Multiancestry association study identifies new asthma immune-cell enhancer marks

Nature Genetics 50, 42-53

DOI: 10.1038/s41588-017-0014-7

Citation Report

#	Article	IF	Citations
1	The critical role of Bach2 in regulating type 2 chronic airway inflammation. International Immunology, 2018, 30, 397-402.	4.0	13
2	Asthma and its comorbidities in middle-aged and older adults; the Rotterdam Study. Respiratory Medicine, 2018, 139, 6-12.	2.9	32
3	A decade of research on the 17q12-21 asthma locus: Piecing together the puzzle. Journal of Allergy and Clinical Immunology, 2018, 142, 749-764.e3.	2.9	143
4	Assessing Asthma Medication Responses in U.S. Minority Children by Whole-Genome Sequencing. American Journal of Respiratory and Critical Care Medicine, 2018, 197, 1513-1514.	5.6	1
5	Methylation profiles of <i>IL33</i> and <i>CCL26</i> in bronchial epithelial cells are associated with asthma. Epigenomics, 2018, 10, 1555-1568.	2.1	9
6	Association of groupâ ∈s pecific component exon 11 polymorphisms with bronchial asthma in children and adolescents. Scandinavian Journal of Immunology, 2019, 89, e12740.	2.7	13
7	Exploring the Genetic Correlation Between Growth and Immunity Based on Summary Statistics of Genome-Wide Association Studies. Frontiers in Genetics, 2018, 9, 393.	2.3	11
8	Genome-wide burden and association analyses implicate copy number variations in asthma risk among children and young adults from Latin America. Scientific Reports, 2018, 8, 14475.	3.3	10
9	Childhood asthma is associated with COPD and known asthma variants in COPDGene: a genome-wide association study. Respiratory Research, 2018, 19, 209.	3.6	41
10	Insights into respiratory disease through bioinformatics. Respirology, 2018, 23, 1117-1126.	2.3	19
11	Tissue signals imprint ILC2 identity with anticipatory function. Nature Immunology, 2018, 19, 1093-1099.	14.5	329
13	Genetic Mechanisms of Asthma and the Implications for Drug Repositioning. Genes, 2018, 9, 237.	2.4	14
14	Genetic architecture of gene expression traits across diverse populations. PLoS Genetics, 2018, 14, e1007586.	3. 5	117
15	Allergy and atopy from infancy to adulthood. Annals of Allergy, Asthma and Immunology, 2019, 122, 25-32.	1.0	59
16	The association between serum iron status and risk of asthma: a 2-sample Mendelian randomization study in descendants of Europeans. American Journal of Clinical Nutrition, 2019, 110, 959-968.	4.7	16
17	Genomeâ€wide interaction study of earlyâ€life smoking exposure on timeâ€toâ€asthma onset in childhood. Clinical and Experimental Allergy, 2019, 49, 1342-1351.	2.9	9
18	The nasal methylome as a biomarker of asthma and airway inflammation in children. Nature Communications, 2019, 10, 3095.	12.8	129
19	Commentary: Orienting causal relationships between two phenotypes using bidirectional Mendelian randomization. International Journal of Epidemiology, 2019, 48, 907-911.	1.9	23

#	Article	IF	CITATIONS
20	Role of genomics in asthma exacerbations. Current Opinion in Pulmonary Medicine, 2019, 25, 101-112.	2.6	17
21	Integrating Mendelian randomization and multiple-trait colocalization to uncover cell-specific inflammatory drivers of autoimmune and atopic disease. Human Molecular Genetics, 2019, 28, 3293-3300.	2.9	27
22	The role of linoleic acid in asthma and inflammatory markers: a Mendelian randomization study. American Journal of Clinical Nutrition, 2019, 110, 685-690.	4.7	22
24	Genome-wide association analysis of 350 000 Caucasians from the UK Biobank identifies novel loci for asthma, hay fever and eczema. Human Molecular Genetics, 2019, 28, 4022-4041.	2.9	110
25	A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases. Genome Medicine, 2019, 11, 47.	8.2	68
26	Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: genome-wide and transcriptome-wide studies. Lancet Respiratory Medicine, the, 2019, 7, 509-522.	10.7	238
27	New Directions in Pediatric Asthma. Immunology and Allergy Clinics of North America, 2019, 39, 283-295.	1.9	7
28	Asthma heterogeneity: the increasing genetic evidence. Lancet Respiratory Medicine, the, 2019, 7, 469-471.	10.7	6
29	Characterization and Electrocatalytic Properties of the Phosphomolybdate-PAMAM Nanocomposite Film. International Journal of Electrochemical Science, 2019, , 9888-9897.	1.3	1
30	Advances in asthma and allergic disease genetics: Is bigger always better?. Journal of Allergy and Clinical Immunology, 2019, 144, 1495-1506.	2.9	61
31	The role of epigenetics in the development of childhood asthma. Expert Review of Clinical Immunology, 2019, 15, 1287-1302.	3.0	39
32	Understanding allergic multimorbidity within the non-eosinophilic interactome. PLoS ONE, 2019, 14, e0224448.	2.5	12
33	Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity, 2019, 51, 949-965.e6.	14.3	37
34	Shared genetics of asthma and mental health disorders: a large-scale genome-wide cross-trait analysis. European Respiratory Journal, 2019, 54, 1901507.	6.7	106
35	Variation at <i>DENND1B</i> and Asthma on the Island of Tristan da Cunha. Twin Research and Human Genetics, 2019, 22, 277-282.	0.6	1
36	Hot Topic: Precision Medicine for Asthmaâ€"Has the Time Come?. Current Allergy and Asthma Reports, 2019, 19, 45.	5. 3	13
37	Genetic architecture of moderate-to-severe asthma mirrors that of mild asthma. Journal of Allergy and Clinical Immunology, 2019, 144, 1521-1523.	2.9	6
38	Allergic diseases and long-term risk of autoimmune disorders: longitudinal cohort study and cluster analysis. European Respiratory Journal, 2019, 54, 1900476.	6.7	59

