612.	9.0	4
635	Synthesis and structure of Pd(<scp>ii</scp>) pincer complexes: catalytic application in β-alkylation of secondary alcohols involving sequential dehydrogenation of alcohols <i>via</i> the borrowing hydrogen approach. Dalton Transactions, 2023, 52, 10038-10044.	3.3	4
636	Titania Nanoparticle Catalysed Nâ€Alkylation of Amines by Hydrogen Autoâ€Transfer Mechanisms. ChemistrySelect, 2023, 8, .	1.5	2
637	Selective catalytic synthesis of α-alkylated ketones and β-alkylated secondary alcohols <i>via</i> hydrogen-borrowing. New Journal of Chemistry, 2023, 47, 13655-13660.	2.8	1
638	RuPHOX-Ru catalyzed asymmetric Guerbet reaction of secondary alcohols with primary alcohols. Tetrahedron, 2023, 143, 133543.	1.9	1
639	<i>S</i> -Alkylation of dithiocarbamates <i>via</i> a hydrogen borrowing reaction strategy using alcohols as alkylating agents. Organic and Biomolecular Chemistry, 0, , .	2.8	0
640	Bimetallic Pt-Pd Catalyst Supported on TiO2 for Enhanced Photocatalytic N-alkylation of Amine with Alcohol: the Synergistic Effect. Catalysis Science and Technology, 0, , .	4.1	0

#	Article	IF	CITATIONS
641	Catalytic Amination of Alcohols Using Diazo Compounds under Manganese Catalysis Through Hydrogenative Nâ€Alkylation Reaction. Chemistry - A European Journal, 0, , .	3.3	0
642	Silver Supported Nanoparticles on [Mg ₄ Al‣DH] as an Efficient Catalyst for the αâ€Alkylation of Nitriles, Oxindoles and Other Carboxylic Acid Derivatives with Alcohols. ChemSusChem, 2023, 16, .	6.8	1
643	Ruthenium atalyzed Selective αâ€Alkylation of βâ€Naphthols using Primary Alcohols: Elucidating the Influence of Base and Water. Chemistry - A European Journal, 2023, 29, .	3.3	4
644	Synchronous Protonâ€Hydride Transfer by a Pyrazoleâ€Functionalized Protic Mn(I) Complex in Catalytic Alcohol Dehydrogenative Coupling. Chemistry - A European Journal, 0, , .	3.3	0
645	Scalable Synthesis of Antihistamines and Sensipar via Intensified Hydrogen Borrowing Methodology. ACS Sustainable Chemistry and Engineering, 2023, 11, 12389-12396.	6.7	1
646	Highly Efficient Base Catalyzed <i>N</i> â€alkylation of Amines with Alcohols and βâ€Alkylation of Secondary Alcohols with Primary Alcohols. ChemCatChem, 2023, 15, .	3.7	2
647	Recyclable Ni-Containing Coordination Polymer as an Efficient Catalyst for the Synthesis of Oxindole and Quinoline Derivatives through the Borrowing Hydrogen Strategy. Catalysts, 2023, 13, 1195.	3.5	0
648	Multifunctional Catalysis of Nanosheet Defective Molybdenum Sulfide Basal Planes for Tandem Reactions Involving Alcohols and Molecular Hydrogen. ACS Sustainable Chemistry and Engineering, 2023, 11, 12265-12279.	6.7	5
649	Recent Progress in Pd-Catalyzed Tandem Processes. Catalysts, 2023, 13, 1213.	3.5	2
650	Cooperative Bimetallic Coâ^'Mn Catalyst: Exploiting Metalloâ€Organic and Hydrogen Bonded Interactions for Rechargeable Câ€/Nâ€Alkylation. ChemCatChem, 2023, 15, .	3.7	0
651	Enzymatic Oxy―and Aminoâ€Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
652	Enzymatic Oxy―and Aminoâ€Functionalization in Biocatalytic Cascade Synthesis: Recent Advances and Future Perspectives. Angewandte Chemie, 2023, 135, .	2.0	0
653	An Asymmetric Hydrogenation/Nâ€Alkylation Sequence for a Stepâ€Economical Route to Indolizidines and Quinolizidines. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
