Status and challenges in enabling the lithium metal electory low-cost rechargeable batteries

Nature Energy 3, 16-21 DOI: 10.1038/s41560-017-0047-2

Citation Report

#	Article	IF	CITATIONS
1	Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 2018, 3, 227-235.	19.8	353
2	Large-scale synthesis of high-quality lithium-graphite hybrid anodes for mass-controllable and cycling-stable lithium metal batteries. Energy Storage Materials, 2018, 15, 31-36.	9.5	59
3	Suppressing Li Dendrite Formation in Li ₂ Sâ€P ₂ S ₅ Solid Electrolyte by Lil Incorporation. Advanced Energy Materials, 2018, 8, 1703644.	10.2	303
4	A deeply rechargeable zinc anode with pomegranate-inspired nanostructure for high-energy aqueous batteries. Journal of Materials Chemistry A, 2018, 6, 21933-21940.	5.2	61
5	Atomic layer deposition and first principles modeling of glassy Li ₃ BO ₃ –Li ₂ CO ₃ electrolytes for solid-state Li metal batteries. Journal of Materials Chemistry A, 2018, 6, 19425-19437.	5.2	48
6	Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li ₆ La ₃ ZrTaO ₁₂ Garnet. Journal of the Electrochemical Society, 2018, 165, A3648-A3655.	1.3	172
7	Before Li Ion Batteries. Chemical Reviews, 2018, 118, 11433-11456.	23.0	1,492
8	Interactions between Lithium Growths and Nanoporous Ceramic Separators. Joule, 2018, 2, 2434-2449.	11.7	180
9	Architected Macroporous Polyelectrolytes That Suppress Dendrite Formation during High-Rate Lithium Metal Electrodeposition. Macromolecules, 2018, 51, 7666-7671.	2.2	9
10	Activate metallic copper as high-capacity cathode for lithium-ion batteries via nanocomposite technology. Nano Energy, 2018, 54, 59-65.	8.2	22
11	Langmuir–Blodgett artificial solid-electrolyte interphases for practical lithium metal batteries. Nature Energy, 2018, 3, 889-898.	19.8	347
12	Interface Engineering for Garnetâ€Based Solidâ€State Lithiumâ€Metal Batteries: Materials, Structures, and Characterization. Advanced Materials, 2018, 30, e1802068.	11.1	204
13	Approaches toward lithium metal stabilization. MRS Bulletin, 2018, 43, 752-758.	1.7	12
14	Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 38151-38158.	4.0	132
15	Flexible and stable high-energy lithium-sulfur full batteries with only 100% oversized lithium. Nature Communications, 2018, 9, 4480.	5.8	193
16	Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of the Electrochemical Society, 2018, 165, A3321-A3325.	1.3	97
17	Effect of the Electrolyte on the Cycling Efficiency of Lithium-Limited Cells and their Morphology Studied Through in Situ Optical Imaging. ACS Applied Energy Materials, 2018, 1, 5830-5835.	2.5	30
18	Li ₃ BO ₃ –Li ₂ CO ₃ : Rationally Designed Buffering Phase for Sulfide All-Solid-State Li-Ion Batteries. Chemistry of Materials, 2018, 30, 8190-8200.	3.2	162

#	Article	IF	CITATIONS
19	Chemically impregnated NiO catalyst for molten electrolyte based gas-tank-free Li O2 battery. Journal of Power Sources, 2018, 402, 68-74.	4.0	11
20	Cobalt nickel nitride coated by a thin carbon layer anchoring on nitrogen-doped carbon nanotube anodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 19853-19862.	5.2	38
21	A large deformation elastic–viscoplastic model for lithium. Extreme Mechanics Letters, 2018, 24, 21-29.	2.0	46
22	Cycling and Failing of Lithium Metal Anodes in Carbonate Electrolyte. Journal of Physical Chemistry C, 2018, 122, 21462-21467.	1.5	45
23	A Scalable Approach to Dendriteâ€Free Lithium Anodes via Spontaneous Reduction of Sprayâ€Coated Graphene Oxide Layers. Advanced Materials, 2018, 30, e1801213.	11.1	204
24	Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Metals, 2018, 37, 449-458.	3.6	86
25	Electronic and Ionic Channels in Working Interfaces of Lithium Metal Anodes. ACS Energy Letters, 2018, 3, 1564-1570.	8.8	211
26	High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5676-5680.	3.3	209
27	Supramolecular Self-Assembly of Methylated Rotaxanes for Solid Polymer Electrolyte Application. ACS Macro Letters, 2018, 7, 881-885.	2.3	46
28	Diagnosis of failure modes for all-solid-state Li-ion batteries enabled by three-electrode cells. Journal of Materials Chemistry A, 2018, 6, 14867-14875.	5.2	44
29	Nanocellulose Structured Paper-Based Lithium Metal Batteries. ACS Applied Energy Materials, 2018, 1, 4341-4350.	2.5	45
30	Interphases in Lithium–Sulfur Batteries: Toward Deployable Devices with Competitive Energy Density and Stability. ACS Energy Letters, 2018, 3, 2104-2113.	8.8	54
31	Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability. Advanced Energy Materials, 2018, 8, 1801427.	10.2	37
32	Resolving the Amorphous Structure of Lithium Phosphorus Oxynitride (Lipon). Journal of the American Chemical Society, 2018, 140, 11029-11038.	6.6	99
33	Understanding the critical chemistry to inhibit lithium consumption in lean lithium metal composite anodes. Journal of Materials Chemistry A, 2018, 6, 16003-16011.	5.2	15
34	Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes. ACS Central Science, 2018, 4, 996-1006.	5.3	158
35	Engineering Solid Electrolyte Interphase in Lithium Metal Batteries by Employing an Ionic Liquid Ether Double-Solvent Electrolyte with Li[(CF ₃ SO ₂)(<i>n</i> -C ₄ F ₉ SO ₂)N] as the Salt. ACS Applied Energy Materials, 2018, 1, 4426-4431.	2.5	21
36	Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte. Journal of Power Sources, 2018, 396, 314-318.	4.0	127

#	Article	IF	CITATIONS
37	Robust Expandable Carbon Nanotube Scaffold for Ultrahigh apacity Lithiumâ€Metal Anodes. Advanced Materials, 2018, 30, e1800884.	11.1	171
38	High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Materials Today, 2019, 22, 50-57.	8.3	233
39	Nanomat Li–S batteries based on all-fibrous cathode/separator assemblies and reinforced Li metal anodes: towards ultrahigh energy density and flexibility. Energy and Environmental Science, 2019, 12, 177-186.	15.6	138
40	The Regulating Role of Carbon Nanotubes and Graphene in Lithiumâ€ l on and Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1800863.	11.1	339
41	Solid polymer electrolyte soft interface layer with 3D lithium anode for all-solid-state lithium batteries. Energy Storage Materials, 2019, 17, 309-316.	9.5	279
42	Fundamentals of inorganic solid-state electrolytes for batteries. Nature Materials, 2019, 18, 1278-1291.	13.3	1,341
43	High Current Enabled Stable Lithium Anode for Ultralong Cycling Life of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2019, 11, 30793-30800.	4.0	21
44	Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019, 1, 317-344.	5.0	508
45	Interchain-Expanded Vanadium Tetrasulfide with Fast Kinetics for Rechargeable Magnesium Batteries. ACS Applied Materials & Interfaces, 2019, 11, 31954-31961.	4.0	43
46	A Route to High-Toughness Battery Electrodes. ACS Applied Energy Materials, 2019, 2, 5889-5899.	2.5	17
47	Boosting the Reversibility of Sodium Metal Anode via Heteroatomâ€Doped Hollow Carbon Fibers. Small, 2019, 15, e1902688.	5.2	76
48	Uniform Li deposition by regulating the initial nucleation barrier <i>via</i> a simple liquid-metal coating for a dendrite-free Li–metal anode. Journal of Materials Chemistry A, 2019, 7, 18861-18870.	5.2	93
49	Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019, 4, 683-689.	19.8	603
50	Insights into Lithium Surface: Stable Cycling by Controlled 10 μm Deep Surface Relief, Reinterpreting the Natural Surface Defect on Lithium Metal Anode. ACS Applied Energy Materials, 2019, 2, 5656-5664.	2.5	16
51	A safe quasi-solid electrolyte based on a nanoporous ceramic membrane for high-energy, lithium metal batteries. Electrochimica Acta, 2019, 320, 134539.	2.6	6
52	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895.	8.2	109
53	Uniform lithium deposition on N-doped carbon-coated current collectors. Chemical Communications, 2019, 55, 10124-10127.	2.2	24
54	Mechanical behavior of electroplated mossy lithium at room temperature studied by flat punch indentation. Applied Physics Letters, 2019, 115, .	1.5	22

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
55	Chemo-Mechanical Challenges in Solid-State Batteries. Trends in Chemistry, 2019, 1, 84	45-857.	4.4	158
56	Investigation of the temperature-dependent behaviours of Li metal anode. Chemical Cc 2019, 55, 9773-9776.	ommunications,	2.2	33
57	Linear Stability Analysis of Transient Electrodeposition in Charged Porous Media: Suppr Dendritic Growth by Surface Conduction. Journal of the Electrochemical Society, 2019, A2280-A2299.		1.3	20
58	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyCher 100003.	n, 2019, 1,	10.1	146
59	Cathode interfacial engineering to enhance cycling stability of rechargeable lithium-ion Journal of Solid State Chemistry, 2019, 277, 531-537.	batteries.	1.4	4
60	Enabling High-Voltage Lithium-Metal Batteries under Practical Conditions. Joule, 2019,	3, 1662-1676.	11.7	598
61	Lithium-Metal Growth Kinetics on LLZO Garnet-Type Solid Electrolytes. Joule, 2019, 3, 2	2030-2049.	11.7	292
62	Modeling of lithium electrodeposition at the lithium/ceramic electrolyte interface: The r interfacial resistance and surface defects. Journal of Power Sources, 2019, 441, 227186		4.0	32
63	Enabling Stable Lithium Metal Anode through Electrochemical Kinetics Manipulation. A Functional Materials, 2019, 29, 1904629.	dvanced	7.8	82
64	Electrodeposition Technologies for Liâ€Based Batteries: New Frontiers of Energy Storag Materials, 2020, 32, e1903808.	ge. Advanced	11.1	70
65	Diffusion Limitation of Lithium Metal and Li–Mg Alloy Anodes on LLZO Type Solid Ele Function of Temperature and Pressure. Advanced Energy Materials, 2019, 9, 1902568.	ctrolytes as a	10.2	240
66	Gradientâ€Distributed Nucleation Seeds on Conductive Host for a Dendriteâ€Free and Metal Anode. Small, 2019, 15, e1903520.	Highâ€Rate Lithium	5.2	83
67	Constructing Ionic Gradient and Lithiophilic Interphase for Highâ€Rate Liâ€Metal Anode e1905171.	e. Small, 2019, 15,	5.2	42
68	Enhanced electrochemical performance of solid PEO/LiClO4 electrolytes with a 3D porc Li6.28La3Zr2Al0.24O12 network. Composites Science and Technology, 2019, 184, 107		3.8	38
69	Argyrodite Solid Electrolyte with a Stable Interface and Superior Dendrite Suppression Realized by ZnO Co-Doping. ACS Applied Materials & Interfaces, 2019, 11, 40808-	Capability 40816.	4.0	89
70	Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Bat of the Electrochemical Society, 2019, 166, A3342-A3347.	teries. Journal	1.3	88
71	A Metal–Organic Framework of Organic Vertices and Polyoxometalate Linkers as a So Electrolyte. Journal of the American Chemical Society, 2019, 141, 17522-17526.	olid-State	6.6	216
72	Nanoscaled Lithium Powders with Protection of Ionic Liquid for Highly Stable Recharge Metal Batteries. Advanced Science, 2019, 6, 1901776.	able Lithium	5.6	42

		CITATION REPORT		
#	Article	IF	-	CITATIONS
73	Reversible epitaxial electrodeposition of metals in battery anodes. Science, 2019, 366, 645-6	.	.0	1,097
74	Rethinking How External Pressure Can Suppress Dendrites in Lithium Metal Batteries. Journa Electrochemical Society, 2019, 166, A3639-A3652.	l of the 1.	3	113
75	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	10	0.1	153
76	Computational Screening of Current Collectors for Enabling Anode-Free Lithium Metal Batte Energy Letters, 2019, 4, 2952-2959.	ries. ACS 8.	.8	108
77	First-Principles Characterization of Lithium Cobalt Pyrophosphate as a Cathode Material for Solid-State Li-Ion Batteries. Journal of Physical Chemistry C, 2019, 123, 29623-29629.	1.	.5	5
78	Fluorinated Solid-Electrolyte Interphase in High-Voltage Lithium Metal Batteries. Joule, 2019, 2647-2661.	3, 11	1.7	432
79	Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nature Communications, 2019, 10, 4930.	5.	.8	181
80	Dendrites in Lithium Metal Anodes: Suppression, Regulation, and Elimination. Accounts of C Research, 2019, 52, 3223-3232.	hemical 7.	.6	322
81	Enabling reversible redox reactions in electrochemical cells using protected LiAl intermetallic lithium metal anodes. Science Advances, 2019, 5, eaax5587.	s as 4.	.7	84
82	An Investigation on the Relationship between the Stability of Lithium Anode and Lithium Niti Electrolyte. Journal of the Electrochemical Society, 2019, 166, A3570-A3574.	rate in 1.	.3	5
83	Nanomaterials From Mixed-Layer Clay Minerals: Structure, Properties, and Functional Applica 2019, , 365-413.	itions. ,		2
84	Rational Design of a Gel–Polymer–Inorganic Separator with Uniform Lithium-Ion Deposi Highly Stable Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11,	tion for 35788-35795. 4.	.0	21
85	Nano-Cu-embedded carbon for dendrite-free lithium metal anodes. Journal of Materials Chen 2019, 7, 22930-22938.	nistry A, 5.	.2	17
86	Thermodynamic Assessment of Coating Materials for Solid-State Li, Na, and K Batteries. ACS Materials & Interfaces, 2019, 11, 36607-36615.	Applied 4.	.0	21
87	Synthesis and Properties of Poly-Ether/Ethylene Carbonate Electrolytes with High Oxidative S Chemistry of Materials, 2019, 31, 8466-8472.	Stability. 3.	.2	43
88	Surface Area of Lithium-Metal Electrodes Measured by Argon Adsorption. Journal of the Electrochemical Society, 2019, 166, A3250-A3253.	1.	.3	16
89	Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte In ACS Applied Materials & Interfaces, 2019, 11, 39940-39950.	terfaces. 4.	.0	22
90	Correlating lattice distortions, ion migration barriers, and stability in solid electrolytes. Journ Materials Chemistry A, 2019, 7, 3216-3227.	al of 5.	.2	68

#	Article	IF	CITATIONS
91	Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Letters, 2019, 19, 1387-1394.	4.5	59
92	Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy and Environmental Science, 2019, 12, 780-794.	15.6	310
93	Anchoring anions with metal–organic framework-functionalized separators for advanced lithium batteries. Nanoscale Horizons, 2019, 4, 705-711.	4.1	71
94	Adiponitrile (C ₆ H ₈ N ₂): A New Biâ€Functional Additive for Highâ€Performance Liâ€Metal Batteries. Advanced Functional Materials, 2019, 29, 1902496.	7.8	115
95	Multifunctional polymer electrolyte improving stability of electrode-electrolyte interface in lithium metal battery under high voltage. Journal of Membrane Science, 2019, 588, 117194.	4.1	27
96	<i>In situ</i> formed polymer gel electrolytes for lithium batteries with inherent thermal shutdown safety features. Journal of Materials Chemistry A, 2019, 7, 16984-16991.	5.2	46
97	Towards high energy density lithium battery anodes: silicon and lithium. Chemical Science, 2019, 10, 7132-7148.	3.7	134
98	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
99	Electrolyte for lithium protection: From liquid to solid. Green Energy and Environment, 2019, 4, 360-374.	4.7	110
100	Dendriteâ€Free Lithium Anodes with Ultraâ€Đeep Stripping and Plating Properties Based on Vertically Oriented Lithium–Copper–Lithium Arrays. Advanced Materials, 2019, 31, e1901310.	11.1	112
101	Mechanical Stress Induced Current Focusing and Fracture in Grain Boundaries. Journal of the Electrochemical Society, 2019, 166, A1752-A1762.	1.3	78
102	A Portable and Efficient Solarâ€Rechargeable Battery with Ultrafast Photoâ€Charge/Discharge Rate. Advanced Energy Materials, 2019, 9, 1900872.	10.2	49
103	Li+ diffusion kinetics of SnS2 nanoflowers enhanced by reduced graphene oxides with excellent electrochemical performance as anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 794, 285-293.	2.8	26
104	Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries. Journal of Materials Chemistry A, 2019, 7, 15123-15130.	5.2	32
105	Dense, Melt Cast Sulfide Glass Electrolyte Separators for Li Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1535-A1542.	1.3	13
106	An Autotransferable g ₃ N ₄ Li ⁺ â€Modulating Layer toward Stable Lithium Anodes. Advanced Materials, 2019, 31, e1900342.	11.1	205
107	Recent progress in liquid electrolytes for lithium metal batteries. Current Opinion in Electrochemistry, 2019, 17, 106-113.	2.5	66
108	Physical Orphaning versus Chemical Instability: Is Dendritic Electrodeposition of Li Fatal?. ACS Energy Letters, 2019, 4, 1349-1355.	8.8	80

#	Article	IF	CITATIONS
109	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	8.2	93
110	High-energy lithium metal pouch cells with limited anode swelling and long stable cycles. Nature Energy, 2019, 4, 551-559.	19.8	492
111	Highly stable P′3-K0.8CrO2 cathode with limited dimensional changes for potassium ion batteries. Journal of Power Sources, 2019, 430, 137-144.	4.0	51
112	Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2019, 166, A1291-A1299.	1.3	189
113	Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochimica Acta, 2019, 312, 242-250.	2.6	55
114	Effects of technology parameters on stress in silicon-graphite based multilayer electrodes for lithium ion batteries. Journal Physics D: Applied Physics, 2019, 52, 345501.	1.3	4
115	Lithium-Powder Based Electrodes Modified with Znl ₂ for Enhanced Electrochemical Performance of Lithium-Metal Batteries. Journal of the Electrochemical Society, 2019, 166, A1400-A1407.	1.3	14
116	The Challenge of Lithium Metal Anodes for Practical Applications. Small Methods, 2019, 3, 1800551.	4.6	74
117	Solid-state electrolyte considerations for electric vehicle batteries. Sustainable Energy and Fuels, 2019, 3, 1647-1659.	2.5	32
118	Toward a Fundamental Understanding of the Lithium Metal Anode in Solid-State Batteries—An Electrochemo-Mechanical Study on the Garnet-Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . ACS Applied Materials & amp: Interfaces, 2019, 11, 14463-14477.	4.0	461
119	Dendrite-free sandwiched ultrathin lithium metal anode with even lithium plating and stripping behavior. Nano Research, 2019, 12, 2224-2229.	5.8	36
120	Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019, 1, 152-158.	4.4	328
121	Electrochemical Kinetics of SEI Growth on Carbon Black: Part I. Experiments. Journal of the Electrochemical Society, 2019, 166, E97-E106.	1.3	85
122	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
123	Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Materials, 2019, 23, 539-546.	9.5	88
124	Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. Journal of Materials Chemistry A, 2019, 7, 12214-12224.	5.2	44
125	An Elastic-Viscoplastic Model for Lithium. Journal of the Electrochemical Society, 2019, 166, A1092-A1095.	1.3	23
126	Study the Mechanism of Enhanced Li Storage Capacity through Decreasing Internal Resistance by High Electronical Conductivity via Solâ€gel Electrospinning of Co 3 O 4 Carbon Nanofibers. ChemistrySelect, 2019, 4, 3542-3546.	0.7	11

