3D printing of shape-conformable thermoelectric mater Bi2Te3-based inks

Nature Energy 3, 301-309

DOI: 10.1038/s41560-017-0071-2

Citation Report

#	Article	IF	CITATIONS
1	Three-dimensional helical inorganic thermoelectric generators and photodetectors for stretchable and wearable electronic devices. Journal of Materials Chemistry C, 2018, 6, 4866-4872.	2.7	63
2	Next step in manufacturing. Nature Energy, 2018, 3, 259-260.	19.8	2
3	Concept Justification of Future 3DPVS and Novel Approach towards its Conceptual Development. Designs, 2018, 2, 23.	1.3	4
4	Laser additive manufacturing of powdered bismuth telluride. Journal of Materials Research, 2018, 33, 4031-4039.	1.2	23
5	Recent advances in inorganic material thermoelectrics. Inorganic Chemistry Frontiers, 2018, 5, 2380-2398.	3.0	63
6	Trinity of Three-Dimensional (3D) Scaffold, Vibration, and 3D Printing on Cell Culture Application: A Systematic Review and Indicating Future Direction. Bioengineering, 2018, 5, 57.	1.6	39
7	3D Conformal Printing and Photonic Sintering of Highâ€Performance Flexible Thermoelectric Films Using 2D Nanoplates. Advanced Functional Materials, 2019, 29, 1901930.	7.8	89
8	Roll-to-roll printing of spatial wearable thermoelectrics. Manufacturing Letters, 2019, 21, 28-34.	1.1	20
9	Freely Shapable and 3D Porous Carbon Nanotube Foam Using Rapid Solvent Evaporation Method for Flexible Thermoelectric Power Generators. Advanced Energy Materials, 2019, 9, 1900914.	10.2	63
10	Novel, shape optimised, TEG subsystem design. Procedia Computer Science, 2019, 159, 2607-2615.	1.2	1
11	Flexible thermoelectric power generators fabricated using graphene/PEDOT:PSS nanocomposite films. Journal of Materials Science: Materials in Electronics, 2019, 30, 20369-20375.	1.1	17
12	3D Printing of Solutionâ€Processable 2D Nanoplates and 1D Nanorods for Flexible Thermoelectrics with Ultrahigh Power Factor at Lowâ€Medium Temperatures. Advanced Science, 2019, 6, 1901788.	5.6	33
13	A honeycomb-like paper-based thermoelectric generator based on a Bi ₂ Te ₃ /bacterial cellulose nanofiber coating. Nanoscale, 2019, 11, 17725-17735.	2.8	43
14	Flexible, High-Power Density, Wearable Thermoelectric Nanogenerator and Self-Powered Temperature Sensor. ACS Applied Materials & Sensor. ACS ACS Applied Materials & Sensor. ACS Applied Mater	4.0	102
15	Printed Flexible î½-Thermoelectric Device Based on Hybrid Bi ₂ Te ₃ /PVA Composites. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8969-8981.	4.0	42
16	Assembly Strategy and Performance Evaluation of Flexible Thermoelectric Devices. Advanced Science, 2019, 6, 1900584.	5.6	81
17	3D Printed SnSe Thermoelectric Generators with High Figure of Merit. Advanced Energy Materials, 2019, 9, 1900201.	10.2	71
18	Heterostructures in two-dimensional colloidal metal chalcogenides: Synthetic fundamentals and applications. Nano Research, 2019, 12, 1750-1769.	5.8	33

#	Article	IF	Citations
19	Printable Thermoelectric Materials and Applications. Frontiers in Materials, 2019, 6, .	1.2	10
20	Concurrent defects of intrinsic tellurium and extrinsic silver in an n-type Bi2Te2.88Se0.15 thermoelectric material. Nano Energy, 2019, 60, 26-35.	8.2	27
21	Solution-Based Synthesis and Processing of Metal Chalcogenides for Thermoelectric Applications. Applied Sciences (Switzerland), 2019, 9, 1511.	1.3	12
22	Enhanced Antioxidation and Thermoelectric Properties of the Flexible Screen-Printed Bi ₂ Te ₃ Films through Interface Modification. ACS Applied Energy Materials, 2019, 2, 2828-2836.	2.5	39
23	Review and Trends of Thermoelectric Generator Heat Recovery in Automotive Applications. IEEE Transactions on Vehicular Technology, 2019, 68, 5366-5378.	3.9	45