#	Article	IF	CITATIONS
39	Chromatin activity at GWAS loci identifies T cell states driving complex immune diseases. Nature Genetics, 2019, 51, 1486-1493.	21.4	81
40	Lessons Learned From GWAS of Asthma. Allergy, Asthma and Immunology Research, 2019, 11, 170.	2.9	77
41	Epigenome-wide meta-analysis of DNA methylation and childhood asthma. Journal of Allergy and Clinical Immunology, 2019, 143, 2062-2074.	2.9	147
42	The Future of Asthma Care. Clinics in Chest Medicine, 2019, 40, 227-241.	2.1	11
43	Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) cohort. Environment International, 2019, 124, 462-472.	10.0	64
44	Genes for Good: Engaging the Public in Genetics Research via Social Media. American Journal of Human Genetics, 2019, 105, 65-77.	6.2	16
45	Genetic risk scores do not improve asthma prediction in childhood. Journal of Allergy and Clinical Immunology, 2019, 144, 857-860.e7.	2.9	15
46	EMSY expression affects multiple components of the skin barrier with relevance to atopic dermatitis. Journal of Allergy and Clinical Immunology, 2019, 144, 470-481.	2.9	23
47	Does understanding endotypes translate to better asthma management options for all?. Journal of Allergy and Clinical Immunology, 2019, 144, 25-33.	2.9	28
48	BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 837-856.	5.6	37
49	Birth weight is not causally associated with adult asthma: results from instrumental variable analyses. Scientific Reports, 2019, 9, 7647.	3.3	9
50	Association of IL1RL1 rs3771180 and TSLP rs1837253 variants with asthma in the Guangxi Zhuang population in China. Journal of Clinical Laboratory Analysis, 2019, 33, e22905.	2.1	6
51	Genome-wide association study of medication-use and associated disease in the UK Biobank. Nature Communications, 2019, 10, 1891.	12.8	140
52	The Cytokines of Asthma. Immunity, 2019, 50, 975-991.	14.3	622
53	What did we learn from multiple omics studies in asthma?. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2129-2145.	5.7	29
54	Elucidation of causal direction between asthma and obesity: a bi-directional Mendelian randomization study. International Journal of Epidemiology, 2019, 48, 899-907.	1.9	37
55	Reconstructing recent population history while mapping rare variants using haplotypes. Scientific Reports, 2019, 9, 5849.	3.3	4
57	Epigenomics and Transcriptomics in the Prediction and Diagnosis of Childhood Asthma: Are We There Yet?. Frontiers in Pediatrics, 2019, 7, 115.	1.9	25

#	Article	IF	CITATIONS
58	Osteogenesis depends on commissioning of a network of stem cell transcription factors that act as repressors of adipogenesis. Nature Genetics, 2019, 51, 716-727.	21.4	156
59	Linking COPD epidemiology with pediatric asthma care: Implications for the patient and the physician. Pediatric Allergy and Immunology, 2019, 30, 589-597.	2.6	32
60	Asthma and affective traits in adults: a genetically informative study. European Respiratory Journal, 2019, 53, 1802142.	6.7	29
61	Transcriptomics of atopy and atopic asthma in white blood cells from children and adolescents. European Respiratory Journal, 2019, 53, 1900102.	6.7	20
62	Genetic and observational evidence supports a causal role of sex hormones on the development of asthma. Thorax, 2019, 74, 633-642.	5.6	25
63	The State of Asthma Research: Considerable Advances, but Still a Long Way to Go. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 397-399.	5.6	9
64	Dysfunctional ErbB2, an EGF receptor family member, hinders repair of airway epithelial cells from asthmatic patients. Journal of Allergy and Clinical Immunology, 2019, 143, 2075-2085.e10.	2.9	21
65	Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. Nature Genetics, 2019, 51, 494-505.	21.4	257
66	Genomic Predictors of Asthma Phenotypes and Treatment Response. Frontiers in Pediatrics, 2019, 7, 6.	1.9	61
67	Association study in African-admixed populations across the Americas recapitulates asthma risk loci in non-African populations. Nature Communications, 2019, 10, 880.	12.8	71
68	African American ancestry contribution to asthma and atopic dermatitis. Annals of Allergy, Asthma and Immunology, 2019, 122, 456-462.	1.0	33
69	Making the Most of Clumping and Thresholding for Polygenic Scores. American Journal of Human Genetics, 2019, 105, 1213-1221.	6.2	123
70	Childhood Asthma Inception and Progression. Immunology and Allergy Clinics of North America, 2019, 39, 141-150.	1.9	25
71	Chuankezhi injection for asthma. Medicine (United States), 2019, 98, e16630.	1.0	1
72	Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Frontiers in Pediatrics, 2019, 7, 499.	1.9	59
73	A phenomics-based approach for the detection and interpretation of shared genetic influences on 29 biochemical indices in southern Chinese men. BMC Genomics, 2019, 20, 983.	2.8	4
74	A GWAS approach identifies Dapp1 as a determinant of air pollution-induced airway hyperreactivity. PLoS Genetics, 2019, 15, e1008528.	3.5	9
75	Leveraging genomics to uncover the genetic, environmental and age-related factors leading to asthma., 2019,, 331-381.		2

#	ARTICLE	IF	Citations
76	Environment and Host-Genetic Determinants in Early Development of Allergic Asthma: Contribution of Fungi. Frontiers in Immunology, 2019, 10, 2696.	4.8	11
77	DNA methylation signatures of atopy and asthma. Lancet Respiratory Medicine, the, 2019, 7, 289-290.	10.7	1
78	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine, the, 2019, 7, 20-34.	10.7	183
79	Prevalence of asthma in multiple sclerosis: A United States population-based study. Multiple Sclerosis and Related Disorders, 2019, 28, 69-74.	2.0	19
80	DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respiratory Medicine,the, 2019, 7, 336-346.	10.7	147
81	Genetic risk factors for the development of pulmonary disease identified by genomeâ€wide association. Respirology, 2019, 24, 204-214.	2.3	44
82	A loss-of-function variant in ALOX15 protects against nasal polyps and chronic rhinosinusitis. Nature Genetics, 2019, 51, 267-276.	21.4	83
83	Identification of novel allergic diathesis genes: Are we closer to novel therapeutic targets?. Journal of Allergy and Clinical Immunology, 2019, 143, 557-559.	2.9	0
86	SNPs identified by GWAS affect asthma risk through DNA methylation and expression of <i>ci>cis</i> -genes in airway epithelium. European Respiratory Journal, 2020, 55, 1902079.	6.7	21
87	Obstructive lung diseases and risk of rheumatoid arthritis. Expert Review of Clinical Immunology, 2020, 16, 37-50.	3.0	17
88	A tissue-specific collaborative mixed model for jointly analyzing multiple tissues in transcriptome-wide association studies. Nucleic Acids Research, 2020, 48, e109-e109.	14.5	15
89	Integrated genomics analysis highlights important SNPs and genes implicated in moderate-to-severe asthma based on GWAS and eQTL datasets. BMC Pulmonary Medicine, 2020, 20, 270.	2.0	20
90	The genetics of asthma and the promise of genomics-guided drug target discovery. Lancet Respiratory Medicine, the, 2020, 8, 1045-1056.	10.7	98
91	Cytokine-induced molecular responses in airway smooth muscle cells inform genome-wide association studies of asthma. Genome Medicine, 2020, 12, 64.	8.2	14
92	Detecting fitness epistasis in recently admixed populations with genome-wide data. BMC Genomics, 2020, 21, 476.	2.8	4
93	Airway Epithelial Dysfunction in Asthma: Relevant to Epidermal Growth Factor Receptors and Airway Epithelial Cells. Journal of Clinical Medicine, 2020, 9, 3698.	2.4	32
94	Genomic profiling of T-cell activation suggests increased sensitivity of memory T cells to CD28 costimulation. Genes and Immunity, 2020, 21, 390-408.	4.1	17
95	Biologic treatment options for severe asthma. Current Opinion in Immunology, 2020, 66, 151-160.	5.5	23

