Observation of bulk Fermi arc and polarization half cha

Science 359, 1009-1012 DOI: 10.1126/science.aap9859

Citation Report

#	Article	IF	CITATIONS
1	Fermi arcs connect topological degeneracies. Science, 2018, 359, 995-996.	6.0	10
2	Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states. Physical Review B, 2018, 98, .	1.1	97
3	Non-Hermitian Kondo Effect in Ultracold Alkaline-Earth Atoms. Physical Review Letters, 2018, 121, 203001.	2.9	109
4	Hall conductance of a non-Hermitian Chern insulator. Physical Review B, 2018, 98, .	1.1	92
5	Locating Exceptional Points on Multidimensional Complex-Valued Potential Energy Surfaces. Journal of Physical Chemistry Letters, 2018, 9, 6978-6984.	2.1	26
6	Classification of magnetic frustration and metamaterials from topology. Physical Review B, 2018, 98, .	1.1	17
7	Non-Hermitian Chern Bands. Physical Review Letters, 2018, 121, 136802.	2.9	593
8	Topological Phases of Non-Hermitian Systems. Physical Review X, 2018, 8, .	2.8	792
9	Exceptional links and twisted Fermi ribbons in non-Hermitian systems. Physical Review A, 2018, 98, .	1.0	120
10	Topological states of non-Hermitian systems. European Physical Journal: Special Topics, 2018, 227, 1295-1308.	1.2	210
11	Anomalous helical edge states in a non-Hermitian Chern insulator. Physical Review B, 2018, 98, .	1.1	156
12	Loss of Hall conductivity quantization in a non-Hermitian quantum anomalous Hall insulator. Physical Review B, 2018, 98, .	1.1	53
13	Bulk and edge-state arcs in non-Hermitian coupled-resonator arrays. Physical Review A, 2018, 98, .	1.0	34
14	Topological symmetry classes for non-Hermitian models and connections to the bosonic Bogoliubov–de Gennes equation. Physical Review B, 2018, 98, .	1.1	85
15	Simultaneous Observation of a Topological Edge State and Exceptional Point in an Open and Non-Hermitian Acoustic System. Physical Review Letters, 2018, 121, 124501.	2.9	168
16	Condition for the emergence of a bulk Fermi arc in disordered Dirac-fermion systems. Physical Review B, 2018, 98, .	1.1	14
17	Discovery of coexisting Dirac and triply degenerate magnons in a three-dimensional antiferromagnet. Nature Communications, 2018, 9, 2591.	5.8	62
18	Non-Hermitian photonics promises exceptional topology of light. Nature Communications, 2018, 9,	5.8	127

TION RED

#	Article	IF	CITATIONS
19	Optomechanically Induced Transparency at Exceptional Points. Physical Review Applied, 2018, 10, .	1.5	99
20	Parity-time-symmetric topological superconductor. Physical Review B, 2018, 98, .	1.1	132
21	Experimental Demonstration of an Anisotropic Exceptional Point. Physical Review Letters, 2018, 121, 085702.	2.9	80
22	Edge States and Topological Invariants of Non-Hermitian Systems. Physical Review Letters, 2018, 121, 086803.	2.9	1,148
23	Exceptional points of resonant states on a periodic slab. Physical Review A, 2018, 97, .	1.0	15
24	Tuning Topology of Photonic Systems with Transparent Conducting Oxides. ACS Photonics, 2019, 6, 1922-1930.	3.2	13
25	Engineering tunable local loss in a synthetic lattice of momentum states. New Journal of Physics, 2019, 21, 045006.	1.2	52
26	Non-Bloch Band Theory of Non-Hermitian Systems. Physical Review Letters, 2019, 123, 066404.	2.9	533
27	Topology and observables of the non-Hermitian Chern insulator. Physical Review B, 2019, 100, .	1.1	43
28	Classification of Exceptional Points and Non-Hermitian Topological Semimetals. Physical Review Letters, 2019, 123, 066405.	2.9	244
29	Higher-Order Topological Corner States Induced by Gain and Loss. Physical Review Letters, 2019, 123, 073601.	2.9	197
30	Non-Hermitian Majorana modes protect degenerate steady states. Physical Review B, 2019, 100, .	1.1	29
31	Topological phase transition independent of system non-Hermiticity. Physical Review B, 2019, 100, .	1.1	42
32	Topological band theory for non-Hermitian systems from the Dirac equation. Physical Review B, 2019, 100, .	1.1	50
33	Non-Bloch topological invariants in a non-Hermitian domain wall system. Physical Review B, 2019, 100, .	1.1	123
34	Bound States in the Continuum through Environmental Design. Physical Review Letters, 2019, 123, 023902.	2.9	48
35	Inversion symmetric non-Hermitian Chern insulator. Physical Review B, 2019, 100, .	1.1	29
36	Topological phases of a non-Hermitian coupled SSH ladder*. Chinese Physics B, 2019, 28, 100304.	0.7	9

#	Article	IF	CITATIONS
37	Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system. New Journal of Physics, 2019, 21, 083002.	1.2	84
38	Generalized bulk-edge correspondence for non-Hermitian topological systems. Physical Review B, 2019, 100, .	1.1	96
39	Topological Correspondence between Hermitian and Non-Hermitian Systems: Anomalous Dynamics. Physical Review Letters, 2019, 123, 206404.	2.9	113
40	Hidden Chern number in one-dimensional non-Hermitian chiral-symmetric systems. Physical Review B, 2019, 100, .	1.1	27
41	Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems. Physical Review Letters, 2019, 123, 170401.	2.9	328
42	Non-hermitian topology asÂa unifying framework for the Andreev versus Majorana states controversy. Communications Physics, 2019, 2, .	2.0	96
43	Chiral-symmetry protected exceptional torus in correlated nodal-line semimetals. Physical Review B, 2019, 100, .	1.1	48
44	Exceptional concentric rings in a non-Hermitian bilayer photonic system. Physical Review B, 2019, 100, .	1.1	18
45	Symmetry and Topology in Non-Hermitian Physics. Physical Review X, 2019, 9, .	2.8	683
46	Exceptional rings protected by emergent symmetry for mechanical systems. Physical Review B, 2019, 100, .	1.1	90
47	Non-Hermitian Many-Body Localization. Physical Review Letters, 2019, 123, 090603.	2.9	166
48	Topological Phase Transition Driven by Infinitesimal Instability: Majorana Fermions in Non-Hermitian Spintronics. Physical Review Letters, 2019, 123, 097701.	2.9	95
49	Non-Hermitian topological light steering. Science, 2019, 365, 1163-1166.	6.0	288
50	Floquet Chern insulators of light. Nature Communications, 2019, 10, 4194.	5.8	49
51	Theory of Non-Hermitian Fermionic Superfluidity with a Complex-Valued Interaction. Physical Review Letters, 2019, 123, 123601.	2.9	147
52	Circularly Polarized States Spawning from Bound States in the Continuum. Physical Review Letters, 2019, 123, 116104.	2.9	165
53	Non-Hermitian topology of spontaneous magnon decay. Physical Review B, 2019, 100, .	1.1	61
54	Controlling photonic spin Hall effect via exceptional points. Physical Review B, 2019, 100, .	1.1	55