#	Article	IF	CITATIONS
127	Ceramic–Salt Composite Electrolytes from Cold Sintering. Advanced Functional Materials, 2019, 29, 1807872.	7.8	72
128	Mixed Ion and Electronâ€Conducting Scaffolds for Highâ€Rate Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1900193.	10.2	91
129	Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes. Molecular Systems Design and Engineering, 2019, 4, 597-608.	1.7	16
130	3D Printed Highâ€Performance Lithium Metal Microbatteries Enabled by Nanocellulose. Advanced Materials, 2019, 31, e1807313.	11.1	226
131	Ligninâ€Derived Holey, Layered, and Thermally Conductive 3D Scaffold for Lithium Dendrite Suppression. Small Methods, 2019, 3, 1800539.	4.6	39
132	Deposition and Confinement of Li Metal along an Artificial Lipon–Lipon Interface. ACS Energy Letters, 2019, 4, 651-655.	8.8	87
133	A fast and stable Li metal anode incorporating an Mo ₆ S ₈ artificial interphase with super Li-ion conductivity. Journal of Materials Chemistry A, 2019, 7, 6038-6044.	5.2	34
134	Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries. Joule, 2019, 3, 1094-1105.	11.7	358
135	A 1000â€~Wh kgâ~'1 Li–Air battery: Cell design and performance. Journal of Power Sources, 2019, 419, 112-11	8.4.0	32
136	UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries. ACS Applied Energy Materials, 2019, 2, 1600-1607.	2.5	97
137	Lithiophilicity conversion of the Cu surface through facile thermal oxidation: boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 2019, 7, 5726-5732.	5.2	34
138	Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes. Science Advances, 2019, 5, eaau7728.	4.7	417
139	Sodium Batteries: A Review on Sodium-Sulfur and Sodium-Air Batteries. Electronics (Switzerland), 2019, 8, 1201.	1.8	31
140	Facile synthesis and electrochemical Mg-storage performance of Sb ₂ Se ₃ nanowires and Bi ₂ Se ₃ nanosheets. Dalton Transactions, 2019, 48, 17516-17523.	1.6	15
141	Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V ₂ O ₅ for high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 25993-26001.	5.2	18
142	Artificial SEI Transplantation: A Pathway to Enabling Lithium Metal Cycling in Water-Containing Electrolytes. ACS Applied Energy Materials, 2019, 2, 8912-8918.	2.5	6
143	Conducting and Lithiophilic MXene/Graphene Framework for High-Capacity, Dendrite-Free Lithium–Metal Anodes. ACS Nano, 2019, 13, 14308-14318.	7.3	155
144	Building Better Batteries in the Solid State: A Review. Materials, 2019, 12, 3892.	1.3	168

ARTICLE IF CITATIONS More pressure needed. Nature Energy, 2019, 4, 827-828. 19.8 32 145 Self-Supporting Dendritic Copper Porous Film Inducing the Lateral Growth of Metallic Lithium for 146 1.3 Highly Stable Li Metal Battery. Journal of the Electrochemical Society, 2019, 166, A4073-A4079. Analysis and Simulation of One-Dimensional Transport Models for Lithium Symmetric Cells. Journal of 147 1.3 12 the Electrochemical Society, 2019, 166, A3806-A3819. A germanium and zinc chalcogenide as an anode for a high-capacity and long cycle life lithium battery. 148 RŠC Advances, 2019, 9, 35045-35049. Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage 149 9.5 84 Materials, 2019, 18, 222-228. Mitigating Metal Dendrite Formation in Lithium–Sulfur Batteries via Morphology-Tunable Graphene 4.0 Oxide Interfaces. ACS Applied Materials & amp; Interfaces, 2019, 11, 2060-2070 Designing a High-Power Sodium-Ion Battery by <i>in Situ</i> Metal Plating. ACS Applied Energy 151 2.523 Materials, 2019, 2, 344-353. Ultra-stable sodium metal-iodine batteries enabled by an in-situ solid electrolyte interphase. Nano 8.2 Energy, 2019, 57, 692-702. Correlation between Li Plating Behavior and Surface Characteristics of Carbon Matrix toward Stable 153 10.2 109 Li Metal Anodes. Advanced Energy Materials, 2019, 9, 1802777. In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct 154 11.1 Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470. Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes. 155 5.8 610 CheM, 2019, 5, 74-96. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nature Energy, 2019, 4, 187-196. 19.8 1,099 Kâ€Birnessite Electrode Obtained by Ion Exchange for Potassiumâ€Ion Batteries: Insight into the Concerted 157 10.2 80 Ionic Diffusion and K Storage Mechanism. Advanced Energy Materials, 2019, 9, 1802739. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Materials, 2019, 19, 24-30. Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy 159 9.5 36 Storage Materials, 2019, 17, 31-37. Flat Monolayer Graphene Cathodes for Liâ€"Oxygen Microbatteries. ACS Applied Materials & amp; Interfaces, 2019, 11, 489-498. Synergistic Performance of Lithium Difluoro(oxalato)borate and Fluoroethylene Carbonate in 161 Carbonate Electrolytes for Lithium Metal Anodes. Journal of the Electrochemical Society, 2019, 166, 1.342 A5117-A5121. Nonplanar Electrode Architectures for Ultrahigh Areal Capacity Batteries. ACS Energy Letters, 2019, 4, 8.8 271-275.

#	Article	IF	CITATIONS
163	Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1802534.	10.2	132
164	Elastic, plastic, and creep mechanical properties of lithium metal. Journal of Materials Science, 2019, 54, 2585-2600.	1.7	247
165	High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam. Journal of Energy Chemistry, 2020, 41, 87-92.	7.1	27
166	Constructing a disorder/order structure for enhanced magnesium storage. Chemical Engineering Journal, 2020, 382, 123049.	6.6	18
167	<i>Ab initio</i> modeling and design of vanadia-based electrode materials for post-lithium batteries. Journal Physics D: Applied Physics, 2020, 53, 083001.	1.3	9
168	3D-printed electrodes for lithium metal batteries with high areal capacity and high-rate capability. Energy Storage Materials, 2020, 24, 336-342.	9.5	105
169	Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Materials, 2020, 25, 811-826.	9.5	114
170	Flexible lignin carbon membranes with surface ozonolysis to host lean lithium metal anodes for nickel-rich layered oxide batteries. Energy Storage Materials, 2020, 24, 129-137.	9.5	41
171	Perpendicular MXene Arrays with Periodic Interspaces toward Dendriteâ€Free Lithium Metal Anodes with Highâ€Rate Capabilities. Advanced Functional Materials, 2020, 30, 1908075.	7.8	68
172	Constructing an inorganic/organic mixed protective film for low-cost fabrication of stable lithium metal anode. Journal of Alloys and Compounds, 2020, 818, 152862.	2.8	7
173	Engineering interfacial adhesion for high-performance lithium metal anode. Nano Energy, 2020, 67, 104242.	8.2	34
174	Vertically Aligned Carbon Nanofibers on Cu Foil as a 3D Current Collector for Reversible Li Plating/Stripping toward Highâ€Performance Li–S Batteries. Advanced Functional Materials, 2020, 30, 1906444.	7.8	66
175	High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 2438-2447.	6.6	195
176	FSI-inspired solvent and "full fluorosulfonyl―electrolyte for 4 V class lithium-metal batteries. Energy and Environmental Science, 2020, 13, 212-220.	15.6	198
177	A copper-clad lithiophilic current collector for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 1911-1919.	5.2	49
178	Covalent fixing of sulfur in metal–sulfur batteries. Energy and Environmental Science, 2020, 13, 432-471.	15.6	118
179	Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Materials, 2020, 26, 283-289.	9.5	242
180	Enabling Highâ€Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte. Angewandte Chemie, 2020, 132, 3533-3538.	1.6	39

#	Article	IF	CITATIONS
181	Enabling Highâ€Voltage Lithium Metal Batteries by Manipulating Solvation Structure in Ester Electrolyte. Angewandte Chemie - International Edition, 2020, 59, 3505-3510.	7.2	156
182	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie, 2020, 132, 3278-3283.	1.6	60
183	Recyclable Highâ€Performance Polymer Electrolyte Based on a Modified Methyl Cellulose–Lithium Trifluoromethanesulfonate Salt Composite for Sustainable Energy Systems. ChemSusChem, 2020, 13, 376-384.	3.6	16
184	All-Solid-State Batteries Using Rationally Designed Garnet Electrolyte Frameworks. ACS Applied Energy Materials, 2020, 3, 170-175.	2.5	84
185	ZnMn2O4/milk-derived Carbon hybrids with enhanced Lithium storage capability. International Journal of Hydrogen Energy, 2020, 45, 6874-6884.	3.8	15
186	Niâ€Rich Layered Cathode Materials with Electrochemoâ€Mechanically Compliant Microstructures for Allâ€Solidâ€State Li Batteries. Advanced Energy Materials, 2020, 10, 1903360.	10.2	136
187	The reduction of interfacial transfer barrier of Li ions enabled by inorganics-rich solid-electrolyte interphase. Energy Storage Materials, 2020, 28, 401-406.	9.5	55
188	A sandwich-type composite polymer electrolyte for all-solid-state lithium metal batteries with high areal capacity and cycling stability. Journal of Membrane Science, 2020, 596, 117739.	4.1	77
189	Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium–Sulfur Batteries. Chemistry of Materials, 2020, 32, 360-373.	3.2	38
190	Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials, 2020, 3, 200-207.	2.5	67
191	Graphene quantum dots as the nucleation sites and interfacial regulator to suppress lithium dendrites for high-loading lithium-sulfur battery. Nano Energy, 2020, 68, 104373.	8.2	95
192	A Sustainable Solid Electrolyte Interphase for Highâ€Energyâ€Density Lithium Metal Batteries Under Practical Conditions. Angewandte Chemie - International Edition, 2020, 59, 3252-3257.	7.2	221
193	Sodium Plating from Naâ€Î²â€3â€Alumina Ceramics at Room Temperature, Paving the Way for Fastâ€Charging Allâ€Solidâ€State Batteries. Advanced Energy Materials, 2020, 10, 1902899.	10.2	99
194	Microscopic Properties of Na and Li—A First Principle Study of Metal Battery Anode Materials. ChemSusChem, 2020, 13, 771-783.	3.6	18
195	A three-dimensional interconnected polymer/ceramic composite as a thin film solid electrolyte. Energy Storage Materials, 2020, 26, 242-249.	9.5	70
196	Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte. Journal of the European Ceramic Society, 2020, 40, 1999-2006.	2.8	46
197	Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020, 11, 93.	5.8	312
198	Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Science Advances, 2020, 6, eaay2757.	4.7	152

		CITATION REPORT		
# 199	ARTICLE Thickness variation of lithium metal anode with cycling. Journal of Power Sources, 2020, 476, 22	28749.	IF 4.0	Citations 26
200	Design principles for self-forming interfaces enabling stable lithium-metal anodes. Proceedings o National Academy of Sciences of the United States of America, 2020, 117, 27195-27203.	of the	3.3	44
201	A superb 3D composite lithium metal anode prepared by in-situ lithiation of sulfurized polyacrylonitrile. Energy Storage Materials, 2020, 33, 452-459.		9.5	14
202	Dendrite-tolerant all-solid-state sodium batteries and an important mechanism of metal self-diff Journal of Power Sources, 2020, 476, 228666.	usion.	4.0	26
203	Energy-dense Li metal anodes enabled by thin film electrolytes. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .		0.9	6
204	Oxygen Substitution for Li–Si–P–S–Cl Solid Electrolytes toward Purified Li ₁₀ GeP ₂ S ₁₂ -Type Phase with Enhanced Electrochemica for All-Solid-State Batteries. Chemistry of Materials, 2020, 32, 8860-8867.	l Stabilities	3.2	24
205	Sodium plating and stripping from Na-β"-alumina ceramics beyond 1000ÂmA/cm2. Materials To 2020, 18, 100515.	day Energy,	2.5	14
206	A Quantitative Analytical Model for Predicting and Optimizing the Rate Performance of Battery Cell Reports Physical Science, 2020, 1, 100192.	Cells.	2.8	8
207	Lithium Metal-Based Composite: An Emerging Material for Next-Generation Batteries. Matter, 20 1009-1030.)20, 3,	5.0	35
208	Design rules for liquid crystalline electrolytes for enabling dendrite-free lithium metal batteries. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26672-26680.		3.3	26
209	Rechargeable Battery Electrolytes Capable of Operating over Wide Temperature Windows and Delivering High Safety. Advanced Energy Materials, 2020, 10, 2001235.		10.2	75
210	Enhancing the Utilization of Porous Li ₄ Ti ₅ O ₁₂ Layers for Thin-Film Lithium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 9667-9675.		2.5	5
211	Enabling "lithium-free―manufacturing of pure lithium metal solid-state batteries through ir plating. Nature Communications, 2020, 11, 5201.	situ	5.8	101
212	Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, a Potassium Metal Battery Anodes. Advanced Energy Materials, 2020, 10, 2002297.	ind	10.2	292
213	High-purity and high-density cubic phase of Li7La3Zr2O12 solid electrolytes by controlling surface/volume ratio and sintering pressure. Electrochimica Acta, 2020, 359, 136965.		2.6	17
214	Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. Journal of Power Sources, 2020, 479, 228808.		4.0	43
215	lon-Transport-Rectifying Layer Enables Li-Metal Batteries with High Energy Density. Matter, 2020 1685-1700.), 3,	5.0	75
216	Effect of interface wetting on the performance of gel polymer electrolytes-based solid-state lithi metal batteries. Solid State Ionics, 2020, 357, 115466.	um	1.3	7

#	Article	IF	CITATIONS
217	Toward High-Capacity Battery Anode Materials: Chemistry and Mechanics Intertwined. Chemistry of Materials, 2020, 32, 8755-8771.	3.2	28
218	All ceramic cathode composite design and manufacturing towards low interfacial resistance for garnet-based solid-state lithium batteries. Energy and Environmental Science, 2020, 13, 4930-4945.	15.6	108
219	Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chemical Science, 2020, 11, 8686-8707.	3.7	82
220	Improvement of Lithium Metal Polymer Batteries through a Small Dose of Fluorinated Salt. Journal of Physical Chemistry Letters, 2020, 11, 6133-6138.	2.1	24
221	Fast Charge Transfer across the Li ₇ La ₃ Zr ₂ O ₁₂ Solid Electrolyte/LiCoO ₂ Cathode Interface Enabled by an Interphase-Engineered All-Thin-Film Architecture. ACS Applied Materials & Interfaces, 2020, 12, 36196-36207.	4.0	67
222	Design Principles of Artificial Solid Electrolyte Interphases for Lithium-Metal Anodes. Cell Reports Physical Science, 2020, 1, 100119.	2.8	133
223	From ion to atom to dendrite: Formation and nanomechanical behavior of electrodeposited lithium. MRS Bulletin, 2020, 45, 891-904.	1.7	9
224	Understanding the Ionic Diffusivity in the (Meta)Stable (Un)doped Solid-State Electrolyte from First-Principles: A Case Study of LISICON. Journal of Physical Chemistry C, 2020, 124, 17485-17493.	1.5	6
225	Toward Understanding the Reactivity of Garnet-Type Solid Electrolytes with H ₂ 0/CO ₂ in a Glovebox Using X-ray Photoelectron Spectroscopy and Electrochemical Methods. ACS Applied Materials & Interfaces, 2020, 12, 36119-36127.	4.0	20
226	Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003657.	11.1	86
227	Printable, high-performance solid-state electrolyte films. Science Advances, 2020, 6, .	4.7	54
228	Promise and reality of practical potassiumâ€based energy storage systems. Engineering Reports, 2020, 2, e12328.	0.9	5
229	Effects of Carbon-Based Electrode Materials for Excess Sodium Metal Anode Engineered Rechargeable Sodium Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 17697-17706.	3.2	10
230	Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. Journal of Materials Chemistry A, 2020, 8, 26045-26054.	5.2	47
231	The Dr Jekyll and Mr Hyde of lithium sulfur batteries. Energy and Environmental Science, 2020, 13, 4808-4833.	15.6	91
232	Evaluating Sulfur-Composite Cathode Material with Lithiated Graphite Anode in Coin Cell and Pouch Cell Configuration. Frontiers in Energy Research, 2020, 8, .	1.2	1
233	3D Coral-like LLZO/PVDF Composite Electrolytes with Enhanced Ionic Conductivity and Mechanical Flexibility for Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52652-52659.	4.0	81
234	Electroanalytical Measurement of Interphase Formation at a Li Metal–Solid Electrolyte Interface. ACS Energy Letters, 2020, 5, 3860-3867.	8.8	14

#	Article	IF	CITATIONS
235	Role of Lithium Iodide Addition to Lithium Thiophosphate: Implications beyond Conductivity. Chemistry of Materials, 2020, 32, 7150-7158.	3.2	12
236	Guiding Smooth Li Plating and Stripping by a Spherical Island Model for Lithium Metal Anodes. ACS Applied Materials & Interfaces, 2020, 12, 38098-38105.	4.0	17
237	Multiscale Hierarchically Engineered Carbon Nanosheets Derived from Covalent Organic Framework for Potassiumâ€lon Batteries. Small Methods, 2020, 4, 2000159.	4.6	36
238	Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy, 2020, 5, 693-702.	19.8	303
239	Thermodynamic Understanding of Li-Dendrite Formation. Joule, 2020, 4, 1864-1879.	11.7	252
240	lonic conductive polymers as artificial solid electrolyte interphase films in Li metal batteries – A review. Materials Today, 2020, 40, 140-159.	8.3	115
241	Anode-free rechargeable lithium metal batteries: Progress and prospects. Energy Storage Materials, 2020, 32, 386-401.	9.5	136
242	A facile strategy to reconcile 3D anodes and ceramic electrolytes for stable solid-state Li metal batteries. Energy Storage Materials, 2020, 32, 458-464.	9.5	35
243	Lithium Dendrite Suppression with a Silica Nanoparticle-Dispersed Colloidal Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 37188-37196.	4.0	27
244	Recent advances and future perspectives of two-dimensional materials for rechargeable Li-O2 batteries. Energy Storage Materials, 2020, 31, 470-491.	9.5	34
245	Cobalt Oxide Grown on Biomass Carbon as a Threeâ€Dimensional Selfâ€Supporting Negative Electrode with High Area Specific Capacity. ChemistrySelect, 2020, 5, 8998-9004.	0.7	5
246	Insights into dendrite suppression by alloys and the fabrication of a flexible alloy-polymer protected lithium metal anode. Energy Storage Materials, 2020, 32, 178-184.	9.5	45
247	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials, 2020, 33, 26-54.	9.5	123
248	Reduced Energy Barrier for Li+ Transport Across Grain Boundaries with Amorphous Domains in LLZO Thin Films. Nanoscale Research Letters, 2020, 15, 153.	3.1	32
249	Physicochemical Concepts of the Lithium Metal Anode in Solid-State Batteries. Chemical Reviews, 2020, 120, 7745-7794.	23.0	468
250	Densified Li ₆ PS ₅ Cl Nanorods with High Ionic Conductivity and Improved Critical Current Density for All-Solid-State Lithium Batteries. Nano Letters, 2020, 20, 6660-6665.	4.5	127
251	Realizing high zinc reversibility in rechargeable batteries. Nature Energy, 2020, 5, 743-749.	19.8	658
252	Stable Potassium Metal Anodes with an Allâ€Aluminum Current Collector through Improved Electrolyte Wetting. Advanced Materials, 2020, 32, e2002908.	11.1	70

