A characteristic scale for cold gas

Monthly Notices of the Royal Astronomical Society 473, 5407-5431

DOI: 10.1093/mnras/stx2687

Citation Report

#	Article	IF	CITATIONS
1	Interaction of Cosmic Rays with Cold Clouds in Galactic Halos. Monthly Notices of the Royal Astronomical Society, 0, , stx109.	1.6	31
2	COS-Weak: probing the CGM using analogues of weak Mg ii absorbers at zÂ<Â0.3. Monthly Notices of the Royal Astronomical Society, 2018, 476, 4965-4986.	1.6	27
3	The Effects of Ram Pressure on the Cold Clouds in the Centers of Galaxy Clusters. Astrophysical Journal, 2018, 854, 91.	1.6	13
4	Andromeda's Parachute: A Bright Quadruply Lensed Quasar at zÂ=Â2.377. Astrophysical Journal, 2018, 859, 146.	1.6	32
5	Galaxies Probing Galaxies in PRIMUS. II. The Coherence Scale of the Cool Circumgalactic Medium. Astrophysical Journal, 2018, 868, 142.	1.6	24
6	The Imprint of Cosmic Ray Driven Outflows on Lyman-α Spectra. Astrophysical Journal Letters, 2018, 862, L7.	3.0	12
7	A Review of the Theory of Galactic Winds Driven by Stellar Feedback. Galaxies, 2018, 6, 114.	1.1	63
8	The growth and entrainment of cold gas in a hot wind. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L111-L115.	1.2	177
9	The gaseous environments of quasars: associate absorption lines with density and distance constraints. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3865-3886.	1.6	9
10	Spatially resolved metal gas clouds. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 479, L50-L54.	1.2	21
11	Challenges and Techniques for Simulating Line Emission. Galaxies, 2018, 6, 100.	1.1	16
12	A Galaxy-scale Fountain of Cold Molecular Gas Pumped by a Black Hole. Astrophysical Journal, 2018, 865, 13.	1.6	85
13	Production of Cool Gas in Thermally Driven Outflows. Astrophysical Journal, 2018, 862, 56.	1.6	72
14	Introducing CGOLS: The Cholla Galactic Outflow Simulation Suite. Astrophysical Journal, 2018, 860, 135.	1.6	33
15	Quenching star formation with quasar outflows launched by trapped IR radiation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 2079-2111.	1.6	75
16	The impact of magnetic fields on thermal instability. Monthly Notices of the Royal Astronomical Society, 2018, 476, 852-867.	1.6	56
17	Keck/Palomar Cosmic Web Imagers Reveal an Enormous Lyα Nebula in an Extremely Overdense Quasi-stellar Object Pair Field at zÂ=Â2.45. Astrophysical Journal Letters, 2018, 861, L3.	3.0	41
18	Observing the circumgalactic medium of simulated galaxies through synthetic absorption spectra. Monthly Notices of the Royal Astronomical Society, 2018, 479, 1822-1835.	1.6	17

#	Article	IF	CITATIONS
19	The growth of black holes from Population III remnants in the Renaissance simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3762-3773.	1.6	62
20	Unlocking the Full Potential of Extragalactic Lyα through Its Polarization Properties. Astrophysical Journal, 2018, 856, 156.	1.6	19
21	Shattering of Cosmic Sheets due to Thermal Instabilities: A Formation Channel for Metal-free Lyman Limit Systems. Astrophysical Journal Letters, 2019, 881, L20.	3.0	22
22	Survival of molecular gas in a stellar feedback-driven outflow witnessed with the MUSE TIMER project and ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3904-3928.	1.6	15
23	Simulations of radiative turbulent mixing layers. Monthly Notices of the Royal Astronomical Society, 2019, 487, 737-754.	1.6	53
24	The diversity of the circumgalactic medium around z = 0 Milky Way-mass galaxies from the Auriga simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 135-152.	1.6	16
25	Ultra-diffuse galaxies without dark matter. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 488, L24-L28.	1.2	37
26	Detection of metal-rich, cool-warm gas in the outskirts of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5327-5339.	1.6	8
27	The impact of magnetic fields on cold streams feeding galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 489, 3368-3384.	1.6	32
28	Ambient Column Densities of Highly Ionized Oxygen in Precipitation-limited Circumgalactic Media. Astrophysical Journal, 2019, 880, 139.	1.6	40
29	The nature of strong H i absorbers probed by cosmological simulations: satellite accretion and outflows. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3634-3645.	1.6	23
30	A Giant Lyα Nebula and a Small-scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE ^{â^—} . Astrophysical Journal, 2019, 880, 47.	1.6	15
31	The Impact of Enhanced Halo Resolution on the Simulated Circumgalactic Medium. Astrophysical Journal, 2019, 882, 156.	1.6	128
32	The low density and magnetization of a massive galaxy halo exposed by a fast radio burst. Science, 2019, 366, 231-234.	6.0	204
33	Cloud Coalescence: A Dynamical Instability Affecting Multiphase Environments. Astrophysical Journal Letters, 2019, 876, L3.	3.0	17
34	Kinematics of Circumgalactic Gas: Feeding Galaxies and Feedback. Astrophysical Journal, 2019, 878, 84.	1.6	68
35	Figuring Out Gas & Galaxies in Enzo (FOGGIE). I. Resolving Simulated Circumgalactic Absorption at 2A≤zÂ≤2.5. Astrophysical Journal, 2019, 873, 129.	1.6	166
36	On the dynamics and survival of fractal clouds in galactic winds. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4526-4544.	1.6	26