#	Article	IF	CITATIONS
55	Disorder-driven exceptional lines and Fermi ribbons in tilted nodal-line semimetals. Physical Review B, 2019, 99, .	1.1	80
56	Bulk-boundary correspondence in a non-Hermitian system in one dimension with chiral inversion symmetry. Physical Review B, 2019, 99, .	1.1	279
57	Topological unification of time-reversal and particle-hole symmetries in non-Hermitian physics. Nature Communications, 2019, 10, 297.	5.8	206
58	Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries. Physical Review B, 2019, 99, .	1.1	171
59	Symmetry-protected nodal phases in non-Hermitian systems. Physical Review B, 2019, 99, .	1.1	183
60	Calculated magnetic exchange interactions in the Dirac magnon material <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml:r Physical Review B, 2019, 99, .</mml:r </mml:msub></mml:mrow></mml:math 	nn 1.3 <td>າ1: ເ<u>ຂເຂ</u>າ > < /mm</td>	າ 1: ເ<u>ຂເຂ</u>າ > < /mm
61	Experimental realization of a Weyl exceptional ring. Nature Photonics, 2019, 13, 623-628.	15.6	234
62	Topology and exceptional points of massive Dirac models with generic non-Hermitian perturbations. Physical Review B, 2019, 99, .	1.1	38
63	Non-Hermitian dynamics without dissipation in quantum systems. Physical Review A, 2019, 99, .	1.0	49
64	Periodic table for topological bands with non-Hermitian symmetries. Physical Review B, 2019, 99, .	1.1	283
65	Anisotropic exceptional points of arbitrary order. Physical Review B, 2019, 99, .	1.1	32
66	Borrmann effect in Laue diffraction in one-dimensional photonic crystals under a topological phase transition. Physical Review B, 2019, 99, .	1.1	5
67	Topological Phase Transition in non-Hermitian Quasicrystals. Physical Review Letters, 2019, 122, 237601.	2.9	253
68	Indirect link between resonant and guided modes on uniform and periodic slabs. Physical Review A, 2019, 99, .	1.0	10
69	Robust exceptional points in disordered systems. Europhysics Letters, 2019, 126, 17002.	0.7	20
70	Topological Axion States in the Magnetic Insulator <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>MnBi</mml:mi></mml:mrow><mml:mrow><n with the Ouantized Magnetoelectric Effect. Physical Review Letters. 2019. 122. 206401.</n </mml:mrow></mml:msub></mml:mrow></mml:math 	nm i: mn>2	<del 5511:mn><
71	Observing vortex polarization singularities at optical band degeneracies. Physical Review B, 2019, 99, .	1.1	31
72	Topological gapless matters in three-dimensional ultracold atomic gases. Frontiers of Physics, 2019, 14, 1.	2.4	21

# 73	ARTICLE Knotted non-Hermitian metals. Physical Review B, 2019, 99, .	IF 1.1	Citations 93
74	Disorder-induced exceptional points and nodal lines in Dirac superconductors. Physical Review B, 2019, 99, .	1.1	37
75	Symmetry protected topological phases characterized by isolated exceptional points. Physical Review B, 2019, 99, .	1.1	45
76	New topological invariants in non-Hermitian systems. Journal of Physics Condensed Matter, 2019, 31, 263001.	0.7	241
77	Topological photonics. Reviews of Modern Physics, 2019, 91, .	16.4	2,190
78	Perfectly Absorbing Exceptional Points and Chiral Absorbers. Physical Review Letters, 2019, 122, 093901.	2.9	101
79	Photonic topological phase transition on demand. Nanophotonics, 2019, 8, 1349-1356.	2.9	17
80	From Singleâ€Dimensional to Multidimensional Manipulation of Optical Waves with Metasurfaces. Advanced Materials, 2019, 31, e1802458.	11.1	127
81	The nontrivial topological phases of a one-dimensional non-Hermitian dimerized lattice with spin-orbit coupling and Zeeman field. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 110, 68-73.	1.3	4
82	Non-Hermitian extensions of higher-order topological phases and their biorthogonal bulk-boundary correspondence. Physical Review B, 2019, 99, .	1.1	181
83	Second-Order Topological Phases in Non-Hermitian Systems. Physical Review Letters, 2019, 122, 076801.	2.9	332
84	Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence. Physical Review B, 2019, 99, .	1.1	118
85	Non-Hermitian defect states from lifetime differences. Physical Review A, 2019, 100, .	1.0	8
86	Photonic emulation of two-dimensional materials with antiferromagnetic order. Physical Review B, 2019, 100, .	1.1	2
87	Parityâ€Time Symmetry in Nonâ€Hermitian Complex Optical Media. Advanced Materials, 2020, 32, e1903639.	11.1	68
88	Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature, 2019, 574, 501-504.	13.7	355
89	Experimental Observation of an Exceptional Surface in Synthetic Dimensions with Magnon Polaritons. Physical Review Letters, 2019, 123, 237202.	2.9	112
90	Constraints on the energy spectrum of non-Hermitian models in open environments. European Physical Journal B, 2019, 92, 1.	0.6	1