#	Article	IF	CITATIONS
253	Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries. Nature Communications, 2020, 11, 5429.	5.8	129
254	Lithium and Stannum Hybrid Anodes for Flexible Wireâ€Type Lithium–Oxygen Batteries. Small Structures, 2020, 1, 2000015.	6.9	26
255	Highly concentrated nitrile functionalized disiloxane - LiFSI based non-flammable electrolyte for high energy density Li metal battery. Journal of Electroanalytical Chemistry, 2020, 879, 114794.	1.9	12
256	Inducing uniform lithium nucleation by integrated lithium-rich li-in anode with lithiophilic 3D framework. Energy Storage Materials, 2020, 33, 423-431.	9.5	56
257	Marcus–Hush–Chidsey kinetics at electrode–electrolyte interfaces. Journal of Chemical Physics, 2020, 153, 134706.	1.2	22
258	Advances in the Design of 3Dâ€Structured Electrode Materials for Lithiumâ€Metal Anodes. Advanced Materials, 2020, 32, e2002193.	11.1	165
259	Uncovering the Relationship between Diameter and Height of Electrodeposited Lithium Protrusions in a Rigid Electrolyte. ACS Applied Energy Materials, 2020, 3, 9645-9655.	2.5	13
260	Stable and Flexible Sulfide Composite Electrolyte for High-Performance Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 42653-42659.	4.0	52
261	Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Advanced Functional Materials, 2020, 30, 2004187.	7.8	80
262	Dualâ€Functional Atomic Zinc Decorated Hollow Carbon Nanoreactors for Kinetically Accelerated Polysulfides Conversion and Dendrite Free Lithium Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002271.	10.2	137
263	Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes. ACS Energy Letters, 2020, 5, 3244-3253.	8.8	93
264	Highâ€Performance Li–O ₂ Batteries Based on Allâ€Graphene Backbone. Advanced Functional Materials, 2020, 30, 2007218.	7.8	36
265	Polymer–Inorganic Nanocomposite Coating with High Ionic Conductivity and Transference Number for a Stable Lithium Metal Anode. ACS Applied Materials & Interfaces, 2020, 12, 41620-41626.	4.0	24
266	Highly Efficient Interface Modification between Poly(Propylene Carbonate)-Based Solid Electrolytes and a Lithium Anode by Facile Graphite Coating. ACS Sustainable Chemistry and Engineering, 2020, 8, 17106-17115.	3.2	15
267	A general method to synthesize and sinter bulk ceramics in seconds. Science, 2020, 368, 521-526.	6.0	357
268	Modulating reactivity and stability of metallic lithium <i>via</i> atomic doping. Journal of Materials Chemistry A, 2020, 8, 10363-10369.	5.2	18
269	Molar Volume Mismatch: A Malefactor for Irregular Metallic Electrodeposition with Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 082510.	1.3	44
270	Epitaxial array of Fe3O4 nanodots for high rate high capacity conversion type lithium ion batteries electrode with long cycling life. Nano Energy, 2020, 74, 104876.	8.2	51

#	Article	IF	CITATIONS
271	Cathode Interface Compatibility of Amorphous LiMn ₂ O ₄ (LMO) and Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO) Characterized with Thin-Film Solid-State Electrochemical Cells. ACS Applied Materials & Interfaces, 2020, 12, 24992-24999.	4.0	26
272	Not All Lithium Filaments Are the Same in Solid-State Batteries. Joule, 2020, 4, 719-721.	11.7	11
273	A Surface Chemistry Approach to Tailoring the Hydrophilicity and Lithiophilicity of Carbon Films for Hosting Highâ€Performance Lithium Metal Anodes. Advanced Functional Materials, 2020, 30, 2000585.	7.8	37
274	Transition metal dichalcogenides in alliance with Ag ameliorate the interfacial connection between Li anode and garnet solid electrolyte. Journal of Power Sources, 2020, 468, 228379.	4.0	13
275	Stretchable electrochemical energy storage devices. Chemical Society Reviews, 2020, 49, 4466-4495.	18.7	209
276	Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells. Joule, 2020, 4, 1296-1310.	11.7	80
278	Decorating carbon felt with oxides by dipping as dendrite-free host for lithium metal anode. Ionics, 2020, 26, 4381-4390.	1.2	3
279	An asymmetric quasi-solid electrolyte for high-performance Li metal batteries. Chemical Communications, 2020, 56, 7195-7198.	2.2	14
280	Recently developed strategies to restrain dendrite growth of Li metal anodes for rechargeable batteries. Rare Metals, 2020, 39, 616-635.	3.6	89
281	Solid‣tate Electrolyte Materials for Sodium Batteries: Towards Practical Applications. ChemElectroChem, 2020, 7, 2693-2713.	1.7	72
282	Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. Accounts of Chemical Research, 2020, 53, 1161-1175.	7.6	105
283	Minerals to Functional Materials: Characterization of Structural Phase Transitions and Raman Analysis of a Superionic Phase in Na ₆ Co(SO ₄) ₄ . Inorganic Chemistry, 2020, 59, 8424-8431.	1.9	3
284	Metal–organic frameworks for solid-state electrolytes. Energy and Environmental Science, 2020, 13, 2386-2403.	15.6	182
285	Surface-orientation for boosting the high-rate and cyclability of spinel LiNi0.02Mn1.98O4 cathode material. Vacuum, 2020, 179, 109505.	1.6	19
286	Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy, 2020, 5, 526-533.	19.8	642
287	Nonaqueous Aluminum Ion Batteries: Recent Progress and Prospects. , 2020, 2, 887-904.		57
288	The Fast Charge Transfer Kinetics of the Lithium Metal Anode on the Garnetâ€Type Solid Electrolyte Li _{6.25} Al _{0.25} La ₃ Zr ₂ O ₁₂ . Advanced Energy Materials, 2020, 10, 2000945.	10.2	110
289	Nonwoven rGO Fiberâ€Aramid Separator for Highâ€Speed Charging and Discharging of Li Metal Anode. Advanced Energy Materials, 2020, 10, 2001479.	10.2	36

~	_	
CITATI		DT
CILAD	KLF U	N I

#	Article	IF	CITATIONS
290	Constitutional under-potential plating (CUP) – New insights for predicting the morphological stability of deposited lithium anodes in lithium metal batteries. Journal of Power Sources, 2020, 467, 228243.	4.0	7
291	MXene for energy storage: present status and future perspectives. JPhys Energy, 2020, 2, 032004.	2.3	69
292	Liquefied gas electrolytes for wide-temperature lithium metal batteries. Energy and Environmental Science, 2020, 13, 2209-2219.	15.6	120
293	Why Celluloseâ€Based Electrochemical Energy Storage Devices?. Advanced Materials, 2021, 33, e2000892.	11.1	125
294	Analysis of elastic, plastic, and creep properties of sodium metal and implications for solid-state batteries. Materialia, 2020, 12, 100792.	1.3	20
295	Reduction in Formation Temperature of Ta-Doped Lithium Lanthanum Zirconate by Application of Lux–Flood Basic Molten Salt Synthesis. ACS Applied Energy Materials, 2020, 3, 6466-6475.	2.5	20
296	2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chemical Engineering Journal, 2020, 393, 124789.	6.6	65
297	An ultrastable lithium metal anode enabled by designed metal fluoride spansules. Science Advances, 2020, 6, eaaz3112.	4.7	157
298	Editorial: Electrode Materials for Lithium and Post-Lithium Rechargeable Batteries. Frontiers in Materials, 2020, 7, .	1.2	2
299	A Diffusionâ€â€Reaction Competition Mechanism to Tailor Lithium Deposition for Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2020, 59, 7743-7747.	7.2	219
300	Twoâ€Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage. ChemSusChem, 2020, 13, 1114-1154.	3.6	69
301	Morphological and Chemical Mapping of Columnar Lithium Metal. Chemistry of Materials, 2020, 32, 2803-2814.	3.2	10
302	Galvanic Corrosion of Lithiumâ€₽owderâ€Based Electrodes. Advanced Energy Materials, 2020, 10, 2000017.	10.2	62
303	Garnet Si–Li7La3Zr2O12 electrolyte with a durable, low resistance interface layer for all-solid-state lithium metal batteries. Journal of Power Sources, 2020, 453, 227881.	4.0	52
304	Interfacial engineering for stabilizing polymer electrolytes with 4V cathodes in lithium metal batteries at elevated temperature. Nano Energy, 2020, 72, 104655.	8.2	68
305	Lithiophilic Zn Sites in Porous CuZn Alloy Induced Uniform Li Nucleation and Dendrite-free Li Metal Deposition. Nano Letters, 2020, 20, 2724-2732.	4.5	134
306	Benchmarking the performance of all-solid-state lithium batteries. Nature Energy, 2020, 5, 259-270.	19.8	662
307	The natural critical current density limit for Li ₇ La ₃ Zr ₂ N ₁₂ garnets. Journal of Materials Chemistry A, 2020, 8, 15782-15788.	5.2	90

#	Article	IF	CITATIONS
308	Design, Synthesis, and Characterization of Polymer Precursors to Li <i>_x</i> PON and Li <i>_x</i> SiPON Glasses: Materials That Enable All-Solid-State Batteries (ASBs). Macromolecules, 2020, 53, 2702-2712.	2.2	13
309	Long Cycling Life Solid-State Li Metal Batteries with Stress Self-Adapted Li/Garnet Interface. Nano Letters, 2020, 20, 2871-2878.	4.5	54
310	Electrolyte with boron nitride nanosheets as leveling agent towards dendrite-free lithium metal anodes. Nano Energy, 2020, 72, 104725.	8.2	63
311	Crystal Structure Influences Migration along Li and Mg Surfaces. Journal of Physical Chemistry Letters, 2020, 11, 2891-2895.	2.1	13
312	Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries. Chemical Society Reviews, 2020, 49, 2701-2750.	18.7	310
313	Covalent–Organic Frameworks: Advanced Organic Electrode Materials for Rechargeable Batteries. Advanced Energy Materials, 2020, 10, 1904199.	10.2	425
314	Advanced Liquid Electrolytes for Rechargeable Li Metal Batteries. Advanced Functional Materials, 2020, 30, 1910777.	7.8	201
315	A Periodic "Selfâ€Correction―Scheme for Synchronizing Lithium Plating/Stripping at Ultrahigh Cycling Capacity. Advanced Functional Materials, 2020, 30, 1910532.	7.8	39
316	A Diffusionâ€â€Reaction Competition Mechanism to Tailor Lithium Deposition for Lithiumâ€Metal Batteries. Angewandte Chemie, 2020, 132, 7817-7821.	1.6	37
317	Li Penetration in Ceramic Solid Electrolytes: Operando Microscopy Analysis of Morphology, Propagation, and Reversibility. Matter, 2020, 2, 1025-1048.	5.0	240
318	On Modeling the Detrimental Effects of Inhomogeneous Plating-and-Stripping at a Lithium-Metal/Solid-Electrolyte Interface in a Solid-State-Battery. Journal of the Electrochemical Society, 2020, 167, 040525.	1.3	23
319	Atomic-scale simulations for lithium dendrite growth driven by strain gradient. Applied Mathematics and Mechanics (English Edition), 2020, 41, 533-542.	1.9	5
320	Ultrastable Anode Interface Achieved by Fluorinating Electrolytes for All-Solid-State Li Metal Batteries. ACS Energy Letters, 2020, 5, 1035-1043.	8.8	176
321	Plan-View <i>Operando</i> Video Microscopy of Li Metal Anodes: Identifying the Coupled Relationships among Nucleation, Morphology, and Reversibility. ACS Energy Letters, 2020, 5, 994-1004.	8.8	82
322	Flaky and Dense Lithium Deposition Enabled by a Nanoporous Copper Surface Layer on Lithium Metal Anode. , 2020, 2, 358-366.		19
323	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 2020, 120, 6878-6933.	23.0	676
324	Sr2+-doped rhombohedral LiHf2(PO4)3 solid electrolyte for all-solid-state Li-metal battery. Rare Metals, 2020, 39, 1092-1098.	3.6	16
325	Recent advances in research on anodes for safe and efficient lithium–metal batteries. Nanoscale, 2020, 12, 15528-15559.	2.8	31

#	Article	IF	CITATIONS
326	Grafting polymer from oxygen-vacancy-rich nanoparticles to enable protective layers for stable lithium metal anode. Nano Energy, 2020, 76, 105046.	8.2	31
327	Progress and perspectives on pre-lithiation technologies for lithium ion capacitors. Energy and Environmental Science, 2020, 13, 2341-2362.	15.6	142
328	Water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries. Green Chemistry, 2020, 22, 4952-4961.	4.6	23
329	Lithium Garnet Li ₇ La ₃ Zr ₂ O ₁₂ Electrolyte for All‣olid‣tate Batteries: Closing the Gap between Bulk and Thin Film Liâ€Ion Conductivities. Advanced Materials Interfaces, 2020, 7, 2000425.	1.9	57
330	Theoretical Design of Lithium Chloride Superionic Conductors for All-Solid-State High-Voltage Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34806-34814.	4.0	68
331	Stabilizing Solid Electrolyte Interphases on Both Anode and Cathode for High Areal Capacity, Highâ€Voltage Lithium Metal Batteries with High Li Utilization and Lean Electrolyte. Advanced Functional Materials, 2020, 30, 2002824.	7.8	69
332	Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5, 561-568.	19.8	526
333	Properties of Thin Lithium Metal Electrodes in Carbonate Electrolytes with Realistic Parameters. ACS Applied Materials & Interfaces, 2020, 12, 32863-32870.	4.0	8
334	Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces. Energy Storage Materials, 2020, 31, 401-433.	9.5	107
335	A "dendrite-eating―separator for high-areal-capacity lithium-metal batteries. Energy Storage Materials, 2020, 31, 181-186.	9.5	71
336	Understanding the Reactivity of a Thin Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ Solid‣tate Electrolyte toward Metallic Lithium Anode. Advanced Energy Materials, 2020, 10, 2001497.	10.2	49
337	Regulated lithium ionic flux through well-aligned channels for lithium dendrite inhibition in solid-state batteries. Energy Storage Materials, 2020, 31, 344-351.	9.5	48
338	Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters, 2020, 5, 833-843.	8.8	322
339	Dendrite Suppression by a Polymer Coating: A Coarseâ€Grained Molecular Study. Advanced Functional Materials, 2020, 30, 1910138.	7.8	49
340	Enabling Rapid Charging Lithium Metal Batteries via Surface Acoustic Waveâ€Driven Electrolyte Flow. Advanced Materials, 2020, 32, e1907516.	11.1	35
341	Designing of root-soil-like polyethylene oxide-based composite electrolyte for dendrite-free and long-cycling all-solid-state lithium metal batteries. Chemical Engineering Journal, 2020, 389, 124478.	6.6	62
342	Glass formation and structure of melt quenched mixed oxy-sulfide Na4P2S7-xOx glasses for OÂâ‰ÂxÂâ‰Â5. Journal of Non-Crystalline Solids, 2020, 534, 119776.	1.5	17
343	Advanced characterization techniques for solid state lithium battery research. Materials Today, 2020, 36, 139-157.	8.3	86

#	Article	IF	Citations
344	Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Letters, 2020, 5, 922-934.	8.8	322
345	Current Challenges and Routes Forward for Nonaqueous Lithium–Air Batteries. Chemical Reviews, 2020, 120, 6558-6625.	23.0	356
346	Review—Emerging Trends in the Design of Electrolytes for Lithium and Post-Lithium Batteries. Journal of the Electrochemical Society, 2020, 167, 050508.	1.3	89
347	Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode. Nature Communications, 2020, 11, 829.	5.8	246
348	Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Znâ€Based Batteries. Advanced Functional Materials, 2020, 30, 1908528.	7.8	523
349	Waterâ€Stable Lithium Metal Anodes with Ultrahighâ€Rate Capability Enabled by a Hydrophobic Graphene Architecture. Advanced Materials, 2020, 32, e1908494.	11.1	77
350	Plasma Synthesis of Spherical Crystalline and Amorphous Electrolyte Nanopowders for Solid-State Batteries. ACS Applied Materials & Interfaces, 2020, 12, 11570-11578.	4.0	15
351	Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49, 1569-1614.	18.7	1,326
352	The activation entropy for ionic conduction and critical current density for Li charge transfer in novel garnet-type Li _{6.5} La _{2.9} A _{0.1} Zr _{1.4} Ta _{0.6} O ₁₂ (A = Ca, Sr, Ba) solid electrolytes. Journal of Materials Chemistry A, 2020, 8, 2581-2590.	5.2	30
353	Communication—Pressure Evolution in Constrained Rechargeable Lithium-metal Pouch Cells. Journal of the Electrochemical Society, 2020, 167, 020511.	1.3	7
354	High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity. Energy Storage Materials, 2020, 27, 61-68.	9.5	64
355	A Singleâ€Ion Conducting Borate Network Polymer as a Viable Quasiâ€Solid Electrolyte for Lithium Metal Batteries. Advanced Materials, 2020, 32, e1905771.	11.1	121
356	Beyond Lithium-Based Batteries. Materials, 2020, 13, 425.	1.3	47
357	Understanding Liâ€ion Dynamics in Lithium Hydroxychloride (Li 2 OHCl) Solid State Electrolyte via Addressing the Role of Protons. Advanced Energy Materials, 2020, 10, 1903480.	10.2	29
358	Supercool sulfur. Nature Nanotechnology, 2020, 15, 167-168.	15.6	4
359	Fastâ€Charging and Ultrahighâ€Capacity Lithium Metal Anode Enabled by Surface Alloying. Advanced Energy Materials, 2020, 10, 1902343.	10.2	65
360	A Versatile Sn‣ubstituted Argyrodite Sulfide Electrolyte for All‣olid‣tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 1903422.	10.2	183
361	Redox-Driven Lithium Perfusion to Fabricate Li@Ni–Foam Composites for High Lithium-Loading 3D Anodes. ACS Applied Materials & Interfaces, 2020, 12, 9355-9364.	4.0	24