#	ARTICLE	IF	CITATIONS
96	Interweaving Between Genetic and Epigenetic Studies on Childhood Asthma. Epigenetics Insights, 2020, 13, 251686572092339.	2.0	9
97	The origins of allergy from a systems approach. Annals of Allergy, Asthma and Immunology, 2020, 125, 507-516.	1.0	24
98	Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science, 2020, 369, 561-565.	12.6	77
100	Genomics of asthma, allergy and chronic rhinosinusitis: novel concepts and relevance in airway mucosa. Clinical and Translational Allergy, 2020, 10, 45.	3.2	26
101	It's in the (Epi)genetics. Chest, 2020, 158, 1799-1801.	0.8	2
102	Immuneâ€microbiota interaction in Finnish and Russian Karelia young people with high and low allergy prevalence. Clinical and Experimental Allergy, 2020, 50, 1148-1158.	2.9	19
103	Integrative genomics analysis of various omics data and networks identify risk genes and variants vulnerable to childhood-onset asthma. BMC Medical Genomics, 2020, 13, 123.	1.5	15
104	Decoding Susceptibility to Respiratory Viral Infections and Asthma Inception in Children. International Journal of Molecular Sciences, 2020, 21, 6372.	4.1	11
105	Asthma genomics and pharmacogenomics. Current Opinion in Immunology, 2020, 66, 136-142.	5 . 5	7
106	Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study. Lancet Respiratory Medicine,the, 2020, 8, 482-492.	10.7	47
107	Objectives, design and main findings until 2020 from the Rotterdam Study. European Journal of Epidemiology, 2020, 35, 483-517.	5.7	314
108	Epigenome-wide association study of DNA methylation and adult asthma in the Agricultural Lung Health Study. European Respiratory Journal, 2020, 56, 2000217.	6.7	40
109	A distal enhancer at risk locus 11q13.5 promotes suppression of colitis by Treg cells. Nature, 2020, 583, 447-452.	27.8	40
110	Expression Quantitative Trait Methylation Analysis Reveals Methylomic Associations With Gene Expression in Childhood Asthma. Chest, 2020, 158, 1841-1856.	0.8	28
111	DNA Methylation in Nasal Epithelium: Strengths and Limitations of an Emergent Biomarker for Childhood Asthma. Frontiers in Pediatrics, 2020, 8, 256.	1.9	8
112	Association of asthma and its genetic predisposition with the risk of severe COVID-19. Journal of Allergy and Clinical Immunology, 2020, 146, 327-329.e4.	2.9	174
113	ILâ€17 regulates DC migration to the peribronchial LNs and allergen presentation in experimental allergic asthma. European Journal of Immunology, 2020, 50, 1019-1033.	2.9	14
114	Admixture mapping of asthma in southwestern Europeans with North African ancestry influences. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L965-L975.	2.9	8

#	Article	IF	CITATIONS
115	Comprehensive functional annotation of susceptibility variants associated with asthma. Human Genetics, 2020, 139, 1037-1053.	3.8	11
116	Genetic colocalization atlas points to common regulatory sites and genes for hematopoietic traits and hematopoietic contributions to disease phenotypes. BMC Medical Genomics, 2020, 13, 89.	1.5	10
117	Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genetics, 2020, 16, e1008725.	3.5	27
118	Functional Genetic Polymorphisms in the IL1RL1–IL18R1 Region Confer Risk for Ocular Behçet's Disease in a Chinese Han Population. Frontiers in Genetics, 2020, 11, 645.	2.3	5
119	Estimating growth patterns and driver effects in tumor evolution from individual samples. Nature Communications, 2020, 11, 732.	12.8	18
120	Recent findings in the genetics and epigenetics of asthma and allergy. Seminars in Immunopathology, 2020, 42, 43-60.	6.1	63
121	Childhood asthma in the new omics era: challenges and perspectives. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 155-161.	2.3	26
122	Fighting the Common Cold: ORMDL3 in the Crosshairs?. American Journal of Respiratory Cell and Molecular Biology, 2020, 62, 676-677.	2.9	7
123	Eighty-eight variants highlight the role of T cell regulation and airway remodeling in asthma pathogenesis. Nature Communications, 2020, 11, 393.	12.8	59
124	Association of HLA-DRB1a^—09:01 with tigE levels among African-ancestry individuals with asthma. Journal of Allergy and Clinical Immunology, 2020, 146, 147-155.	2.9	14
125	Functional Genomics of the Pediatric Obese Asthma Phenotype Reveal Enrichment of Rho-GTPase Pathways. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 259-274.	5.6	17
126	A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 3248-3260.	5.7	55
127	Polymorphisms in Interleukin 13 Signaling and Interacting Genes Predict Advanced Fibrosis and Hepatocellular Carcinoma Development in Non-Alcoholic Steatohepatitis. Biology, 2020, 9, 75.	2.8	13
128	Genome-wide analysis highlights contribution of immune system pathways to the genetic architecture of asthma. Nature Communications, 2020, 11 , 1776 .	12.8	119
129	Cross-trait analyses with migraine reveal widespread pleiotropy and suggest a vascular component to migraine headache. International Journal of Epidemiology, 2020, 49, 1022-1031.	1.9	34
130	Detecting Shared Genetic Architecture Among Multiple Phenotypes by Hierarchical Clustering of Gene-Level Association Statistics. Genetics, 2020, 215, 511-529.	2.9	13
131	Mapping the 17q12–21.1 Locus for Variants Associated with Early-Onset Asthma in African Americans. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 424-436.	5.6	16
132	Genetic analyses identify GSDMB associated with asthma severity, exacerbations, and antiviral pathways. Journal of Allergy and Clinical Immunology, 2021, 147, 894-909.	2.9	50