		Citation Ri	EPORT	
#	Article		IF	Citations
91	Non-Hermitian Topological Invariants in Real Space. Physical Review Letters, 2019, 123	3, 246801.	2.9	274
92	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT</mml:mi </mml:math> -symmetric non-Hermitian Dirac semi Review B, 2019, 100, .	imetals. Physical	1.1	44
93	Perspective on topological states of non-Hermitian lattices. JPhys Materials, 2020, 3, 0	14002.	1.8	101
94	Lattice Resonances in Optical Metasurfaces With Gain and Loss. Proceedings of the IE 795-818.	EE, 2020, 108,	16.4	31
95	Exceptional band touching for strongly correlated systems in equilibrium. Progress of Tand Experimental Physics, 2020, 2020, .	[heoretical	1.8	38
96	Generalized Bloch band theory for non-Hermitian bulk–boundary correspondence. P Theoretical and Experimental Physics, 2020, 2020, .	rogress of	1.8	16
97	Nanoscatterer-mediated frequency combs in cavity optomagnonics. Physical Review A	, 2020, 102, .	1.0	15
98	Recent advances in 2D, 3D and higher-order topological photonics. Light: Science and 2020, 9, 130.	Applications,	7.7	254
99	Topological Insulator Antenna Arrays. ACS Photonics, 2020, 7, 2244-2251.		3.2	19
100	Topological charge of finite-size photonic crystal modes. Physical Review B, 2020, 102		1.1	10
101	Exceptional non-Hermitian topological edge mode and its application to active matter. Communications, 2020, 11, 5745.	, Nature	5.8	37
102	Exceptional nexus with a hybrid topological invariant. Science, 2020, 370, 1077-1080.		6.0	104
103	Generation and Annihilation of Topologically Protected Bound States in the Continuur Circularly Polarized States by Symmetry Breaking. Physical Review Letters, 2020, 125,	n and 053902.	2.9	93
104	One-dimensional one-band topologically nontrivial non-Hermitian system simulated in Physical Review A, 2020, 102, .	optical cavities.	1.0	3
105	Double exceptional links in a three-dimensional dissipative cold atomic gas. Physical Re 102, .	eview A, 2020,	1.0	17
106	Non-Hermitian Topological Sensors. Physical Review Letters, 2020, 125, 180403.		2.9	157
107	Non-Hermitian Skin Modes Induced by On-Site Dissipations and Chiral Tunneling Effect Letters, 2020, 125, 186802.	t. Physical Review	2.9	163
108	Energy Band Attraction Effect in Non-Hermitian Systems. Physical Review Letters, 2020	0, 125, 137703.	2.9	7

#	Article	IF	CITATIONS
109	Maximal Shannon entropy in the vicinity of an exceptional point in an open microcavity. Scientific Reports, 2020, 10, 12551.	1.6	6
110	Exceptional points and dynamics of a non-Hermitian two-level system without PT symmetry. Europhysics Letters, 2020, 131, 34001.	0.7	6
111	Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems. Physical Review Letters, 2020, 125, 126402.	2.9	428
112	Simultaneous Generation of Arbitrary Assembly of Polarization States with Geometrical-Scaling-Induced Phase Modulation. Physical Review X, 2020, 10, .	2.8	27
113	Renormalization group approach to non-Hermitian topological quantum criticality. Physical Review B, 2020, 102, .	1.1	7
114	Floquet engineering and simulating exceptional rings with a quantum spin system. Physical Review A, 2020, 102, .	1.0	15
115	Higher-order non-Hermitian skin effect. Physical Review B, 2020, 102, .	1.1	161
116	Theory of reflectionless scattering modes. Physical Review A, 2020, 102, .	1.0	47
117	Non-Abelian topology of nodal-line rings in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT -symmetric systems. Physical Review B, 2020, 101, .</mml:mi </mml:math 	1.1	54
118	Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Physical Review B, 2020, 101, .	1.1	58
119	Non-Hermitian linear response theory. Nature Physics, 2020, 16, 767-771.	6.5	62
120	Antichiral one-way edge states in a gyromagnetic photonic crystal. Physical Review B, 2020, 101, .	1.1	36
121	Homotopy characterization of non-Hermitian Hamiltonians. Physical Review B, 2020, 101, .	1.1	86
122	Non-Bloch band theory of non-Hermitian Hamiltonians in the symplectic class. Physical Review B, 2020, 101, .	1.1	100
123	Non-Hermitian Dirac Cones. Physical Review Letters, 2020, 124, 236403.	2.9	61
124	Skin superfluid, topological Mott insulators, and asymmetric dynamics in an interacting non-Hermitian Aubry-André-Harper model. Physical Review B, 2020, 101, .	1.1	69
125	Topological Field Theory Far from Equilibrium. Physical Review Letters, 2020, 124, 240404.	2.9	27
126	Topological Anderson insulators in two-dimensional non-Hermitian disordered systems. Physical Review A, 2020, 101, .	1.0	41

		CITATION REPORT	
#	Article	IF	CITATIONS
127	Non-Hermitian bulk–boundary correspondence in quantum dynamics. Nature Physics, 2020, 16, 761-766.	6.5	491
128	Many-body approach to non-Hermitian physics in fermionic systems. Physical Review B, 2020, 101, .	1.1	66
129	Topological phases in one-dimensional nonreciprocal superlattices. Physical Review B, 2020, 101, .	1.1	32
130	Photonic topological fermi nodal disk in non-Hermitian magnetic plasma. Light: Science and Applications, 2020, 9, 40.	7.7	12
131	Dynamics and topology of non-Hermitian elastic lattices with non-local feedback control interactions. New Journal of Physics, 2020, 22, 053004.	1.2	65
132	Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems. Physical Review B, 2020, 101, .	1.1	65
133	Symmetry-protected topological phase for spin-tensor-momentum-coupled ultracold atoms. Physical Review A, 2020, 102, .	1.0	6
134	Non-Hermitian scattering on a tight-binding lattice. Physical Review A, 2020, 102, .	1.0	17
135	Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect. Physical Review B, 2020, 101, .	1.1	67
136	Non-Hermitian Boundary Modes and Topology. Physical Review Letters, 2020, 124, 056802.	2.9	474
137	Hybrid exceptional point created from type-III Dirac point. Physical Review B, 2020, 101, .	1.1	33
138	Topological Origin of Non-Hermitian Skin Effects. Physical Review Letters, 2020, 124, 086801.	2.9	597
139	Vector Exceptional Points with Strong Superchiral Fields. Physical Review Letters, 2020, 124, 083901.	2.9	32
140	Angle-Resolved Thermal Emission Spectroscopy Characterization of Non-Hermitian Metacrystals. Physical Review Applied, 2020, 13, .	1.5	19
141	Fate of zero modes in a finite Su-Schrieffer-Heeger model with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="script">PT symmetry. Physical Review A, 2020, 101, .</mml:mi </mml:math 	1.0	25
142	Topological phases in non-Hermitian Aubry-Andr $ ilde{A}$ ©-Harper models. Physical Review B, 2020, 101, .	1.1	127
143	Non-Hermitian Exceptional Landau Quantization in Electric Circuits. Physical Review Letters, 2020, 124, 046401.	2.9	63
144	Non-Hermitian topological Anderson insulators. Science China: Physics, Mechanics and Astronomy, 2020, 63, 1.	2.0	75