#	Article	IF	CITATIONS
37	A high baryon fraction in massive haloes at z â^1⁄4 3. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1489-1508.	1.6	11
38	Exploring the physical properties of the cool circumgalactic medium with a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2019, 486, 608-622.	1.6	17
39	The COS CGM Compendium. II. Metallicities of the Partial and Lyman Limit Systems at zÂ≲Â1. Astrophysical Journal, 2019, 872, 81.	1.6	44
40	Non-isobaric Thermal Instability. Astrophysical Journal, 2019, 875, 158.	1.6	38
41	Simulations of jet heating in galaxy clusters: successes and challenges. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2465-2486.	1.6	41
42	Characterizing circumgalactic gas around massive ellipticals at <i>z</i> â^¼ 0.4 – II. Physical properties and elemental abundances. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2257-2280.	1.6	111
43	Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H <scp>i</scp> column densities. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L85-L89.	1.2	149
44	Turbulence in the intracluster medium: simulations, observables,Âand thermodynamics. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4881-4896.	1.6	29
45	QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surrounding <i>z</i> â ¹ ⁄4 3 quasars. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3162-3205.	^y _{1.6}	106
46	Radio wave scattering by circumgalactic cool gas clumps. Monthly Notices of the Royal Astronomical Society, 2019, 483, 971-984.	1.6	23
47	The physics of multiphase gas flows: fragmentation of a radiatively cooling gas cloud in a hot wind. Monthly Notices of the Royal Astronomical Society, 2019, 482, 5401-5421.	1.6	69
48	Galactic outflows at high spatial resolution via gravitational lensing. Proceedings of the International Astronomical Union, 2019, 15, 187-193.	0.0	1
49	The Fate of Asymptotic Giant Branch Winds in Massive Galaxies and the Intracluster Medium. Astrophysical Journal, 2019, 887, 41.	1.6	14
50	Galactic Gas Flows from Halo to Disk: Tomography and Kinematics at the Milky Way's Disk–Halo Interface. Astrophysical Journal, 2019, 882, 76.	1.6	17
51	The VANDELS survey: the role of ISM and galaxy physical properties in the escape of Ly <i>α</i> emission in <i>z</i> â^¼ 3.5 star-forming galaxies. Astronomy and Astrophysics, 2019, 631, A19.	2.1	37
52	Dense gas formation and destruction in a simulated Perseus-like galaxy cluster with spin-driven black hole feedback. Astronomy and Astrophysics, 2019, 631, A60.	2.1	33
53	Column Density, Kinematics, and Thermal State of Metal-bearing Gas within the Virial Radius of zÂâ^¼Â2 Star-forming Galaxies in the Keck Baryonic Structure Survey. Astrophysical Journal, 2019, 885, 61.	1.6	69
54	Chemical Abundances in a Turbulent Medium–H ₂ , OH ⁺ , H ₂ O ⁺ , ArH ⁺ . Astrophysical Journal, 2019, 885, 109.	1.6	24