#	Article	IF	CITATIONS
133	Investigating asthma heterogeneity through shared and distinct genetics: Insights from genome-wide cross-trait analysis. Journal of Allergy and Clinical Immunology, 2021, 147, 796-807.	2.9	53
134	Integrative genomic analysis in African American children with asthma finds three novel loci associated with lung function. Genetic Epidemiology, 2021, 45, 190-208.	1.3	4
135	Causal Analysis Shows Evidence of Atopic Dermatitis Leading to an Increase in Vitamin D Levels. Journal of Investigative Dermatology, 2021, 141, 1339-1341.	0.7	11
136	A genome-wide association study of severe asthma exacerbations in Latino children and adolescents. European Respiratory Journal, 2021, 57, 2002693.	6.7	15
137	Shared DNA methylation signatures in childhood allergy: The MeDALL study. Journal of Allergy and Clinical Immunology, 2021, 147, 1031-1040.	2.9	24
138	LDpred2: better, faster, stronger. Bioinformatics, 2021, 36, 5424-5431.	4.1	257
139	A genome-wide study of DNA methylation in white blood cells and asthma in Latino children and youth. Epigenetics, 2021, 16, 577-585.	2.7	10
140	A genome-wide association study of asthma hospitalizations in adults. Journal of Allergy and Clinical Immunology, 2021, 147, 933-940.	2.9	23
141	Twoâ€stage genomeâ€wide association study of chronic rhinosinusitis and disease subphenotypes highlights mucosal immunity contributing to risk. International Forum of Allergy and Rhinology, 2021, 11, 814-817.	2.8	4
142	New concepts in pediatric rhinitis. Pediatric Allergy and Immunology, 2021, 32, 635-646.	2.6	16
143	Genetics and Epigenetics in Asthma. International Journal of Molecular Sciences, 2021, 22, 2412.	4.1	74
144	Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome. Nature Communications, 2021, 12, 727.	12.8	83
147	Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Reports, 2021, 34, 108754.	6.4	88
148	The intersect of genetics, environment, and microbiota in asthmaâ€"perspectives and challenges. Journal of Allergy and Clinical Immunology, 2021, 147, 781-793.	2.9	31
149	Association of allergic rhinitis with hypothyroidism, asthma, and chronic sinusitis: Clinical and radiological features. World Journal of Otorhinolaryngology - Head and Neck Surgery, 2021, , .	1.6	3
150	Chromosome 17q12-21 Variants Are Associated with Multiple Wheezing Phenotypes in Childhood. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 864-870.	5.6	24
151	The impact of cell type and context-dependent regulatory variants on human immune traits. Genome Biology, 2021, 22, 122.	8.8	32
152	Association study between asthma and single nucleotide polymorphisms of ORMDL3, GSDMB, and IL1RL1 genes in an Algerian population. Egyptian Journal of Medical Human Genetics, 2021, 22, .	1.0	2

#	Article	IF	CITATIONS
153	Innate ILâ \in 23/Type 17 immune responses mediate the effect of the 17q21 locus on childhood asthma. Clinical and Experimental Allergy, 2021, 51, 892-901.	2.9	3
154	Relationship between atopic dermatitis, depression and anxiety: a twoâ€sample Mendelian randomization study. British Journal of Dermatology, 2021, 185, 781-786.	1.5	15
156	ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. BMC Pulmonary Medicine, 2021, 21, 167.	2.0	3
157	Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children. Journal of Allergy and Clinical Immunology, 2021, 148, 1505-1514.	2.9	14
158	Association of Gasdermin B Gene GSDMB Polymorphisms with Risk of Allergic Diseases. Biochemical Genetics, 2021, 59, 1527-1543.	1.7	4
159	Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biology, 2021, 22, 194.	8.8	90
160	Atopic diseases of the parents predict the offspring's atopic sensitization and food allergy. Pediatric Allergy and Immunology, 2021, 32, 859-871.	2.6	5
161	Genomeâ€wide association study identifies <i>TNFSF15</i> associated with childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 218-229.	5.7	11
162	RápidoPGS: a rapid polygenic score calculator for summary GWAS data without a test dataset. Bioinformatics, 2021, 37, 4444-4450.	4.1	4
163	Airway smooth muscle pathophysiology in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 1983-1995.	2.9	44
164	Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Communications Biology, 2021, 4, 700.	4.4	77
165	TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. Journal of Allergy and Clinical Immunology, 2022, 149, 79-88.	2.9	11
166	An autoimmune disease risk variant: A trans master regulatory effect mediated by IRF1 under immune stimulation?. PLoS Genetics, 2021, 17, e1009684.	3.5	17
167	Safety and efficacy of itepekimab in patients with moderate-to-severe COPD: a genetic association study and randomised, double-blind, phase 2a trial. Lancet Respiratory Medicine, the, 2021, 9, 1288-1298.	10.7	7 5
168	Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nature Neuroscience, 2021, 24, 1302-1312.	14.8	105
169	Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. American Journal of Human Genetics, 2021, 108, 1251-1269.	6.2	104
170	Technological readiness and implementation of genomicâ€driven precision medicine for complex diseases. Journal of Internal Medicine, 2021, 290, 602-620.	6.0	18
171	Improved genetic prediction of complex traits from individual-level data or summary statistics. Nature Communications, 2021, 12, 4192.	12.8	76