#	Article	IF	CITATIONS
145	Universal Design Platform for an Extended Class of Photonic Dirac Cones. Physical Review Applied, 2020, 13, .	1.5	12
146	Generalized Berry phase for a bosonic Bogoliubov system with exceptional points. Physical Review A, 2020, 101, .	1.0	16
147	Observation of topologically enabled unidirectional guided resonances. Nature, 2020, 580, 467-471.	13.7	184
148	Diffractive metalens: from fundamentals, practical applications to current trends. Advances in Physics: X, 2020, 5, 1742584.	1.5	22
149	Bulk-boundary correspondence in non-Hermitian systems: stability analysis for generalized boundary conditions. European Physical Journal D, 2020, 74, 1.	0.6	49
150	Momentum-space imaging spectroscopy for the study of nanophotonic materials. Science Bulletin, 2021, 66, 824-838.	4.3	18
151	Topological Phase Transition and Eigenstates Localization in a Generalized Nonâ€Hermitian Su–Schrieffer–Heeger Model. Annalen Der Physik, 2021, 533, .	0.9	12
152	Knots and Non-Hermitian Bloch Bands. Physical Review Letters, 2021, 126, 010401.	2.9	77
153	Machine learning non-Hermitian topological phases. Physical Review B, 2021, 103, .	1.1	13
154	Quantum Engineering With Hybrid Magnonic Systems and Materials <i>(Invited Paper)</i> . IEEE Transactions on Quantum Engineering, 2021, 2, 1-36.	2.9	69
155	Boundary-dependent self-dualities, winding numbers, and asymmetrical localization in non-Hermitian aperiodic one-dimensional models. Physical Review B, 2021, 103, .	1.1	44
156	Quantum anomaly, non-Hermitian skin effects, and entanglement entropy in open systems. Physical Review B, 2021, 103, .	1.1	54
157	Polarization singularities in light scattering by small particles. Physical Review A, 2021, 103, .	1.0	8
158	Exceptional Spin Liquids from Couplings to the Environment. Physical Review Letters, 2021, 126, 077201.	2.9	30
159	Topological polarization singularities in metaphotonics. Nanophotonics, 2021, 10, 1469-1486.	2.9	42
161	Exceptional topology of non-Hermitian systems. Reviews of Modern Physics, 2021, 93, .	16.4	680
162	Fermion Doubling Theorems in Two-Dimensional Non-Hermitian Systems for Fermi Points and Exceptional Points. Physical Review Letters, 2021, 126, 086401.	2.9	68
163	Real-space dynamical mean field theory study of non-Hermitian skin effect for correlated systems: Analysis based on pseudospectrum. Physical Review B, 2021, 103, .	1.1	24

#	Article	IF	CITATIONS
164	Two-dimensional non-Hermitian topological phases induced by asymmetric hopping in a one-dimensional superlattice. Physical Review A, 2021, 103, .	1.0	8
165	Tidal surface states as fingerprints of non-Hermitian nodal knot metals. Communications Physics, 2021, 4, .	2.0	39
166	Practical lineshape of a laser operating near an exceptional point. Scientific Reports, 2021, 11, 6164.	1.6	2
167	Evolution and global charge conservation for polarization singularities emerging from non-Hermitian degeneracies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	17
168	The topological criticality in disordered non-Hermitian system. Journal of Physics Condensed Matter, 2021, 33, 185401.	0.7	6
169	Nonunitary Scaling Theory of Non-Hermitian Localization. Physical Review Letters, 2021, 126, 166801.	2.9	57
170	Topological guided-mode resonances at non-Hermitian nanophotonic interfaces. Nanophotonics, 2021, 10, 1853-1860.	2.9	13
171	Non-Hermitian Skin Effects in Hermitian Correlated or Disordered Systems: Quantities Sensitive or Insensitive to Boundary Effects and Pseudo-Quantum-Number. Physical Review Letters, 2021, 126, 176601.	2.9	55
172	Geometry and superfluidity of the flat band in a non-Hermitian optical lattice. Physical Review A, 2021, 103, .	1.0	8
173	Non-Hermitian band topology with generalized inversion symmetry. Physical Review B, 2021, 103, .	1.1	33
174	Symmetry Classes of Open Fermionic Quantum Matter. Physical Review X, 2021, 11, .	2.8	38
175	Topological phase transitions driven by non-Hermiticity in quantum spin Hall insulators. Physical Review B, 2021, 103, .	1.1	9
176	Topological Field Theory of Non-Hermitian Systems. Physical Review Letters, 2021, 126, 216405.	2.9	52
177	Machine Learning of Mirror Skin Effects in the Presence of Disorder. Journal of the Physical Society of Japan, 2021, 90, 053703.	0.7	4
178	Unsupervised Learning of Non-Hermitian Topological Phases. Physical Review Letters, 2021, 126, 240402.	2.9	22
179	Emergence of exceptional points and their spectroscopic signature in a Dirac semimetal–dirty superconductor heterojunction. Physical Review B, 2021, 103, .	1.1	5
180	Pseudochirality at exceptional rings of optical metasurfaces. Physical Review Research, 2021, 3, .	1.3	10
181	Localization and topological phase transitions in non-Hermitian Aubry-André-Harper models with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi></mml:math> -wave pairing. Physical Review B, 2021, 103, .	1.1	21