24	Rheological design of 3D printable all-inorganic inks using BiSbTe-based thermoelectric materials. Journal of Rheology, 2019, 63, 291-304.	1.3	43
25	Fabrication of Transparent Paper-Based Flexible Thermoelectric Generator for Wearable Energy Harvester Using Modified Distributor Printing Technology. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10301-10309.	4.0	79
26	Colloidal nanoparticle inks for printing functional devices: emerging trends and future prospects. Journal of Materials Chemistry A, 2019, 7, 23301-23336.	5.2	94
27	3D extruded composite thermoelectric threads for flexible energy harvesting. Nature Communications, 2019, 10, 5590.	5.8	56
28	Earth abundant, non-toxic, 3D printed Cu _{2â^'x} S with high thermoelectric figure of merit. Journal of Materials Chemistry A, 2019, 7, 25586-25592.	5.2	15
29	Ink Processing for Thermoelectric Materials and Powerâ€Generating Devices. Advanced Materials, 2019, 31, e1804930.	11.1	48
30	Decoupling effect of electrical and thermal properties of Bi2Te3-polypyrrole hybrid material causing remarkable enhancement in thermoelectric performance. Journal of Industrial and Engineering Chemistry, 2019, 71, 119-126.	2.9	8
31	Additive manufacturing of thermoelectric materials via fused filament fabrication. Applied Materials Today, 2019, 15, 77-82.	2.3	44
32	Vertical Silicon Nanowire Thermoelectric Modules with Enhanced Thermoelectric Properties. Nano Letters, 2019, 19, 747-755.	4.5	40
33	Phase structure analysis and pyroelectric energy harvesting performance of Ba(Hf _{<i>x</i>} Ti _{1<i>â€x</i>} O ₃ ceramics. Journal of the American Ceramic Society, 2019, 102, 3623-3629.	1.9	9
34	Smart inks based on AIPE-active heteroleptic Ir(III) complexes. Sensors and Actuators B: Chemical, 2019, 279, 385-392.	4.0	15
35	Fiberâ€Based Energy Conversion Devices for Humanâ€Body Energy Harvesting. Advanced Materials, 2020, 32, e1902034.	11.1	204
36	Effect of static magnetic field on mold corrosion of printed circuit boards. Bioelectrochemistry, 2020, 131, 107394.	2.4	9

#	Article	IF	Citations
37	Functional Inks for Printable Energy Storage Applications based on 2 D Materials. ChemSusChem, 2020, 13, 1330-1353.	3.6	25
38	Smart Textileâ€Integrated Microelectronic Systems for Wearable Applications. Advanced Materials, 2020, 32, e1901958.	11.1	427
39	Thermal Stability and Mechanical Response of Bi ₂ Te ₃ -Based Materials for Thermoelectric Applications. ACS Applied Energy Materials, 2020, 3, 2078-2089.	2.5	56
40	3D-printing of shape-controllable thermoelectric devices with enhanced output performance. Energy, 2020, 195, 116892.	4.5	30
41	Solar evaporation for simultaneous steam and power generation. Journal of Materials Chemistry A, 2020, 8, 513-531.	5.2	132
42	Development of copper powder paste for direct printing and soft mold casting. Additive Manufacturing, 2020, 31, 100992.	1.7	5
43	3D Printing of Textiles: Potential Roadmap to Printing with Fibers. Advanced Materials, 2020, 32, e1902086.	11,1	100
44	Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy, 2020, 78, 105186.	8.2	185
45	Tuning Optimum Temperature Range of Bi ₂ Te ₃ â€Based Thermoelectric Materials by Defect Engineering. Chemistry - an Asian Journal, 2020, 15, 2775-2792.	1.7	46
46	Analysis of optoelectronic and trasnport properties of magnesium based MgSc2X4 (X=S, Se) spinels for solar cell and energy storage device applications. Ceramics International, 2020, 46, 26637-26645.	2.3	33
47	Understanding Oxidation Resistance of Half-Heusler Alloys for in-Air High Temperature Sustainable Thermoelectric Generators. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36706-36714.	4.0	25
48	High-performance compliant thermoelectric generators with magnetically self-assembled soft heat conductors for self-powered wearable electronics. Nature Communications, 2020, 11, 5948.	5.8	169