654	An Asymmetric Hydrogenation/Nâ€Alkylation Sequence for a Stepâ€Economical Route to Indolizidines and Quinolizidines. Angewandte Chemie, 2023, 135, .	2.0	0
655	Divergence in CH alkylation of indoles under Mn catalysis. Catalysis Science and Technology, 2023, 13, 5745-5756.	4.1	1
656	One-pot Functionalization of Alcohols via Homolytic Cleavage of their C-O Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2023, 81, 892-894.	0.1	0
657	Iron-nickel alloy particles with N-doped carbon "armor―as a highly selective and long-lasting catalyst for the synthesis of N-benzylaniline molecules. Nano Research, 0, , .	10.4	0
658	Co atalyzed Metalâ€Ligand Cooperative Approach for <i>N</i> â€alkylation of Amines and Synthesis of Quinolines via Dehydrogenative Alcohol Functionalization. European Journal of Inorganic Chemistry, 2023, 26, .	2.0	1

#	Article	IF	CITATIONS
659	Direct Synthesis of Aldoximes: Ruthenium atalyzed Coupling of Alcohols and Hydroxylamine Hydrochloride. Chemistry - an Asian Journal, 2023, 18, .	3.3	1
660	Metal-Organic Framework Derived Phytate-Iron for Efficient Synthesis of 2-Arylbenzoxazole via Hydrogen Transfer Strategy. Chinese Journal of Organic Chemistry, 2023, 43, 2934.	1.3	0
661	Diaminocyclopentadienone Ruthenium Complex Catalyzed Alkylation of Indoles and Ketones with Primary Alcohols. European Journal of Organic Chemistry, 0, , .	2.4	0
662	Enantioconvergent transformations of secondary alcohols through borrowing hydrogen catalysis. Chemical Society Reviews, 2023, 52, 5541-5562.	38.1	14
663	Nâ€alkylation of benzamides/sulfonamides using alcohols via borrowing hydrogen approach by wellâ€defined Pd (II) pincer complexes. Applied Organometallic Chemistry, 2023, 37, .	3.5	0
664	Ni(II)-Complex Anchored onto Magnetically Separable Oxidized Single-Walled Carbon Nanohorn: A DFT-Supported Mechanistic Approach for Hydrogen-Borrowing Quinoxaline Synthesis. ACS Sustainable Chemistry and Engineering, 2023, 11, 14734-14753.	6.7	0
665	Synthesis of Amines and Ammonium Salts. , 2023, , .		0
666	Scope and Mechanism of the Ruthenium-Catalyzed Deaminative Coupling Reaction of Enones with Amines via Regioselective C _α –C _β Bond Cleavage. Organometallics, 2023, 42, 2867-2880.	2.3	0
667	Surmounting Alkoxide Trap Strategy: <i>N</i> -Heterocyclic Carbene Chromium(0)-Catalyzed <i>C</i> -Alkylation between Alcohols. ACS Catalysis, 2023, 13, 12481-12493.	11.2	7
668	Synthesis of Thiopheneâ€Substituted Ketones via Manganeseâ€Catalyzed Dehydrogenative Coupling Reaction. Chemistry - an Asian Journal, 2023, 18, .	3.3	0
669	<i>N</i> -Alkylation of substituted alcohols through self-supported mesoporous CuMn ₂ O ₄ . New Journal of Chemistry, 2023, 47, 19146-19154.	2.8	0
670	Design, Synthesis and Antioxidant Activity of Tetrahydro- <i>β</i> -carbolines. Chinese Journal of Organic Chemistry, 2023, 43, 2885.	1.3	0
671	3d-Metal Catalyzed C–C Bond Formation Through α-Alkylation of Ester, Amide, and Nitriles with Alcohol via Dehydrogenative Coupling. Topics in Organometallic Chemistry, 2023, , .	0.7	0
672	Metal-Catalyzed Enantioconvergent Transformations. Chemical Reviews, 2023, 123, 11817-11893.	47.7	7
673	Using the Colloidal Method to Prepare Au Catalysts for the Alkylation of Aniline by Benzyl Alcohol. International Journal of Molecular Sciences, 2023, 24, 14779.	4.1	0
674	Heteroditopic NHC Ligand Supported Manganese(I)â€Complexes:ÂSynthesis, Characterization, and Activity as Nonâ€bifunctionalÅPhosphineâ€Free Catalyst for the α‑Alkylation of Nitriles. Chemistry - A European Journal, 0, , .	3.3	1