#	Article	IF	CITATIONS
182	<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>η</mml:mi></mml:math> -pairing ground states in the non-Hermitian Hubbard model. Physical Review B, 2021, 103, .	1.1	13
183	Non-Hermitian disorder-driven topological transition in a dimerized Kitaev superconductor chain. Physical Review B, 2021, 103, .	1.1	6
184	Simulating Exceptional Non-Hermitian Metals with Single-Photon Interferometry. Physical Review Letters, 2021, 127, 026404.	2.9	40
185	Entanglement spectrum crossings reveal non-Hermitian dynamical topology. Physical Review Research, 2021, 3, .	1.3	21
186	Polarization Singularities of Photonic Quasicrystals in Momentum Space. Physical Review Letters, 2021, 127, 043901.	2.9	22
187	Direct Measurement of Topological Properties of an Exceptional Parabola. Physical Review Letters, 2021, 127, 034301.	2.9	22
188	Exceptional non-Hermitian phases in disordered quantum wires. Physical Review B, 2021, 104, .	1.1	6
189	Exceptional topology in ordinary soft matter. Physical Review E, 2021, 104, 025002.	0.8	3
190	Correlation effects on non-Hermitian point-gap topology in zero dimension: Reduction of topological classification. Physical Review B, 2021, 104, .	1.1	10
191	Compatibility of transport effects in non-Hermitian nonreciprocal systems. Physical Review A, 2021, 104, .	1.0	16
192	Geometric Response and Disclination-Induced Skin Effects in Non-Hermitian Systems. Physical Review Letters, 2021, 127, 066401.	2.9	47
193	Observation of Non-Hermitian Topology with Nonunitary Dynamics of Solid-State Spins. Physical Review Letters, 2021, 127, 090501.	2.9	37
194	Comparative study of Hermitian and non-Hermitian topological dielectric photonic crystals. Physical Review A, 2021, 104, .	1.0	18
195	Transfer matrix study of the Anderson transition in non-Hermitian systems. Physical Review B, 2021, 104, .	1.1	19
196	Coherent perfect absorption at an exceptional point. Science, 2021, 373, 1261-1265.	6.0	150
197	Dynamically Induced Exceptional Phases in Quenched Interacting Semimetals. Physical Review Letters, 2021, 127, 106601.	2.9	5
198	Classification of topological phases in one dimensional interacting non-Hermitian systems and emergent unitarity. Science Bulletin, 2021, 66, 1731-1739.	4.3	17
199	Observation of higher-order non-Hermitian skin effect. Nature Communications, 2021, 12, 5377.	5.8	128

	С	tation Repo	DRT	
#	ARTICLE	I	F	CITATIONS
200	Two-dimensional anisotropic non-Hermitian Lieb lattice. Physical Review B, 2021, 104, .	1	.1	10
201	Fourth-order exceptional points in correlated quantum many-body systems. Physical Review B, 2021, 104, .	1	L .1	17
202	Protected quantum coherence by gain and loss in a noisy quantum kicked rotor. Journal of Physics Condensed Matter, 2021, 34, .	().7	1
203	Boundary condition independence of non-Hermitian Hamiltonian dynamics. Physical Review B, 2021,	104, 1	.1	17
204	Pseudomagnetic Fields Enabled Manipulation of On-Chip Elastic Waves. Physical Review Letters, 202 127, 136401.	l, 2	2.9	19
205	Strongly Enhanced Raman Optical Activity of Chiral Molecules by Vector Exceptional Points. Journal of Physical Chemistry C, 2020, 124, 24970-24977.		L.5	3
206	Non-Hermitian physics. Advances in Physics, 2020, 69, 249-435.	Ę	35.9	695
207	State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry. Chinese Physics Letters, 2020, 37, 117303.		L.3	11
208	Visualizing one-dimensional non-hermitian topological phases. Journal of Physics Communications, 2020, 4, 095005.	().5	5
209	Non-Hermitian topological Mott insulators in one-dimensional fermionic superlattices. Physical Review B, 2020, 102, .		.1	47
210	Non-Hermitian Weyl physics in topological insulator ferromagnet junctions. Physical Review Research, 2019, 1, .	1	L.3	76
211	Transition from Dirac points to exceptional points in anisotropic waveguides. Physical Review Research, 2019, 1, .		L.3	7
212	Exceptional points and the topology of quantum many-body spectra. Physical Review Research, 2019	, 1, . 1	.3	37
213	Correlations in non-Hermitian systems and diagram techniques for the steady state. Physical Review Research, 2020, 2, .		L . 3	7
214	Photonic non-Hermitian skin effect and non-Bloch bulk-boundary correspondence. Physical Review Research, 2020, 2, .	1	.3	116
215	Non-Hermitian topological end-mode lasing in polariton systems. Physical Review Research, 2020, 2, .	1	3	38
216	Dynamic winding number for exploring band topology. Physical Review Research, 2020, 2, .	1	.3	36
217	Non-Hermitian topological metamaterials with odd elasticity. Physical Review Research, 2020, 2, .		3	32

#	Article	IF	CITATIONS
218	Alice strings in non-Hermitian systems. Physical Review Research, 2020, 2, .	1.3	9
219	Reciprocal skin effect and its realization in a topolectrical circuit. Physical Review Research, 2020, 2, .	1.3	230
220	Dissipative analog of four-dimensional quantum Hall physics. Physical Review Research, 2020, 2, .	1.3	22
221	Protection of parity-time symmetry in topological many-body systems: Non-Hermitian toric code and fracton models. Physical Review Research, 2020, 2, .	1.3	23
222	Winding numbers and generalized mobility edges in non-Hermitian systems. Physical Review Research, 2020, 2, .	1.3	89
223	Dissipation-induced topological transitions in continuous Weyl materials. Physical Review Research, 2020, 2, .	1.3	16
224	Fate of fractional quantum Hall states in open quantum systems: Characterization of correlated topological states for the full Liouvillian. Physical Review Research, 2020, 2, .	1.3	39
225	Topological semimetal phase with exceptional points in one-dimensional non-Hermitian systems. Physical Review Research, 2020, 2, .	1.3	38
226	Phase transitions and generalized biorthogonal polarization in non-Hermitian systems. Physical Review Research, 2020, 2, .	1.3	29
227	Exceptional points for resonant states on parallel circular dielectric cylinders. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 1659.	0.9	15
228	Exceptional cones in 4D parameter space. Optics Express, 2020, 28, 1758.	1.7	16
229	Exceptional surfaces in PT-symmetric non-Hermitian photonic systems. Optica, 2019, 6, 190.	4.8	129
230	Manipulating light radiation from a topological perspective. Photonics Research, 2020, 8, B25.	3.4	21
231	Active topological photonics. Nanophotonics, 2020, 9, 547-567.	2.9	170
232	Gain-induced scattering anomalies of diffractive metasurfaces. Nanophotonics, 2020, 9, 4273-4285.	2.9	9
233	Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics, 2020, 10, 403-423.	2.9	135
234	Dynamical signatures of topological order in the driven-dissipative Kitaev chain. SciPost Physics, 2019, 6, .	1.5	46
235	Hyperbolic nodal band structures and knot invariants. SciPost Physics, 2019, 7, .	1.5	15

#	Article	IF	CITATIONS
236	Topological wave insulators: a review. Comptes Rendus Physique, 2020, 21, 467-499.	0.3	18
237	Dislocation non-Hermitian skin effect. Physical Review B, 2021, 104, .	1.1	36
238	Topological complex-energy braiding of non-Hermitian bands. Nature, 2021, 598, 59-64.	13.7	132
239	Symmetry-Protected Multifold Exceptional Points and Their Topological Characterization. Physical Review Letters, 2021, 127, 186602.	2.9	82

