Emerging electrochemical and membrane-based system electricity

Energy and Environmental Science 11, 276-285 DOI: 10.1039/c7ee03026f

Citation Report

#	Article	IF	CITATIONS
1	Low-Grade Waste Heat Recovery via an Osmotic Heat Engine by Using a Freestanding Graphene Oxide Membrane. ACS Omega, 2018, 3, 15501-15509.	3.5	12
2	An Adsorption Reverse Electrodialysis system for the generation of electricity from low-grade heat. Applied Energy, 2018, 231, 222-234.	10.1	40
3	Temperature Dependence of the Pore Structure in Polyvinylidene Fluoride (PVDF)/Graphene Composite Membrane Probed by Electrochemical Impedance Spectroscopy. Polymers, 2018, 10, 1123.	4.5	15
4	Temperature and Pressure Effects on the Separation Efficiency and Desorption Kinetics in the TMA-CO2-H2O System. Industrial & Engineering Chemistry Research, 2018, 57, 14767-14773.	3.7	4
5	Implementation of fed-batch strategies for vitamin K (menaquinone-7) production by Bacillus subtilis natto in biofilm reactors. Applied Microbiology and Biotechnology, 2018, 102, 9147-9157.	3.6	36
6	Skinâ€Inspired Lowâ€Grade Heat Energy Harvesting Using Directed Ionic Flow through Conical Nanochannels. Advanced Energy Materials, 2018, 8, 1800459.	19.5	47
7	<i>Vitamin K2 (Menaquinone-7) production by Bacillus subtilis natto by using a glucose-based medium in biofilm reactors</i> . , 2018, , .		1
8	Thermoelectricity and Thermodiffusion in Magnetic Nanofluids: Entropic Analysis. Entropy, 2018, 20, 405.	2.2	21
9	Engineering the Electrochemical Temperature Coefficient for Efficient Lowâ€Grade Heat Harvesting. Advanced Functional Materials, 2018, 28, 1803129.	14.9	64
10	Flexible Quasiâ€Solid State Ionogels with Remarkable Seebeck Coefficient and High Thermoelectric Properties. Advanced Energy Materials, 2019, 9, 1901085.	19.5	199
11	Powerful Thermogalvanic Cells Based on a Reversible Hydrogen Electrode and Gas-Containing Electrolytes. ACS Energy Letters, 2019, 4, 1810-1815.	17.4	28
12	Sirolimus therapy for kaposiform hemangioendothelioma with longâ€ŧerm followâ€up. Journal of Dermatology, 2019, 46, 956-961.	1.2	32
13	A Review of Flexible Processes and Operations. Production and Operations Management, 2021, 30, 1804-1824.	3.8	17
14	Palladiumâ€Catalyzed Allylic Alkylation of Aldimine Esters with Vinylâ€Cyclopropanes to Yield α,αâ€Disubstituted αâ€Amino Acid Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 5105-5111.	4.3	10
15	Analysis and Optimization of Thermally-Regenerative Ammonia-Based Flow Battery Based on a 3-D Model. Journal of the Electrochemical Society, 2019, 166, A2814-A2825.	2.9	14
16	Controllable fabrication of α-Ag ₂ WO ₄ nanorod-clusters with superior simulated sunlight photocatalytic performance. Inorganic Chemistry Frontiers, 2019, 6, 209-219.	6.0	33
17	A bimetallic thermally regenerative ammonia-based battery for high power density and efficiently harvesting low-grade thermal energy. Journal of Materials Chemistry A, 2019, 7, 5991-6000.	10.3	56
18	Low-temperature heat utilization with vapor pressure-driven osmosis: Impact of membrane properties on mass and heat transfer. Journal of Membrane Science, 2019, 588, 117181.	8.2	10

#	Article	IF	CITATIONS
19	A CoHCF system with enhanced energy conversion efficiency for low-grade heat harvesting. Journal of Materials Chemistry A, 2019, 7, 23862-23867.	10.3	29
20	Cellulose ionic conductors with high differential thermal voltage for low-grade heat harvesting. Nature Materials, 2019, 18, 608-613.	27.5	343
21	Copper Foam Electrodes for Increased Power Generation in Thermally Regenerative Ammonia-Based Batteries for Low-Grade Waste Heat Recovery. Industrial & Engineering Chemistry Research, 2019, 58, 7408-7415.	3.7	32
22	A bimetallic thermally-regenerative ammonia-based flow battery for low-grade waste heat recovery. Journal of Power Sources, 2019, 424, 184-192.	7.8	59
