Macrophage extracellular trap formation promoted by p of rhabdomyolysis-induced acute kidney injury

Nature Medicine 24, 232-238

DOI: 10.1038/nm.4462

Citation Report

#	Article	IF	CITATIONS
1	Macrophages and platelets join forces to release kidney-damaging DNA traps. Nature Medicine, 2018, 24, 128-129.	15.2	2
2	Macrophage extracellular traps in rhabdomyolysis-induced AKI. Nature Reviews Nephrology, 2018, 14, 141-141.	4.1	9
3	Extracellular traps in kidney disease. Kidney International, 2018, 94, 1087-1098.	2.6	58
4	Immune mechanisms in the different phases of acute tubular necrosis. Kidney Research and Clinical Practice, 2018, 37, 185-196.	0.9	17
5	The role of platelets in acute kidney injury. Nature Reviews Nephrology, 2018, 14, 457-471.	4.1	59
6	Peptidylarginine deiminase 4: a nuclear button triggering neutrophil extracellular traps in inflammatory diseases and aging. FASEB Journal, 2018, 32, 6258-6370.	0.2	93
7	Myeloid-Specific Deletion of Peptidylarginine Deiminase 4 Mitigates Atherosclerosis. Frontiers in Immunology, 2018, 9, 1680.	2.2	90
8	A Melaninâ€Based Natural Antioxidant Defense Nanosystem for Theranostic Application in Acute Kidney Injury. Advanced Functional Materials, 2019, 29, 1904833.	7.8	111
9	Extracellular DNA traps in inflammation, injury and healing. Nature Reviews Nephrology, 2019, 15, 559-575.	4.1	129
10	Regulation of Innate Immune Responses by Platelets. Frontiers in Immunology, 2019, 10, 1320.	2.2	67
11	DNA threads released by activated CD4 ⁺ T lymphocytes provide autocrine costimulation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8985-8994.	3.3	33
12	In Vitro Stimulation and Visualization of Extracellular Trap Release in Differentiated Human Monocyte-derived Macrophages. Journal of Visualized Experiments, 2019, , .	0.2	7
13	To NET or not to NET:current opinions and state of the science regarding the formation of neutrophil extracellular traps. Cell Death and Differentiation, 2019, 26, 395-408.	5.0	295
14	The Platelet Napoleon Complex—Small Cells, but Big Immune Regulatory Functions. Annual Review of Immunology, 2019, 37, 125-144.	9.5	29
15	Cholemic Nephropathy Reloaded. Seminars in Liver Disease, 2020, 40, 091-100.	1.8	19
16	Immune Sensing of Cell Death through Recognition of Histone Sequences by C-Type Lectin-Receptor-2d Causes Inflammation and Tissue Injury. Immunity, 2020, 52, 123-135.e6.	6.6	49
17	Involvement of the CDKL5-SOX9 signaling axis in rhabdomyolysis-associated acute kidney injury. American Journal of Physiology - Renal Physiology, 2020, 319, F920-F929.	1.3	14
18	Emerging medical therapies in crush syndrome – progress report from basic sciences and potential future avenues. Renal Failure, 2020, 42, 656-666.	0.8	14

#	Article	IF	CITATIONS
19	Eukaryome Impact on Human Intestine Homeostasis and Mucosal Immunology. , 2020, , .		1
20	Plasma Concentrations of Extracellular DNA in Acute Kidney Injury. Diagnostics, 2020, 10, 152.	1.3	13
21	Ulinastatin ameliorates acute kidney injury induced by crush syndrome inflammation by modulating Th17/Treg cells. International Immunopharmacology, 2020, 81, 106265.	1.7	28
22	A kinome-wide screen identifies a CDKL5-SOX9 regulatory axis in epithelial cell death and kidney injury. Nature Communications, 2020, 11, 1924.	5.8	34
23	Alterations in platelet behavior after major trauma: adaptive or maladaptive?. Platelets, 2021, 32, 295-304.	1.1	41
24	Platelets and extracellular traps in infections. Platelets, 2021, 32, 305-313.	1.1	21
25	Complement activation is a crucial driver of acute kidney injury in rhabdomyolysis. Kidney International, 2021, 99, 581-597.	2.6	48
26	Immunopathophysiology of trauma-related acute kidney injury. Nature Reviews Nephrology, 2021, 17, 91-111.	4.1	68
27	New roles of platelets in inflammation. Current Opinion in Physiology, 2021, 19, 99-104.	0.9	2
28	The Role of Pancreatic Infiltrating Innate Immune Cells in Acute Pancreatitis. International Journal of Medical Sciences, 2021, 18, 534-545.	1.1	30
29	The Release Kinetics of Eosinophil Peroxidase and Mitochondrial DNA Is Different in Association with Eosinophil Extracellular Trap Formation. Cells, 2021, 10, 306.	1.8	14
30	Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. International Journal of Molecular Sciences, 2021, 22, 2009.	1.8	19
31	Protective Role of Activated Protein C against Viral Mimetic Poly(I:C)-Induced Inflammation. Thrombosis and Haemostasis, 2021, 121, 1448-1463.	1.8	8
32	MBD2 mediates renal cell apoptosis via activation of Tox4 during rhabdomyolysisâ€induced acute kidney injury. Journal of Cellular and Molecular Medicine, 2021, 25, 4562-4571.	1.6	10
33	Heme activates platelets and exacerbates rhabdomyolysis-induced acute kidney injury via CLEC-2 and GPVI/FcRγ. Blood Advances, 2021, 5, 2017-2026.	2.5	23
34	Major signaling pathways and key mediators of macrophages in acute kidney injury (Review). Molecular Medicine Reports, 2021, 23, .	1.1	14
35	Cerebral thrombi of cardioembolic etiology have an increased content of neutrophil extracellular traps. Journal of the Neurological Sciences, 2021, 423, 117355.	0.3	25
36	Diannexin Can Ameliorate Acute Respiratory Distress Syndrome in Rats by Promoting Heme Oxygenase-1 Expression. Mediators of Inflammation, 2021, 2021, 1-10.	1.4	3