Topological physics of non-Hermitian optics and photonics: a review. Journal of Optics (United) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 58

241	Supermetal-insulator transition in a non-Hermitian network model. Physical Review B, 2021, 104, .	1.1	9
242	Symmetry and Higher-Order Exceptional Points. Physical Review Letters, 2021, 127, 186601.	2.9	85
243	Topological states in electric circuit. Wuli Xuebao/Acta Physica Sinica, 2019, 68, 220305.	0.2	4
244	Non-Hermitian higher-order Dirac semimetals. Physical Review B, 2021, 104, .	1.1	32
245	Exceptional points in a topological waveguide-cavity coupled system. New Journal of Physics, 2021, 23, 113025.	1.2	7
246	Coherent transfer of topological interface states. Optics Express, 2020, 28, 38698.	1.7	2
247	Topological Bloch–Zener oscillations in non-Hermitian graphene plasmonic waveguide arrays. Optics Communications, 2022, 505, 127530.	1.0	1
248	Observation of the anisotropic exceptional point in cavity magnonics system. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 047103.	0.2	0
249	Generalized Brillouin zone and non-Hermitian band theory. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 230307.	0.2	4
250	Dynamics of Topological Polarization Singularity in Momentum Space. Physical Review Letters, 2021, 127, 176101.	2.9	50
251	Non-Hermitian Weyl semimetals: Non-Hermitian skin effect and non-Bloch bulk–boundary correspondence. Chinese Physics B, 2022, 31, 010308.	0.7	12
252	Direct measurement of a non-Hermitian topological invariant in a hybrid light-matter system. Science Advances, 2021, 7, eabj8905.	4.7	48
253	Higher-Order Weyl-Exceptional-Ring Semimetals. Physical Review Letters, 2021, 127, 196801.	2.9	32

#	Article	IF	CITATIONS
254	Exceptional points of Bloch eigenmodes on a dielectric slab with a periodic array of cylinders. Physica Scripta, 2020, 95, 095507.	1.2	6
255	Weyl points and exceptional rings with polaritons in bulk semiconductors. Physical Review Research, 2020, 2, .	1.3	4
256	Non-Hermitian band topology from momentum-dependent relaxation in two-dimensional metals with spiral magnetism. Physical Review B, 2021, 104, .	1.1	7
257	Defective Majorana zero modes in a non-Hermitian Kitaev chain. Physical Review B, 2021, 104, .	1.1	19
258	Biorthogonal quantum criticality in non-Hermitian many-body systems. Frontiers of Physics, 2022, 17, 1.	2.4	18
259	Classification of exceptional nodal topologies protected by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="script">PT symmetry. Physical Review B, 2021, 104, .</mml:mi </mml:math 	1.1	24
260	Optical evidence for non-Hermitian topological phases of two-dimensional Dirac fermions. Physical Review B, 2021, 104, .	1.1	1
261	Roadmap on topological photonics. JPhys Photonics, 2022, 4, 032501.	2.2	56
262	Imaginary couplings in non-Hermitian coupled-mode theory: Effects on exceptional points of optical resonators. Physical Review A, 2022, 105, .	1.0	14
263	Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems. Chinese Physics Letters, 2022, 39, 010301.	1.3	6
264	Connections between the open-boundary spectrum and the generalized Brillouin zone in non-Hermitian systems. Physical Review B, 2022, 105, .	1.1	18
265	Non-Hermitian topology in rock–paper–scissors games. Scientific Reports, 2022, 12, 560.	1.6	10
266	Low-Symmetry Nanophotonics. ACS Photonics, 2022, 9, 2-24.	3.2	13
267	Exceptional points and enhanced nanoscale sensing with a plasmon-exciton hybrid system. Photonics Research, 2022, 10, 557.	3.4	11
268	Edge states in a non-Hermitian topological crystalline insulator. Physical Review B, 2022, 105, .	1.1	3
269	Damping transition in an open generalized Aubry-André-Harper model. Physical Review A, 2022, 105, .	1.0	10
270	Dynamical scaling of Loschmidt echo in non-Hermitian systems. Europhysics Letters, 0, , .	0.7	4
271	Discriminant indicators with generalized inversion symmetry. Physical Review B, 2022, 105, .	1.1	5

	Сіт	ation Report	
#	Article	IF	CITATIONS
272	Progress in Topological Mechanics. Applied Sciences (Switzerland), 2022, 12, 1987.	1.3	8
273	Non-Hermitian metasurface with non-trivial topology. Nanophotonics, 2022, 11, 1159-1165.	2.9	13
274	Topological Photonic Crystals: Physics, Designs, and Applications. Laser and Photonics Reviews, 2022, 16, .	4.4	110
275	Real spectra, Anderson localization, and topological phases in one-dimensional quasireciprocal systems. New Journal of Physics, 2022, 24, 043023.	1.2	8
276	Imaging lattice switching with Talbot effect in reconfigurable non-Hermitian photonic graphene. Photonics Research, 2022, 10, 958.	3.4	12
277	Fundamentals and Applications of Topological Polarization Singularities. Frontiers in Physics, 2022, 10, .	1.0	4
278	Topological transition and Majorana zero modes in 2D non-Hermitian chiral superconductor with anisotropy. Journal of Physics Condensed Matter, 2022, 34, 195401.	0.7	6
279	Observation of Weyl exceptional rings in thermal diffusion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2110018119.	3.3	21
280	Non-Hermitian topological coupler for elastic waves. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	7
281	Anomalous non-Abelian statistics for non-Hermitian generalization of Majorana zero modes. Physical Review B, 2021, 104, .	1.1	13
282	Non-Hermitian Aubry-Andr $ ilde{A}$ © model with power-law hopping. Physical Review B, 2021, 104, .	1.1	11
283	Bound Topological Edge State in the Continuum for All-Dielectric Photonic Crystals. Physical Review Applied, 2021, 16, .	1.5	18
284	Exact mobility edges and topological phase transition in two-dimensional non-Hermitian quasicrystals. Science China: Physics, Mechanics and Astronomy, 2022, 65, 1.	2.0	16
285	Surface exceptional points in a topological Kondo insulator. Physical Review B, 2021, 104, .	1.1	2
286	Non-Hermitian topological states in 2D line-graph lattices: evolving triple exceptional points on reciprocal line graphs. New Journal of Physics, 2021, 23, 123038.	1.2	1
287	Non-Hermitian bulk-boundary correspondence and singular behaviors of generalized Brillouin zone. New Journal of Physics, 2021, 23, 123007.	1.2	12
288	Spin-Orbit Interaction of Light Enabled by Negative Coupling in High-Quality-Factor Optical Metasurfaces. Physical Review Applied, 2022, 17, .	1.5	1
289	Many-body topology of non-Hermitian systems. Physical Review B, 2022, 105, .	1.1	43