23	Pressure-retarded membrane distillation for low-grade heat recovery: The critical roles of pressure-induced membrane deformation. Journal of Membrane Science, 2019, 579, 90-101.	8.2	27
24	Heat recovery in energy production from low temperature heat sources. AICHE Journal, 2019, 65, 980-991.	3.6	15
25	Asymmetric membranes for membrane distillation and thermo-osmotic energy conversion. Desalination, 2019, 452, 141-148.	8.2	46
26	Hybrid thermomagnetic oscillator for cooling and direct waste heat conversion to electricity. Applied Energy, 2019, 233-234, 312-320.	10.1	29
27	Energy efficiency analysis of distillation for thermally regenerative salinity gradient power technologies. Renewable Energy, 2019, 133, 1034-1045.	8.9	23
28	The first operating thermolytic reverse electrodialysis heat engine. Journal of Membrane Science, 2020, 595, 117522.	8.2	32
29	2D Hexagonal Boron Nitride/Cadmium Sulfide Heterostructure as a Promising Water‧plitting Photocatalyst. Physica Status Solidi (B): Basic Research, 2020, 257, 1900431.	1.5	22
30	Conversion of low-grade heat via thermal-evaporation-induced electricity generation on nanostructured carbon films. Applied Thermal Engineering, 2020, 166, 114623.	6.0	22
31	Removals of Cu(II), Ni(II), Co(II) and Ag(I) from wastewater and electricity generation by bimetallic thermally regenerative electro-deposition batteries. Separation and Purification Technology, 2020, 235, 116230.	7.9	17
32	A triboelectric and pyroelectric hybrid energy harvester for recovering energy from low-grade waste fluids. Nano Energy, 2020, 70, 104459.	16.0	58
33	Performance of a thermally regenerative ammonia-based flow battery with 3D porous electrodes: Effect of reactor and electrode design. Electrochimica Acta, 2020, 331, 135442.	5.2	27
34	A flexible electrokinetic power generator derived from paper and ink for wearable electronics. Applied Energy, 2020, 279, 115764.	10.1	23
35	Experimental investigation on dye wastewater treatment with reverse electrodialysis reactor powered by salinity gradient energy. Desalination, 2020, 495, 114541.	8.2	16
36	Ultralight PEDOT:PSS/graphene oxide composite aerogel sponges for electric power harvesting from thermal fluctuations and moist environment. Nano Energy, 2020, 77, 105096.	16.0	41

#	Article	IF	CITATIONS
37	Application of porous metal foam heat exchangers and the implications of particulate fouling for energy-intensive industries. Chemical Engineering Science, 2020, 228, 115968.	3.8	47
38	Performance of a Thermally Regenerative Battery with 3D-Printed Cu/C Composite Electrodes: Effect of Electrode Pore Size. Industrial & amp; Engineering Chemistry Research, 2020, 59, 21286-21293.	3.7	13
39	Waste heat to power conversion by means of thermomagnetic hydrodynamic energy harvester. Applied Energy, 2020, 277, 115591.	10.1	21
40	3-D printed gradient porous composite electrodes improve anodic current distribution and performance in thermally regenerative flow battery for low-grade waste heat recovery. Journal of Power Sources, 2020, 473, 228525.	7.8	17
41	Temperature characteristics of a copper/zinc thermally-regenerative ammonia battery. Electrochimica Acta, 2020, 357, 136860.	5.2	10
42	Ultrahigh Thermoelectric Power Generation from Both Ion Diffusion by Temperature Fluctuation and Hole Accumulation by Temperature Gradient. Advanced Energy Materials, 2020, 10, 2001633.	19.5	44
43	Nanoscale Ion Regulation in Woodâ€Based Structures and Their Device Applications. Advanced Materials, 2021, 33, e2002890.	21.0	75
44	A Flexible Bilayer Actuator Based on Liquid Crystal Network and PVDF–TrFE for Lowâ€Grade Waste Heat Harvesting. Energy Technology, 2020, 8, 2000612.	3.8	3
45	Thermally Regenerable Redox Flow Battery. ChemSusChem, 2020, 13, 5460-5467.	6.8	16