#	ARTICLE	IF	CITATIONS
55	Zooming in on accretion – II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4040-4059.	1.6	78
56	Physical conditions in high-z optically thin CÂiii absorbers: origin of cloud sizes and associated correlations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5028-5048.	1.6	2
57	On the survival of cool clouds in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1841-1854.	1.6	67
58	How cold gas continuously entrains mass and momentum from a hot wind. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1970-1990.	1.6	101
59	Properties of the circumgalactic medium in cosmic ray-dominated galaxy haloes. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4221-4238.	1.6	99
60	Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2391-2414.	1.6	100
61	Shock–multicloud interactions in galactic outflows – I. Cloud layers with lognormal density distributions. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2173-2195.	1.6	12
62	Multiphase Gas and the Fractal Nature of Radiative Turbulent Mixing Layers. Astrophysical Journal Letters, 2020, 894, L24.	3.0	88
63	A bright, high rotation-measure FRB that skewers the M33 halo. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4716-4724.	1.6	27
64	Role of cosmic rays in the early stages of galactic outflows. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2623-2640.	1.6	12
65	Physical conditions of five OÂ <scp>vi</scp> absorption systems towards PGÂ1522+101. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4864-4886.	1.6	5
66	Magnetizing the circumgalactic medium of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3125-3137.	1.6	40
67	A new model for including galactic winds in simulations of galaxy formation – I. Introducing the Physically Evolved Winds (PhEW) model. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2586-2604.	1.6	19
68	Accretion disc winds in tidal disruption events: ultraviolet spectral lines as orientation indicators. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4914-4929.	1.6	9
69	Constraining the coherence scale of the interstellar magnetic field using TeV gamma-ray observations of supernova remnants. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2448-2461.	1.6	11
70	Instability of supersonic cold streams feeding galaxies – IV. Survival of radiatively cooling streams. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2641-2663.	1.6	51
71	Outflows and extended [C ii] haloes in high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 160-172.	1.6	30
72	Effects of opacity temperature dependence on radiatively accelerated clouds. Monthly Notices of the Royal Astronomical Society, 2020, 493, 437-445.	1.6	4

#	Article	IF	CITATIONS
73	How runaway stars boost galactic outflows. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3328-3341.	1.6	25
74	On the model of the circumgalactic mist: the implications of cloud sizes in galactic winds and haloes. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5056-5072.	1.6	34
75	BhoonahetÂal.Reply. Physical Review Letters, 2020, 124, 029002.	2.9	0
76	Comment on "Calorimetric Dark Matter Detection with Galactic Center Gas Cloudsâ€: Physical Review Letters, 2020, 124, 029001.	2.9	10
77	Direct Detection of Black Hole-driven Turbulence in the Centers of Galaxy Clusters. Astrophysical Journal Letters, 2020, 889, L1.	3.0	48
78	Is multiphase gas cloudy or misty?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 494, L27-L31.	1.2	49
79	Properties of the simulated circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1461-1478.	1.6	30
80	Cool outflows in galaxies and their implications. Astronomy and Astrophysics Review, 2020, 28, 1.	9.1	253
81	Stratified disc wind models for the AGN broad-line region: ultraviolet, optical, and X-ray properties. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5540-5560.	1.6	29
82	Efficiency of thermal conduction in a magnetized circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1263-1278.	1.6	13
83	Radiative mixing layers: insights from turbulent combustion. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3179-3199.	1.6	39
84	Shatter or not: role of temperature and metallicity in the evolution of thermal instability. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4935-4952.	1.6	20
85	Origin of Weak Mg ii and Higher-ionization Absorption Lines in Outflows from Intermediate-redshift Dwarf Galaxies. Astrophysical Journal, 2021, 909, 157.	1.6	0
86	Circumgalactic Mg ii Emission from an Isotropic Starburst Galaxy Outflow Mapped by KCWI. Astrophysical Journal, 2021, 909, 151.	1.6	43
87	It's Cloud's Illusions I Recall: Mixing Drives the Acceleration of Clouds from Ram Pressure Stripped Galaxies. Astrophysical Journal, 2021, 911, 68.	1.6	26
88	Constraining Galaxy Halos from the Dispersion and Scattering of Fast Radio Bursts and Pulsars. Astrophysical Journal, 2021, 911, 102.	1.6	27
89	The Source of Leaking Ionizing Photons from Haro11: Clues from HST/COS Spectroscopy of Knots A, B, and C*. Astrophysical Journal, 2021, 912, 155.	1.6	14
90	Three Lyman- <i>α</i> -emitting filaments converging to a massive galaxy group at <i>z</i> = 2.91: discussing the case for cold gas infall. Astronomy and Astrophysics, 2021, 649, A78.	2.1	41