#	Article	IF	CITATIONS
172	Evaluating the Causal Association Between Educational Attainment and Asthma Using a Mendelian Randomization Design. Frontiers in Genetics, 2021, 12, 716364.	2.3	4
173	Cellular and molecular mechanisms of allergic asthma. Molecular Aspects of Medicine, 2022, 85, 100995.	6.4	71
174	The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. , 2021, 225, 107847.		64
175	Orosomucoid-like protein 3, rhinovirus and asthma. World Journal of Critical Care Medicine, 2021, 10, 170-182.	1.8	6
176	A polygenic risk score for asthma in a large racially diverse population. Clinical and Experimental Allergy, 2021, 51, 1410-1420.	2.9	15
177	Associations between dental caries and systemic diseases: a scoping review. BMC Oral Health, 2021, 21, 472.	2.3	39
178	Association of interleukin-17A genetic polymorphisms with risk of asthma: A case-control study in Iraqi patients. Meta Gene, 2021, 29, 100935.	0.6	2
179	Genetics of Asthma: Insights From Genome Wide Association Studies. , 2022, , 308-325.		1
180	Pharmacogenetics of inhaled corticosteroids and exacerbation risk in adults with asthma. Clinical and Experimental Allergy, 2022, 52, 33-45.	2.9	11
181	Tractor uses local ancestry to enable the inclusion of admixed individuals in GWAS and to boost power. Nature Genetics, 2021, 53, 195-204.	21.4	125
182	Mendelian randomization under the omnigenic architecture. Briefings in Bioinformatics, $2021, 22, \ldots$	6.5	9
183	Inclusion of variants discovered from diverse populations improves polygenic risk score transferability. Human Genetics and Genomics Advances, 2021, 2, 100017.	1.7	64
184	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	2.9	29
185	FUT2–ABO epistasis increases the risk of early childhood asthma and Streptococcus pneumoniae respiratory illnesses. Nature Communications, 2020, 11, 6398.	12.8	21
186	Personalized medicine for asthma in tropical regions. Current Opinion in Allergy and Clinical Immunology, 2020, 20, 268-273.	2.3	2
206	A life course approach to elucidate the role of adiposity in asthma risk: evidence from a Mendelian randomisation study. Journal of Epidemiology and Community Health, 2021, 75, jech-2020-213745.	3.7	10
207	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	5.0	26
208	Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. Journal of Clinical Investigation, 2019, 129, 1493-1503.	8.2	197

#	Article	IF	CITATIONS
209	SARP: dissecting subphenotypes and endotypes of asthma. , 2019, , 167-183.		2
210	Epigenetic Changes in Asthma: Role of DNA CpG Methylation. Tuberculosis and Respiratory Diseases, 2020, 83, 1.	1.8	19
211	Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ, 2020, 8, e9971.	2.0	6
212	Investigating the causal relationship between allergic disease and mental health. Clinical and Experimental Allergy, 2021, 51, 1449-1458.	2.9	17
213	Asthma-associated genetic variants induce IL33 differential expression through an enhancer-blocking regulatory region. Nature Communications, 2021, 12, 6115.	12.8	28
215	Identifying causality, genetic correlation, priority and pathways of large-scale complex exposures of breast and ovarian cancers. British Journal of Cancer, 2021, 125, 1570-1581.	6.4	11
216	Translational Analysis of Moderate to Severe Asthma GWAS Signals Into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. Frontiers in Allergy, 2021, 2, 738741.	2.8	3
217	Leveraging auxiliary data from arbitrary distributions to boost GWAS discovery with Flexible cFDR. PLoS Genetics, 2021, 17, e1009853.	3.5	3
218	Multi-omics colocalization with genome-wide association studies reveals a context-specific genetic mechanism at a childhood onset asthma risk locus. Genome Medicine, 2021, 13, 157.	8.2	21
225	Special Considerations in Preschool Age. , 2020, , 19-46.		1
226	Future Directions in Severe Childhood Asthma. , 2020, , 343-355.		0
227	Genomics and Pharmacogenomics of Severe Childhood Asthma. , 2020, , 313-341.		0
228	Precision Medicine for All: Minority Health. Respiratory Medicine, 2020, , 395-407.	0.1	0
231	Singleâ€'nucleotide polymorphisms and haplotypes in the interleukinâ€'33 gene are associated with a risk of allergic rhinitis in the Chinese population. Experimental and Therapeutic Medicine, 2020, 20, 1-1.	1.8	3
233	Genetics and Pharmacogenetics of Asthma. Respiratory Medicine, 2020, , 25-37.	0.1	1
234	Summary and Future Applications of Precision Medicine in Pulmonary, Critical Care, and Sleep Medicine. Respiratory Medicine, 2020, , 417-428.	0.1	0
236	Genetic overlap analysis of endometriosis and asthma identifies shared loci implicating sex hormones and thyroid signalling pathways. Human Reproduction, 2022, 37, 366-383.	0.9	19
240	Characterisation of insomnia as an environmental risk factor for asthma via Mendelian randomization and gene environment interaction. Scientific Reports, 2021, 11, 21813.	3.3	5

#	Article	IF	CITATIONS
243	Integration of Transcriptomic Data Identifies Global and Cell-Specific Asthma-Related Gene Expression Signatures. AMIA Annual Symposium proceedings, 2018, 2018, 1338-1347.	0.2	8
244	Trait Insights Gained by Comparing Genome-Wide Association Study Results using Different Chronic Obstructive Pulmonary Disease Definitions. AMIA Summits on Translational Science Proceedings, 2020, 2020, 278-287.	0.4	1
245	Idéfix: identifying accidental sample mix-ups in biobanks using polygenic scores. Bioinformatics, 2022, 38, 1059-1066.	4.1	1
246	Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genetics, 2021, 17, e1009922.	3.5	74
248	Role of Allergy in ENT Infections. , 2022, , 63-78.		0
250	Allergic diseases in infancy: I - Epidemiology and current interpretation. World Allergy Organization Journal, 2021, 14, 100591.	3.5	15
251	Convergent Evidence Supports TH2LCRR as a Novel Asthma Susceptibility Gene. American Journal of Respiratory Cell and Molecular Biology, 2021, , .	2.9	7
253	OUP accepted manuscript. International Journal of Epidemiology, 2021, , .	1.9	2
254	Genetics of Asthma and Allergic Diseases. Handbook of Experimental Pharmacology, 2021, 268, 313-329.	1.8	5
256	C5 and SRGAP3 Polymorphisms Are Linked to Paediatric Allergic Asthma in the Italian Population. Genes, 2022, 13, 214.	2.4	1
259	Shared Genetic Architecture and Causal Relationship Between Asthma and Cardiovascular Diseases: A Large-Scale Cross-Trait Analysis. Frontiers in Genetics, 2021, 12, 775591.	2.3	9
261	Genetic Associations and Architecture of Asthma-COPD Overlap. Chest, 2022, 161, 1155-1166.	0.8	15
262	Machine learning optimized polygenic scores for blood cell traits identify sex-specific trajectories and genetic correlations with disease. Cell Genomics, 2022, 2, 100086.	6.5	9
263	Multi-Omics Profiling Approach to Asthma: An Evolving Paradigm. Journal of Personalized Medicine, 2022, 12, 66.	2.5	30
264	Epidemiology of Allergic Diseases. , 2022, , 40-55.		0
265	17q12â€21 riskâ€variants influence cord blood immune regulation and multitriggerâ€wheeze. Pediatric Allergy and Immunology, 2022, 33, .	2.6	5
266	Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future., 2022, 237, 108115.		9
268	Pollen Allergens Sensitization Characteristics and Risk Factors Among Allergy Rhinitis of Children in Mainland China: A Multicenter Study. SSRN Electronic Journal, 0, , .	0.4	0