46	Rapid reduction of nitroarenes photocatalyzed by an innovative Mn3O4/α-Ag2WO4 nanoparticles. Scientific Reports, 2020, 10, 21495.	3.3	13
47	Liquid Thermocells Enable Low-Grade Heat Harvesting. Matter, 2020, 3, 1400-1402.	10.0	19
48	Public Awareness: What Climate Change Scientists Should Consider. Sustainability, 2020, 12, 8369.	3.2	16
49	Cu/Ni composite electrodes for increased anodic coulombic efficiency and electrode operation time in a thermally regenerative ammonia-based battery for converting low-grade waste heat into electricity. Renewable Energy, 2020, 159, 162-171.	8.9	24
50	An Electrochemically Mediated Amine Regeneration Process with a Mixed Absorbent for Postcombustion CO ₂ Capture. Environmental Science & Technology, 2020, 54, 8999-9007.	10.0	46
51	Thermally regenerative copper nanoslurry flow batteries for heat-to-power conversion with low-grade thermal energy. Energy and Environmental Science, 2020, 13, 2191-2199.	30.8	51
52	Thermally Regenerable Redox Flow Battery for Exploiting Low-Temperature Heat Sources. Cell Reports Physical Science, 2020, 1, 100056.	5.6	16
53	lonogels at the Water-Energy Nexus for Desalination Powered by Ultralow-Grade Heat. Environmental Science & Technology, 2020, 54, 3591-3598.	10.0	21
54	Application of polyoxometalate derivatives in rechargeable batteries. Journal of Materials Chemistry A, 2020, 8, 4593-4628.	10.3	94

#	Article	IF	CITATIONS
55	Decoupled electrolytes towards enhanced energy and high temperature performance of thermally regenerative ammonia batteries. Journal of Materials Chemistry A, 2020, 8, 12351-12360.	10.3	29
56	High Power Thermally Regenerative Ammonia-Copper Redox Flow Battery Enabled by a Zero Gap Cell Design, Low-Resistant Membranes, and Electrode Coatings. ACS Applied Energy Materials, 2020, 3, 4787-4798.	5.1	42
57	Effect of transient low-grade solar heat on liquid thermogalvanic cells. Materials Today: Proceedings, 2021, 38, 767-772.	1.8	6
58	Effect of operating parameters on the performance of thermally regenerative ammonia-based battery for low-temperature waste heat recovery. Chinese Journal of Chemical Engineering, 2021, 32, 335-340.	3.5	10
59	High-efficiency thermocells driven by thermo-electrochemical processes. Trends in Chemistry, 2021, 3, 561-574.	8.5	57
60	Thermoelectric Converters Based on Ionic Conductors. Chemistry - an Asian Journal, 2021, 16, 129-141.	3.3	50
61	Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis. Energy and Environmental Science, 2021, 14, 1057-1082.	30.8	28
62	Review of Liquid-Based Systems to Recover Low-Grade Waste Heat for Electrical Energy Generation. Energy & Fuels, 2021, 35, 161-175.	5.1	32
63	Thermo-osmotic ionogel enabled high-efficiency harvesting of low-grade heat. Journal of Materials Chemistry A, 2021, 9, 15755-15765.	10.3	15
64	A flexible quasi-solid-state thermoelectrochemical cell with high stretchability as an energy-autonomous strain sensor. Materials Horizons, 2021, 8, 2750-2760.	12.2	73
65	Thermo-osmosis in hydrophilic nanochannels: mechanism and size effect. Nanoscale, 2021, 13, 1696-1716.	5.6	21
66	A mixed ion-electron conducting carbon nanotube ionogel to efficiently harvest heat from both a temperature gradient and temperature fluctuation. Journal of Materials Chemistry A, 2021, 9, 13588-13596.	10.3	22
67	Thermo-osmosis. , 2021, , 279-312.		0
68	Understanding the reaction mechanism and self-discharge of a bimetallic thermally-regenerative ammonia battery. Electrochimica Acta, 2021, 370, 137724.	5.2	10
69	Liquid-state thermocells: Opportunities and challenges for low-grade heat harvesting. Joule, 2021, 5, 768-779.	24.0	113
70	Nanofluidics for osmotic energy conversion. Nature Reviews Materials, 2021, 6, 622-639.	48.7	288
71	A fluidized-bed reactor for enhanced mass transfer and increased performance in thermally regenerative batteries for low-grade waste heat recovery. Journal of Power Sources, 2021, 495, 229815.	7.8	10