675	Cobalt ^{II} phthalocyanine catalyzed efficient synthesis of substituted 1-phenyl-1-propanone from ketones with primary alcohols (α-alkylation). Synthetic Communications, 2023, 53, 2018-2028.	2.1	0
676	Fabricating Effective and Recyclable Cadmiumâ€based Coordination Polymer for Selective Synthesis of 1,5â€Benzodiazepines. Asian Journal of Organic Chemistry, 2023, 12, .	2.7	1

#	Article	IF	CITATIONS
677	Metal–organic framework-derived CoN _{<i>x</i>} nanoparticles on N-doped carbon for selective <i>N</i> -alkylation of aniline. Chemical Science, 2023, 14, 12339-12344.	7.4	4
678	Blue-light induced iron-catalyzed chemoselective α-alkylation and α-olefination of arylacetonitriles with alcohols. Organic Chemistry Frontiers, 0, , .	4.5	1
679	Room-Temperature Synthesis of Biogenic δ-MnO ₂ NPs for the Dehydrogenative Coupling of Diamines with Alcohols for Benzimidazole and Quinoxaline Synthesis: An Efficient Catalyst for Electrochemical Applications. Langmuir, 2023, 39, 15474-15486.	3.5	6
680	Dehydrogenation of Alcohols Using Transition Metal Catalysts: History and Applications. Topics in Organometallic Chemistry, 2023, , .	0.7	Ο
681	Wellâ€Defined Mn(II)â€complex Catalyzed Switchable De(hydrogenative) Csp ³ â€H Functionalization of Methyl Heteroarenes: A Sustainable Approach for Diversification of Heterocyclic Motifs. Chemistry - A European Journal, 2024, 30, .	3.3	0
682	Zinc Oxide Nanoparticles as Efficient Heterogeneous Catalyst for Synthesis of Bioâ€active Heterocyclic Compounds. ChemistrySelect, 2023, 8, .	1.5	0
683	Merging Iridium-Catalyzed Stereoselective Coupling from Alcohols with Organocatalytic Functionalization at the Aldehyde Oxidation Level. ACS Catalysis, 2023, 13, 14945-14952.	11.2	0
684	Catalytic Methylation Using Methanol as C1 Source. Topics in Organometallic Chemistry, 2023, , .	0.7	о
685	Control over borrowing hydrogen and acceptorless dehydrogenative coupling process for the Co(<scp>iii</scp>)–NHC catalysed chemoselective alkylation and cyclisation of 1,2-phenylenediamine with alcohols. Catalysis Science and Technology, 2023, 13, 7172-7180.	4.1	1
686	Leveraging the Proximity and Distribution of Cuâ^'Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angewandte Chemie - International Edition, 0, , .	13.8	0
687	Borrowing Hydrogen β-Phosphinomethylation of Alcohols Using Methanol as C1 Source by Pincer Manganese Complex. Journal of the American Chemical Society, 2023, 145, 25545-25552.	13.7	1
688	Oxygen Dependent Switchable Selectivity during Ruthenium Catalyzed Selective Synthesis of <i>C3</i> -Alkylated Indoles and Bis(indolyl)methanes. Journal of Organic Chemistry, 0, , .	3.2	0
689	Tandem Multicomponent Reactions for Diverse Heterocycles Synthesis Under 3d-Transition Metal Catalysis. Topics in Organometallic Chemistry, 2023, , .	0.7	0
690	3d-Metal Catalyzed C–C Bond Formation Through α-Alkylation of Ketones. Topics in Organometallic Chemistry, 2023, , .	0.7	0
691	Activity enhancement of Ru/CeO2 for N-alkylation of amines with alcohols through tailoring metal-support interaction. Journal of Catalysis, 2024, 429, 115241.	6.2	1
692	NHC–amine Ru complex catalyzed selective mono- <i>N</i> -methylation of amines with methanol: understanding the effect of amine ligands. Organic Chemistry Frontiers, 0, , .	4.5	0