#	ARTICLE	IF	Citations
269	Holy Grail: the journey towards disease modification in asthma. European Respiratory Review, 2022, 31, 210183.	7.1	15
271	Bach2: A Key Regulator in Th2-Related Immune Cells and Th2 Immune Response. Journal of Immunology Research, 2022, 2022, 1-10.	2.2	8
273	Genome-Wide Interaction Study of Late-Onset Asthma With Seven Environmental Factors Using a Structured Linear Mixed Model in Europeans. Frontiers in Genetics, 2022, 13, 765502.	2.3	4
274	Immune disease variants modulate gene expression in regulatory CD4+ TÂcells. Cell Genomics, 2022, 2, 100117.	6.5	20
275	Understanding the relationship between asthma and autism spectrum disorder: a population-based family and twin study. Psychological Medicine, 2022, , 1-9.	4.5	2
276	A whole genome sequencing study of moderate to severe asthma identifies a lung function locus associated with asthma risk. Scientific Reports, 2022, 12, 5574.	3.3	9
277	Targeted analysis of genomic regions enriched in African ancestry reveals novel classical HLA alleles associated with asthma in Southwestern Europeans. Scientific Reports, 2021, 11, 23686.	3.3	4
278	Dietary intake and plasma concentrations of PUFAs in childhood and adolescence in relation to asthma and lung function up to adulthood. American Journal of Clinical Nutrition, 2022, 115, 886-896.	4.7	6
279	Association of IL33, IL1RL1, IL1RAP Polymorphisms and Asthma in Chinese Han Children. Frontiers in Cell and Developmental Biology, 2021, 9, 759542.	3.7	4
280	Wheeze trajectories: Determinants and outcomes in the CHILD Cohort Study. Journal of Allergy and Clinical Immunology, 2022, 149, 2153-2165.	2.9	22
281	Early priming of asthma and respiratory allergies: Future aspects of prevention. Pediatric Allergy and Immunology, 2022, 33, e13773.	2.6	3
299	Relationship between allergic sensitisation-associated single-nucleotide polymorphisms and allergic transfusion reactions and febrile non-haemolytic transfusion reactions in paediatric cases. Blood Transfusion, 2021, , .	0.4	0
301	Shared components of heritability across genetically correlated traits. American Journal of Human Genetics, 2022, 109, 989-1006.	6.2	7
302	A practical problem with Egger regression in Mendelian randomization. PLoS Genetics, 2022, 18, e1010166.	3.5	4
303	Robust inference of bi-directional causal relationships in presence of correlated pleiotropy with GWAS summary data. PLoS Genetics, 2022, 18, e1010205.	3.5	5
304	New Insights Relating Gasdermin B to the Onset of Childhood Asthma. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 430-437.	2.9	6
305	Immune disease risk variants regulate gene expression dynamics during CD4+ T cell activation. Nature Genetics, 2022, 54, 817-826.	21.4	57
306	Interleukin-33 (IL-33): A critical review of its biology and the mechanisms involved in its release as a potent extracellular cytokine. Cytokine, 2022, 156, 155891.	3.2	75

#	Article	IF	CITATIONS
308	Multiancestral polygenic risk score for pediatric asthma. Journal of Allergy and Clinical Immunology, 2022, 150, 1086-1096.	2.9	14
309	Asthma and the Missing Heritability Problem: Necessity for Multiomics Approaches in Determining Accurate Risk Profiles. Frontiers in Immunology, 2022, 13, .	4.8	5
310	Fine-mapping studies distinguish genetic risks for childhood- and adult-onset asthma in the HLA region. Genome Medicine, 2022, 14 , .	8.2	2
311	Transcriptome-Wide m6A Methylome and m6A-Modified Gene Analysis in Asthma. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	4
312	Common risk variants for epilepsy are enriched in families previously targeted for rare monogenic variant discovery. EBioMedicine, 2022, 81, 104079.	6.1	10
314	Evaluating statistical significance in a meta-analysis by using numerical integration. Computational and Structural Biotechnology Journal, 2022, 20, 3615-3620.	4.1	1
315	Aspectos genéticos implicados en el asma. Revista Alergia Mexico, 2022, 69, 21-30.	0.1	1
316	Genetic Determinants in Airways Obstructive Diseases: The Case of Asthma Chronic Obstructive Pulmonary Disease Overlap. Immunology and Allergy Clinics of North America, 2022, 42, 559-573.	1.9	1
317	Pathophysiology of Asthma-Chronic Obstructive Pulmonary Disease Overlap. Immunology and Allergy Clinics of North America, 2022, , .	1.9	0
318	Editorial comments on: "Multiâ€ancestry genomeâ€wide association study of asthma exacerbationsâ€a Pediatric Allergy and Immunology, 2022, 33, .	2.6	0
319	Genome-wide association study in minority children with asthma implicates DNAH5 in bronchodilator responsiveness. Scientific Reports, 2022, 12 , .	3.3	4
320	Genetic liability to asthma and risk of cardiovascular diseases: A Mendelian randomization study. Frontiers in Genetics, $0,13,.$	2.3	4
321	The causal relationship between allergic diseases and heart failure: Evidence from Mendelian randomization study. PLoS ONE, 2022, 17, e0271985.	2.5	5
322	Zinc finger protein 33B demonstrates sex-interaction with atopy-related markers in childhood asthma. European Respiratory Journal, 0, , 2200479.	6.7	1
323	Deep sequencing of short capped RNAs reveals novel families of noncoding RNAs. Genome Research, 2022, 32, 1727-1735.	5.5	1
324	The Role of Polygenic Susceptibility on Air Pollution-Associated Asthma between German and Japanese Elderly Women. International Journal of Environmental Research and Public Health, 2022, 19, 9869.	2.6	0
325	COVID-19 in pediatrics: Genetic susceptibility. Frontiers in Genetics, 0, 13, .	2.3	5
326	Pediatric twin studies. , 2022, , 431-438.		0

