Ambient air pollution, adipokines, and glucose homeost

Environment International 111, 14-22 DOI: 10.1016/j.envint.2017.11.010

Citation Report

#	Article	IF	CITATIONS
1	Associations of Exposure to Air Pollution with Insulin Resistance: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 2018, 15, 2593.	1.2	35
2	Air Pollution and Cardiovascular Disease: a Focus on Vulnerable Populations Worldwide. Current Epidemiology Reports, 2018, 5, 370-378.	1.1	54
3	Lack of association between particulate air pollution and blood glucose levels and diabetic status in peri-urban India. Environment International, 2019, 131, 105033.	4.8	22
4	Air Pollution, Oxidative Stress, and Diabetes: a Life Course Epidemiologic Perspective. Current Diabetes Reports, 2019, 19, 58.	1.7	60
5	Hydroxytyrosol prevents PM2.5-induced adiposity and insulin resistance by restraining oxidative stress related NF-IPB pathway and modulation of gut microbiota in a murine model. Free Radical Biology and Medicine, 2019, 141, 393-407.	1.3	45
6	Susceptibility Variations in Air Pollution Health Effects: Incorporating Neuroendocrine Activation. Toxicologic Pathology, 2019, 47, 962-975.	0.9	18
7	Air pollution and diabetes-related biomarkers in non-diabetic adults: A pathway to impaired glucose metabolism?. Environment International, 2019, 124, 370-392.	4.8	38
8	Associations between ambient air pollution and mortality from all causes, pneumonia, and congenital heart diseases among children aged under 5 years in Beijing, China: A population-based time series study. Environmental Research, 2019, 176, 108531.	3.7	40
9	Exposure to Nanoscale Particulate Matter from Gestation to Adulthood Impairs Metabolic Homeostasis in Mice. Scientific Reports, 2019, 9, 1816.	1.6	21
10	Association between maternal exposure to pollutant particulate matter 2.5 and congenital heart defects: a systematic review. JBI Database of Systematic Reviews and Implementation Reports, 2019, 17, 1695-1716.	1.7	12
11	Air pollution and kidney disease: review of current evidence. CKJ: Clinical Kidney Journal, 2019, 12, 19-32.	1.4	78
12	Prediabetes management in the Middle East, Africa and Russia: Current status and call for action. Diabetes and Vascular Disease Research, 2019, 16, 213-226.	0.9	15
13	Effects of ambient particulate matter on fasting blood glucose: A systematic review and meta-analysis. Environmental Pollution, 2020, 258, 113589.	3.7	23
14	The relationship between long-term exposure to PM2.5 and fasting plasma glucose levels in Chinese children and adolescents aged 6–17Âyears: A national cross-sectional study. Science of the Total Environment, 2020, 710, 136211.	3.9	8
15	Long-term exposure to ambient fine particulate matter and fasting blood glucose level in a Chinese elderly cohort. Science of the Total Environment, 2020, 717, 137191.	3.9	8
16	Association of ambient particle pollution with gestational diabetes mellitus and fasting blood glucose levels in pregnant women from two Chinese birth cohorts. Science of the Total Environment, 2021, 762, 143176.	3.9	20
17	Traffic-related air pollution is associated with glucose dysregulation, blood pressure, and oxidative stress in children. Environmental Research, 2021, 195, 110870.	3.7	22
18	Associations of residing greenness and long-term exposure to air pollution with glucose homeostasis markers. Science of the Total Environment, 2021, 776, 145834.	3.9	18

	Сітат	CITATION REPORT		
#	Article	IF	CITATIONS	
19	Traffic-related air pollution, biomarkers of metabolic dysfunction, oxidative stress, and CC16 in children. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 530-537.	1.8	10	
20	Does ozone inhalation cause adverse metabolic effects in humans? A systematic review. Critical Reviews in Toxicology, 2021, 51, 467-508.	1.9	8	
21	Ozone Exposure, Outdoor Physical Activity, and Incident Type 2 Diabetes in the SALSA Cohort of Older Mexican Americans. Environmental Health Perspectives, 2021, 129, 97004.	2.8	16	
22	Longitudinal associations between ambient air pollution and insulin sensitivity: results from the KORA cohort study. Lancet Planetary Health, The, 2021, 5, e39-e49.	5.1	40	
23	Associations between changes in adipokines and exposure to fine and ultrafine particulate matter in ambient air in Beijing residents with and without pre-diabetes. BMJ Open Diabetes Research and Care, 2020, 8, e001215.	1.2	9	
24	The effect of short-term fine particulate matter exposure on glucose homeostasis: A panel study in healthy adults. Atmospheric Environment, 2022, 268, 118769.	1.9	7	
25	Evidence from toxicological and mechanistic studies. , 2020, , 229-279.		2	
26	Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. Journal of Hazardous Materials, 2022, 424, 127462.	6.5	11	
27	Impact of polluting fuels for cooking on diabetes mellitus and glucose metabolism in south urban China. Indoor Air, 2022, 32, .	2.0	4	
28	The Association between Exposure to Residential Indoor Volatile Organic Compounds and Measures of Central Arterial Stiffness in Healthy Middle-Aged Men and Women. International Journal of Environmental Research and Public Health, 2022, 19, 981.	1.2	5	
29	Near-roadway air pollution, immune cells and adipokines among obese young adults. Environmental Health, 2022, 21, 36.	1.7	4	
30	Ceramide metabolism mediates the impaired glucose homeostasis following short-term black carbon exposure: A targeted lipidomic analysis. Science of the Total Environment, 2022, 829, 154657.	3.9	8	
31	Effects of ambient air pollution on glycosylated hemoglobin: a systematic review and meta-analysis. Environmental Science and Pollution Research, 2022, 29, 53954-53966.	2.7	5	
32	Association of Chronic Exposure to Black Carbon Particles ÂAnd Risk of Prediabetes and Metabolic Syndrome in Children and Adolescents: Results from the Idefics/I.Family Study. SSRN Electronic Journal, 0, , .	0.4	0	
33	Association of ambient fine particulate matter exposure with gestational diabetes mellitus and blood glucose levels during pregnancy. Environmental Research, 2022, 214, 114008.	3.7	8	
34	Joint effect of multiple air pollutants on cardiometabolic health in normal-weight and obese adults: A novel insight into the role of circulating free fatty acids. Science of the Total Environment, 2023, 856, 159014.	3.9	3	
35	Association between long-term air pollution exposure and insulin resistance independent of abdominal adiposity in Korean adults. Scientific Reports, 2022, 12, .	1.6	3	
36	Association of urinary and ambient black carbon, and other ambient air pollutants with risk of prediabetes and metabolic syndrome in children and adolescents. Environmental Pollution, 2023, 317, 120773.	3.7	1	

		TIATION REPORT		
#	Article	IF	CITATIONS	
37	The modifiable effect of vitamin D in the association between long-term exposure to ambient air pollution and glycosylated hemoglobin in patients with hypertension. Nutrition, 2023, 107, 111920.	1.1	2	
38	Ambient air pollution and gestational diabetes mellitus: An updated systematic review and meta-analysis. Ecotoxicology and Environmental Safety, 2023, 255, 114802.	2.9	4	