#	Article	IF	CITATIONS
37	Neutrophil Extracellular Traps and Macrophage Extracellular Traps Predict Postoperative Recurrence in Resectable Nonfunctional Pancreatic Neuroendocrine Tumors. Frontiers in Immunology, 2021, 12, 577517.	2.2	15
38	Clinical Characteristics and Risk Factors Associated With Acute Kidney Injury Inpatient With Exertional Heatstroke: An Over 10-Year Intensive Care Survey. Frontiers in Medicine, 2021, 8, 678434.	1.2	15
39	Exogenous Biological Renal Support Improves Kidney Function in Mice With Rhabdomyolysis-Induced Acute Kidney Injury. Frontiers in Medicine, 2021, 8, 655787.	1.2	0
40	Macrophage extracellular traps aggravate iron overloadâ€related liver ischaemia/reperfusion injury. British Journal of Pharmacology, 2021, 178, 3783-3796.	2.7	38
41	DNA demethylase Tet2 suppresses cisplatin-induced acute kidney injury. Cell Death Discovery, 2021, 7, 167.	2.0	11
42	Platelet count as an independent risk factor for acute kidney injury induced by rhabdomyolysis. Chinese Medical Journal, 2021, 134, 1738-1740.	0.9	1
43	Heme Burden and Ensuing Mechanisms That Protect the Kidney: Insights from Bench and Bedside. International Journal of Molecular Sciences, 2021, 22, 8174.	1.8	3
44	Platelet-Cancer Interplay: Molecular Mechanisms and New Therapeutic Avenues. Frontiers in Oncology, 2021, 11, 665534.	1.3	50
45	Differential Regulation of Damage-Associated Molecular Pattern Release in a Mouse Model of Skeletal Muscle Ischemia/Reperfusion Injury. Frontiers in Immunology, 2021, 12, 628822.	2.2	4
46	Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Frontiers in Immunology, 2021, 12, 749659.	2.2	10
47	Nicotinamide retains Klotho expression and ameliorates rhabdomyolysis-induced acute kidney injury. Nutrition, 2021, 91-92, 111376.	1.1	8
48	The double-edged role of neutrophil extracellular traps in inflammation. Biochemical Society Transactions, 2019, 47, 1921-1930.	1.6	39
49	Abnormal liver function tests associated with severe rhabdomyolysis. World Journal of Gastroenterology, 2020, 26, 1020-1028.	1.4	49
50	Extracellular Histones Bind Vascular Glycosaminoglycans and Inhibit the Anti-Inflammatory Function of Antithrombin Cellular Physiology and Biochemistry, 2021, 55, 605-617.	1.1	9
51	The kidney gets caught in a macrophage trap. Science Immunology, 2018, 3, .	5.6	2
52	Three Cases of Rhabdomyolysis Induced by Viral Infections in Children and Literature Review. Chinese Medical Sciences Journal, 2020, 35, 383.	0.2	2
53	Role of Extracellular Traps Promoted by Intestinal Parasites. Relationship with Virulence. , 2020, , 171-192.		0
54	Causes of AKI (Prerenal, Intrarenal, Postrenal). , 2020, , 21-32.		0