#	Article	IF	CITATIONS
327	Inmunoterapia con alérgenos para enfermedades alérgicas de las vÃas respiratorias: Aprovechar las lecciones del pasado para diseñar un futuro mejor. Karger Kompass NeumologÃa, 2022, 4, 58-80.	0.0	0
330	A Multi-Point View of Genetic Factors Affecting Hereditary Transmissibility of Asthma. Cureus, 2022, , .	0.5	1
331	NOD-like receptors in asthma. Frontiers in Immunology, 0, 13, .	4.8	8
332	African-specific alleles modify risk for asthma at the $17q12$ - $q21$ locus in African Americans. Genome Medicine, 2022, 14, .	8.2	5
333	Asthma exacerbations: the Achilles heel of asthma care. Trends in Molecular Medicine, 2022, 28, 1112-1127.	6.7	4
334	Basic genetics and epigenetics for the immunologist and allergist. , 2022, , 119-143.		0
336	Global Biobank Meta-analysis Initiative: Powering genetic discovery across human disease. Cell Genomics, 2022, 2, 100192.	6.5	85
337	CLCA1 mediates the regulatory effect of IL-13 on pediatric asthma. Frontiers in Pediatrics, 0, 10, .	1.9	2
339	scGWAS: landscape of trait-cell type associations by integrating single-cell transcriptomics-wide and genome-wide association studies. Genome Biology, 2022, 23, .	8.8	11
340	The Role of Systems Biology in Deciphering Asthma Heterogeneity. Life, 2022, 12, 1562.	2.4	1
341	Genetic and epigenetic links to asthma. , 2023, , 173-194.		0
343	Causal risk factors for asthma in Mendelian randomization studies: A systematic review and metaâ€analysis. Clinical and Translational Allergy, 2022, 12, .	3.2	5
344	Multi-ancestry meta-analysis of asthma identifies novel associations and highlights the value of increased power and diversity. Cell Genomics, 2022, 2, 100212.	6.5	16
346	Prediction of the cell-type-specific transcription of non-coding RNAs from genome sequences via machine learning. Nature Biomedical Engineering, 2023, 7, 830-844.	22.5	8
347	Exome variants associated with asthma and allergy. Scientific Reports, 2022, 12, .	3.3	4
348	Nasal DNA methylation at three CpG sites predicts childhood allergic disease. Nature Communications, 2022, 13, .	12.8	9
349	Editorial: Translational research in pediatric respiratory diseases: From bench to bedside. Frontiers in Pediatrics, $0,10,1$	1.9	0
350	Type 2 cytokine genes as allergic asthma risk factors after viral bronchiolitis in early childhood. Frontiers in Immunology, 0, 13, .	4.8	0

#	ARTICLE	IF	CITATIONS
351	CAVO Inhibits Airway Inflammation and ILC2s in OVA-Induced Murine Asthma Mice. BioMed Research International, 2023, 2023, 1-11.	1.9	0
352	STAT6-IP–Dependent Disruption of IL-33–Mediated ILC2 Expansion and Type 2 Innate Immunity in the Murine Lung. Journal of Immunology, 2022, 209, 2192-2202.	0.8	1
353	Targeting interleukin-33 and thymic stromal lymphopoietin pathways for novel pulmonary therapeutics in asthma and COPD. European Respiratory Review, 2023, 32, 220144.	7.1	17
354	Human germline heterozygous gain-of-function <i>STAT6</i> Journal of Experimental Medicine, 2023, 220, .	8.5	31
355	Fast and accurate Bayesian polygenic risk modeling with variational inference. American Journal of Human Genetics, 2023, 110, 741-761.	6.2	3
356	The ins and outs of innate and adaptive type 2 immunity. Immunity, 2023, 56, 704-722.	14.3	13
357	Decoding the genetic and epigenetic basis of asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2023, 78, 940-956.	5.7	17
358	Integrative genetics-metabolomics analysis of infant bronchiolitis-childhood asthma link: A multicenter prospective study. Frontiers in Immunology, $0,13,.$	4.8	3
359	A Review of Major Danish Biobanks: Advantages and Possibilities of Health Research in Denmark. Clinical Epidemiology, 0, Volume 15, 213-239.	3.0	2
361	Building a precision medicine infrastructure at a national level: The Swedish experience. , 2023, 1 , .		2
364	Genetic analyses of chr11p15.5 region identify <i>MUC5AC</i> - <i>MUC5B</i> associated with asthma-related phenotypes. Journal of Asthma, 2023, 60, 1824-1835.	1.7	2
365	Pollen allergens sensitization characteristics and risk factors among allergy rhinitis of children in mainland China: A multicenter study. Heliyon, 2023, 9, e14914.	3.2	1
366	Identifying the potential causal role of insomnia symptoms on $11,409$ health-related outcomes: a phenome-wide Mendelian randomisation analysis in UK Biobank. BMC Medicine, 2023, $21, \ldots$	5.5	6
367	Highlighting the importance of healthy sleep patterns in the risk of adult asthma under the combined effects of genetic susceptibility: a large-scale prospective cohort study of 455 405 participants. BMJ Open Respiratory Research, 2023, 10, e001535.	3.0	3
369	A IncRNA from an inflammatory bowel disease risk locus maintains intestinal host-commensal homeostasis. Cell Research, 2023, 33, 372-388.	12.0	4
370	Association of air pollution, genetic risk, and lifestyle with incident adult-onset asthma: A prospective cohort study. Ecotoxicology and Environmental Safety, 2023, 257, 114922.	6.0	4
371	Genome-wide association study of chronic sputum production implicates loci involved in mucus production and infection. European Respiratory Journal, 2023, 61, 2201667.	6.7	2
372	CLEC16Aâ€"An Emerging Master Regulator of Autoimmunity and Neurodegeneration. International Journal of Molecular Sciences, 2023, 24, 8224.	4.1	2