#	Article	IF	CITATIONS
91	Thermal instability in the CGM of <i>L</i> â<† galaxies: testing â€~precipitation' models with the FIRE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1841-1862.	1.6	19
92	The <i>in situ</i> formation of molecular and warm ionized gas triggered by hot galactic outflows. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1083-1104.	1.6	17
93	Thermal instability and multiphase gas in the simulated interstellar medium with conduction, viscosity, and magnetic fields. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5238-5252.	1.6	9
94	Gas-rich dwarf galaxies as a new probe of dark matter interactions with ordinary matter. Physical Review D, 2021, 103, .	1.6	30
95	Shock–multicloud interactions in galactic outflows – II. Radiative fractal clouds and cold gas thermodynamics. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5658-5680.	1.6	20
96	A model for line absorption and emission from turbulent mixing layers. Monthly Notices of the Royal Astronomical Society: Letters, 2021, 508, L37-L42.	1.2	13
97	Effect of optically thin cooling curves on condensation formation: Case study using thermal instability. Astronomy and Astrophysics, 2021, 655, A36.	2.1	15
98	simba: the average properties of the circumgalactic medium of 2Â≤Â≤ quasars are determined primarily by stellar feedback. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2760-2784.	1.6	18
99	Interaction of a cold cloud with a hot wind: the regimes of cloud growth and destruction and the impact of magnetic fields. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4261-4281.	1.6	72
100	The COS Absorption Survey of Baryon Harbors: unveiling the physical conditions of circumgalactic gas through multiphase Bayesian ionization modelling. Monthly Notices of the Royal Astronomical Society, 2021, 502, 4993-5037.	1.6	29
101	Growth and structure of multiphase gas in the cloud-crushing problem with cooling. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1143-1159.	1.6	49
102	Most of the cool CGM of star-forming galaxies is not produced by supernova feedback. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	16
103	Hydrodynamic Shielding and the Survival of Cold Streams. Astronomical Journal, 2019, 158, 124.	1.9	11
104	Nature and Origins of Rich Complexes of C iv Associated Absorption Lines. Astrophysical Journal, 2019, 887, 78.	1.6	6
105	The Launching of Cold Clouds by Galaxy Outflows. III. The Influence of Magnetic Fields. Astrophysical Journal, 2020, 892, 59.	1.6	28
106	The Physical Nature of Starburst-driven Galactic Outflows. Astrophysical Journal, 2020, 895, 43.	1.6	83
107	The Impact of Cosmic Rays on Thermal Instability in the Circumgalactic Medium. Astrophysical Journal, 2020, 903, 77.	1.6	66
108	First Results from SMAUG: Uncovering the Origin of the Multiphase Circumgalactic Medium with a Comparative Analysis of Idealized and Cosmological Simulations. Astrophysical Journal, 2020, 903, 32.	1.6	38

#	Article	IF	CITATIONS
109	Ubiquitous Molecular Outflows in zÂ>Â4 Massive, Dusty Galaxies. I. Sample Overview and Clumpy Structure in Molecular Outflows on 500 pc Scales. Astrophysical Journal, 2020, 905, 85.	1.6	31
110	The CGM at Cosmic Noon with KCWI: Outflows from a Star-forming Galaxy at zÂ=Â2.071. Astrophysical Journal, 2020, 904, 164.	1.6	13
111	The Picture of BLR in 2.5D FRADO: Dynamics and Geometry. Astrophysical Journal, 2021, 920, 30.	1.6	17
112	A search for dust and molecular gas in enormous Ly <i>α</i> nebulae at <i>z</i> â‰^ 2. Astronomy and Astrophysics, 2021, 645, L3.	2.1	10
113	Physical conditions and redshift evolution of optically thin CÂ <scp>iii</scp> absorbers: low- <i>z</i> sample. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5424-5442.	1.6	2
114	Survival and mass growth of cold gas in a turbulent, multiphase medium. Monthly Notices of the Royal Astronomical Society, 2022, 511, 859-876.	1.6	43
115	The survival of multiphase dusty clouds in hot winds. Monthly Notices of the Royal Astronomical Society, 2021, 510, 551-567.	1.6	24
116	The role of the halo magnetic field on accretion through high-velocity clouds. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5756-5770.	1.6	9
117	A new model for including galactic winds in simulations of galaxy formation II: Implementation of PhEW in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 509, 6091-6110.	1.6	5
118	Optical line spectra of tidal disruption events from reprocessing in optically thick outflows. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5426-5443.	1.6	9
119	The high-velocity clouds above the disc of the outer Milky Way: misty precipitating gas in a region roiled by stellar streams. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1714-1749.	1.6	7
120	A Simple Model for Mixing and Cooling in Cloud–Wind Interactions. Astrophysical Journal, 2022, 925, 199.	1.6	18
121	The H i Column Density Distribution of the Galactic Disk and Halo. Astrophysical Journal, 2021, 923, 50.	1.6	10
122	Cold and hot gas distribution around the Milky-Way – M31 system in the HESTIA simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3717-3737.	1.6	9
123	A Systematic Study of the Escape of LyC and Lyα Photons from Star-forming, Magnetized Turbulent Clouds. Astrophysical Journal, Supplement Series, 2022, 259, 21.	3.0	13
124	Exploring the Milky Way Circumgalactic Medium in a Cosmological Context with a Semianalytic Model. Astrophysical Journal, 2022, 928, 37.	1.6	11
125	A Giant Shell of Ionized Gas Discovered near M82 with the Dragonfly Spectral Line Mapper Pathfinder. Astrophysical Journal, 2022, 927, 136.	1.6	2
126	Escaping the maze: a statistical subgrid model for cloud-scale density structures in the interstellar medium. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1414-1428.	1.6	2