#	Article	IF	CITATIONS
362	Nonflammable Lithium Metal Full Cells with Ultra-high Energy Density Based on Coordinated Carbonate Electrolytes. IScience, 2020, 23, 100844.	1.9	58
363	Mixed Electronic and Ionic Conduction Properties of Lithium Lanthanum Titanate. Advanced Functional Materials, 2020, 30, 1909140.	7.8	51
364	Separator-free and concentrated LiNO ₃ electrolyte cells enable uniform lithium electrodeposition. Journal of Materials Chemistry A, 2020, 8, 3999-4006.	5.2	23
365	Mussel-inspired polydopamine treated Si/C electrode as high-performance anode for lithium-ion batteries. Journal of Alloys and Compounds, 2020, 825, 154081.	2.8	16
366	Solventâ€Free Synthesis of Thin, Flexible, Nonflammable Garnetâ€Based Composite Solid Electrolyte for Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903376.	10.2	284
367	Highly conductive and nonflammable composite polymer electrolytes for rechargeable quasi-solid-state Li-metal batteries. Journal of Power Sources, 2020, 464, 228182.	4.0	27
368	3D microstructure design of lithium-ion battery electrodes assisted by X-ray nano-computed tomography and modelling. Nature Communications, 2020, 11, 2079.	5.8	217
369	Review of Emerging Potassium–Sulfur Batteries. Advanced Materials, 2020, 32, e1908007.	11.1	91
370	Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li ₂ Sâ€P ₂ S ₅ (LPS) Solid Electrolyte for Solid‣tate Li Metal Batteries. Advanced Energy Materials, 2020, 10, 2000335.	10.2	56
371	Toward Green Battery Cells: Perspective on Materials and Technologies. Small Methods, 2020, 4, 2000039.	4.6	177
372	Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020, 395, 124922.	6.6	61
373	Multi-scale stabilization of high-voltage LiCoO2 enabled by nanoscale solid electrolyte coating. Energy Storage Materials, 2020, 29, 71-77.	9.5	49
374	Garnet-Type Solid-State Electrolytes: Materials, Interfaces, and Batteries. Chemical Reviews, 2020, 120, 4257-4300.	23.0	655
375	Realizing Dendrite-Free Lithium Deposition with a Composite Separator. Nano Letters, 2020, 20, 3798-3807.	4.5	66
376	In Situ Li ₃ PO ₄ /PVA Solid Polymer Electrolyte Protective Layer Stabilizes the Lithium Metal Anode. ACS Omega, 2020, 5, 8299-8304.	1.6	13
377	Techno-economic analysis of capacitive and intercalative water deionization. Energy and Environmental Science, 2020, 13, 1544-1560.	15.6	76
378	The Influence of Micro-Structured Anode Current Collectors in Combination with Highly Concentrated Electrolyte on the Coulombic Efficiency of In-Situ Deposited Li-Metal Electrodes with Different Counter Electrodes. Batteries, 2020, 6, 20.	2.1	6
379	Polymer Precursor Derived Li _{<i>x</i>} PON Electrolytes: Toward Li–S Batteries. ACS Applied Materials & Interfaces, 2020, 12, 20548-20562.	4.0	7

#	Article	IF	CITATIONS
380	Polymer-in-Ceramic Nanocomposite Solid Electrolyte for Lithium Metal Batteries Encompassing PEO-Grafted TiO ₂ Nanocrystals. Journal of the Electrochemical Society, 2020, 167, 070535.	1.3	25
381	Surpassing lithium metal rechargeable batteries with self-supporting Li–Sn–Sb foil anode. Nano Energy, 2020, 74, 104815.	8.2	28
382	Universal chemomechanical design rules for solid-ion conductors to prevent dendrite formation in lithium metal batteries. Nature Materials, 2020, 19, 758-766.	13.3	110
383	Magicâ€angleâ€spinningâ€induced local ordering in polymer electrolytes and its effects on solidâ€state diffusion and relaxation NMR measurements. Magnetic Resonance in Chemistry, 2020, 58, 1118-1129.	1.1	6
384	Robust pure copper framework by extrusion 3D printing for advanced lithium metal anodes. Journal of Materials Chemistry A, 2020, 8, 9058-9067.	5.2	51
385	Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations. Matter, 2020, 3, 57-94.	5.0	334
386	A Ternary Hybridâ€Cation Roomâ€īemperature Liquid Metal Battery and Interfacial Selection Mechanism Study. Advanced Materials, 2020, 32, e2000316.	11.1	40
387	Confining ultrafine Li3P nanoclusters in porous carbon for high-performance lithium-ion battery anode. Nano Research, 2020, 13, 1122-1126.	5.8	19
388	Lithiophilic polymer interphase anchored on laser-punched 3D holey Cu matrix enables uniform lithium nucleation leading to super-stable lithium metal anodes. Energy Storage Materials, 2020, 29, 84-91.	9.5	64
389	Understanding the Relationships between Morphology, Solid Electrolyte Interphase Composition, and Coulombic Efficiency of Lithium Metal. ACS Applied Materials & Interfaces, 2020, 12, 22268-22277.	4.0	21
390	Effect of Liquid Electrolyte Soaking on the Interfacial Resistance of Li ₇ La ₃ Zr ₂ O ₁₂ for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 20605-20612.	4.0	26
391	Mesoporous Silica Reinforced Hybrid Polymer Artificial Layer for High-Energy and Long-Cycling Lithium Metal Batteries. ACS Energy Letters, 2020, 5, 1644-1652.	8.8	74
392	Solid–Solution-Based Metal Alloy Phase for Highly Reversible Lithium Metal Anode. Journal of the American Chemical Society, 2020, 142, 8818-8826.	6.6	199
393	Engineering Solid Electrolyte Interphase Composition by Assessing Decomposition Pathways of Fluorinated Organic Solvents in Lithium Metal Batteries. Journal of the Electrochemical Society, 2020, 167, 070554.	1.3	20
394	Quasi-solid electrolyte membranes with percolated metal–organic frameworks for practical lithium-metal batteries. Journal of Energy Chemistry, 2021, 52, 354-360.	7.1	22
395	Scalable Synthesis of LiFâ€ r ich 3D Architected Li Metal Anode via Direct Lithiumâ€Fluoropolymer Pyrolysis to Enable Fast Li Cycling. Energy and Environmental Materials, 2021, 4, 213-221.	7.3	16
396	Ultrahigh coulombic efficiency electrolyte enables Li SPAN batteries with superior cycling performance. Materials Today, 2021, 42, 17-28.	8.3	50
397	Solid‧tate Li–Metal Batteries: Challenges and Horizons of Oxide and Sulfide Solid Electrolytes and Their Interfaces. Advanced Energy Materials, 2021, 11, .	10.2	312

#	Article	IF	CITATIONS
398	Modeling the chemo-mechanical behavior of all-solid-state batteries: a review Meccanica, 2021, 56, 1523-1554.	1.2	41
399	Si nanoparticles confined within a conductive 2D porous Cu-based metal–organic framework (Cu3(HITP)2) as potential anodes for high-capacity Li-ion batteries. Chemical Engineering Journal, 2021, 405, 126963.	6.6	46
400	Battery materials for low-cost electric transportation. Materials Today, 2021, 42, 57-72.	8.3	98
401	Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Materials, 2021, 34, 28-44.	9.5	63
402	A Reduced-Order Electrochemical Model for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 464-473.	5.3	55
403	Probing Lithium Metals in Batteries by Advanced Characterization and Analysis Tools. Advanced Energy Materials, 2021, 11, 2003039.	10.2	30
404	Advanced electrolyte design for stable lithium metal anode: From liquid to solid. Nano Energy, 2021, 80, 105516.	8.2	111
405	Reducing the thickness of solid-state electrolyte membranes for high-energy lithium batteries. Energy and Environmental Science, 2021, 14, 12-36.	15.6	236
406	Lithium-activated SnS–graphene alternating nanolayers enable dendrite-free cycling of thin sodium metal anodes in carbonate electrolyte. Energy and Environmental Science, 2021, 14, 382-395.	15.6	65
407	Recent progress of functional separators in dendrite inhibition for lithium metal batteries. Energy Storage Materials, 2021, 35, 157-168.	9.5	105
408	Highly efficient lithium utilization in lithium metal full-cell by simulated missile guidance and confinement systems. Science China Materials, 2021, 64, 830-839.	3.5	6
409	Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite. Energy Storage Materials, 2021, 35, 310-316.	9.5	26
410	Regulating lithium deposition via bifunctional regular-random cross-linking network solid polymer electrolyte for Li metal batteries. Journal of Power Sources, 2021, 484, 229186.	4.0	28
411	Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries. Chemical Engineering Journal, 2021, 421, 127759.	6.6	57
412	All‣olid‣tate Batteries with a Limited Lithium Metal Anode at Room Temperature using a Garnetâ€Based Electrolyte. Advanced Materials, 2021, 33, e2002325.	11.1	99
413	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 6600-6608.	7.2	249
414	Lithium metal batteries for high energy density: Fundamental electrochemistry and challenges. Journal of Energy Chemistry, 2021, 59, 666-687.	7.1	82
415	Competitive Solvation-Induced Concurrent Protection on the Anode and Cathode toward a 400 Wh kg ^{–1} Lithium Metal Battery. ACS Energy Letters, 2021, 6, 115-123.	8.8	53

#	Article	IF	CITATIONS
416	Practical assessment of the performance of aluminium battery technologies. Nature Energy, 2021, 6, 21-29.	19.8	122
417	Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium–metal batteries. Journal of Materials Chemistry A, 2021, 9, 5606-5618.	5.2	40
418	Bioâ€Derived Materials Achieving High Performance in Alkali Metal–Chalcogen Batteries. Advanced Functional Materials, 2021, 31, 2008354.	7.8	13
419	Structural properties and electrochemical performance of different polymorphs of Nb2O5 in magnesium-based batteries. Journal of Energy Chemistry, 2021, 58, 586-592.	7.1	13
420	Improving the electrocatalytic performance of sustainable Co/carbon materials for the oxygen evolution reaction by ultrasound and microwave assisted synthesis. Sustainable Energy and Fuels, 2021, 5, 720-731.	2.5	21
421	Spatially Controlled Lithium Deposition on Silverâ€Nanocrystalsâ€Decorated TiO ₂ Nanotube Arrays Enabling Ultrastable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2009605.	7.8	40
422	Gradient Solid Electrolyte Interphase and Lithiumâ€lon Solvation Regulated by Bisfluoroacetamide for Stable Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 6674-6682.	1.6	23
423	Nonfluorinated Ionic Liquid Electrolytes for Lithium Metal Batteries: Ionic Conduction, Electrochemistry, and Interphase Formation. Advanced Energy Materials, 2021, 11, 2003521.	10.2	37
424	Multi-storey corridor structured host for a large area capacity and high rate metallic lithium anode. Electrochimica Acta, 2021, 365, 137341.	2.6	8
425	A quasi-solid-state rechargeable cell with high energy and superior safety enabled by stable redox chemistry of Li ₂ S in gel electrolyte. Energy and Environmental Science, 2021, 14, 2278-2290.	15.6	40
426	Fluoropyridine family: Bifunction as electrolyte solvent and additive to achieve dendrites-free lithium metal batteries. Journal of Materials Science and Technology, 2021, 74, 119-127.	5.6	14
427	Hierarchically porous Cu current collector with lithiophilic Cu O interphase towards high-performance lithium metal batteries. Journal of Energy Chemistry, 2021, 58, 292-299.	7.1	41
428	Projected material requirements for the global electricity infrastructure – generation, transmission and Recycling, 2021, 164, 105200.	5.3	35
429	Dynamic Regulation of Lithium Dendrite Growth with Electromechanical Coupling Effect of Soft BaTiO ₃ Ceramic Nanofiber Films. ACS Nano, 2021, 15, 3161-3170.	7.3	56
430	3D-Assembled rutile TiO ₂ spheres with <i>c</i> channels for efficient lithium-ion storage. Nanoscale, 2021, 13, 11104-11111.	2.8	9
431	A multifunctional artificial protective layer for producing an ultra-stable lithium metal anode in a commercial carbonate electrolyte. Journal of Materials Chemistry A, 2021, 9, 7667-7674.	5.2	31
432	Recent advanced skeletons in sodium metal anodes. Energy and Environmental Science, 0, , .	15.6	69
433	Epitaxial Induced Plating Currentâ€Collector Lasting Lifespan of Anodeâ€Free Lithium Metal Battery. Advanced Energy Materials, 2021, 11, 2003709.	10.2	119

#	Article	IF	CITATIONS
434	Materials design of sodium chloride solid electrolytes Na ₃ MCl ₆ for all-solid-state sodium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 23037-23045.	5.2	23
435	Stable alkali metal anodes enabled by crystallographic optimization – a review. Journal of Materials Chemistry A, 2021, 9, 20957-20984.	5.2	32
436	Na _{1+<i>x</i>} Mn _{<i>x</i>/2} Zr _{2–<i>x</i>/2} (PO ₄) _{3as a Li⁺ and Na⁺ Super Ion Conductor for Solid-State Batteries. ACS Energy Letters, 2021, 6, 429-436.}	sub> 8.8	20
437	High transference number enabled by sulfated zirconia superacid for lithium metal batteries with carbonate electrolytes. Energy and Environmental Science, 2021, 14, 1420-1428.	15.6	23
438	An ultra-lithiophilic oxidation layer in a Ni-foam-based anode for lithium metal batteries. Materials Advances, 2021, 2, 1972-1980.	2.6	4
439	Constructing nitrided interfaces for stabilizing Li metal electrodes in liquid electrolytes. Chemical Science, 2021, 12, 8945-8966.	3.7	72
440	Advanced Li metal anode by fluorinated metathesis on conjugated carbon networks. Energy and Environmental Science, 2021, 14, 940-954.	15.6	19
441	Slow surface diffusion on Cu substrates in Li metal batteries. Journal of Materials Chemistry A, 2021, 9, 11042-11048.	5.2	15
442	100th Anniversary of Macromolecular Science Viewpoint: Solid Polymer Electrolytes in Cathode Electrodes for Lithium Batteries. Current Challenges and Future Opportunities. ACS Macro Letters, 2021, 10, 141-153.	2.3	20
443	Research Progress of Lithium Metal Anode Protection. Hans Journal of Nanotechnology, 2021, 11, 166-183.	0.1	0
444	Highly stable interface formation in onsite coagulation dual-salt gel electrolyte for lithium-metal batteries. Journal of Materials Chemistry A, 2021, 9, 5675-5684.	5.2	12
445	Properties of lithium phosphorus oxynitride (LiPON) solid electrolyte - Li anode interfaces. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 136801-136801.	0.2	1
446	Metal Organic Framework in Batteries. , 2021, , 125-125.		0
447	Advanced <i>in situ</i> technology for Li/Na metal anodes: an in-depth mechanistic understanding. Energy and Environmental Science, 2021, 14, 3872-3911.	15.6	27
448	Cryogenic Electron Microscopy Reveals that Applied Pressure Promotes Short Circuits in Li Batteries. SSRN Electronic Journal, 0, , .	0.4	0
449	Touch Ablation of Lithium Dendrites via Liquid Metal for High-Rate and Long-Lived Batteries. CCS Chemistry, 2021, 3, 686-695.	4.6	24
450	Interphases for Alkali Metal Anodes. , 2022, , 137-145.		0
451	Modeling of Lithium Nucleation and Plating Kinetics Under Fast Charge Conditions. Journal of the Electrochemical Society, 2021, 168, 020536.	1.3	14

	Стл	CITATION REPORT	
#	Article	IF	CITATIONS
452	Deep Cycling for Highâ€Capacity Liâ€Ion Batteries. Advanced Materials, 2021, 33, e2004998.	11.1	43
453	Optimizing Cycling Conditions for Anode-Free Lithium Metal Cells. Journal of the Electrochemical Society, 2021, 168, 020515.	1.3	72
454	Structure stability, electronic property and voltage profile of LiFe1â^'nNnP1â^'mMmO4 olivine cathode material. Rare Metals, 2021, 40, 3512-3519.	3.6	6
455	Solidâ€State Lithium Metal Batteries with Extended Cycling Enabled by Dynamic Adaptive Solidâ€State Interfaces. Advanced Materials, 2021, 33, e2008084.	2 11.1	61
457	Interfacial Atomistic Mechanisms of Lithium Metal Stripping and Plating in Solid‣tate Batteries. Advanced Materials, 2021, 33, e2008081.	11.1	53
458	Beyond the State of the Art of Electric Vehicles: A Fact-Based Paper of the Current and Prospective Electric Vehicle Technologies. World Electric Vehicle Journal, 2021, 12, 20.	1.6	52
459	A Highly Conductive Gel Polymer Electrolyte for Li–Mg Hybrid Batteries. ACS Applied Energy Material 2021, 4, 1906-1914.	s, 2.5	3
460	Multifunctional roles of carbonâ€based hosts for Liâ€metal anodes: A review. , 2021, 3, 303-329.		93
461	Processing thin but robust electrolytes for solid-state batteries. Nature Energy, 2021, 6, 227-239.	19.8	328
462	Single-Atom Catalysts for Improved Cathode Performance in Na–S Batteries: A Density Functional Theory (DFT) Study. Journal of Physical Chemistry C, 2021, 125, 4458-4467.	1.5	45
463	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.	11.1	58
464	Singleâ€Ion Conducting Polymer Electrolytes for Solidâ€State Lithium–Metal Batteries: Design, Performance, and Challenges. Advanced Energy Materials, 2021, 11, 2003836.	10.2	206
465	Research progress of fluorine-containing electrolyte additives for lithium ion batteries. Journal of Power Sources Advances, 2021, 7, 100043.	2.6	55
466	Critical Current Density in Solidâ€State Lithium Metal Batteries: Mechanism, Influences, and Strategies Advanced Functional Materials, 2021, 31, 2009925.	. 7.8	239
467	Nitrogenâ€Ðoped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. Angewandte Chemie - International Edition, 2021, 60, 8515-8520.	7.2	115
468	Dendrites in Solid‣tate Batteries: Ion Transport Behavior, Advanced Characterization, and Interface Regulation. Advanced Energy Materials, 2021, 11, 2003250.	10.2	69
469	Semi-solid alkali metal electrodes enabling high critical current densities in solid electrolyte batteries. Nature Energy, 2021, 6, 314-322.	19.8	78
470	Robust Cycling of Ultrathin Li Metal Enabled by Nitrateâ€Preplanted Li Powder Composite. Advanced Energy Materials, 2021, 11, 2003769.	10.2	48

ARTICLE IF CITATIONS A Review of Existing and Emerging Methods for Lithium Detection and Characterization in Liâ€ion and 471 10.2 114 Liâ€Metal Batteries. Advanced Energy Materials, 2021, 11, 2100372. Liâ€Rich Li 2 [Ni 0.8 Co 0.1 Mn 0.1]O 2 for Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie, 2021, 1.6 133, 8370-8377. Compressive creep deformation of lithium foil at varied cell conditions. Journal of Power Sources, 473 4.0 18 2021, 488, 229404. High-Performance Megahertz Wireless Power Transfer: Topologies, Modeling, and Design. IEEE 474 Industrial Electronics Magazine, 2021, 15, 28-42. Working Principle of an Ionic Liquid Interlayer During Pressureless Lithium Stripping on Li_{6.25}Al_{0.25}La₃Zr₂O₁₂ (LLZO) Garnetâ€Type 475 2.4 23 Solid Electrolyte. Batteries and Supercaps, 2021, 4, 1145-1155. The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052. 10.1 477 The metamorphosis of rechargeable magnesium batteries. Joule, 2021, 5, 581-617. 11.7 129 The Defect Chemistry of Carbon Frameworks for Regulating the Lithium Nucleation and Growth 478 5.2 Behaviors in Lithium Metal Anodes. Small, 2021, 17, e2007142. 479 Soft and liquid metals. Nature Energy, 2021, 6, 225-226. 19.8 1 Direct Ink Writing of Moldable Electrochemical Energy Storage Devices: Ongoing Progress, 1.6 Challenges, and Prospects. Advanced Engineering Materials, 2021, 23, 2100068 Liâ€Rich Li₂[Ni_{0.8}Co_{0.1}Mn_{0.1}]O₂ for 481 7.2 71 Anodeâ€Free Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 8289-8296. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion 13.3 105 batteries. Nature Materials, 2021, 20, 984-990. Systematic Evaluation of Carbon Hosts for High-Energy Rechargeable Lithium-Metal Batteries. ACS 483 8.8 20 Energy Letters, 0, , 1550-1559. Electrolyte Interphase Built from Anionic Covalent Organic Frameworks for Lithium Dendrite Suppression. Advanced Functional Materials, 2021, 31, 2009718. 484 Electrochemical Properties and Deposition/Dissolution Behavior of Li Metal Negative Electrode in 485 0.6 6 VS<sub>4</sub>/Li Battery. Electrochemistry, 2021, 89, 167-175. Nitrogenâ€Doped Amorphous Zn–Carbon Multichannel Fibers for Stable Lithium Metal Anodes. 486 Angewandte Chemie, 2021, 133, 8596-8601. 2021 roadmap on lithium sulfur batteries. JPhys Energy, 2021, 3, 031501. 487 2.374 Electrochemical Performance of LixSiON Polymer Electrolytes Derived from an Agriculture Waste 488 Product, Rice Hull Ash. ACS Applied Polymer Materials, 2021, 3, 2144-2152.