49	Scalable thermoelectric fibers for multifunctional textile-electronics. Nature Communications, 2020, 11, 6006.	5.8	122
50	3D printing of metal-based materials for renewable energy applications. Nano Research, 2021, 14, 2105-2132.	5.8	31
51	Direct ink writing advances in multi-material structures for a sustainable future. Journal of Materials Chemistry A, 2020, 8, 15646-15657.	5.2	167
52	Density functional theory study of electronic, optical and transport properties of magnesium based MgY2Z4 (Z = S and Se) spinels. Current Applied Physics, 2020, 20, 1097-1102.	1.1	26
53	Remarkable elasticity and enzymatic degradation of bio-based poly(butylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf	50 ₄ 102 Td	l (adipate- <i>c</i>
54	Flexible cellulose nanofiber/Bi2Te3 composite film for wearable thermoelectric devices. Journal of Power Sources, 2020, 479, 229044.	4.0	42

#	Article	IF	CITATIONS
55	Innovative design of bismuth-telluride-based thermoelectric micro-generators with high output power. Energy and Environmental Science, 2020, 13, 3579-3591.	15.6	32
56	Emerging Thermoelectric Generators Based on Printed and Flexible Electronics Technology. , 2020, , .		4
57	Liquid Thermocells Enable Low-Grade Heat Harvesting. Matter, 2020, 3, 1400-1402.	5.0	19
58	Stretchable Nanolayered Thermoelectric Energy Harvester on Complex and Dynamic Surfaces. Nano Letters, 2020, 20, 4445-4453.	4.5	106
59	Thermoelectric materials and devices fabricated by additive manufacturing. Vacuum, 2020, 178, 109384.	1.6	42
60	Combined hot extrusion and spark plasma sintering method for producing highly textured thermoelectric Bi2Te3 alloys. Journal of the European Ceramic Society, 2020, 40, 3042-3048.	2.8	11
61	A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Advances, 2020, 2, 3244-3251.	2.2	23
62	Emerging Materials and Strategies for Personal Thermal Management. Advanced Energy Materials, 2020, 10, 1903921.	10.2	290
63	Enhanced Electrical Transport Properties via Defect Control for Screen-Printed Bi ₂ Te ₃ Films over a Wide Temperature Range. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16630-16638.	4.0	22
64	Fabrication of Skutterudite-Based Tubular Thermoelectric Generator. Energies, 2020, 13, 1106.	1.6	9
65	Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Advances, 2020, 10, 8421-8434.	1.7	46
66	Recent advances, design guidelines, and prospects of flexible organic/inorganic thermoelectric composites. Materials Advances, 2020, 1, 1038-1054.	2.6	37
67	A Comprehensive Review of Strategies and Approaches for Enhancing the Performance of Thermoelectric Module. Energies, 2020, 13, 3142.	1.6	38
68	Enhancing the performance of fully-scaled structure-adjustable 3D thermoelectric devices based on cold–press sintering and molding. Energy, 2020, 206, 118096.	4.5	7
69	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuliâ€Responsive Actuation. Advanced Science, 2020, 7, 1903048.	5.6	51
70	Flexible ternary carbon black/Bi2Te3 based alloy/polylactic acid thermoelectric composites fabricated by additive manufacturing. Journal of Materiomics, 2020, 6, 293-299.	2.8	27
71	Conformable core-shell fiber tactile sensor by continuous tubular deposition modeling with water-based sacrificial coaxial writing. Materials and Design, 2020, 190, 108567.	3.3	28
72	Maximizing power generation from ambient stray magnetic fields around smart infrastructures enabling self-powered wireless devices. Energy and Environmental Science, 2020, 13, 1462-1472.	15.6	59

#	ARTICLE	IF	Citations
73	Redesign high-performance flexible thermoelectrics: From mathematical algorithm to artificial cracks. Applied Physics Letters, 2020, 116 , .	1.5	8