#	Article	IF	CITATIONS
55	Peptidylarginine Deiminase 2 in Host Immunity: Current Insights and Perspectives. Frontiers in Immunology, 2021, 12, 761946.	2.2	8
56	Mechanisms supporting potential use of bone marrow-derived mesenchymal stem cells in psychocardiology. American Journal of Translational Research (discontinued), 2019, 11, 6717-6738.	0.0	0
57	COVID-19 associated thromboinflammation of renal capillary: potential mechanisms and treatment. American Journal of Translational Research (discontinued), 2020, 12, 7640-7656.	0.0	6
58	Rhabdomyolysis: Revisited. Ulster Medical Journal, 2021, 90, 61-69.	0.2	0
59	Interaction Between Macrophage Extracellular Traps and Colon Cancer Cells Promotes Colon Cancer Invasion and Correlates With Unfavorable Prognosis. Frontiers in Immunology, 2021, 12, 779325.	2.2	14
60	Association of D-dimer and acute kidney injury associated with rhabdomyolysis in patients with exertional heatstroke: an over 10-year intensive care survey. Renal Failure, 2021, 43, 1561-1568.	0.8	6
61	Macrophage Extracellular Traps: Current Opinions and the State of Research regarding Various Diseases. Journal of Immunology Research, 2022, 2022, 1-10.	0.9	9
62	Systemic Review of Animal Models Used in the Study of Crush Syndrome. Shock, 2022, 57, 469-478.	1.0	4
63	Heatstroke-induced coagulopathy: Biomarkers, mechanistic insights, and patient management. EClinicalMedicine, 2022, 44, 101276.	3.2	21
64	Vaccination Accelerates Liver-Intrinsic Expression of Megakaryocyte-Related Genes in Response to Blood-Stage Malaria. Vaccines, 2022, 10, 287.	2.1	1
65	Reduced Neutrophil Extracellular Trap Formation During Ischemia Reperfusion Injury in C3 KO Mice: C3 Requirement for NETs Release. Frontiers in Immunology, 2022, 13, 781273.	2.2	17
66	Myoglobin promotes macrophage polarization to M1 type and pyroptosis via the RIG-I/Caspase1/GSDMD signaling pathway in CS-AKI. Cell Death Discovery, 2022, 8, 90.	2.0	22
67	Neutrophil Extracellular Traps, Angiogenesis and Cancer. Biomedicines, 2022, 10, 431.	1.4	39
68	Role of macrophage extracellular traps in innate immunity and inflammatory disease. Biochemical Society Transactions, 2022, 50, 21-32.	1.6	16
69	Dynamics of Plasma and Urinary Extracellular DNA in Acute Kidney Injury. International Journal of Molecular Sciences, 2022, 23, 3402.	1.8	6
71	Early Plasma Nuclear DNA, Mitochondrial DNA, and Nucleosome Concentrations Are Associated With Acute Kidney Injury in Critically III Trauma Patients. , 2022, 4, e0663.		5
72	Nephroprotective Plants: A Review on the Use in Pre-Renal and Post-Renal Diseases. Plants, 2022, 11, 818.	1.6	11
73	Plasma Donor-Derived Cell-Free DNA Levels Are Associated With the Inflammatory Burden and Macrophage Extracellular Trap Activity in Renal Allografts. Frontiers in Immunology, 2022, 13, 796326.	2.2	0

#	Article	IF	CITATIONS
74	Extracellular CIRP Induces Macrophage Extracellular Trap Formation Via Gasdermin D Activation. Frontiers in Immunology, 2021, 12, 780210.	2.2	13
76	Extracellular DNA Traps: Origin, Function and Implications for Anti-Cancer Therapies. Frontiers in Oncology, 2022, 12, 869706.	1.3	9
77	An auto-photoacoustic melanin-based drug delivery nano-platform for self-monitoring of acute kidney injury therapy via a triple-collaborative strategy. Acta Biomaterialia, 2022, 147, 327-341.	4.1	14
78	dsDNA-induced AIM2 pyroptosis halts aberrant inflammation during rhabdomyolysis-induced acute kidney injury. Cell Death and Differentiation, 2022, 29, 2487-2502.	5.0	23
79	Macrophages in Renal Injury, Repair, Fibrosis Following Acute Kidney Injury and Targeted Therapy. Frontiers in Immunology, 0, 13, .	2.2	7
80	The Role of Platelets in Diabetic Kidney Disease. International Journal of Molecular Sciences, 2022, 23, 8270.	1.8	7
81	Role of Tollâ€like receptor 4 in intravascular hemolysisâ€mediated injury. Journal of Pathology, 2022, 258, 236-249.	2.1	2
82	Morphologic Analysis of M2 Macrophage in Glioblastoma: Involvement of Macrophage Extracellular Traps (METs). Acta Histochemica Et Cytochemica, 2022, 55, 111-118.	0.8	2
83	Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death and Disease, 2022, 13, .	2.7	14
84	Melatonin Alleviates Acute Kidney Injury by Inhibiting NRF2/Slc7a11 Axis-Mediated Ferroptosis. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-24.	1.9	24
85	Functional consequence of myeloid ferritin heavy chain on acute and chronic effects of rhabdomyolysis-induced kidney injury. Frontiers in Medicine, 0, 9, .	1.2	1
86	Natural polyphenols convert proteins into histone-binding ligands. Journal of Biological Chemistry, 2022, 298, 102529.	1.6	4
87	The role of extracellular traps in ischemia reperfusion injury. Frontiers in Immunology, 0, 13, .	2.2	7
88	Zinc chelator treatment in crush syndrome model mice attenuates ischemia–reperfusion-induced muscle injury due to suppressing of neutrophil infiltration. Scientific Reports, 2022, 12, .	1.6	1
89	Molecular Mechanisms of Rhabdomyolysis-Induced Kidney Injury: From Bench to Bedside. Kidney International Reports, 2023, 8, 17-29.	0.4	9
90	Extracellular DNA concentrations in various aetiologies of acute kidney injury. Scientific Reports, 2022, 12, .	1.6	6
91	Hydrogenated Germanene Nanosheets as an Antioxidative Defense Agent for Acute Kidney Injury Treatment. Advanced Science, 2022, 9, .	5.6	13
92	Heme Proteins and Kidney Injury: Beyond Rhabdomyolysis. Kidney360, 2022, 3, 1969-1979.	0.9	8