#	Article	IF	CITATIONS
490	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 12438-12445.	7.2	69
491	A lithium nucleation-diffusion-growth mechanism to govern the horizontal deposition of lithium metal anode. Science China Materials, 2021, 64, 2409-2420.	3.5	22
492	Lithium Metal Batteries Enabled by Synergetic Additives in Commercial Carbonate Electrolytes. ACS Energy Letters, 2021, 6, 1839-1848.	8.8	200
493	First-principles study on S and N doping graphene/SnS2 heterostructure for lithium-ion battery. Chemical Physics Letters, 2021, 769, 138391.	1.2	12
494	Functionalized Phosphonium Cations Enable Zinc Metal Reversibility in Aqueous Electrolytes. Angewandte Chemie, 2021, 133, 12546-12553.	1.6	11
495	Superior lithium-stable Li7P2S8I solid electrolyte for all-solid-state lithium batteries. Journal of Power Sources, 2021, 491, 229565.	4.0	40
496	Improving the Ionic Conductivity of the LLZO–LZO Thin Film through Indium Doping. Crystals, 2021, 11, 426.	1.0	5
497	Lithiophilic 3D VN@N-rGO as a Multifunctional Interlayer for Dendrite-Free and Ultrastable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 20125-20136.	4.0	32
498	Review on Multivalent Rechargeable Metal–Organic Batteries. Energy & Fuels, 2021, 35, 7624-7636.	2.5	28
499	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.	8.3	65
499 500	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021, 6, 398-406.	8.3 19.8	65 169
	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using		
500	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nature Energy, 2021, 6, 398-406. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid	19.8	169
500 501	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metalâ€"substrate bonding. Nature Energy, 2021, 6, 398-406. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308. Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur	19.8 9.5	169 82
500 501 502	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metalâ€"substrate bonding. Nature Energy, 2021, 6, 398-406. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308. Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Materials, 2021, 13, . Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nature Materials, 2021,	19.8 9.5 3.8	169 82 28
500 501 502 503	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metalâ€"substrate bonding. Nature Energy, 2021, 6, 398-406. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308. Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Materials, 2021, 13, . Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nature Materials, 2021, 20, 1121-1129. Singleâ€-or Polyâ€Crystalline Niâ€Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be	19.8 9.5 3.8 13.3	169 82 28 221
500 501 502 503	Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metalâ€"substrate bonding. Nature Energy, 2021, 6, 398-406. Strategies to Boost Ionic Conductivity and Interface Compatibility of Inorganic - Organic Solid Composite Electrolytes. Energy Storage Materials, 2021, 36, 291-308. Flexible high-energy-density lithium-sulfur batteries using nanocarbon-embedded fibrous sulfur cathodes and membrane separators. NPG Asia Materials, 2021, 13, . Visualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nature Materials, 2021, 20, 1121-1129. Singleâ€-or Polyâ€Crystalline Niâ€Rich Layered Cathode, Sulfide or Halide Solid Electrolyte: Which Will be the Winners for Allâ€Solidã€State Batteries?. Advanced Energy Materials, 2021, 11, 2100126.	19.8 9.5 3.8 13.3 10.2	169 82 28 221 148

#	Article	IF	CITATIONS
508	Graphite as anode materials: Fundamental mechanism, recent progress and advances. Energy Storage Materials, 2021, 36, 147-170.	9.5	344
509	Dislocations in ceramic electrolytes for solid-state Li batteries. Scientific Reports, 2021, 11, 8949.	1.6	14
510	Sowing Silver Seeds within Patterned Ditches for Dendriteâ€Free Lithium Metal Batteries. Advanced Science, 2021, 8, e2100684.	5.6	42
511	A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 25890-25897.	4.0	7
512	Design Parameters for Ionic Liquid–Molecular Solvent Blend Electrolytes to Enable Stable Li Metal Cycling Within Li–O ₂ Batteries. Advanced Functional Materials, 2021, 31, 2010627.	7.8	16
513	From Fundamental Understanding to Engineering Design of Highâ€Performance Thick Electrodes for Scalable Energyâ€Storage Systems. Advanced Materials, 2021, 33, e2101275.	11.1	89
514	Self-Assembly Lightweight Honeycomb-Like Prussian Blue Analogue on Cu Foam for Lithium Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 23803-23810.	4.0	19
515	A highly stable lithium metal anode enabled by Ag nanoparticle–embedded nitrogen-doped carbon macroporous fibers. Science Advances, 2021, 7, .	4.7	212
516	Machine learning of materials design and state prediction for lithium ion batteries. Chinese Journal of Chemical Engineering, 2021, 37, 1-11.	1.7	29
517	Pressure-Driven and Creep-Enabled Interface Evolution in Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 26533-26541.	4.0	12
518	Temperature Dependence of Lithium Anode Voiding in Argyrodite Solid-State Batteries. ACS Applied Materials & Interfaces, 2021, 13, 22708-22716.	4.0	38
519	Benzenedisulfonic Acid as an ALD/MLD Building Block for Crystalline Metalâ€Organic Thin Films**. Chemistry - A European Journal, 2021, 27, 8799-8803.	1.7	6
520	Regulating the Stable Lithium and Polysulfide Deposition in Batteries by a Gold Nanoparticle Modified Vertical Graphene Host. Advanced Energy and Sustainability Research, 2021, 2, 2100044.	2.8	4
521	Recent Advances in Understanding the Formation and Mitigation of Dendrites in Lithium Metal Batteries. Energy & Fuels, 2021, 35, 9187-9208.	2.5	14
522	Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability. Nature Energy, 2021, 6, 633-641.	19.8	215
523	In Situ TEM Studies of Sodium Polysulfides Electrochemistry in High Temperature Na–S Nanobatteries. Small, 2021, 17, e2100846.	5.2	10
524	Practical Considerations for Testing Polymer Electrolytes for High-Energy Solid-State Batteries. ACS Energy Letters, 2021, 6, 2240-2247.	8.8	40
525	Challenges, fabrications and horizons of oxide solid electrolytes for solidâ€state lithium batteries. Nano Select, 2021, 2, 2256-2274.	1.9	26

ARTICLE IF CITATIONS # Electrochemical Impedance Spectroscopy for Allâ€Solidâ€State Batteries: Theory, Methods and Future 526 1.7 176 Outlook. ChemElectroChem, 2021, 8, 1930-1947. Rationally design lithiophilic surfaces toward highâ[^]energy Lithium metal battery. Energy Storage Materials, 2021, 37, 40-46. Redistributing Li-ion flux and homogenizing Li-metal growth by N-doped hierarchically porous 528 9.5 41 membranes for dendrite-free Lithium metal batteries. Energy Storage Materials, 2021, 37, 233-242. New Insights on the Good Compatibility of Ether-Based Localized High-Concentration Electrolyte with Lithium Metal. , 2021, 3, 838-844. Nanoâ€Scale Complexions Facilitate Li Dendriteâ€Free Operation in LATP Solidâ€State Electrolyte. Advanced 530 10.2 36 Energy Materials, 2021, 11, 2100707. Material Design Strategy for Halide Solid Electrolytes Li₃MX₆ (X = Cl, Br, and) Tj ETQq1 1,0,784314,gBT /C Harnessing Stiffness and Anticorrosion of Chromium in an Artificial SEI to Achieve a Longevous 532 2.5 6 Lithium-Metal Anode. ACS Applied Energy Materials, 2021, 4, 5043-5049. Revealing Anion Adsorption Mechanism for Coating Layer on Separator toward Practical Li Metal 533 14 Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 23584-23591. Local electronic structure variation resulting in Li â€[−]filamentâ€[™] formation within solid electrolytes. 534 13.3 226 Nature Materials, 2021, 20, 1485-1490. Free-standing ultrathin lithium metal–graphene oxide host foils with controllable thickness for 19.8 198 lithium batteries. Nature Energy, 2021, 6, 790-798. A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent. 536 19.8 175 Nature Energy, 2021, 6, 653-662. ENPOLITE: Comparing Lithium-Ion Cells across Energy, Power, Lifetime, and Temperature. ACS Energy 537 8.8 Letters, 2021, 6, 2351-2355. Operando analysis of the molten Li | LLZO interface: Understanding how the physical properties of Li 538 5.0 62 affect the critical current density. Matter, 2021, 4, 1947-1961. Comparative performance of ex situ artificial solid electrolyte interphases for Li metal batteries with 1.9 liquid electrolytes. IScience, 2021, 24, 102578. Hybrid polyion complex micelles enabling high-performance lithium-metal batteries with universal 540 10 9.5 carbonates. Energy Storage Materials, 2021, 38, 509-519. The silicon–carbon nanofibers-carbonized yeast powder composites with excellent electrochemical 541 properties as lithium-ion anode materials. International Journal of Modern Physics B, 2021, 35, 2150128. Ultrahighâ€Rate and Longâ€Life Zinc–Metal Anodes Enabled by Selfâ€Accelerated Cation Migration. 542 10.2 131 Advanced Energy Materials, 2021, 11, 2100982. Novel single-ion conducting electrolytes based on vinylidene fluoride copolymer for lithium metal 543 batteries. Journal of Power Sources, 2021, 498, 229920.

#	Article	IF	CITATIONS
544	The Effect of Mechanical State on the Equilibrium Potential of Alkali Metal/Ceramic Singleâ€ l on Conductor Systems. Advanced Energy Materials, 2021, 11, 2101355.	10.2	14
545	A 3D lithium metal anode reinforced by scalable in-situ copper oxide nanostick copper mesh. Journal of Alloys and Compounds, 2021, 865, 158908.	2.8	9
546	Design of safe, long-cycling and high-energy lithium metal anodes in all working conditions: Progress, challenges and perspectives. Energy Storage Materials, 2021, 38, 157-189.	9.5	52
547	Lithiophilic amide-functionalized carbon nanotube skeleton for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2021, 414, 128698.	6.6	31
548	Finding the right balance. Nature Energy, 2021, 6, 692-693.	19.8	1
549	Design Rules for Selecting Fluorinated Linear Organic Solvents for Li Metal Batteries. Journal of Physical Chemistry Letters, 2021, 12, 5821-5828.	2.1	14
550	Investigating Parasitic Reactions in Anode-Free Li Metal Cells with Isothermal Microcalorimetry. Journal of the Electrochemical Society, 2021, 168, 060527.	1.3	12
551	Novel Quasiâ€Liquid Kâ€Na Alloy as a Promising Dendriteâ€Free Anode for Rechargeable Potassium Metal Batteries. Advanced Science, 2021, 8, e2101866.	5.6	18
552	3D printing for rechargeable lithium metal batteries. Energy Storage Materials, 2021, 38, 141-156.	9.5	60
553	Effects of Applied Interfacial Pressure on Li-Metal Cycling Performance and Morphology in 4 M LiFSI in DME. ACS Applied Materials & Interfaces, 2021, 13, 31668-31679.	4.0	22
554	Stabilizing Zinc Electrodeposition in a Battery Anode by Controlling Crystal Growth. Small, 2021, 17, e2101798.	5.2	58
555	In situ monitoring nanoscale solid-state phase transformation of Ag nanowire during electrochemical reaction. Scripta Materialia, 2021, 199, 113835.	2.6	1
556	Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 6399-6407.	2.5	16
557	Design Principle, Optimization Strategies, and Future Perspectives of Anode-Free Configurations for High-Energy Rechargeable Metal Batteries. Electrochemical Energy Reviews, 2021, 4, 601-631.	13.1	69
558	Single crystal Cu (110) inducing lateral growth of electrodeposition Li for dendrite-free Li metal-based batteries. Journal of Power Sources, 2021, 501, 229969.	4.0	11
559	Recent Progresses on Applications of Conducting Polymers for Modifying Electrode of Rechargeable Batteries. Advanced Energy and Sustainability Research, 2021, 2, 2100088.	2.8	19
560	Pre-Solid Electrolyte Interphase-Covered Li Metal Anode with Improved Electro-Chemo-Mechanical Reliability in High-Energy-Density Batteries. ACS Applied Materials & Interfaces, 2021, 13, 34064-34073.	4.0	8
561	In-Situ Characterization for Solid Electrolyte Deformations in a Lithium Metal Solid-State Battery. Journal of the Electrochemical Society, 2021, 168, 070551.	1.3	5

#	Article	IF	CITATIONS
562	Lithium deposition in single-ion conducting polymer electrolytes. Cell Reports Physical Science, 2021, 2, 100496.	2.8	10
563	Preparing Liâ€garnet electrodes with engineered structures by phase inversion and high shear compaction processes. Journal of the American Ceramic Society, 2022, 105, 90-98.	1.9	13
564	Blocking lithium dendrite growth in solid-state batteries with an ultrathin amorphous Li-La-Zr-O solid electrolyte. Communications Materials, 2021, 2, .	2.9	45
565	High lithiophilic nitrogen-doped carbon nanotube arrays prepared by in-situ catalyze for lithium metal anode. Chinese Chemical Letters, 2021, 32, 2254-2258.	4.8	32
566	N, O odoped Carbon Nanosheet Array Enabling Stable Lithium Metal Anode. Advanced Functional Materials, 2021, 31, 2102354.	7.8	45
567	Confronting the Challenges in Lithium Anodes for Lithium Metal Batteries. Advanced Science, 2021, 8, e2101111.	5.6	157
568	In Situâ€Formed Dualâ€Conductive Protecting Layer for Dendriteâ€Free Li Metal Anodes in Allâ€Solidâ€State Batteries. Energy Technology, 2021, 9, 2100087.	1.8	12
569	Intermetallic interphases in lithium metal and lithium ion batteries. InformaÄnÃ-Materiály, 2021, 3, 1083-1109.	8.5	35
570	Role of Lithiophilic Metal Sites in Lithium Metal Anodes. Energy & Fuels, 2021, 35, 12746-12752.	2.5	16
571	Investigation of Delamination-Induced Performance Decay at the Cathode/LLZO Interface. Chemistry of Materials, 2021, 33, 5527-5541.	3.2	24
572	Accelerated Growth of Electrically Isolated Lithium Metal during Battery Cycling. ACS Applied Materials & Interfaces, 2021, 13, 35750-35758.	4.0	18
573	Dendrite-Free and Stable Lithium Metal Battery Achieved by a Model of Stepwise Lithium Deposition and Stripping. Nano-Micro Letters, 2021, 13, 170.	14.4	26
574	Feasible Energy Density Pushes of Li-Metal vs. Li-Ion Cells. Applied Sciences (Switzerland), 2021, 11, 7592.	1.3	13
575	Tuning Solvation Behavior of Ester-Based Electrolytes toward Highly Stable Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 40582-40589.	4.0	9
576	Thermally Stable and Nonflammable Electrolytes for Lithium Metal Batteries: Progress and Perspectives. Small Science, 2021, 1, 2100058.	5.8	81
577	A Review on Li ⁺ /H ⁺ Exchange in Garnet Solid Electrolytes: From Instability against Humidity to Sustainable Processing in Water. ChemSusChem, 2021, 14, 4397-4407.	3.6	30
578	High-Performance Lithium Metal Batteries with a Wide Operating Temperature Range in Carbonate Electrolyte by Manipulating Interfacial Chemistry. ACS Energy Letters, 2021, 6, 3170-3179.	8.8	71
579	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 19232-19240.	7.2	66

#	Article	IF	CITATIONS
580	Covalent Organic Frameworks and Their Derivatives for Better Metal Anodes in Rechargeable Batteries. ACS Nano, 2021, 15, 12741-12767.	7.3	71
581	Glass-fiber-reinforced polymeric film as an efficient protecting layer for stable Li metal electrodes. Cell Reports Physical Science, 2021, 2, 100534.	2.8	15
582	Degradation-resistant TiO2@Sn anodes for high-capacity lithium-ion batteries. Journal of Materials Science, 2021, 56, 17156-17166.	1.7	0
583	Interfacial Defect of Lithium Metal in Solid‣tate Batteries. Angewandte Chemie - International Edition, 2021, 60, 21494-21501.	7.2	20
584	Status and Prospects of Laserâ€Induced Graphene for Battery Applications. Energy Technology, 2021, 9, 2100454.	1.8	27
585	Regulation of SEI Formation by Anion Receptors to Achieve Ultraâ€Stable Lithiumâ€Metal Batteries. Angewandte Chemie, 2021, 133, 19381-19389.	1.6	13
586	Interfacial Defect of Lithium Metal in Solid‣tate Batteries. Angewandte Chemie, 2021, 133, 21664-21671.	1.6	7
587	Creep and Anisotropy of Free-Standing Lithium Metal Foils in an Industrial Dry Room. Journal of Electrochemical Energy Conversion and Storage, 2021, 18, .	1.1	5
588	Stack Pressure and Critical Current Density in Li-metal Cells: The Role of Mechanical Deformation. Acta Materialia, 2021, 215, 117076.	3.8	13
589	Dendriteâ€Free Reverse Lithium Deposition Induced by Ion Rectification Layer toward Superior Lithium Metal Batteries. Advanced Functional Materials, 2021, 31, 2104081.	7.8	39
590	Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	71
591	Detection of Au ⁺ lons During Fluorine Gas-Assisted Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) for the Complete Elemental Characterization of Microbatteries. ACS Applied Materials & Interfaces, 2021, 13, 41262-41274.	4.0	5
592	Recent Advances in Interface Engineering and Architecture Design of Air-Stable and Water-Resistant Lithium Metal Anodes. Energy & Fuels, 2021, 35, 12902-12920.	2.5	17
593	Understanding the Correlation between Lithium Dendrite Growth and Local Material Properties by Machine Learning. Journal of the Electrochemical Society, 2021, 168, 090523.	1.3	3
594	Current status and future directions of all-solid-state batteries with lithium metal anodes, sulfide electrolytes, and layered transition metal oxide cathodes. Nano Energy, 2021, 87, 106081.	8.2	55
595	Sensitivity Analysis and Joint Estimation of Parameters and States for All-Solid-State Batteries. IEEE Transactions on Transportation Electrification, 2021, 7, 1314-1323.	5.3	49
596	Garnet-type solid electrolyte: Advances of ionic transport performance and its application in all-solid-state batteries. Journal of Advanced Ceramics, 2021, 10, 933-972.	8.9	64
597	High Energy Density Solid State Lithium Metal Batteries Enabled by Subâ€5 µm Solid Polymer Electrolytes. Advanced Materials, 2021, 33, e2105329.	11.1	123