74	In-situ resonant band engineering of solution-processed semiconductors generates high performance n-type thermoelectric nano-inks. Nature Communications, 2020, 11, 2069.	5.8	23
75	All-Printed In-Plane Supercapacitors by Sequential Additive Manufacturing Process. ACS Applied Energy Materials, 2020, 3, 4965-4973.	2.5	32
76	High-Performance Ag–Se-Based n-Type Printed Thermoelectric Materials for High Power Density Folded Generators. ACS Applied Materials & Interfaces, 2020, 12, 19655-19663.	4.0	48
77	A new rapid synthesis of thermoelectric Sb2Te3 ingots using selective laser melting 3D printing. Materials Science in Semiconductor Processing, 2021, 123, 105551.	1.9	15
78	Environmental profile of thermoelectrics for applications with continuous waste heat generation via life cycle assessment. Science of the Total Environment, 2021, 752, 141674.	3.9	8
79	Hierarchically-porous metallic scaffolds via 3D extrusion and reduction of oxide particle inks with salt space-holders. Additive Manufacturing, 2021, 37, 101637.	1.7	8
80	Direct ink writing of energy materials. Materials Advances, 2021, 2, 540-563.	2.6	120
81	Organic thermoelectric thin films with large p-type and n-type power factor. Journal of Materials Science, 2021, 56, 4291-4304.	1.7	14
82	Shape-Versatile 3D Thermoelectric Generators by Additive Manufacturing. ACS Energy Letters, 2021, 6, 85-91.	8.8	39
83	The tactics of thermoelectric scaffolds with its advancements in engineering applications. Polymer-Plastics Technology and Materials, 2021, 60, 1-24.	0.6	4
84	Boosting the performance of printed thermoelectric materials by inducing morphological anisotropy. Nanoscale, 2021, 13, 5202-5215.	2.8	7
85	Scalable nanomanufacturing of chalcogenide inks: a case study on thermoelectric V–VI nanoplates. Journal of Materials Chemistry A, 2021, 9, 22555-22562.	5.2	10
86	Energy Harvesters for Wearable Electronics and Biomedical Devices. Advanced Materials Technologies, 2021, 6, 2000771.	3.0	49
87	Printed flexible thermoelectric materials and devices. Journal of Materials Chemistry A, 2021, 9, 19439-19464.	5.2	23
88	CALPHAD as a powerful technique for design and fabrication of thermoelectric materials. Journal of Materials Chemistry A, 2021, 9, 6634-6649.	5.2	16
89	Abâ€initio study of optoâ€electronic and thermoelectric properties of direct bandgap double perovskites <scp> Rb ₂ XGaBr ₆ </scp> (XNa, K). International Journal of Energy Research, 2021, 45, 9241-9251.	2.2	18
90	Advanced fibrous materials for wearable energy harvesting applications., 2021,, 93-109.		2

#	Article	IF	CITATIONS
91	Fully printed origami thermoelectric generators for energy-harvesting. Npj Flexible Electronics, 2021, 5, .	5.1	86
93	Ductile Ag ₂₀ S ₇ Te ₃ with Excellent Shapeâ€Conformability and High Thermoelectric Performance. Advanced Materials, 2021, 33, e2007681.	11.1	65
94	High-performance wearable thermoelectric generator with self-healing, recycling, and Lego-like reconfiguring capabilities. Science Advances, $2021, 7, \ldots$	4.7	189
95	Composition-segmented BiSbTe thermoelectric generator fabricated by multimaterial 3D printing. Nano Energy, 2021, 81, 105638.	8.2	43
96	Design and optimization of projection stereolithography additive manufacturing system with multi-pass scanning. Rapid Prototyping Journal, 2021, 27, 636-642.	1.6	6
97	Current advances and future perspectives of additive manufacturing for functional polymeric materials and devices. SusMat, 2021, 1, 127-147.	7.8	135
98	Three-Dimensional Printing of Self-Assembled Dipeptides. ACS Applied Materials & Dipeptides. Dipeptides. ACS Applied Materials & Dipeptides. Dipeptide	4.0	16