72	The impact of fiber arrangement and advective transport in porous electrodes for silver-based thermally regenerated batteries. Electrochimica Acta, 2021, 388, 138527.	5.2	9

#	Article	IF	CITATIONS
73	Short-Circuit Current in Polymeric Membrane-Based Thermocells: An Experimental Study. Membranes, 2021, 11, 480.	3.0	2
74	Development of a membrane-less microfluidic thermally regenerative ammonia battery. Energy, 2021, 225, 120221.	8.8	9
75	Thermally regenerative electrochemical cycle for low-grade heat harnessing. Chemical Physics Reviews, 2021, 2, .	5.7	22
76	Cross-linked poly(vinyl alcohol)/sulfosuccinic acid (PVA/SSA) as cation exchange membranes for reverse electrodialysis. Separation and Purification Technology, 2021, 267, 118629.	7.9	10
77	Gel-based thermocells for low-grade heat harvesting. Europhysics Letters, 2021, 135, 26001.	2.0	10
78	An All-Aqueous Thermally Regenerative Ammonia Battery Chemistry Using Cu(I, II) Redox Reactions. Journal of the Electrochemical Society, 2021, 168, 070523.	2.9	16
79	Modelling of a bimetallic thermally-regenerative ammonia flow battery for conversion efficiency and performance evaluation. Journal of Power Sources, 2021, 499, 229943.	7.8	7
80	Carbon composite membranes for thermal-driven membrane processes. Carbon, 2021, 179, 600-626.	10.3	12
81	Thermally Regenerative CO ₂ -Induced pH-Gradient Cell for Waste-to-Energy Conversion. ACS Energy Letters, 2021, 6, 3221-3227.	17.4	7
82	A cycle research methodology for thermo-chemical engines: From ideal cycle to case study. Energy, 2021, 228, 120599.	8.8	9
83	Redox targeting of energy materials. Current Opinion in Electrochemistry, 2021, 29, 100743.	4.8	12
84	A comprehensive review of waste heat recovery from a diesel engine using organic rankine cycle. Energy Reports, 2021, 7, 3951-3970.	5.1	45
85	Construction of a hierarchical porous surface composite electrode by dynamic hydrogen bubble template electrodeposition for ultrahigh-performance thermally regenerative ammonia-based batteries. Chemical Engineering Journal, 2021, 423, 130339.	12.7	23
86	Thermally regenerative electrochemically cycled flow batteries with pH neutral electrolytes for harvesting low-grade heat. Physical Chemistry Chemical Physics, 2021, 23, 22501-22514.	2.8	27
87	Insights into the Thermopower of Thermally Regenerative Electrochemical Cycle for Low Grade Heat Harvesting. ACS Energy Letters, 2021, 6, 329-336.	17.4	43
88	All-Day Thermogalvanic Cells for Environmental Thermal Energy Harvesting. Research, 2019, 2019, 2460953.	5.7	18
89	Recent trends in thermoelectrochemical cells and thermally regenerative batteries. Current Opinion in Electrochemistry, 2021, 30, 100853.	4.8	6
90	Generacja termoelektryczna w przemyÅ›le i w domu. ChÅodnictwo, 2018, 1, 32-40.	0.0	Ο

#	Article	IF	CITATIONS
91	Flexible and Robust Bacterial Celluloseâ€Based Ionogels with High Thermoelectric Properties for Lowâ€Grade Heat Harvesting. Advanced Functional Materials, 2022, 32, 2107105.	14.9	57
92	Biomass waste-derived hierarchical porous composite electrodes for high-performance thermally regenerative ammonia-based batteries. Journal of Power Sources, 2022, 517, 230719.	7.8	16
93	Thermal-exergy efficiency trade-off optimization of pressure retarded membrane distillation based on TOPSIS model. Desalination, 2022, 523, 115446.	8.2	8
94	Simultaneous water and electricity harvesting from low-grade heat by coupling a membrane distiller and an electrokinetic power generator. Journal of Materials Chemistry A, 2021, 9, 27709-27717.	10.3	9
95	Continuous Water Flow in Nanotube Nanochannels. SSRN Electronic Journal, 0, , .	0.4	0
96	Thermosensitive-CsI3-crystal-driven high-power Iâ^'/I3â^' thermocells. Cell Reports Physical Science, 2022, 3, 100737.	5.6	12