#	Article	IF	CITATIONS
127	Cooling flows around cold clouds in the circumgalactic medium: steady-state modelsÂand comparison with TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3561-3574.	1.6	8
128	Thermal Instabilities and Shattering in the High-redshift WHIM: Convergence Criteria and Implications for Low-metallicity Strong H i Absorbers. Astrophysical Journal, 2021, 923, 115.	1.6	16
129	The cosmic-ray staircase: the outcome of the cosmic-ray acoustic instability. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4464-4493.	1.6	11
130	A Multiwavelength Study of ELAN Environments (AMUSE ²). Mass Budget, Satellites Spin Alignment, and Gas Infall in a Massive z â ¹ ⁄4 3 Quasar Host Halo. Astrophysical Journal, 2022, 930, 72.	1.6	8
131	Nonthermal Emission from Fall-back Clouds in the Broad-line Region of Active Galactic Nuclei. Astrophysical Journal, 2022, 931, 39.	1.6	9
132	Hot-mode accretion and the physics of thin-discÂgalaxyÂformation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5056-5073.	1.6	32
133	Multiphase turbulence in galactic haloes: effect of the driving. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3139-3159.	1.6	5
134	Radiative Turbulent Mixing Layers and the Survival of Magellanic Debris. Astrophysical Journal, 2022, 933, 120.	1.6	8
135	Cosmic rays and thermal instability in self-regulating cooling flows of massive galaxy clusters. Astronomy and Astrophysics, 2022, 665, A129.	2.1	6
136	Radio Scattering Horizons for Galactic and Extragalactic Transients. Astrophysical Journal, 2022, 934, 71.	1.6	7
137	Absorption-based circumgalactic medium line emission estimates. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3049-3067.	1.6	3
138	The impact of cosmic rays on dynamical balance and disc–halo interaction in <i>L</i> â<† disc galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 597-615.	1.6	18
139	Constraining primordial black holes using fast radio burst gravitational-lens interferometry with CHIME/FRB. Physical Review D, 2022, 106, .	1.6	16
140	The Impact of Cosmic Rays on the Kinematics of the Circumgalactic Medium. Astrophysical Journal, 2022, 935, 69.	1.6	7
141	AGN-driven outflows and the formation of Lyα nebulae around high-z quasars. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1767-1790.	1.6	19
142	The Cosmic Ultraviolet Baryon Survey (CUBS) V: on the thermodynamic properties of the cool circumgalactic medium at <i>z</i> ≲ 1. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4882-4897.	1.6	11
143	Shattering and growth of cold clouds in galaxy clusters: the role of radiative cooling, magnetic fields, and thermal conduction. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5215-5235.	1.6	8
144	Modelling multiphase gases in cosmological simulations using compressible multifluid hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2022, 519, 3011-3026.	1.6	8

#	Article	IF	CITATIONS
146	Initial episodes of chemical evolution of intergalactic medium. Physics-Uspekhi, 0, , .	0.8	0
147	Quenching in cosmic sheets: tracing the impact of large-scale structure collapse on the evolution of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2692-2708.	1.6	8
148	[C <scp>ii</scp>] Haloes in ALPINE galaxies: smoking-gun of galactic outflows?. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4608-4621.	1.6	4
149	MPI-AMRVAC 3.0: Updates to an open-source simulation framework. Astronomy and Astrophysics, 2023, 673, A66.	2.1	20
150	Formation of multiphase plasma in galactic haloes and an analogy to solar plasma. Frontiers in Astronomy and Space Sciences, 0, 10, .	1.1	1