#	Article	IF	CITATIONS
598	Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 22990-22995.	7.2	52
599	Enhancing Performance of Anode-Free Li-Metal Batteries by Addition of Ceramic Nanoparticles: Part I Journal of the Electrochemical Society, 2021, 168, 090541.	1.3	3
600	Engineering nanocluster arrays on lotus leaf as free-standing high areal capacity Li-ion battery anodes: A cost-effective and general bio-inspired approach. Journal of Alloys and Compounds, 2021, , 162136.	2.8	2
601	Lithium Fluoride in Electrolyte for Stable and Safe Lithiumâ€Metal Batteries. Advanced Materials, 2021, 33, e2102134.	11.1	91
602	Revisiting lithium metal anodes from a dynamic and realistic perspective. EnergyChem, 2021, 3, 100063.	10.1	11
603	From Lithiumâ€Metal toward Anodeâ€Free Solidâ€State Batteries: Current Developments, Issues, and Challenges. Advanced Functional Materials, 2021, 31, 2106608.	7.8	98
604	Long-life lithium–sulfur battery enabled by a multifunctional gallium oxide shield. Chemical Engineering Journal, 2021, 420, 129772.	6.6	9
605	Self-Healing Solid Polymer Electrolyte for Room-Temperature Solid-State Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46794-46802.	4.0	37
606	In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition. Science Bulletin, 2021, 66, 1754-1763.	4.3	16
607	Critical effects of electrolyte recipes for Li and Na metal batteries. CheM, 2021, 7, 2312-2346.	5.8	144
608	Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 23172.	1.6	10
609	Identifying Pitfalls in Lithium Metal Battery Characterization. Batteries and Supercaps, 2022, 5, .	2.4	5
610	Capacityâ€Limited Na–M foil Anode: toward Practical Applications of Na Metal Anode. Small, 2021, 17, e2102126.	5.2	16
611	Controlled lithium plating in three-dimensional hosts through nucleation overpotential regulation towardÂhigh-areal-capacity lithium metal anode. Materials Today Energy, 2021, 21, 100770.	2.5	25
612	Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. , 2021, 3, 957-975.		64
613	Fluorinated Boron-Based Anions for Higher Voltage Li Metal Battery Electrolytes. Nanomaterials, 2021, 11, 2391.	1.9	4
614	Electrode materials for aqueous multivalent metal-ion batteries: Current status and future prospect. Journal of Energy Chemistry, 2022, 67, 563-584.	7.1	36
615	Oxygen-defective V2O5 nanosheets boosting 3D diffusion and reversible storage of zinc ion for aqueous zinc-ion batteries. Applied Surface Science, 2021, 562, 150196.	3.1	33

#	Article	IF	CITATIONS
616	All-dry synthesis of self-supporting thin Li10GeP2S12 membrane and interface engineering for solid state lithium metal batteries. Chemical Engineering Journal, 2021, 421, 129965.	6.6	37
617	Characterization of hot-pressed von Alpen type NASICON ceramic electrolytes. Solid State Ionics, 2021, 369, 115712.	1.3	14
618	Tailoring electrolyte to enable high-rate and super-stable Ni-rich NCM cathode materials for Li-ion batteries. Nano Energy, 2021, 88, 106301.	8.2	86
619	Gradient SEI layer induced by liquid alloy electrolyte additive for high rate lithium metal battery. Nano Energy, 2021, 88, 106237.	8.2	48
620	Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. Energy Storage Materials, 2021, 41, 51-60.	9.5	35
621	Transforming rate capability through self-heating of energy-dense and next-generation batteries. Journal of Power Sources, 2021, 510, 230416.	4.0	10
622	Regulating lithium deposition via electropolymerization of acrylonitrile in rechargeable lithium metal batteries. Nano Energy, 2021, 88, 106298.	8.2	16
623	Rational design of fireproof fiber-network reinforced 3D composite solid electrolyte for dendrite-free solid-state batteries. Chemical Engineering Journal, 2021, 421, 127771.	6.6	18
624	Establishing a unified framework for ion solvation and transport in liquid and solid electrolytes. Trends in Chemistry, 2021, 3, 807-818.	4.4	27
625	Constructing ultrafine lithiophilic layer on MXene paper by sputtering for stable and flexible 3D lithium metal anode. Chemical Engineering Journal, 2021, 421, 129685.	6.6	42
626	Functional polymers for lithium metal batteries. Progress in Polymer Science, 2021, 122, 101453.	11.8	39
627	Reactive surface coating of metallic lithium and its role in rechargeable lithium metal batteries. Electrochimica Acta, 2021, 397, 139270.	2.6	7
628	Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte. Energy Storage Materials, 2021, 42, 628-635.	9.5	34
629	Combined density functional theory/kinetic Monte Carlo investigation of surface morphology during cycling of Li-Cu electrodes. Electrochimica Acta, 2021, 397, 139272.	2.6	3
630	N,S-codoped carbon dots as deposition regulating electrolyte additive for stable lithium metal anode. Energy Storage Materials, 2021, 42, 679-686.	9.5	43
631	Long cycle-life prototype lithium-metal all-solid-state pouch cells employing garnet-rich composite electrolyte. Electrochimica Acta, 2021, 397, 139249.	2.6	18
632	Lithiophilic Sn sites on 3D Cu current collector induced uniform lithium plating/stripping. Chemical Engineering Journal, 2021, 425, 130177.	6.6	21
633	Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84.	9.5	25

#	Article	IF	CITATIONS
634	Highly lithiophilic ZnO nanosheets decorated Ni foam as a stable host for high-performance lithium metal anodes. Journal of Alloys and Compounds, 2021, 889, 161597.	2.8	6
635	Multi-dimensional hybrid flexible films promote uniform lithium deposition and mitigate volume change as lithium metal anodes. Journal of Energy Chemistry, 2022, 65, 583-591.	7.1	6
636	Regulating Li deposition by constructing homogeneous LiF protective layer for high-performance Li metal anode. Chemical Engineering Journal, 2022, 427, 131625.	6.6	21
637	Composite separator based on PI film for advanced lithium metal batteries. Journal of Materials Science and Technology, 2022, 102, 264-271.	5.6	9
638	Resistance to fracture in the glassy solid electrolyte Lipon. Journal of Materials Research, 2021, 36, 787-796.	1.2	21
639	An Airâ€Stable and Liâ€Metalâ€Compatible Glassâ€Ceramic Electrolyte enabling Highâ€Performance Allâ€Solidâ4 Li Metal Batteries. Advanced Materials, 2021, 33, e2006577.	EState II.1	82
640	Recent Progress of Porous Materials in Lithiumâ€Metal Batteries. Small Structures, 2021, 2, 2000118.	6.9	61
641	A universal strategy towards 3D printable nanomaterial inks for superior cellular high-loading battery electrodes. Journal of Materials Chemistry A, 2021, 9, 16086-16092.	5.2	22
642	Pulsed Laser Deposition as a Tool for the Development of All Solid‣tate Microbatteries. Helvetica Chimica Acta, 2021, 104, e2000203.	1.0	14
643	Cu@Pt/NCNT preparation and electrochemical performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 4214-4227.	1.1	0
644	The Role of Ex Situ Solid Electrolyte Interphase in Lithium Metal Batteries. , 2021, , 479-511.		0
645	Characterizing the mechanical behavior of lithium in compression. Journal of Materials Research, 2021, 36, 729-739.	1.2	15
646	Review on Li Deposition in Working Batteries: From Nucleation to Early Growth. Advanced Materials, 2021, 33, e2004128.	11.1	205
647	Crystalline LiPON as a Bulk-Type Solid Electrolyte. ACS Energy Letters, 2021, 6, 445-450.	8.8	43
648	Large areal capacity and dendrite-free anodes with long lifetime enabled by distributed lithium plating with mossy manganese oxides. Journal of Materials Chemistry A, 2021, 9, 9291-9300.	5.2	6
649	Three-dimensional lithiophilic Cu@Sn nanocones for dendrite-free lithium metal anodes. Science China Materials, 2021, 64, 1087-1094.	3.5	13
650	Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes. Energy Storage Materials, 2019, 18, 389-396.	9.5	149
651	Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites. Energy Storage Materials, 2020, 33, 309-328.	9.5	63

	Сітат	ion Report	
#	Article	IF	CITATIONS
652	Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries. Matter, 2020, 2, 805-815.	. 5.0	130
653	Critical interface between inorganic solid-state electrolyte and sodium metal. Materials Today, 2020, 41, 200-218.	8.3	62
654	Quantum prediction of ultra-low thermal conductivity in lithium intercalation materials. Nano Energy, 2020, 75, 104916.	8.2	24
655	The role of mechanical pressure on dendritic surface toward stable lithium metal anode. Nano Energy, 2020, 77, 105098.	8.2	27
656	Structure and ionic conduction study on Li3PO4 and LiPON (Lithium phosphorous oxynitride) with the Density-Functional Tight-Binding (DFTB) method. Solid State Ionics, 2020, 351, 115329.	1.3	8
657	New Concepts in Electrolytes. Chemical Reviews, 2020, 120, 6783-6819.	23.0	554
658	Integration of Localized Electric-Field Redistribution and Interfacial Tin Nanocoating of Lithium Microparticles toward Long-Life Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2021, 13, 650-659.	4.0	24
659	Superionic Si-Substituted Lithium Argyrodite Sulfide Electrolyte Li _{6+<i>x</i>} Sb _{1–<i>x</i>} Si <i>_x</i> S ₅ I for All-Solid-State Batteries. ACS Sustainable Chemistry and Engineering, 2021, 9, 120-128.	3.2	48
660	All-ceramic Li batteries based on garnet structured Li ₇ La ₃ Zr ₂ O ₁₂ . Materials Technology, 2020, 35, 656	-674. ^{1.5}	22
661	2020 roadmap on solid-state batteries. JPhys Energy, 2020, 2, 032008.	2.3	74
662	Silicon Carbon Nanoparticles Coated with Reduced Graphene Oxide with High Specific Capacity and High-Rate Performance as Anode Material for Lithium-Ion Battery. Nano, 2020, 15, 2050149.	0.5	3
663	Modeling Costs and Benefits of Energy Storage Systems. Annual Review of Environment and Resources, 2020, 45, 445-469.	5.6	19
664	The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 100537.	1.3	51
665	Status and Targets for Polymer-Based Solid-State Batteries for Electric Vehicle Applications. Journal of the Electrochemical Society, 2020, 167, 130520.	1.3	9
667	Wet-Milling Synthesis of Superionic Lithium Argyrodite Electrolytes with Different Concentrations of Lithium Vacancy. ACS Applied Materials & amp; Interfaces, 2021, 13, 46644-46649.	4.0	6
668	Gradient solid electrolyte interphase induced by bisfluoroacetamide for stable lithium metal batteries. Journal of Energy Chemistry, 2021, , .	7.1	2
669	The influence of hafnium impurities on the electrochemical performance of tantalum substituted Li7La3Zr2O12 solid electrolytes. Ionics, 2022, 28, 53-62.	1.2	10
670	Insight into the solid-liquid electrolyte interphase between Li6.4La3Zr1.4Ta0.6O12 and LiPF6-based liquid electrolyte. Applied Surface Science, 2022, 575, 151638.	3.1	15

#	Article	IF	CITATIONS
671	Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. Journal of Solid State Electrochemistry, 2022, 26, 375-388.	1.2	5
672	The case for fluoride-ion batteries. Joule, 2021, 5, 2823-2844.	11.7	28
673	Influence of Temperature and Electrolyte Composition on the Performance of Lithium Metal Anodes. Batteries, 2021, 7, 67.	2.1	4
674	The role of NaSICON surface chemistry in stabilizing fast-charging Na metal solid-state batteries. JPhys Energy, 2021, 3, 044007.	2.3	18
675	Doctorâ€Blade Casting Fabrication of Ultrathin Li Metal Electrode for Highâ€Energyâ€Density Batteries. Advanced Energy Materials, 2021, 11, 2102259.	10.2	40
676	Lightweight Shield to Stabilize Li Metal Anodes at High Current Rates. ACS Applied Energy Materials, 2021, 4, 11878-11885.	2.5	5
677	The intergrated nanostructure of bimetallic CoNi-based zeolitic imidazolate framework and carbon nanotubes as high-performance electrochemical supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 1257-1267.	5.0	31
678	High Current Density and Long Cycle Life Enabled by Sulfide Solid Electrolyte and Dendriteâ€Free Liquid Lithium Anode. Advanced Functional Materials, 2022, 32, 2105776.	7.8	40
679	New High-energy Anode Materials. , 2019, , 1-25.		1
680	Lithium Metal Growth Kinetics on LLZO Garnet Type Solid Electrolytes – <i>Operando</i> Study of Lithium Deposition and Dendrite Growth. SSRN Electronic Journal, 0, , .	0.4	0
681	Enabling High-Voltage Lithium Metal Batteries Under Practical Conditions. SSRN Electronic Journal, 0,	0.4	0
682	Synthesis of Nanostructured Garnets. , 2019, , 25-68.		2
683	High-Energy All-Solid-State Lithium-Metal Batteries by Nanomaterial Designs. , 2019, , 205-262.		0
684	Steric Effect Tuned Ion Solvation Enabling Stable Cycling of High-Voltage Lithium Metal Battery. Journal of the American Chemical Society, 2021, 143, 18703-18713.	6.6	205
685	High-Safety and Dendrite-Free Lithium Metal Batteries Enabled by Building a Stable Interface in a Nonflammable Medium-Concentration Phosphate Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 50869-50877.	4.0	25
686	LiCoO ₂ Ultrathin Layer for Uniform Lithium Deposition toward a Highly Stable Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2021, 9, 14663-14669.	3.2	5
687	Cryogenic electron microscopy reveals that applied pressure promotes short circuits in Li batteries. IScience, 2021, 24, 103394.	1.9	18
688	Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 228805.	0.2	5

#	ARTICLE	IF	CITATIONS
689	An Optimal Day-ahead Bidding Strategy and Operation for Battery Energy Storage System by Reinforcement Learning. IFAC-PapersOnLine, 2020, 53, 13190-13195.	0.5	2
690	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
691	Physicochemically dendrite-suppressed three-dimensional fluoridation solid-state electrolyte for high-rate lithium metal battery. Cell Reports Physical Science, 2021, 2, 100644.	2.8	18
692	Sodium manganese hexacyanoferrate as ultra-high rate host for aqueous proton storage. Electrochimica Acta, 2022, 401, 139525.	2.6	5
693	The Effects of Electric Field Distribution on the Interface Stability in Solid Electrolytes. Journal of the Electrochemical Society, 2020, 167, 140501.	1.3	11
694	Past, present, and future of electrochemical energy storage: A brief perspective. Frontiers of Nanoscience, 2021, , 1-28.	0.3	2
695	Lithiophilic NiF2 coating inducing LiF-rich solid electrolyte interphase by a novel NF3 plasma treatment for highly stable Li metal anode. Electrochimica Acta, 2022, 402, 139561.	2.6	9
696	Eliminating anion depletion region and promoting Li+ solvation via anionphilic metal organic framework for dendrite-free lithium deposition. Nano Energy, 2022, 92, 106708.	8.2	14
697	The effect of aspect ratio on the mechanical behavior of Li metal in solid-state cells. Journal of Power Sources, 2022, 520, 230831.	4.0	20
698	Pushing the boundaries of lithium battery research with atomistic modelling on different scales. Progress in Energy, 2022, 4, 012002.	4.6	12
699	Powerful qua-functional electrolyte additive for lithium metal batteries. Green Energy and Environment, 2022, 7, 361-364.	4.7	5
700	Understanding the Role of ï€-Conjugated Polymers as Binders in Enabling Designs for High-Energy/High-Rate Lithium Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 110541.	1.3	5
701	High-Efficiency Zinc-Metal Anode Enabled by Liquefied Gas Electrolytes. ACS Energy Letters, 2021, 6, 4426-4430.	8.8	21
702	High-Dielectric Polymer Coating for Uniform Lithium Deposition in Anode-Free Lithium Batteries. ACS Energy Letters, 2021, 6, 4416-4425.	8.8	63
703	Cycling Performance of NMC811 Anode-Free Pouch Cells with 65 Different Electrolyte Formulations. Journal of the Electrochemical Society, 2021, 168, 120508.	1.3	19
704	Safe, Flexible, and High-Performing Gel-Polymer Electrolyte for Rechargeable Lithium Metal Batteries. Chemistry of Materials, 2021, 33, 8812-8821.	3.2	66
705	How Does the Creep Stress Regulate Void Formation at the Lithiumâ€Solid Electrolyte Interface during Stripping?. Advanced Energy Materials, 2022, 12, 2102283.	10.2	27
706	A Review of Performance Attenuation and Mitigation Strategies of Lithiumâ€Ion Batteries. Advanced Functional Materials, 2022, 32, 2107769.	7.8	43

#	Article	IF	CITATIONS
707	Scalable Synthesis of Nano‧ized Bi for Separator Modifying in 5Vâ€Class Lithium Metal Batteries and Potassium Ion Batteries Anodes. Small, 2022, 18, e2104264.	5.2	19
708	Boosting the Energy Density of Li CF <i>_x</i> Primary Batteries Using a 1,3-Dimethyl-2-imidazolidinone-Based Electrolyte. ACS Applied Materials & Interfaces, 2021, 13, 57470-57480.	4.0	21
709	Mechanistic Insight into Lithium Electrodeposition in Porous Host Architectures. Journal of Physical Chemistry C, 2021, 125, 25369-25375.	1.5	3
710	Construction of Moistureâ€5table Lithium Diffusionâ€Controlling Layer toward High Performance Dendriteâ€Free Lithium Anode. Advanced Functional Materials, 2022, 32, 2110468.	7.8	32
711	Control-Oriented Modeling of All-Solid-State Batteries Using Physics-Based Equivalent Circuits. IEEE Transactions on Transportation Electrification, 2022, 8, 2080-2092.	5.3	12
712	Nano silica aerogel-induced formation of an organic/alloy biphasic interfacial layer enables construction of stable high-energy lithium metal batteries. Green Energy and Environment, 2022, , .	4.7	5
713	Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy and Environmental Science, 2022, 15, 740-748.	15.6	51
714	A Li ₂ S-based all-solid-state battery with high energy and superior safety. Science Advances, 2022, 8, eabl8390.	4.7	54
715	Ab-initio investigation on the interface improvement by doping boron and carbon in LiMn2O4/LiPON all solid state battery. Journal of Solid State Chemistry, 2022, 306, 122797.	1.4	4
716	Gradient lithiation to load controllable, high utilization lithium in graphitic carbon host for high-energy batteries. Nano Energy, 2022, 93, 106808.	8.2	14
717	Spinel-related Li2Ni0.5Mn1.5O4 cathode for 5-V anode-free lithium metal batteries. Energy Storage Materials, 2022, 45, 821-827.	9.5	21
718	A polymeric separator membrane with chemoresistance and high Li-ion flux for high-energy-density lithium metal batteries. Energy Storage Materials, 2022, 45, 941-951.	9.5	39
719	Molten-Li infusion of ultra-thin interfacial modification layer towards the highly-reversible, energy-dense metallic batteries. Energy Storage Materials, 2022, 45, 796-804.	9.5	9
720	Solvation chemistry of rare earth nitrates in carbonate electrolyte for advanced lithium metal batteries. Chemical Engineering Journal, 2022, 433, 134468.	6.6	18
721	Ripple manipulator towards REG-integrated EV charging infrastructure system. , 2020, , .		0
722	PDE Observer for All-Solid-State Batteries via an Electrochemical Model. , 2021, , .		1
723	Antiâ€Corrosion for Reversible Zinc Anode via a Hydrophobic Interface in Aqueous Zinc Batteries. Advanced Energy Materials, 2022, 12, .	10.2	92
724	Dealloyed nanoporous materials for electrochemical energy conversion and storage. EnergyChem, 2022, 4, 100069.	10.1	43