#	Article	IF	CITATIONS
93	EGFR mediated the renal cell apoptosis in rhabdomyolysis-induced model via upregulation of autophagy. Life Sciences, 2022, 309, 121050.	2.0	1
94	Intratumoral neutrophil extracellular traps are associated with unfavorable clinical outcomes and immunogenic context in pancreatic ductal adenocarcinoma. Frontiers in Immunology, 0, 13, .	2.2	6
95	Neutrophil Extracellular Traps in Asthma: Friends or Foes?. Cells, 2022, 11, 3521.	1.8	7
96	Activation of EP4 alleviates AKI-to-CKD transition through inducing CPT2-mediated lipophagy in renal macrophages. Frontiers in Pharmacology, 0, 13, .	1.6	2
97	Macrophage Extracellular Traps Exacerbate Secondary Spinal Cord Injury by Modulating Macrophage/Microglia Polarization via LL37/P2X7R/NF-κB Signaling Pathway. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-20.	1.9	4
98	Extracellular traps from activated vascular smooth muscle cells drive the progression of atherosclerosis. Nature Communications, 2022, 13, .	5.8	11
99	Basophils from allergy to cancer. Frontiers in Immunology, 0, 13, .	2.2	12
100	Novel perception of neutrophil extracellular traps in gouty inflammation. International Immunopharmacology, 2023, 115, 109642.	1.7	2
101	Bystander effect of SARS-CoV-2 spike protein on human monocytic THP-1 cell activation and initiation of prothrombogenic stimulus representing severe COVID-19. Journal of Inflammation, 2022, 19, .	1.5	4
102	Ferroptosis in acute kidney injury following crush syndrome: A novel target for treatment. Journal of Advanced Research, 2023, 54, 211-222.	4.4	4
103	Inflammation, coagulation, and cellular injury in heat-induced shock. Inflammation Research, 2023, 72, 463-473.	1.6	2
104	Extracellular histone release by renal cells after warm and cold ischemic kidney injury: Studies in an ex-vivo porcine kidney perfusion model. PLoS ONE, 2023, 18, e0279944.	1.1	2
105	New insight into the composition of extracellular traps released by macrophages exposed to different types of inducers. Free Radical Biology and Medicine, 2023, 202, 97-109.	1.3	4
106	Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166688.	1.8	5
108	Efficacy of On-line Hemodiafiltration for Rhabdomyolysis Presenting with Acute Kidney Injury due to Unexpected Drug Abuse. Internal Medicine, 2023, , .	0.3	0
110	Platelet, a key regulator of innate and adaptive immunity. Frontiers in Medicine, 0, 10, .	1.2	3
111	NETs-Induced Thrombosis Impacts on Cardiovascular and Chronic Kidney Disease. Circulation Research, 2023, 132, 933-949.	2.0	8
112	Study of the Relationship Between Liver Function Markers and Traumatic Rhabdomyolysis: A Retrospective Study of Hemorrhagic Patients Admitted to Intensive Care Unit in a Level I Trauma Center, Anesthesia and Analgesia, 2023, 136, 842-851.	1.1	Ο

#	Article	IF	CITATIONS
113	Urinary liverâ€ŧype fatty acid binding protein is increased in the early stages of the disease with a risk of acute kidney injury induced by histone. Nephrology, 2023, 28, 345-355.	0.7	2