693	<i>N</i> -Alkylation of aromatic amines with alcohols by using a commercially available Ru complex under mild conditions. RSC Advances, 2023, 13, 34847-34851.	3.6	0
694	Air-Stable Ni Catalysts Prepared by Liquid-Phase Reduction Using Hydrosilanes for Reactions with Hydrogen. ACS Applied Materials & amp; Interfaces, 2023, 15, 55659-55668.	8.0	0

#	Article	IF	CITATIONS
695	Blueâ€Light Induced Ironâ€Catalyzed Synthesis of γ,δâ€Unsaturated Ketones. ChemSusChem, 0, , .	6.8	1
696	Unsymmetrical pyrenylâ€ŧhiopheneâ€benzothiazole iridium complexes supported on reduced graphene oxide as an efficient catalyst for Nâ€elkylation of amides with alcohols. ChemistrySelect, 2023, 8, .	1.5	0
697	Enantioselective C–C bond formation in complex multicatalytic systems. Advances in Catalysis, 2023, , 211-244.	0.2	0
698	Leveraging the Proximity and Distribution of Cuâ^'Cs Sites for Direct Conversion of Methanol to Esters/Aldehydes. Angewandte Chemie, 0, , .	2.0	Ο
699	A General and Expedient Amination of Alcohols Catalysed by a single-cite (NN)Co(II)-Bidentate Complex under Solventless Conditions. Catalysis Science and Technology, 0, , .	4.1	0
700	Highly dispersed and stable Pd nano-catalyst loaded on chitosan nanoporous carbon microspheres for one-pot reductive amination of amines with aldehydes. Applied Surface Science, 2024, 648, 159047.	6.1	0
701	Ruthenium-Catalyzed Self-Coupling of Secondary Alcohols. Journal of Organic Chemistry, 0, , .	3.2	0
703	Titanium-Catalyzed Selective <i>N</i> -Alkylation of Amines with Alcohols via Borrowing Hydrogen Methodology. Journal of Organic Chemistry, 2023, 88, 16960-16966.	3.2	2
704	Transforming Racemic Compounds into Two New Enantioenriched Chiral Products via Intermediate Kinetic Resolution. ACS Catalysis, 2023, 13, 15603-15610.	11.2	2
705	Synthesis of Macrolactams from Macrolactones Using Ru-/Ir-Catalytic System under Neutral Conditions. Organic Letters, 2023, 25, 9058-9063.	4.6	0
706	Access to Secondary Amines through Hydrogen Autotransfer Reaction Mediated by KO ^t Bu. European Journal of Organic Chemistry, 0, , .	2.4	0
707	Interweaved needleâ€shaped <i>α</i> â€Ni(OH) ₂ nanoparticles adorned on graphene oxide: A new class of heterogeneous catalysts for <i>α</i> â€alkylation of ketones and synthesis of azines. Applied Organometallic Chemistry, 0, , .	3.5	0
708	Synthetic Methods for Diarylamines and Triarylamines. , 2023, , 222-277.		0
709	Copper/Ruthenium Relay Catalysis for Stereodivergent Access to Î′â€Hydroxy αâ€Amino Acids and Small Peptides. Angewandte Chemie - International Edition, 2024, 63, .	13.8	3
710	Copper/Ruthenium Relay Catalysis for Stereodivergent Access to δâ€Hydroxy αâ€Amino Acids and Small Peptides. Angewandte Chemie, 2024, 136, .	2.0	0
711	KOH-catalyzed cross-coupling of primary and secondary alcohols: evidence for radical pathways. Journal of Chemical Sciences, 2024, 136, .	1.5	0
712	The α-trideuteromethylation of arylacetonitriles with deuterated methanol via deuterium autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. Journal of Catalysis, 2024, 430, 115301.	6.2	0
713	Selective N-alkylation of amines with alcohols via hydrogen transfer catalyzed by copper complex in an ionic liquid media. Chemical Engineering Journal Advances, 2024, 17, 100585.	5.2	0

#	Article	IF	CITATIONS
714	Catalysisâ€Controlled Selective <i>N</i> â€mono or <i>N</i> â€diâ€methylation of Anilines: A Review on Synthesis of <i>N</i> â€methyl or <i>N</i> , <i>N</i> â€dimethyl anilines. ChemistrySelect, 2024, 9, .	1.5	0