#	Article	IF	CITATIONS
290	Topological band structure via twisted photons in a degenerate cavity. Nature Communications, 2022, 13, 2040.	5.8	10
292	Non-Hermitian waves in a continuous periodic model and application to photonic crystals. Physical Review Research, 2022, 4, .	1.3	14
293	Unconventional steady states and topological phases in an open two-level non-Hermitian system. New Journal of Physics, 2022, 24, 053028.	1.2	0
294	Universal non-Hermitian skin effect in two and higher dimensions. Nature Communications, 2022, 13, 2496.	5.8	133
295	Topology of multipartite non-Hermitian one-dimensional systems. Physical Review B, 2022, 105, .	1.1	11
296	Topological phase transitions and Weyl semimetal phases in chiral photonic metamaterials. New Journal of Physics, 2022, 24, 053052.	1.2	5
297	Thermalization Dynamics of Nonlinear Non-Hermitian Optical Lattices. Physical Review Letters, 2022, 128, .	2.9	13
298	Non-Hermitian second-order topology induced by resistances in electric circuits. Physical Review B, 2022, 105, .	1.1	16
300	Non-Hermitian Spatial Symmetries and Their Stabilized Normal and Exceptional Topological Semimetals. Physical Review Letters, 2022, 128, .	2.9	12
301	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .	1.1	1
301 302	Exceptional mode topological surface laser. Physical Review B, 2022, 105, . Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.	1.1	1
301 302 303	Exceptional mode topological surface laser. Physical Review B, 2022, 105, . Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501. Geometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456.	1.1 1.2 2.9	1 3 14
301 302 303 304	Exceptional mode topological surface laser. Physical Review B, 2022, 105, . Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501. Geometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456. Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .	1.1 1.2 2.9 11.1	1 3 14 22
 301 302 303 304 305 	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.Ceometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456.Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .Mesoscopic transport signatures of disorder-induced non-Hermitian phases. Physical Review Research, 2022, 4, .	1.1 1.2 2.9 11.1 1.3	1 3 14 22 3
 301 302 303 304 305 306 	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.Geometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456.Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .Mesoscopic transport signatures of disorder-induced non-Hermitian phases. Physical Review Research, 2022, 4, .Knot topology of exceptional point and non-Hermitian no-go theorem. Physical Review Research, 2022, 4, .	1.1 1.2 2.9 11.1 1.3	1 3 14 22 3 26
 301 302 303 304 305 306 307 	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.Geometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456.Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .Mesoscopic transport signatures of disorder-induced non-Hermitian phases. Physical Review Research, 2022, 4, .Knot topology of exceptional point and non-Hermitian no-go theorem. Physical Review Research, 2022, 4, .Non-Hermitian dislocation modes: Stability and melting across exceptional points. Physical Review B, 2022, 106, .	1.1 1.2 2.9 11.1 1.3 1.3	1 3 14 22 3 26 16
 301 302 303 304 305 306 307 308 	Exceptional mode topological surface laser. Physical Review B, 2022, 105, .Light dynamics around an exceptional point in a 1D photonic bandgap waveguide. Physica Scripta, 2022, 97, 085501.Geometry-dependent skin effects in reciprocal photonic crystals. Nanophotonics, 2022, 11, 3447-3456.Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .Mesoscopic transport signatures of disorder-induced non-Hermitian phases. Physical Review Research, 2022, 4, .Knot topology of exceptional point and non-Hermitian no-go theorem. Physical Review Research, 2022, 4, .Non-Hermitian dislocation modes: Stability and melting across exceptional points. Physical Review B, 2022, 106, .Generalized fermion doubling theorems: Classification of two-dimensional nodal systems in terms of wallpaper groups. Physical Review B, 2022, 106, .	1.1 1.2 2.9 11.1 1.3 1.3 1.1 1.1	1 3 14 22 3 26 16 5

#	Article	IF	CITATIONS
310	A non-Hermitian optical atomic mirror. Nature Communications, 2022, 13, .	5.8	15
311	Unveiling the Enhancement of Spontaneous Emission at Exceptional Points. Physical Review Letters, 2022, 129, .	2.9	14
312	Non-Hermitian Absorption Spectroscopy. Physical Review Letters, 2022, 129, .	2.9	6
313	A review on non-Hermitian skin effect. Advances in Physics: X, 2022, 7, .	1.5	46
314	Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications. Chinese Physics B, 2022, 31, 104211.	0.7	2
316	Symmetry breaking and spectral structure of the interacting Hatano-Nelson model. Physical Review B, 2022, 106, .	1.1	39
317	Hall conductance of a non-Hermitian two-band system with k-dependent decay rates. Chinese Physics B, 2023, 32, 020305.	0.7	2
318	Topological phases induced by the Aubry-André-Harper potential in the longer-range Kitaev superconducting chain. Physical Review B, 2022, 106, .	1.1	0
319	Experimental unsupervised learning of non-Hermitian knotted phases with solid-state spins. Npj Quantum Information, 2022, 8, .	2.8	17
320	Annihilation of exceptional points from different Dirac valleys in a 2D photonic system. Nature Communications, 2022, 13, .	5.8	21
321	Dynamical signatures of point-gap Weyl semimetal. Physical Review B, 2022, 106, .	1.1	5
322	Distance between exceptional points and diabolic points and its implication for the response strength of non-Hermitian systems. Physical Review Research, 2022, 4, .	1.3	11
323	Topological near fields generated by topological structures. Science Advances, 2022, 8, .	4.7	5
324	Non-Hermitian topology and exceptional-point geometries. Nature Reviews Physics, 2022, 4, 745-760.	11.9	98
325	Non-Hermitian Topological Phenomena: A Review. Annual Review of Condensed Matter Physics, 2023, 14, 83-107.	5.2	59
326	Metamaterial-enabled asymmetric negative refraction of GHz mechanical waves. Nature Communications, 2022, 13, .	5.8	6
327	Floquet Scattering Through a Parity-Time Symmetric Oscillating Potential. Chinese Physics B, 0, , .	0.7	0
328	Interconversion of exceptional points between different orders in non-Hermitian systems. New Journal of Physics, 0, , .	1.2	0