99	Improved Electrical, Thermal, and Thermoelectric Properties Through Sampleâ€toâ€Sample Fluctuations in Nearâ€Percolation Threshold Composite Materials. Advanced Theory and Simulations, 2021, 4, 2000284.	1.3	4
100	Dopingâ€Induced Viscoelasticity in PbTe Thermoelectric Inks for 3D Printing of Powerâ€Generating Tubes. Advanced Energy Materials, 2021, 11, 2100190.	10.2	25
101	Cu2Se-based thermoelectric cellular architectures for efficient and durable power generation. Nature Communications, 2021, 12, 3550.	5.8	41
102	Analysis of Direct Band Gap A2ScInI6 (A=Rb, Cs) Double Perovskite Halides Using DFT Approach for Renewable Energy Devices. Journal of Materials Research and Technology, 2021, , .	2.6	45
103	Extreme Thin Peltier Modules Fabricated by the Printed Electronics Method., 2021,,.		0
104	Additive Manufacturing of Porous Ceramics With Foaming Agent., 2021,,.		0
105	Digital Light Processing 3D Printing of Healable and Recyclable Polymers with Tailorable Mechanical Properties. ACS Applied Materials & Interfaces, 2021, 13, 34954-34961.	4.0	41
106	Enhanced thermoelectric performance of UV-curable silver (I) selenide-based composite for energy harvesting. Scientific Reports, 2021, 11, 16683.	1.6	5
107	Printable Smart Materials and Devices: Strategies and Applications. Chemical Reviews, 2022, 122, 5144-5164.	23.0	121
108	Exploration of New Double Peroviskites Cs2YInX6 ($X = Cl, Br, I$) for Opto-Electronic and Sustainable Energy Applications. ECS Journal of Solid State Science and Technology, 2021, 10, 084007.	0.9	2
109	Additive Manufacturing of Porous Ceramics With Foaming Agent. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2022, 144, .	1.3	7

#	ARTICLE	IF	CITATIONS
110	Review of Fiber-Based Three-Dimensional Printing for Applications Ranging from Nanoscale Nanoparticle Alignment to Macroscale Patterning. ACS Applied Nano Materials, 2021, 4, 7538-7562.	2.4	21
111	Direct ink writing of three-dimensional thermoelectric microarchitectures. Nature Electronics, 2021, 4, 579-587.	13.1	56
112	Thermoelectric coolers as thermal management systems for medical applications: Design, optimization, and advancement. Nano Energy, 2021, 90, 106572.	8.2	50
113	Supervariate Ceramics: Gelatinous and Monolithic Ceramics Fabricated under Ambient Conditions. Advanced Engineering Materials, 0, , 2100866.	1.6	7
114	Bi2Te3 filaments via extrusion and pressureless sintering of Bi2Te3-based inks. MRS Communications, 2021, 11, 818-824.	0.8	1
115	A tetraphenylethylene derivative with reversible luminous colours applied in data security. Journal of Luminescence, 2021, 238, 118322.	1.5	2
116	First principle study of optoelectronic and thermoelectric properties of magnesium based MgX2O4 (X) Tj ETQq0 (0 0 rgBT /	Overlock 10 T
117	Thermoelectric materials and transport physics. Materials Today Physics, 2021, 21, 100519.	2.9	77
118	Recent Advances in Functional Thermoelectric Materials for Printed Electronics., 2021,, 79-122.		0
119	Synthesis of Uniformly Sized Bi0.5Sb1.5Te3.0 Nanoparticles via Mechanochemical Process and Wet-Milling for Reduced Thermal Conductivity. Materials, 2021, 14, 536.	1.3	0
120	Simultaneous enhancements in the Seebeck coefficient and conductivity of PEDOT:PSS by blending ferroelectric BaTiO ₃ nanoparticles. Journal of Materials Chemistry A, 2021, 9, 16952-16960.	5.2	16
121	Triboelectric Charge-Driven Enhancement of the Output Voltage of BiSbTe-Based Thermoelectric Generators. ACS Energy Letters, 2021, 6, 1095-1103.	8.8	18
122	Probing of Optoelectronic and Transport Properties of Zinc Based ZnY ₂ X ₄ (X) Tj ETQqC 105001.	0 0 0 rgBT 0.9	Overlock 10
123	Crystalline Structure-Dependent Mechanical and Thermoelectric Performance in Ag2Se1â€xSx System. Research, 2020, 2020, 6591981.	2.8	55