97	The origin of irreversibility and thermalization in thermodynamic processes. Physics Reports, 2022, 944, 1-43.	25.6	7
98	Membranes for blue energy conversion by reverse electrodialysis (RED). , 2022, , 91-137.		0
99	Quasi-solid conductive gels with high thermoelectric properties and high mechanical stretchability consisting of a low cost and green deep eutectic solvent. Journal of Materials Chemistry A, 2022, 10, 4222-4229.	10.3	34
100	An Ultrahighâ€Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination using Lowâ€Grade Heat. Advanced Materials, 2022, 34, e2109718.	21.0	25
101	Bacterial cellulose-based hydrogel thermocells for low-grade heat harvesting. Chemical Engineering Journal, 2022, 433, 134550.	12.7	36
102	Mesoscopic confined ionic thermoelectric materials with excellent ionic conductivity for waste heat harvesting. Chemical Engineering Journal, 2022, 434, 134702.	12.7	24
103	Thermally induced continuous water flow in long nanotube channels. Carbon, 2022, 191, 175-182.	10.3	8
104	Liquid-state thermocells for low-grade heat harvesting. , 2022, , 141-162.		1
105	Thermoelectric ionogel for low-grade heat harvesting. , 2022, , 63-86.		3
106	Liquid-based electrochemical systems for the conversion of heat to electricity. , 2022, , 109-140.		0
107	Bimetallic thermally-regenerative ammonia batteries. , 2022, , 163-192.		0
108	Osmotic heat engines for low-grade thermal energy harvesting. , 2022, , 87-108.		1

#	ARTICLE	IF	Citations
109	Principles of low-grade heat harvesting. , 2022, , 1-10.		2
110	基于çƒç"µè½¬æ¢çš"è¶çº§ç"µå®1噔性能åŠåº"ç""ç"ç©¶èį›å±•. Chinese Science Bulletin, 2022, , .	0.7	0
111	Regulating Thermogalvanic Effect and Mechanical Robustness via Redox Ions for Flexible Quasi-Solid-State Thermocells. Nano-Micro Letters, 2022, 14, 81.	27.0	47
112	Regulation of Electrode–Electrolyte Interactions for Improved Heat Recovery of a Thermo-Induced Electric Double-Layer Capacitor. Energy & Fuels, 2022, 36, 3304-3312.	5.1	2
113	Power and energy capacity tradeoffs in an all-aqueous copper thermally regenerative ammonia battery. Journal of Power Sources, 2022, 531, 231339.	7.8	13
114	Nanochannels for low-grade energy harvesting. Current Opinion in Electrochemistry, 2022, 33, 100956.	4.8	2
115	Pyroelectric Nanogenerator Based on an SbSl–TiO2 Nanocomposite. Sensors, 2022, 22, 69.	3.8	19
116	Electrochemical Methods for Exploiting Lowâ€Temperature Heat Sources: Challenges in Material Research. Advanced Energy Materials, 2022, 12, .	19.5	8
117	Thermocells-enabled low-grade heat harvesting: challenge, progress, and prospects. Materials Today Energy, 2022, 27, 101032.	4.7	19
118	Energetic and exergetic analyses of a closed-loop pressure retarded membrane distillation (PRMD) for low-grade thermal energy utilization and freshwater production. Desalination, 2022, 534, 115799.	8.2	12
119	Waste Heat to Power: Fullâ€Cycle Analysis of a Thermally Regenerative Flow Battery. Energy Technology, 2022, 10, .	3.8	4
120	pH-sensitive Thermally Regenerative Cell (pH-TRC) with Circulating Hydrogen for Long Discharging Time and High-Power Output. Chemical Engineering Journal, 2022, , 137772.	12.7	1
121	Donnan Dialysis Desalination with a Thermally Recoverable Solute. ACS ES&T Engineering, 2022, 2, 2076-2085.	7.6	4
122	Efficient Lowâ€Grade Heat Conversion and Storage with an Activityâ€Regulated Redox Flow Cell via a Thermally Regenerative Electrochemical Cycle. Advanced Materials, 2022, 34, .	21.0	10
123	Graphene oxide modified membrane for alleviated ammonia crossover and improved electricity generation in thermally regenerative batteries. Chinese Chemical Letters, 2023, 34, 107704.	9.0	4
124	Development of a Method for Thermogalvanic Characterization of Li-Ion Electrodes: A Case Study in Thin-Film Anatase TiO ₂ . Chemistry of Materials, 2022, 34, 6753-6768.	6.7	2