#	ARTICLE	IF	CITATIONS
725	Identifying the positive role of lithium hydride in stabilizing Li metal anodes. Science Advances, 2022, 8, eabl8245.	4.7	29
726	A Direct View on Li-Ion Transport and Li-Metal Plating in Inorganic and Hybrid Solid-State Electrolytes. Accounts of Chemical Research, 2022, 55, 333-344.	7.6	25
727	High-efficiency, anode-free lithium–metal batteries with a close-packed homogeneous lithium morphology. Energy and Environmental Science, 2022, 15, 843-854.	15.6	53
728	"Soft Shorts―Hidden in Zinc Metal Anode Research. Joule, 2022, 6, 273-279.	11.7	192
729	MOFâ€Đerived Potassiophilic CuO Nanoparticles on Carbon Fiber Cloth as Host for Stabilizing Potassium Metal Anode. ChemElectroChem, 2022, 9, .	1.7	5
730	Regulating the Interfacial Electric Field for a Stable Lithium Metal Anode. ACS Sustainable Chemistry and Engineering, 2022, 10, 956-966.	3.2	4
731	Single-ion polymer/LLZO hybrid electrolytes with high lithium conductivity. Materials Advances, 2022, 3, 1139-1151.	2.6	8
732	Electroâ€Chemoâ€Mechanical Modeling of Artificial Solid Electrolyte Interphase to Enable Uniform Electrodeposition of Lithium Metal Anodes. Advanced Energy Materials, 2022, 12, .	10.2	105
733	Highly Fluorinated Al-Centered Lithium Salt Boosting the Interfacial Compatibility of Li-Metal Batteries. ACS Energy Letters, 2022, 7, 591-598.	8.8	34
734	MnO2 nanosheet modified N, P co-doping carbon nanofibers on carbon cloth as lithiophilic host to construct high-performance anodes for Li metal batteries. Journal of Energy Chemistry, 2022, 69, 270-281.	7.1	20
735	A MOFâ€Derivative Decorated Hierarchical Porous Host Enabling Ultrahigh Rates and Superior Longâ€Term Cycling of Dendriteâ€Free Zn Metal Anodes. Advanced Materials, 2022, 34, e2110047.	11.1	114
736	Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature, 2022, 601, 217-222.	13.7	290
737	Exploring the Synthesis of Alkali Metal Anti-perovskites. Chemistry of Materials, 2022, 34, 947-958.	3.2	13
738	Diluted Highâ€Concentration Electrolyte Based on Phosphate for Highâ€Performance Lithiumâ€Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	12
739	The challenges and opportunities of battery-powered flight. Nature, 2022, 601, 519-525.	13.7	143
740	Processing robust lithium metal anode for high-security batteries: A minireview. Energy Storage Materials, 2022, 47, 122-133.	9.5	28
741	Role of Areal Capacity in Determining Short Circuiting of Sulfide-Based Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 4051-4060.	4.0	35
742	Doping strategy and mechanism for oxide and sulfide solid electrolytes with high ionic conductivity. Journal of Materials Chemistry A, 2022, 10, 4517-4532.	5.2	75

#	Article	IF	CITATIONS
743	Engineering Sodium Metal Anode with Sodiophilic Bismuthide Penetration for Dendrite-Free and High-Rate Sodium-Ion Battery. Engineering, 2022, 11, 87-94.	3.2	18
744	Gel polymer electrolyte based on hydroxypropyl methyl cellulose matrix composited with polyhedral oligomeric silsesquioxane. Journal of Electroanalytical Chemistry, 2022, 907, 116058.	1.9	2
745	Highly stable lithium metal composite anode with a flexible 3D lithiophilic skeleton. Nano Energy, 2022, 95, 107013.	8.2	19
746	Integrating a 3D porous carbon fiber network containing cobalt with artificial solid electrolyte interphase to consummate advanced electrodes for lithium–sulfur batteries. Materials Today Energy, 2022, 24, 100930.	2.5	6
747	Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries. Energy Storage Materials, 2022, 46, 563-569.	9.5	28
748	Recognizing the nitrogen/oxygen co-doped lithiophilicity chemistry toward molten Li infusion for fabricating composite Li metal anode. Journal of Alloys and Compounds, 2022, 903, 163553.	2.8	4
749	Regulating Li uniform deposition by lithiophilic interlayer as Li-ion redistributor for highly stable lithium metal batteries. Chemical Engineering Journal, 2022, 436, 134945.	6.6	24
750	A review of concepts and contributions in lithium metal anode development. Materials Today, 2022, 53, 173-196.	8.3	74
751	Challenges, interface engineering, and processing strategies toward practical <scp>sulfideâ€based allâ€solidâ€state</scp> lithium batteries. InformaÄnÃ-Materiály, 2022, 4, .	8.5	92
752	A bifunctional fluorinated ether co-solvent for dendrite-free and long-term lithium metal batteries. Nano Energy, 2022, 95, 107014.	8.2	39
753	An advanced Ni–Graphite molten salt battery with 95°C operating temperature for energy storage application. Chemical Engineering Journal, 2022, 435, 135110.	6.6	5
754	Prussian Blue Analogues for Sodiumâ€lon Batteries: Past, Present, and Future. Advanced Materials, 2022, 34, e2108384.	11.1	252
755	Novel electrolyte additive of graphene oxide for prolonging the lifespan of zinc-ion batteries. Nanotechnology, 2022, 33, 125401.	1.3	10
756	Lithium Nitrate as a Surplus Lithium Source for Anode-Free Cell with Ni-Rich (NMC811) Cathode. SSRN Electronic Journal, 0, , .	0.4	0
757	Perovskite-Type La0.6sr0.4co0.2fe0.8o3-Δ as an Artificial Interphase Layer for Dendrite-Free Li Metal Anodes. SSRN Electronic Journal, 0, , .	0.4	0
758	Agglomeration-Free Composite Solid Electrolyte and Enhanced Cathode-Electrolyte Interphase Kinetics for All-Solid-State Lithium Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
759	Graphene-nanoscroll-based Janus bifunctional separators suppress lithium dendrites and polysulfides shuttling synchronously in high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 9515-9523.	5.2	15
760	Importance of Halide Ions in the Stabilization of Hybrid Sn-Based Coatings for Lithium Electrodes. ACS Applied Materials & Interfaces, 2022, 14, 10319-10326.	4.0	9

#	Article	IF	CITATIONS
761	Scalable, Ultrathin, and Highâ€īemperatureâ€Resistant Solid Polymer Electrolytes for Energyâ€Dense Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	132
762	Synergistic Effect of TMSPi and FEC in Regulating the Electrode/Electrolyte Interfaces in Nickel-Rich Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 11517-11527.	4.0	24
763	2D Materials for Allâ€Solidâ€State Lithium Batteries. Advanced Materials, 2022, 34, e2108079.	11.1	45
764	Solidâ€State Electrolytes for Rechargeable Magnesiumâ€lon Batteries: From Structure to Mechanism. Small, 2022, 18, e2106981.	5.2	25
765	Comparing the Purity of Rolled versus Evaporated Lithium Metal Films Using X-ray Microtomography. ACS Energy Letters, 2022, 7, 1120-1124.	8.8	11
766	2D PdTe ₂ Thin-Film-Coated Current Collectors for Long-Cycling Anode-Free Rechargeable Batteries. ACS Applied Materials & Interfaces, 2022, 14, 15080-15089.	4.0	14
767	Advances in carbon materials for stable lithium metal batteries. New Carbon Materials, 2022, 37, 1-24.	2.9	31
768	Quantification of Dead Lithium on Graphite Anode under Fast Charging Conditions. Journal of the Electrochemical Society, 2022, 169, 040520.	1.3	5
769	Reducing Impedance at a Li-Metal Anode/Garnet-Type Electrolyte Interface Implementing Chemically Resolvable In Layers. ACS Applied Materials & Interfaces, 2022, 14, 14739-14752.	4.0	24
770	Critical Current Densities for High-Performance All-Solid-State Li-Metal Batteries: Fundamentals, Mechanisms, Interfaces, Materials, and Applications. ACS Energy Letters, 2022, 7, 1492-1527.	8.8	70
771	Elastic Binder for High-Performance Sulfide-Based All-Solid-State Batteries. ACS Energy Letters, 2022, 7, 1374-1382.	8.8	27
772	A Highly Durable Rubberâ€Derived Lithium onducting Elastomer for Lithium Metal Batteries. Advanced Science, 2022, 9, e2200553.	5.6	22
773	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.	23.0	132
774	Two Birds with One Stone: Using Indium Oxide Surficial Modification to Tune Inner Helmholtz Plane and Regulate Nucleation for Dendriteâ€free Lithium Anode. Small Methods, 2022, 6, e2200113.	4.6	10
775	Review—Microstructural Modification in Lithium Garnet Solid-State Electrolytes: Emerging Trends. Journal of the Electrochemical Society, 2022, 169, 030548.	1.3	5
776	An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Research, 2022, 15, 6138-6147.	5.8	5
777	Constructing 3D Porous Current Collectors for Stable and Dendriteâ€Free Lithium Metal Anodes. Advanced Sustainable Systems, 2022, 6, .	2.7	19
778	Polymer-Stabilized Liquid Metal Nanoparticles as a Scalable Current Collector Engineering Approach Enabling Lithium Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3615-3625.	2.5	6

ARTICLE IF CITATIONS High frequency impedance measurements of sodium solid electrolytes. Journal of the European 779 2.8 3 Ceramic Society, 2022, 42, 3939-3947. Ionogelâ€Based Membranes for Safe Lithium/Sodium Batteries. Advanced Materials, 2022, 34, e2200945. 11.1 781 Are solid-state batteries safer than lithium-ion batteries?. Joule, 2022, 6, 742-755. 11.7 141 Anion–Diluent Pairing for Stable High-Energy Li Metal Batteries. ACS Energy Letters, 2022, 7, 1338-1347. 108 Sol–gel research in China: a brief history and recent research trends in synthesis of sol–gel derived 783 1.1 12 materials and their applications. Journal of Sol-Gel Science and Technology, 2023, 106, 406-421. Transferring Liquid Metal to form a Hybrid Solid Electrolyte via a Wettabilityâ€Tuning Technology for Lithiumâ€Metal Anodes. Advanced Materials, 2022, 34, e2200181. 784 11.1 High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored 786 5.8 67 lithium-metal compatibility. Nature Communications, 2022, 13, 1883. Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by 7.2 64 Chlorine Functionality. Angewandte Ćhemie - International Edition, 2022, 61, . A Better Choice to Achieve High Volumetric Energy Density: Anodeâ€Free Lithiumâ€Metal Batteries. 788 11.1 46 Advanced Materials, 2022, 34, e2110323. Intrinsic Nonflammable Ether Electrolytes for Ultrahighâ€Voltage Lithium Metal Batteries Enabled by 789 1.6 Chlorine Functionality. Angewandte Chemie, 0, , . Diffusion Limited Current Density: A Watershed in Electrodeposition of Lithium Metal Anode. 790 10.2 42 Advanced Energy Materials, 2022, 12, . Lithiation MAX derivative electrodes with low overpotential and long-term cyclability in a 792 9.5 wide-temperature range. Energy Storage Materials, 2022, 47, 611-619. Local superconcentration via solvating ionic liquid electrolytes for safe 4.3V lithium metal batteries. 793 2.6 4 Electrochimica Acta, 2022, 415, 140181. UV-Cured Semi-Interpenetrating polymer networks of solid electrolytes for rechargeable lithium metal batteries. Chemical Engineering Journal, 2022, 437, 135329. 794 6.6 14 Tetrafunctional template-assisted strategy to preciously construct co-doped Sb@C nanofiber with longitudinal tunnels for ultralong-life and high-rate sodium storage. Energy Storage Materials, 2022, 795 9.5 27 48, 90-100. Commercial carbon cloth: An emerging substrate for practical lithium metal batteries. Energy Storage 796 50 Materials, 2022, 48, 172-190. Predicting low-impedance interfaces for solid-state batteries. Current Opinion in Solid State and 797 5.6 9 Materials Science, 2022, 26, 100990. Lithium nitrate as a surplus lithium source for anode-free cell with Ni-rich (NMC811) cathode. Journal 798 of Power Sources, 2022, 532, 231303.

# 799	ARTICLE Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 49, 19-57.	IF 9.5	Citations
800	Surface modification and structure constructing for improving the lithium ion transport properties of PVDF based solid electrolytes. Chemical Engineering Journal, 2022, 442, 136245.	6.6	21
801	Effect of Yield Stress on Stability of Block Copolymer Electrolytes against Lithium Metal Electrodes. ACS Applied Energy Materials, 2022, 5, 852-861.	2.5	8
802	Dynamic spatial progression of isolated lithium during battery operations. Nature, 2021, 600, 659-663.	13.7	111
803	Double-Layer Solid Composite Electrolytes Enabling Improved Room-Temperature Cycling Performance for High-Voltage Lithium Metal Batteries. ACS Omega, 2022, 7, 994-1002.	1.6	9
804	Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 1241-1248.	4.0	20
805	Remedies to Avoid Failure Mechanisms of Lithium-Metal Anode in Li-Ion Batteries. Inorganics, 2022, 10, 5.	1.2	4
806	Reactivating Dead Li by Shuttle Effect for High-Performance Anode-Free Li Metal Batteries. Journal of the Electrochemical Society, 2021, 168, 120535.	1.3	13
807	Interplay between Mechanical and Electrochemical Properties of Block Copolymer Electrolytes and its Effect on Stability against Lithium Metal Electrodes. Journal of the Electrochemical Society, 2021, 168, 120546.	1.3	1
808	Convective mitigation of dendrite growth. Physical Review Materials, 2021, 5, .	0.9	3
809	STEM-EELS Spectrum Imaging of an Aerosol-Deposited NASICON-Type LATP Solid Electrolyte and LCO Cathode Interface. ACS Applied Energy Materials, 2022, 5, 98-107.	2.5	10
810	Thickness-controllable Li–Zn composite anode for high-energy and low-N/P ratio lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 11246-11253.	5.2	5
811	Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Materials, 2022, 49, 299-338.	9.5	30
812	Allâ€inâ€One Structured Lithiumâ€Metal Battery. Advanced Science, 2022, , 2200547.	5.6	5
813	Quasi Solidâ€state Electrolytes of Li ₂ Sn ₂ (bdc) ₃ (H ₂ O) _x Metalâ€organic Frameworks for Lithium Metal Battery. Electroanalysis, 2022, 34, 1667-1672.	1.5	2
814	Perovskite-type La0.6Sr0.4Co0.2Fe0.8O3â^`î´ as an artificial interphase layer for dendrite-free Li metal anodes. Chemical Engineering Journal, 2022, 444, 136340.	6.6	1
815	Assessing the Long-Term Reactivity to Achieve Compatible Electrolyte–Electrode Interfaces for Solid-State Rechargeable Lithium Batteries Using First-Principles Calculations. Journal of Physical Chemistry C, 2022, 126, 8227-8237.	1.5	3
816	Crack Healing Mechanism by Application of Stack Pressure to the Carbon-Based Composite Anode of an All-Solid-State Battery. ACS Applied Energy Materials, 2022, 5, 5227-5235.	2.5	8

#	Article	IF	CITATIONS
817	Multidimensional <scp>Co₃O₄</scp> NiO heterojunctions with richâ€boundaries incorporated into reduced graphene oxide network for expanding the range of lithiophilic host. InformaÄnÃ-Materiály, 2022, 4, .	8.5	19
818	Solid state lithium metal batteries – Issues and challenges at the lithium-solid electrolyte interface. Current Opinion in Solid State and Materials Science, 2022, 26, 100999.	5.6	29
819	Processing and manufacturing of next generation lithium-based all solid-state batteries. Current Opinion in Solid State and Materials Science, 2022, 26, 101003.	5.6	43
821	Sustainability of lithium–sulfur batteries. , 2022, , 603-626.		0
822	Status and perspectives of hierarchical porous carbon materials in terms of highâ€performance lithium–sulfur batteries. , 2022, 4, 346-398.		65
823	Enhancing performance of anode-free Li-metal batteries by addition of ceramic nanoparticles Part II. Journal of Solid State Electrochemistry, 2022, 26, 2027-2038.	1.2	1
824	Designing Thermomechanical Stable Gelâ€Polymer Electrolytes Mediated by Blockâ€Copolymer Nanofibers for Quasiâ€Solidâ€State Lithium Batteries. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	3
825	Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polymer Reviews, 2023, 63, 127-199.	5.3	23
826	Recent Advances in Stabilization of Sodium Metal Anode in Contact with Organic Liquid and Solid‣tate Electrolytes. Energy Technology, 2022, 10, .	1.8	11
827	Highly stable and scalable lithium metal anodes enabled by a lithiophilic SnO2@graphite fiber framework design. Batteries and Supercaps, 0, , .	2.4	0
828	Hydrothermal synthesis of Mg-doped LiMn2O4 spinel cathode materials with high cycling performance for lithium-ion batteries. International Journal of Electrochemical Science, 2022, 17, 220632.	0.5	1
829	A gel polymer electrolyte film based on chitosan derivative and ionic liquid for the LiFePO4 cathode solid Li metal battery. Materials Today Communications, 2022, 31, 103597.	0.9	3
830	Experimental and first-principles study on amorphous aluminum nitride induced island-like nucleation and planar growth of lithium metal anode. Electrochimica Acta, 2022, 421, 140520.	2.6	1
831	Stable Li/Cu2O composite anodes enabled by a 3D conductive skeleton with lithiophilic nanowire arrays. Journal of Power Sources, 2022, 536, 231374.	4.0	6
832	Chemomechanics: Friend or foe of the "AND problem―of solid-state batteries?. Current Opinion in Solid State and Materials Science, 2022, 26, 101002.	5.6	5
833	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	9.5	24
834	Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nature Materials, 2022, 21, 1050-1056.	13.3	84
835	Flexible machine-learning interatomic potential for simulating structural disordering behavior of Li7La3Zr2O12 solid electrolytes. Journal of Chemical Physics, 2022, 156, .	1.2	8