715	General Synthesis of Alkyl Amines via Borrowing Hydrogen and Reductive Amination. Advanced Synthesis and Catalysis, 2023, 365, 4654-4661.	4.3	2
716	Designing Cobalt(II) Complexes for Tandem Dehydrogenative Synthesis of Quinoline and Quinazoline Derivatives. Organic Letters, 2024, 26, 514-518.	4.6	0
717	Direct <i>N</i> â€Alkylation of Amines with Alcohols Catalyzed by Nâ€Heterocyclic Carbene Cobaltâ€Pincer Catalyst under Mild Conditions. Asian Journal of Organic Chemistry, 2024, 13, .	2.7	0
718	Noninnocent Azo-Aromatic Cobalt(II)-Catalyzed sp ³ C–H Alkylation of Fluorenes with Alcohols. Journal of Organic Chemistry, 2024, 89, 1910-1926.	3.2	0
719	Structurally Well-Defined PC(sp ³)P Osmium Pincer Catalysts for Methylation of Alcohols, Indoles, Phenols, and Sulfonamides Using Methanol as a C ₁ Source. ACS Catalysis, 2024, 14, 1629-1638.	11.2	0
720	Bidentate Ru(II)â€NC Complexes as Catalysts for Transfer Hydrogenation of Ketones with Ethanol. Asian Journal of Organic Chemistry, 2024, 13, .	2.7	0
721	Ir(tri-N-heterocyclic carbene)-catalyzed upgrading of glycerol: C–C bond formation for the synthesis of α-hydroxy acids. Organic and Biomolecular Chemistry, 2024, 22, 1613-1618.	2.8	Ο
722	Phosphineâ€Free <i>NNN</i> â€Manganese(II) Catalyzed Câ€alkylation of Methyl <i>N</i> â€Heteroarenes via Borrowing Hydrogen. Advanced Synthesis and Catalysis, 2024, 366, 1531-1537.	4.3	0
723	Manganeseâ€Catalyzed Monoâ€ <i>N</i> â€Methylation of Aliphatic Primary Amines without the Requirement of External Highâ€Hydrogen Pressure. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
724	Manganeseâ€Catalyzed Monoâ€ <i>N</i> â€Methylation of Aliphatic Primary Amines without the Requirement of External Highâ€Hydrogen Pressure. Angewandte Chemie, 2024, 136, .	2.0	0
725	CrCl ₂ -catalyzed α-alkylation of carbonyl compounds <i>via</i> a borrowing hydrogen approach. Organic Chemistry Frontiers, 2024, 11, 1955-1962.	4.5	1
726	Tandem Hydrogenâ€Borrowing Dehydrogenative Coupling and Hydrodefluorination. Advanced Synthesis and Catalysis, 2024, 366, 1809-1819.	4.3	0
727	Zn(II)â€Stabilized Azoâ€Anion Radical Catalyzed Sustainable Câ^'C Bond Formation: Regioselective Alkylation of Fluorene, Oxindole, and Indoles. ChemCatChem, 0, , .	3.7	0
728	Access to Saturated Azaâ€Heterocycles using the Borrowing Hydrogen Methodology. European Journal of Organic Chemistry, 2024, 27, .	2.4	0
729	Upgrading Ethanol to <i>n</i> -Butanol in the Presence of Carbonate Catalyzed by a Cp*Ir Complex Bearing a Functional 2,2′-Carbonylbibenzimidazole Ligand. Inorganic Chemistry, 2024, 63, 3843-3849.	4.0	0
730	Green chemistry and biocatalysis: Engineering a sustainable future. Catalysis Today, 2024, 431, 114571.	4.4	0
731	Valorization of Lignocellulosic Molecules through Homogeneous Ruâ€Catalyzed Câ^'C and Câ^'N Bond Forming Reactions. ChemistrySelect, 2024, 9, .	1.5	0

#	ARTICLE	IF	CITATIONS
732	Transition Metal-Free Selective Aerobic Olefination of Methyl <i>N</i> -Heteroarenes with Alcohols. Chinese Journal of Organic Chemistry, 2024, 44, 573.	1.3	0
733	Biocatalytic Hydrogen-Borrowing Cascade in Organic Synthesis. Jacs Au, 2024, 4, 877-892.	7.9	0
734	Highly dispersed ruthenium capsulated in UiO-66-NH ₂ for hydrogen-borrowing-mediated <i>N</i> -alkylation reactions. Catalysis Science and Technology, 2024, 14, 1958-1966.	4.1	0