125	Heat energy potential of municipal solid waste landfills: Review of heat generation and assessment of vertical extraction systems. Renewable and Sustainable Energy Reviews, 2022, 167, 112835.	16.4	4
126	Enhancing heat-to-electricity conversion performance of the thermally regenerative electrochemical cycle using carbon-copper composite electrodes. Sustainable Energy Technologies and Assessments, 2022, 53, 102793.	2.7	2

#	Article	IF	CITATIONS
127	Development of a membrane-less microfluidic thermally regenerative ammonia-based battery towards small-scale low-grade thermal energy recovery. Applied Energy, 2022, 326, 119976.	10.1	6
128	Membrane-free redox flow cell based on thermally regenerative electrochemical cycle for concurrent electricity storage, cooling and waste heat harnessing of perovskite solar cells. Journal of Power Sources, 2022, 548, 232081.	7.8	14
129	Utilization of low-grade heat for desalination and electricity generation through thermal osmosis energy conversion process. Chemical Engineering Journal, 2023, 452, 139560.	12.7	6
130	Towards efficient continuous thermally regenerative electrochemical cycle: Model-based performance map and analysis. Energy Conversion and Management, 2022, 274, 116438.	9.2	9
131	The coupled removal of heavy metals from electroplating wastewater induced stable electricity generation during long-time discharging in a three-chamber thermally regenerative battery. Journal of Power Sources, 2023, 557, 232524.	7.8	1
132	Numerical study of electrochemical thermocells for harvesting low-grade waste heat. HKIE Transactions, 2022, 29, 244-255.	0.1	0
133	Low-Grade Thermal Energy Harvesting and Self-Powered Sensing Based on Thermogalvanic Hydrogels. Micromachines, 2023, 14, 155.	2.9	6
134	Recent progress in Green Ammonia: Production, applications, assessment; barriers, and its role in achieving the sustainable development goals. Energy Conversion and Management, 2023, 277, 116594.	9.2	51
135	Advances in flexible hydrogels for light-thermal-electricity energy conversion and storage. Journal of Energy Storage, 2023, 60, 106618.	8.1	7
136	Constructing Flexible Film Electrode with Porous Layered Structure by MXene/SWCNTs/PANI Ternary Composite for Efficient Lowâ€Grade Thermal Energy Harvest. Advanced Functional Materials, 2023, 33, .	14.9	17
137	Enhancing Thermoâ€Osmotic Lowâ€Grade Heat Recovery by Applying a Negative Pressure to the Feed. Global Challenges, 2023, 7, .	3.6	1
138	System efficiency and power assessment of the all-aqueous copper thermally regenerative ammonia battery. Applied Energy, 2023, 339, 120959.	10.1	5
139	A Self-Stratified Thermally Regenerative Battery Using Nanoprism Cu Covering Ni Electrodes for Low-Grade Waste Heat Recovery. Journal of Physical Chemistry Letters, 2023, 14, 1663-1673.	4.6	3
140	Aqueous biphase-boosted liquid-state thermocell for continuous low-grade heat harvesting. Chemical Engineering Journal, 2023, 461, 142018.	12.7	9
141	Aqueous eutectic hydrogel electrolytes enable flexible thermocells with a wide operating temperature range. Journal of Materials Chemistry A, 2023, 11, 6986-6996.	10.3	5
142	Flexible combinatorial ionic/electronic thermoelectric converters to efficiently harvest heat from both temperature gradient and temperature fluctuation. , 2023, 1, 100003.		4
143	Thermal Redox Desalination of Seawater Driven by Temperature Difference. ACS Energy Letters, 2023, 8, 2325-2330.	17.4	2
144	Mechanically Adaptative and Environmentally Stable Ionogels for Energy Harvest. Advanced Science, 2023, 10, .	11.2	3

#	Article	IF	CITATIONS
145	Evaluation of thermally regenerative electrochemical cycle for thermal-to-electrical energy conversion. Applied Physics Letters, 2023, 122, .	3.3	5