124	Facile MWCNTs-SnSe/PEDOT:PSS ternary composite flexible thermoelectric films optimized by cold-pressing. Journal of Materials Research and Technology, 2021, 15, 4452-4460.	2.6	13
125	Allâ€Soft and Stretchable Thermogalvanic Gel Fabric for Antideformity Body Heat Harvesting Wearable. Advanced Energy Materials, 2021, 11, 2102219.	10.2	52
126	Microstructure evolution during reduction and sintering of 3D-extrusion-printed Bi2O3+TeO2 inks to form Bi2Te3. Acta Materialia, 2021, 221, 117422.	3.8	6
127	Conformal High-Power-Density Half-Heusler Thermoelectric Modules: A Pathway toward Practical Power Generators. ACS Applied Materials & Samp; Interfaces, 2021, 13, 53935-53944.	4.0	12

#	ARTICLE	IF	CITATIONS
128	Topology Optimization of Multimaterial Thermoelectric Structures. Journal of Mechanical Design, Transactions of the ASME, 2021, 143, .	1.7	5
129	Thermal Effects in 3D Printed Parts. Materials Horizons, 2020, , 43-68.	0.3	5
130	Airâ€Pressureâ€Assisted Penâ€Nib Printing for 3D Printed Electronics. Advanced Materials Technologies, 2022, 7, 2101172.	3.0	6
131	Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy, 2022, 92, 106774.	8.2	60
132	A flexible thermoelectric film based on Bi $<$ sub $>$ 2 $<$ /sub $>$ Te $<$ sub $>$ 3 $<$ /sub $>$ for wearable applications. Functional Materials Letters, 2022, 15, .	0.7	13
133	Ultra-flexible β-Cu2-δSe-based p-type printed thermoelectric films. Applied Materials Today, 2022, 26, 101269.	2.3	8
134	Construction of a cement–rebar nanoarchitecture for a solutionâ€processed and flexible film of a Bi ₂ Te ₃ /CNT hybrid toward low thermal conductivity and high thermoelectric performance. , 2022, 4, 115-128.		21
135	Printed Thermoelectrics. Advanced Materials, 2022, 34, e2108183.	11.1	33
136	2022 roadmap on 3D printing for energy. JPhys Energy, 2022, 4, 011501.	2.3	17
137	Printing thermoelectric inks toward next-generation energy and thermal devices. Chemical Society Reviews, 2022, 51, 485-512.	18.7	39
138	Additive Manufacturing of Thermoelectrics: Emerging Trends and Outlook. ACS Energy Letters, 2022, 7, 720-735.	8.8	40
139	A dynamic slicing algorithm for conformal additive manufacturing. Additive Manufacturing, 2022, 51, 102622.	1.7	5
140	Optimization of high-energy ball milling process for uniform p-type Bi-Sb-Te thermoelectric material powder. Korean Journal of Chemical Engineering, 2022, 39, 1227-1231.	1.2	5
141	Additive manufacturing of ceramic materials for energy applications: Road map and opportunities. Journal of the European Ceramic Society, 2022, 42, 3049-3088.	2.8	62
142	Flexible pCu2Se-nAg2Se thermoelectric devices via in situ conversion from printed Cu patterns. Chemical Engineering Journal, 2022, 435, 135172.	6.6	14
143	Colloidal Inorganic Ligand-Capped Nanocrystals: Fundamentals, Status, and Insights into Advanced Functional Nanodevices. Chemical Reviews, 2022, 122, 4091-4162.	23.0	52
144	RobustÂFlexible Pcu2se-Nag2se Thermoelectric DevicesÂVia in Situ Conversion from Printed Cu Patterns. SSRN Electronic Journal, 0, , .	0.4	0
145	Bi ₂ Te ₃ -based wearable thermoelectric generator with high power density: from structure design to application. Journal of Materials Chemistry C, 2022, 10, 6456-6463.	2.7	13

#	Article	IF	CITATIONS
146	Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy and Environmental Science, 2022, 15, 2374-2385.	15.6	51
147	Micro thermoelectric devices: From principles to innovative applications. Chinese Physics B, 2022, 31, 047204.	0.7	4
148	Enhancing hydrovoltaic power generation through heat conduction effects. Nature Communications, 2022, 13, 1043.	5.8	52