#	Article	IF	CITATIONS
373	Immunogenetics and pharmacogenetics of allergic asthma in Africa. Frontiers in Allergy, 0, 4, .	2.8	0
374	A meta-analysis of genome-wide association studies of childhood wheezing phenotypes identifies ANXA1 as a susceptibility locus for persistent wheezing. ELife, 0, 12, .	6.0	4
375	Priority index for asthma (PIA): In silico discovery of shared and distinct drug targets for adult- and childhood-onset disease. Computers in Biology and Medicine, 2023, 162, 107095.	7.0	1
376	Exploring the genetic association of allergic diseases with cardiovascular diseases: a bidirectional Mendelian randomization study. Frontiers in Immunology, $0,14,.$	4.8	0
377	Type 2 inflammation and biological therapies in asthma: Targeted medicine taking flight. Journal of Experimental Medicine, 2023, 220, .	8.5	5
378	Clinical characterization of patients with bipolar disorder and a history of asthma: An exploratory study. Journal of Psychiatric Research, 2023, 164, 8-14.	3.1	2
380	Genetic and Epigenetic Factors in Risk and Susceptibility for Childhood Asthma. Allergies, 2023, 3, 115-133.	0.8	0
381	Socioeconomic status and asthma: AÂbidirectional Mendelian randomization study. World Allergy Organization Journal, 2023, 16, 100790.	3.5	0
383	Shared Genetic Architecture of Blood Eosinophil Counts and Asthma in UK Biobank. ERJ Open Research, 0, , 00291-2023.	2.6	0
384	Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science, 2023, 380, .	12.6	31
385	Association of single-nucleotide variants of the orsomucoid-1-like protein 3 gene with phenotypes of atopic march in children. Zdorov \hat{E}^1 e Rebenka, 2023, 18, 201-206.	0.2	0
386	Genetic control of the dynamic transcriptional response to immune stimuli and glucocorticoids at single-cell resolution. Genome Research, 2023, 33, 839-856.	5.5	2
387	Assessing causal relationships between gut microbiota and asthma: evidence from two sample Mendelian randomization analysis. Frontiers in Immunology, 0, 14 , .	4.8	5
388	Gene–Smoking Interaction Analysis for the Identification of Novel Asthma-Associated Genetic Factors. International Journal of Molecular Sciences, 2023, 24, 12266.	4.1	2
389	Polygenic risk scores identify heterogeneity in asthma and chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2023, 152, 1423-1432.	2.9	2
390	Revealing polygenic pleiotropy using genetic risk scores for asthma. Human Genetics and Genomics Advances, 2023, 4, 100233.	1.7	0
391	Childhood asthma phenotypes and endotypes: a glance into the mosaic. Molecular and Cellular Pediatrics, 2023, 10, .	1.8	3
392	A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology. Nature Communications, 2023, 14 , .	12.8	4

#	Article	IF	CITATIONS
393	Genetic relationships between high blood eosinophil count, asthma susceptibility, and asthma severity. Journal of Asthma, 0, , 1-13.	1.7	0
394	Sex-Specific Genetic Determinants of Asthma-COPD Phenotype and COPD in Middle-Aged and Older Canadian Adults: An Analysis of CLSA Data. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2023, 20, 233-247.	1.6	0
395	De novo identification of complex traits associated with asthma. Frontiers in Immunology, 0, 14, .	4.8	2
396	Potential drug targets for asthma identified in the plasma and brain through Mendelian randomization analysis. Frontiers in Immunology, 0, 14, .	4.8	0
397	Circulating CC16 and Asthma: A Population-based, Multicohort Study from Early Childhood through Adult Life. American Journal of Respiratory and Critical Care Medicine, 2023, 208, 758-769.	5.6	3
398	A Polygenic Risk Score for Idiopathic Pulmonary Fibrosis and Interstitial Lung Abnormalities. American Journal of Respiratory and Critical Care Medicine, 2023, 208, 791-801.	5.6	7
400	From gene identifications to the rapeutic targets for asthma: Focus on great potentials of TSLP, ORMDL3, and GSDMB. , 2023, 1, 139-147.		1
403	Early-immune development in asthma: A review of the literature. Cellular Immunology, 2023, 393-394, 104770.	3.0	0
404	SOCS-JAK-STAT inhibitors and SOCS mimetics as treatment options for autoimmune uveitis, psoriasis, lupus, and autoimmune encephalitis. Frontiers in Immunology, 0, 14, .	4.8	0
405	Inferring disease architecture and predictive ability with LDpred2-auto. American Journal of Human Genetics, 2023, 110, 2042-2055.	6.2	1
406	Asthma and incident coronary heart disease: an observational and Mendelian randomisation study. European Respiratory Journal, 2023, 62, 2301788.	6.7	2
408	The associations between asthma and common comorbidities: a comprehensive Mendelian randomization study. Frontiers in Medicine, 0, 10 , .	2.6	0
409	House dust mite allergens, storeâ€operated Ca ²⁺ channels and asthma. Journal of Physiology, 0, , .	2.9	0
410	Identification of differences in CD4+ T-cell gene expression between people with asthma and healthy controls. Scientific Reports, 2023, 13, .	3.3	1
411	Applications of Genome-Editing Technologies for Type 1 Diabetes. International Journal of Molecular Sciences, 2024, 25, 344.	4.1	0
412	Genetics of preschool wheeze and its progression to childhood asthma. Pediatric Allergy and Immunology, 2024, 35, .	2.6	О
413	A Bayesian approach to Mendelian randomization using summary statistics in the univariable and multivariable settings with correlated pleiotropy. American Journal of Human Genetics, 2024, 111, 165-180.	6.2	0
414	Gastroesophageal Reflux and Chronic Rhinosinusitis: A Mendelian Randomization Study. Laryngoscope, 0, , .	2.0	1

#	Article	IF	CITATIONS
417	A systematic two-sample and bidirectional MR process highlights a unidirectional genetic causal effect of allergic diseases on COVID-19 infection/severity. Journal of Translational Medicine, 2024, 22, .	4.4	O
418	Plasma protein signatures of adult asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2024, 79, 643-655.	5.7	0
419	Causal association of rheumatoid arthritis with frailty and the mediation role of inflammatory cytokines: A Mendelian randomization study. Archives of Gerontology and Geriatrics, 2024, 122, 105348.	3.0	1
420	Analytical challenges in omics research on asthma and allergy: AÂNational Institute of Allergy and Infectious Diseases workshop. Journal of Allergy and Clinical Immunology, 2024, 153, 954-968.	2.9	0
421	The Rotterdam Study. Design update and major findings between 2020 and 2024. European Journal of Epidemiology, 2024, 39, 183-206.	5.7	0
422	Network propagation for GWAS analysis: a practical guide to leveraging molecular networks for disease gene discovery. Briefings in Bioinformatics, 2024, 25, .	6.5	0
423	No causal association between atopic dermatitis and COVIDâ€19 outcomes: A Mendelian randomization study. Skin Research and Technology, 2024, 30, .	1.6	0
425	Genetics of chronic respiratory disease. Nature Reviews Genetics, 0, , .	16.3	0
426	Inhibition of Interleukin-33 to Reduce Glomerular Endothelial Inflammation in Diabetic Kidney Disease. Kidney International Reports, 2024, , .	0.8	0