146	MXene and Carbonâ€Based Electrodes of Thermocells for Continuous Thermal Energy Harvest. Small Methods, 2023, 7, .	8.6	3
147	Bacterial cellulose hydrogel-based wearable thermo-electrochemical cells for continuous body heat harvest. Nano Energy, 2023, 112, 108482.	16.0	5
148	Great Enhancement in the Thermopower of Ionic Liquid by a Metalâ€Organic Framework. Advanced Functional Materials, 2023, 33, .	14.9	5
149	An ionic thermoelectric capacitor with continuous power generation for heat harvesting. Chemical Engineering Journal, 2023, 469, 143828.	12.7	5
150	Other technologies. , 2023, , 375-418.		Ο
151	Exploring a novel route for low-grade heat harvesting: Electrochemical Brayton cycle. Renewable and Sustainable Energy Reviews, 2023, 183, 113475.	16.4	3
152	Power generation enhancement of a membrane-free thermally regenerative battery induced by the density difference of electrolytes. Applied Energy, 2023, 344, 121302.	10.1	4
153	Electrocatalytic reduction of nitrogenous pollutants to ammonia. Chemical Engineering Journal, 2023, 469, 143889.	12.7	2
154	Enhanced efficiency of photovoltaic/thermal module by integrating a charging-free thermally regenerative electrochemical cycle. Energy Conversion and Management, 2023, 291, 117251.	9.2	3
155	Engineering of Solvation Entropy by Poly(4-styrenesulfonic acid) Additive in an Aqueous Electrochemical System for Enhanced Low-Grade Heat Harvesting. Nano Letters, 2023, 23, 6164-6170.	9.1	1
156	A techno-economic analysis of a thermally regenerative ammonia-based battery. Applied Energy, 2023, 347, 121501.	10.1	1
157	Rational Material Selection for Li-Ion-Based Thermogalvanic Harvesting Devices. Chemistry of Materials, 2023, 35, 5612-5630.	6.7	0
158	Fe─N─C Electrocatalyst for Enhancing Fe(II)/Fe(III) Redox Kinetics in Thermoâ€Electrochemical Cells. Advanced Functional Materials, 2023, 33, .	14.9	4
159	Multiphysics Modeling of Mass and Heat Transfer in a Thermo-Electrochemical Cell. Industrial & Engineering Chemistry Research, 2023, 62, 12345-12355.	3.7	3
160	Performance of a Thermally Regenerative Ammonia-Based Flow Battery with 3D Electrodes Composed of Copper Rod Arrays. Industrial & amp; Engineering Chemistry Research, 2023, 62, 12855-12863.	3.7	0
161	Review of thermally regenerative batteries based on redox reaction and distillation for harvesting low-grade heat as electricity. Chemical Engineering Journal, 2023, 474, 145503.	12.7	1
162	Hydrocarbon-based membranes cost-effectively manage species transport and increase performance in thermally regenerative batteries. Electrochimica Acta, 2023, 467, 143090.	5.2	0

#	Article	IF	CITATIONS
163	Harvesting Blue Energy Based on Salinity and Temperature Gradient: Challenges, Solutions, and Opportunities. Chemical Reviews, 2023, 123, 10156-10205.	47.7	9
164	Performance of a non-aqueous nanofluid thermally regenerative flow battery for electrical energy recovery from low-grade waste heat. Applied Thermal Engineering, 2024, 236, 121696.	6.0	1
165	Performance analysis of the Thermo Osmotic Energy Conversion (TOEC) process for harvesting low-grade heat. Chemical Engineering Journal Advances, 2023, 16, 100558.	5.2	1
166	Interfacial Assembly of 2D Grapheneâ€Derived Ion Channels for Waterâ€Based Green Energy Conversion. Advanced Materials, 2024, 36, .	21.0	Ο
167	Thermo-electrochemical modeling of thermally regenerative flow batteries. Applied Energy, 2024, 355, 122204.	10.1	1
169	Light-Augmented Multi-ion Interaction in MXene Membrane for Simultaneous Water Treatment and Osmotic Power Generation. ACS Nano, 0, , .	14.6	0
170	Green Ammonia: Progress and Challenges. , 2024, , .		0
171	Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting. ACS Energy Letters, 2024, 9, 679-706.	17.4	1
172	Ion transport in nanofluidics under external fields. Chemical Society Reviews, 2024, 53, 2972-3001.	38.1	0