149	Fabrication and Excellent Performances of Bismuth Telluride-Based Thermoelectric Devices. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12276-12283.	4.0	20
150	Upcycling Silicon Photovoltaic Waste into Thermoelectrics. Advanced Materials, 2022, 34, e2110518.	11.1	25
151	Universal Solution Synthesis of Sulfide Solid Electrolytes Using Alkahest for Allâ€Solidâ€State Batteries. Advanced Materials, 2022, 34, e2200083.	11.1	36
152	Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. Small, 2022, 18, e2200679.	5.2	25
153	High-performance, flexible thermoelectric generator based on bulk materials. Cell Reports Physical Science, 2022, 3, 100780.	2.8	24
154	Exceptionally Heavy Doping Boosts the Performance of Iron Silicide for Refractory Thermoelectrics. Advanced Energy Materials, 2022, 12, .	10.2	17
155	Thermoelectrics for medical applications: Progress, challenges, and perspectives. Chemical Engineering Journal, 2022, 437, 135268.	6.6	101
156	Chemical Transformations of Colloidal Semiconductor Nanocrystals Advance Their Applications. Journal of Physical Chemistry Letters, 2021, 12, 12310-12322.	2.1	5
157	Preparation and Inâ€Situ Highâ€Throughput Screening of Bi Thixotropic Ink. Advanced Materials Interfaces, 2022, 9, 2101691.	1.9	0
158	Realizing High Thermoelectric Performance of Bi-Sb-Te-Based Printed Films through Grain Interface Modification by an In Situ-Grown β-Cu _{2-δ} Se Phase. ACS Applied Materials & mp; Interfaces, 2021, 13, 61386-61395.	4.0	11
160	Additive Manufacturing of Bulk Thermoelectric Architectures: A Review. Energies, 2022, 15, 3121.	1.6	9
161	Structured illumination with thermal imaging (SI-TI): A dynamically reconfigurable metrology for parallelized thermal transport characterization. Applied Physics Reviews, 2022, 9, .	5.5	3
162	Direct ink writing of high-performance Bi ₂ Te ₃ -based thermoelectric materials using quasi-inorganic inks and interface engineering. Journal of Materials Chemistry A, 2022, 10, 12921-12927.	5. 2	8
163	Synthesis, characterization, and thermoelectric properties of poly($\langle i \rangle p \langle i \rangle$) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50, .	0 107 Td (1.5	â€phenyleneo 5
164	Solution-Processed Hole-Doped SnSe Thermoelectric Thin-Film Devices for Low-Temperature Power Generation. ACS Energy Letters, 2022, 7, 2092-2101.	8.8	17

#	Article	IF	CITATIONS
165	Flexible thermoelectric generators prepared by dispenser printing technology. Materials Chemistry and Physics, 2022, 287, 126269.	2.0	6
166	Laser Additive Manufacturing Process Development for Bismuth Telluride Thermoelectric Material. Journal of Materials Engineering and Performance, 0, , .	1.2	2
167	Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics. Communications Materials, 2022, 3, .	2.9	14
168	A novel cascaded energy conversion system inducing efficient and precise cancer therapy. Bioactive Materials, 2023, 20, 663-676.	8.6	7
170	Additive manufacturing of nanotube-loaded thermosets via direct ink writing and radio-frequency heating and curing. Carbon, 2022, 200, 307-316.	5.4	17
171	Material extrusion additive manufacturing of dense pastes consisting of macroscopic particles. MRS Communications, 2022, 12, 483-494.	0.8	8
172	A comprehensive DFT analysis on structural, electronic, optical, thermoelectric, SLME properties of new Double Perovskite Oxide Pb2ScBiO6. Chemical Physics Letters, 2022, 806, 139987.	1.2	19
173	Generalised optical printing of photocurable metal chalcogenides. Nature Communications, 2022, 13, .	5.8	10
174	Organic–Inorganic Nanohybrids as Thermoelectric Materials. Materials Horizons, 2022, , 419-443.	0.3	0
175	Manipulating Single-Walled Carbon Nanotube Arrays for Flexible Photothermoelectric Devices. Jacs Au, 2022, 2, 2269-2276.	3.6	5