#	Article	IF	CITATIONS
329	Nonlinearity-enabled higher-order exceptional singularities with ultra-enhanced signal-to-noise ratio. National Science Review, 2023, 10, .	4.6	5
330	Experimental Identification of the Secondâ€Order Nonâ€Hermitian Skin Effect with Physicsâ€Graphâ€Informed Machine Learning. Advanced Science, 2022, 9, .	5.6	27
331	Simulating topological materials with photonic synthetic dimensions in cavities. , 2022, 1, .		1
332	Band structure of the one-dimensional spin–orbit-coupled Su-Schrieffer-Heeger lattice with <mml:math <br="" display="inline" id="d1e619" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si3.svg"><mml:mi mathvariant="script">PT</mml:mi></mml:math> -symmetric onsite imaginary potentials. Annals of Physics. 2022 169165.	1.0	0
333	Photonic quantum Hall effects. , 2024, , 575-586.		0
334	Reduction of one-dimensional non-Hermitian point-gap topology by interactions. Physical Review B, 2022, 106, .	1.1	11
335	Bound states and photon emission in non-Hermitian nanophotonics. Physical Review A, 2022, 106, .	1.0	10
336	Topological energy braiding of non-Bloch bands. Physical Review B, 2022, 106, .	1.1	6
337	Topological beaming of light. Science Advances, 2022, 8, .	4.7	5
338	Localization transitions and winding numbers for non-Hermitian Aubry-André-Harper models with off-diagonal modulations. Physical Review B, 2022, 106, .	1.1	7
339	Realization of Qi-Wu-Zhang model in spin-orbit-coupled ultracold fermions. Physical Review Research, 2023, 5, .	1.3	8
340	Inner skin effects on non-Hermitian topological fractals. Communications Physics, 2023, 6, .	2.0	6
341	Resonant leaky modes in all-dielectric metasystems: Fundamentals and applications. Physics Reports, 2023, 1008, 1-66.	10.3	54
342	Deterministic bulk-boundary correspondences for skin and edge modes in a general two-band non-Hermitian system. Physical Review Research, 2022, 4, .	1.3	2
343	Non-Hermitian squeezed polarons. Physical Review A, 2023, 107, .	1.0	12
344	Non-Hermitian topological photonics. Optical Materials Express, 2023, 13, 870.	1.6	7
345	Realization of exceptional points along a synthetic orbital angular momentum dimension. Science Advances, 2023, 9, .	4.7	7
346	General properties of fidelity in non-Hermitian quantum systems with PT symmetry. Quantum - the Open Journal for Quantum Science, 0, 7, 960.	0.0	6

#	Article	IF	CITATIONS
347	Topological Unidirectional Guided Resonances Emerged from Interband Coupling. Physical Review Letters, 2023, 130, .	2.9	9
348	Simultaneous Manipulation of Lineâ€Gap and Pointâ€Gap Topologies in Nonâ€Hermitian Lattices. Laser and Photonics Reviews, 2023, 17, .	4.4	1
349	Fate of exceptional points under interactions: Reduction of topological classifications. Physical Review B, 2023, 107, .	1.1	11
350	Various topological phases and their abnormal effects of topological acoustic metamaterials. , 2023, 2, 179-230.		3
351	Topological phases and non-Hermitian topology in photonic artificial microstructures. Nanophotonics, 2023, 12, 2273-2294.	2.9	3
352	Switchable Unidirectional Radiation from Huygens Dipole Formed at an Exceptional Point in Non-Hermitian Plasmonic Systems. ACS Photonics, 2023, 10, 667-672.	3.2	7
353	Non-Abelian effects in dissipative photonic topological lattices. Nature Communications, 2023, 14, .	5.8	9
354	Spin vertical-cavity surface-emitting lasers with linear gain anisotropy: Prediction of exceptional points and nontrivial dynamical regimes. Physical Review A, 2023, 107, .	1.0	0
355	PT symmetry-protected exceptional cones and analogue Hawking radiation. New Journal of Physics, 2023, 25, 043012.	1.2	3
356	Bulk Bogoliubov Fermi arcs in non-Hermitian superconducting systems. Physical Review B, 2023, 107, .	1.1	2
357	Multiple phase transitions and anomalous non-Hermitian skin effect. Physical Review B, 2023, 107, .	1.1	2
358	Non-Hermitian chiral degeneracy of gated graphene metasurfaces. Light: Science and Applications, 2023, 12, .	7.7	17
359	Exceptional degeneracies in non-Hermitian Rashba semiconductors. Journal of Physics Condensed Matter, 2023, 35, 254002.	0.7	2
360	Visualization of photonic band structures via far-field measurements in SiN _{<i>x</i>} photonic crystal slabs. Applied Physics Letters, 2023, 122, 151102.	1.5	0
361	Emergent conservation in the Floquet dynamics of integrable non-Hermitian models. Physical Review B, 2023, 107, .	1.1	3
362	Non-Hermitian higher-order Weyl semimetal with surface diabolic points. Physical Review B, 2023, 107, .	1.1	3
363	Exceptional Non-Abelian Topology in Multiband Non-Hermitian Systems. Physical Review Letters, 2023, 130, .	2.9	13
364	Topological Atomic Spin Wave Lattices by Dissipative Couplings. Physical Review Letters, 2023, 130, .	2.9	3

#	Article	IF	CITATIONS
365	Non-Hermitian photonic lattices: tutorial. Journal of the Optical Society of America B: Optical Physics, 2023, 40, 1443.	0.9	11
366	Nonlinear nonlocal metasurfaces. Applied Physics Letters, 2023, 122, .	1.5	6
367	Exceptional points in cylindrical elastic media with radiation loss. Physical Review B, 2023, 107, .	1.1	1
368	Eigenvalue knots and their isotopic equivalence in three-state non-Hermitian systems. Physical Review Research, 2023, 5, .	1.3	6
369	Probing Complex-Energy Topology via Non-Hermitian Absorption Spectroscopy in a Trapped Ion Simulator. Physical Review Letters, 2023, 130, .	2.9	7
380	A second wave of topological phenomena in photonics and acoustics. Nature, 2023, 618, 687-697.	13.7	26
395	Applications of bound states in the continuum in photonics. Nature Reviews Physics, 2023, 5, 659-678.	11.9	6
423	Exploring new avenues for the manifestation of reciprocal phenomena. , 2024, , 343-396.		0