176	Recent Advances in Solutionâ€processed Inorganic Thermoelectric Thin Films. ChemNanoMat, 2023, 9, .	1.5	1
177	Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chemistry of Materials, 2022, 34, 8471-8489.	3.2	12
178	Inorganicâ€Based Printed Thermoelectric Materials and Devices. Advanced Engineering Materials, 2023, 25, .	1.6	5
179	Comprehensive Insight into <i>p</i> -Type Bi ₂ Te ₃ -Based Thermoelectrics near Room Temperature. ACS Applied Materials & Samp; Interfaces, 2022, 14, 49425-49445.	4.0	25
180	Enhanced thermoelectric performance of 3D-printed Bi2Te3-based materials via adding Te/Se. Journal of Materiomics, 2023, 9, 328-337.	2.8	3
181	Coupled thermo-electric-mechanical modeling of hybrid thermoelectric-piezoelectric energy harvester. Sustainable Energy Technologies and Assessments, 2022, 54, 102845.	1.7	1
182	Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor. Chemical Engineering Journal, 2023, 454, 140443.	6.6	13
184	Direct ink writing of Bi2Te3-based thermoelectric materials induced by rheological design. Materials Today Energy, 2023, 31, 101206.	2.5	2

#	Article	IF	Citations
185	Highly surface-conformable thermoelectric patches for efficient thermal contact with arbitrary substrates. Chemical Engineering Journal, 2023, 455, 140925.	6.6	3
186	Machine learning and numerical simulations for electrical, thermodynamic, and mechanical assessment of modified solar thermoelectric generators. Applied Thermal Engineering, 2023, 220, 119706.	3.0	3
187	3D-Printed Porous Thermoelectrics for <i>In Situ</i> Energy Harvesting. ACS Energy Letters, 2023, 8, 332-338.	8.8	13
188	Ink casting and 3D-extrusion printing of the thermoelectric half-Heusler alloy Nb1-xCoSb. Additive Manufacturing Letters, 2022, , 100113.	0.9	0
190	Boosted Output Voltage of BiSbTeâ€Based Thermoelectric Generators via Coupled Effect between Thermoelectric Carriers and Triboelectric Charges. Advanced Energy Materials, 2023, 13, .	10.2	6
191	Physics-guided co-designing flexible thermoelectrics with techno-economic sustainability for low-grade heat harvesting. Science Advances, 2023, 9, .	4.7	15
192	Nanostructured PEDOT-based multilayer thin films with high thermoelectric performances. Applied Surface Science, 2023, 615, 156432.	3.1	6
193	Thermoelectric Material Fabrication using Mask Image Projection Based Stereolithography Integrated with Hot Pressing. Journal of Material Science and Technology Research, 2022, 9, 105-113.	0.2	4
194	Allâ€Printed Flexible Hygroâ€Thermoelectric Paper Generator. Advanced Science, 2023, 10, .	5.6	6
195	Hybrid photothermal structure based on Cr-MgF2 solar absorber/PMMA-graphene heat reservoir for enhanced thermoelectric power generation. Nano Energy, 2023, 110, 108352.	8.2	3
196	Optimizing printed thermoelectric generators with geometry and processibility limitations. Energy Conversion and Management, 2023, 279, 116776.	4.4	4
197	Wearable Thermoelectric Generators: Materials, Structures, Fabrications, and Applications. Physica Status Solidi - Rapid Research Letters, 2023, 17, .	1.2	1
198	Advances in bismuth-telluride-based thermoelectric devices: Progress and challenges. EScience, 2023, 3, 100122.	25.0	25
199	Multiscale architected porous materials for renewable energy conversion and storage. Energy Storage Materials, 2023, 59, 102768.	9.5	6
200	Three dimensional architected thermoelectric devices with high toughness and power conversion efficiency. Nature Communications, 2023, 14, .	5.8	14
223	Thermoelectric nanowires for dense 3D printed architectures. Materials Horizons, 2024, 11, 847-854.	6.4	0
229	Additive manufacturing of thermoelectric materials: materials, synthesis and manufacturing: a review. Journal of Materials Science, 0, , .	1.7	0