#	Article	IF	CITATIONS
836	Fabrication of ultra-thin, flexible, dendrite-free, robust and nanostructured solid electrolyte membranes for solid-state Li-batteries. Journal of Materials Chemistry A, 2022, 10, 12196-12212.	5.2	12
837	Multiscale Polymeric Materials for Advanced Lithium Battery Applications. Advanced Materials, 2023, 35, .	11.1	18
838	Powder metallurgical 3D nickel current collectors with plasma-induced Ni3N nanocoatings enabling long-life and dendrite-free lithium metal anode. Journal of Energy Chemistry, 2022, 72, 149-157.	7.1	16
839	Both Interface and Bulk Stable LiNi _{0.5} Mn _{1.5} O ₄ Cathodes for High-Energy Li-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7582-7589.	2.5	2
840	Li alloy anodes for high-rate and high-areal-capacity solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 12350-12358.	5.2	33
841	An Overview on Medium Voltage Grid Integration of Ultra-Fast Charging Stations: Current Status and Future Trends. IEEE Open Journal of the Industrial Electronics Society, 2022, 3, 420-447.	4.8	48
842	Controlled Growth of the Interface of CdWO <i>_x</i> /GDY for Hydrogen Energy Conversion. Advanced Functional Materials, 2022, 32, .	7.8	21
843	Gradient Design for Highâ€Energy and Highâ€Power Batteries. Advanced Materials, 2022, 34, .	11.1	53
844	Operando electrochemical pressiometry probing interfacial evolution of electrodeposited thin lithium metal anodes for all-solid-state batteries. Energy Storage Materials, 2022, 50, 543-553.	9.5	16
845	Function-directed design of battery separators based on microporous polyolefin membranes. Journal of Materials Chemistry A, 2022, 10, 14137-14170.	5.2	38
846	Increasing the Pressureâ€Free Stripping Capacity of the Lithium Metal Anode in Solidâ€Stateâ€Batteries by Carbon Nanotubes. Advanced Energy Materials, 2022, 12, .	10.2	21
847	Modeling Thermal Behavior and Safety of Large Format All-Solid-State Lithium Metal Batteries under Thermal Ramp and Short Circuit Conditions. Journal of the Electrochemical Society, 2022, 169, 060546.	1.3	9
848	Enabling Sustainable Lithium Metal Electrodes via Cholesteric Liquid Crystalline Cellulose Nanocrystal Nanomembranes. Advanced Energy Materials, 2022, 12, .	10.2	2
849	A Superior Carbonate Electrolyte for Stable Cycling Li Metal Batteries Using High Ni Cathode. ACS Energy Letters, 2022, 7, 2282-2288.	8.8	32
850	Computational Elucidation of Mechanical Degradation in NMC Cathodes: Impact on Cell Performance. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	1
851	Sodiophilic skeleton based on the packing of hard carbon microspheres for stable sodium metal anode without dead sodium. Journal of Energy Chemistry, 2022, 73, 400-406.	7.1	11
852	Ultraâ€thin Asymmetric Composite Electrolyte Addresses the Outâ€ofâ€sync Requirements of Lithium Batteries Interfaces. Batteries and Supercaps, 0, , .	2.4	1
853	In Situ Construction of a LiF-Enriched Interfacial Modification Layer for Stable All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2022, 14, 29878-29885.	4.0	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
854	Identifying soft breakdown in all-solid-state lithium battery. Joule, 2022, 6, 1770-1781.		11.7	71
855	Electrode-customized separator membranes based on self-assembled chiral nematic liq cellulose nanocrystals as a natural material strategy for sustainable Li-metal batteries. Storage Materials, 2022, 50, 783-791.		9.5	6
856	Tailoring the surface energy and area surface resistance of solid-electrolyte polymer mo dendrite free, high-performance, and safe solid-state Li-batteries. Journal of Power Sour 231690.	embrane for ces, 2022, 541,	4.0	1
857	Agglomeration-free composite solid electrolyte and enhanced cathode-electrolyte inte for all-solid-state lithium metal batteries. Energy Storage Materials, 2022, 51, 19-28.	phase kinetics	9.5	39
858	In Situ Construction of Hybrid Artificial Sei with Fluorinated Siloxane to Enable Dendrit Metal Anodes. SSRN Electronic Journal, 0, , .	e-Free Li	0.4	0
859	Materials, electrodes and electrolytes advances for next-generation lithium-based anoc batteries. Oxford Open Materials Science, 2022, 2, .	le-free	0.5	5
860	Residual Stress-Tailored Lithium Deposition and Dissolution Behaviors for Safe Lithium SSRN Electronic Journal, 0, , .	Metal Anode.	0.4	0
861	Future prospects for lithium-sulfur batteries: The criticality of solid electrolytes. , 2022,	, 327-351.		0
862	Solid-State Nanocomposite lonogel Electrolyte with In-Situ Formed Ionic Channels for Ion-Flux and Suppressing Dendrite Formation in Lithium Metal Batteries. SSRN Electror	Uniform nic Journal, 0, , .	0.4	0
863	Constructing Selfâ€Adapting Electrostatic Interface on Lithium Metal Anode for Stable 400ÂWhÂkg ^{â^1} Pouch Cells. Advanced Energy Materials, 2022, 12, .		10.2	37
864	Operando Investigations of the Interfacial Electrochemical Kinetics of Metallic Lithium Temperature-Dependent Electrochemical Impedance Spectroscopy. Journal of Physical 2022, 126, 10968-10976.		1.5	17
865	Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proceedin National Academy of Sciences of the United States of America, 2022, 119, .	gs of the	3.3	41
866	<scp>Singleâ€Atom</scp> Lithiophilic Sites Confined within Ordered Porous Carbon fo <scp>Ultrastable</scp> Lithium Metal Anodes. Energy and Environmental Materials, 20		7.3	5
867	Rationally Designed Fluorinated Amide Additive Enables the Stable Operation of Lithiu Batteries by Regulating the Interfacial Chemistry. Nano Letters, 2022, 22, 5936-5943.	n Metal	4.5	36
868	Recent progress of sulfur cathodes and other components for flexible lithium–sulfur Materials Today Sustainability, 2022, 19, 100181.	batteries.	1.9	8
869	Regulating the Polarization of Lithium Metal Anode via Active and Inactive 3D Conduct Structure. Advanced Energy and Sustainability Research, 2022, 3, .	tive Mesh	2.8	6
870	High voltage and robust lithium metal battery enabled by highly-fluorinated interphase Storage Materials, 2022, 51, 317-326.	s. Energy	9.5	22
871	Dynamic Ionic Transport Actuated by Nanospinbarâ€Dispersed Colloidal Electrolytes To Dendriteâ€Free Electrodeposition. Advanced Functional Materials, 2022, 32, .	oward	7.8	6

#	Article	IF	Citations
872	â€~Two Birds with One Stone' design for dendrite-free zinc-metal anodes: Three-dimensional highly conductive skeletons loaded with abundant zincophilic sites. Materials Today Energy, 2022, 29, 101097.	2.5	11
873	On the Current and Future Outlook of Battery Chemistries for Electric Vehicles—Mini Review. Batteries, 2022, 8, 70.	2.1	64
874	Nanotube <scp> SnO ₂ </scp> cathodes constructed by electrospinning for highâ€performance hybrid Mg/Li ion batteries—Feasible modification strategy for superior cycle performance. International Journal of Energy Research, 2022, 46, 16799-16809.	2.2	4
875	Long-term stable Li metal anode enabled by strengthened and protected lithiophilic LiZn alloys. Journal of Power Sources, 2022, 543, 231839.	4.0	6
876	Highly conductive thin composite solid electrolyte with vertical Li7La3Zr2O12 sheet arrays for high-energy-density all-solid-state lithium battery. Chemical Engineering Journal, 2022, 450, 137994.	6.6	8
877	Design of inorganic/organic bi-layered Li protection layer enabled dendrite-free practical Li metal battery. Chemical Engineering Journal, 2022, 450, 137993.	6.6	7
878	Design of a lithiophilic and electron-blocking interlayer for dendrite-free lithium-metal solid-state batteries. Science Advances, 2022, 8, .	4.7	62
879	Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich. Frontiers in Energy, 2022, 16, 706-733.	1.2	6
880	A Successive "Conversion-Deposition" Mechanism Achieved by Micro-Crystalline Cu2o Modified Current Collector for Composite Lithium Anode. SSRN Electronic Journal, 0, , .	0.4	0
881	Bidirectional Lithiophilic Gradients Modification of Ultralight 3D Carbon Nanofiber Host for Stable Lithium Metal Anode. Small, 2022, 18, .	5.2	19
882	Composite Polymer Electrolytes for Lithium Batteries. ChemistrySelect, 2022, 7, .	0.7	2
883	Copolymers of vinylidene fluoride with functional comonomers and applications therefrom: Recent developments, challenges and future trends. Progress in Polymer Science, 2022, 133, 101591.	11.8	28
884	Lithium-ion conductive glass-ceramic electrolytes enable safe and practical Li batteries. Materials Today Energy, 2022, 29, 101118.	2.5	8
885	A Deep Neural Network Interface Potential for Liâ€Cu Systems. Advanced Materials Interfaces, 0, , 2201346.	1.9	4
886	A High Airâ€Stability and Liâ€Metalâ€Compatible Li _{3+2x} P _{1â^'x} Bi _x S _{4â^'1.5x} O _{1.5x} Sulfide Electrolyte for Allâ€Solidâ€State Li–Metal Batteries. Advanced Functional Materials, 2022, 32, .	7.8	17
887	Understanding Synthesis–Structure–Performance Correlations of Nanoarchitectured Activated Carbons for Electrochemical Applications and Carbon Capture. Advanced Functional Materials, 2022, 32, .	7.8	32
888	Composites Based on Lithium Titanate with Carbon Nanomaterials as Anodes for Lithium-Ion Batteries. Russian Journal of Electrochemistry, 2022, 58, 658-666.	0.3	1
889	Functional carbon materials for high-performance Zn metal anodes. Journal of Energy Chemistry, 2022, 75, 135-153.	7.1	70

		CITATION REPORT		
#	Article		IF	CITATIONS
890	Priority and Prospect of Sulfideâ€Based Solidâ€Electrolyte Membrane. Advanced Materia	ıls, 2023, 35, .	11.1	15
891	Nanocomposite of Conducting Polymer and Li Metal for Rechargeable High Energy Dens ACS Applied Materials & amp; Interfaces, 2022, 14, 37709-37715.	ity Batteries.	4.0	2
892	Macroscopic Architecture Design of Lithium Metal Electrodes: Impacts of Millimeter-Size Economization, Cyclability, and Utilization. Journal of Electrochemical Energy Conversior Storage, 2023, 20, .		1.1	3
893	Theoretical Progress of 2D Sixâ€Memberedâ€Ring Inorganic Materials as Anodes for Nor Batteries. Small, 2022, 18, .	nâ€Lithiumâ€lon	5.2	6
894	Understanding the electro-chemo-mechanics of Li plating in anode-free solid-state batter operando 3D microscopy. Matter, 2022, 5, 3912-3934.	ies with	5.0	34
895	Low Na-β′′-alumina electrolyte/cathode interfacial resistance enabled by a hydrobc opening up new cell architecture designs for all-solid-state sodium batteries. Materials Fu 1, 031001.	rate electrolyte ıtures, 2022,	3.1	8
896	Dual Vertically Aligned Electrodeâ€ I nspired Highâ€Capacity Lithium Batteries. Advanced	Science, 2022, 9, .	5.6	13
897	Residual stress-tailored lithium deposition and dissolution behaviors for safe lithium met Journal of Alloys and Compounds, 2022, 927, 166776.	al anode.	2.8	1
898	Recent Developments and Research Avenues for Polymers in Electric Vehicles. Chemical 22, .	Record, 2022,	2.9	10
899	Non-fluorinated non-solvating cosolvent enabling superior performance of lithium metal electrode battery. Nature Communications, 2022, 13, .	negative	5.8	35
900	Novel Urea-Based Molecule Functioning as a Solid Electrolyte Interphase Enabler and LiPF ₆ Decomposition Inhibitor for Fast-Charging Lithium Metal Batteries. A Materials & Interfaces, 2022, 14, 38921-38930.	CS Applied	4.0	5
901	Highly stable lithium batteries enabled by composite solid electrolyte with synergistically in-built ion-conductive framework. Journal of Power Sources, 2022, 545, 231928.	enhanced	4.0	3
902	3D printing of natural fiber and composites: A state-of-the-art review. Materials and Desi 111065.	gn, 2022, 222,	3.3	37
903	Constructing low N/P ratio sodium-based batteries by reversible Na metal electrodeposit sodiophilic zinc-metal-decorated hard carbons. Journal of Power Sources, 2022, 544, 231		4.0	3
904	Charge-dependent deposition/dissolution of Cu on different faces in a non-corrosive elec insight from multiscale calculations. Surface Science, 2022, 725, 122160.	trolyte: An	0.8	1
905	Revealing the lithium dendrite deposition/dissolution progression based on Monte Carlo Journal of Energy Storage, 2022, 55, 105473.	method.	3.9	4
906	Regulating electrode-electrolyte interphases and eliminating hydrogen fluoride to boost electrochemical performances of Li/NCM811 batteries. Chemical Engineering Journal, 20	23, 451, 138359.	6.6	13
907	Simulating key properties of lithium-ion batteries with a fault-tolerant quantum compute Review A, 2022, 106, .	r. Physical	1.0	12

#	Article	IF	CITATIONS
908	Thermally Stable and Dendriteâ€Resistant Separators toward Highly Robust Lithium Metal Batteries. Advanced Energy Materials, 2022, 12, .	10.2	17
909	Solvation chemistry of electrolytes for stable anodes of lithium metal batteries. Nano Research, 2023, 16, 8072-8081.	5.8	14
910	Bifunctional role of carbon nanofibrils within Li powder composite anode: More Li nucleation but less Li isolation. Electrochimica Acta, 2022, 430, 141093.	2.6	5
911	Constructing LiF-rich artificial SEI at a two-dimensional copper net current collector in anode-free lithium metal batteries. Surfaces and Interfaces, 2022, 34, 102326.	1.5	11
912	In situ transmission electron microscopy for understanding materials and interfaces challenges in all-solid-state lithium batteries. ETransportation, 2022, 14, 100203.	6.8	38
913	Enabling an electron/ion conductive composite lithium anode for solid-state lithium-metal batteries with garnet electrolyte. Energy Storage Materials, 2022, 53, 204-211.	9.5	10
914	Recent progress on enhancing the Lithiophilicity of hosts for dendrite-free lithium metal batteries. Energy Storage Materials, 2022, 53, 156-182.	9.5	8
915	Molecular design of a metal–organic framework material rich in fluorine as an interface layer for high-performance solid-state Li metal batteries. Chemical Engineering Journal, 2023, 451, 138819.	6.6	41
916	Eco-friendly electrolytes <i>via</i> a robust bond design for high-energy Li metal batteries. Energy and Environmental Science, 2022, 15, 4349-4361.	15.6	53
917	An anodeless, mechanically flexible and energy/power dense sodium battery prototype. Energy and Environmental Science, 2022, 15, 4686-4699.	15.6	15
918	A fluorinated SEI layer induced by a fire-retardant gel polymer electrolyte boosting lateral dendrite growth. Journal of Materials Chemistry A, 2022, 10, 21905-21911.	5.2	9
919	The effects of aluminum concentration on the microstructural and electrochemical properties of lithium lanthanum zirconium oxide. Journal of Materials Chemistry A, 2022, 10, 21955-21972.	5.2	6
920	A PDE Model Simplification Framework for All-Solid-State Batteries. , 2022, , .		0
921	Saltâ€inâ€5alt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
922	Dualâ€Functional Stacked Polymer Fibers for Stable Lithium Metal Batteries in Carbonateâ€Based Electrolytes. Small Structures, 2022, 3, .	6.9	7
923	Stabilizing lithium plating in polymer electrolytes by concentration-polarization-induced phase transformation. Joule, 2022, 6, 2372-2389.	11.7	15
924	Saltâ€inâ€Salt Reinforced Carbonate Electrolyte for Li Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	0
925	Probing the Phase Transition during the Formation of Lithium Lanthanum Zirconium Oxide Solid Electrolyte. ACS Applied Materials & Interfaces, 2022, 14, 41978-41987.	4.0	4

# 926	ARTICLE Lithiumâ€Metal Batteries: From Fundamental Research to Industrialization. Advanced Materials, 2023, 35,	IF 11.1	Citations 36
927	Quantification of reversible and irreversible lithium in practical lithium-metal batteries. Nature Energy, 2022, 7, 1031-1041.	19.8	34
928	Research Progress of Anode-Free Lithium Metal Batteries. Crystals, 2022, 12, 1241.	1.0	6
929	Unlocking Stable Multiâ€Electron Cycling in NMC811 Thinâ€Films between 1.5 – 4.7 V. Advanced Energy Materials, 2022, 12, .	10.2	12
930	Bulk and interface-strengthened Li7P2.9Sb0.1S10.65O0.15I0.2 electrolyte via dual-source doping for all-solid-state lithium-sulfur batteries. Science China Materials, 2023, 66, 513-521.	3.5	3
931	Hybrid diluents enable localized high-concentration electrolyte with balanced performance for high-voltage lithium-metal batteries. Chinese Chemical Letters, 2023, 34, 107852.	4.8	7
932	Rechargeable Batteries for Grid Scale Energy Storage. Chemical Reviews, 2022, 122, 16610-16751.	23.0	340
933	Li6PS5Cl microstructure and influence on dendrite growth in solid-state batteries with lithium metal anode. Cell Reports Physical Science, 2022, 3, 101043.	2.8	36
934	Tuning the Solvent Alkyl Chain to Tailor Electrolyte Solvation for Stable Li-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 44470-44478.	4.0	21
935	Three-dimensional SEI framework induced by ion regulation in toroidal magnetic field for lithium metal battery. Cell Reports Physical Science, 2022, 3, 101080.	2.8	8
936	In-situ polymerized separator enables propylene carbonate electrolyte compatible with high-performance lithium batteries. Journal of Power Sources, 2022, 551, 232172.	4.0	6
937	A single-ion-conducting lithium-based montmorillonite interfacial layer for stable lithium–metal batteries. Journal of Materials Chemistry A, 2022, 10, 23712-23721.	5.2	5
938	Non-sticky Li-alloy leaves for long-lasting secondary batteries. Energy and Environmental Science, 2022, 15, 5251-5260.	15.6	6
939	Chemistry of Li-air batteries. , 2022, , .		0
940	The Impact of Residual Solvent on Catholyte Performance in Solid-State Batteries. Journal of Materials Chemistry A, 0, , .	5.2	1
941	Bayesian optimisation with transfer learning for NASICON-type solid electrolytes for all-solid-state Li-metal batteries. RSC Advances, 2022, 12, 30696-30703.	1.7	4
942	Superior compatibilities of a LISICON-type oxide solid electrolyte enable high energy density all-solid-state batteries. Journal of Materials Chemistry A, 2022, 10, 23185-23194.	5.2	5
943	In-situ construction of hybrid artificial SEI with fluorinated siloxane to enable dendrite-free Li metal anodes. Journal of Materiomics, 2022, , .	2.8	1

#	Article	IF	CITATIONS
944	Interfacial Regulation and Hydrogen Fluoride Capture Enabled by Allyltrimethylsilane as Multifunctional Electrolyte Additive for Li/LiNi _{0.8} Co _{0.1} Mn _{0.1} O ₂ Batteries. ACS Applied Energy Materials, 2022, 5, 13501-13510.	2.5	4
945	Perspective—Reversibility of Electro-Plating/Stripping Reactions: Metal Anodes for Rechargeable Batteries. Journal of the Electrochemical Society, 2022, 169, 100532.	1.3	2
946	Lithiophilic interface guided transient infiltration of molten lithium for stable 3D composite lithium anodes. Nano Research, 2023, 16, 8297-8303.	5.8	3
947	Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule, 2022, 6, 2547-2565.	11.7	28
948	Taming Solvent–Solute Interaction Accelerates Interfacial Kinetics in Lowâ€Temperature Lithiumâ€Metal Batteries. Advanced Materials, 2023, 35, .	11.1	51
949	Orderâ€structured solidâ€state electrolytes. SusMat, 2022, 2, 660-678.	7.8	7
950	Perspective—Lithium Metal Nucleation and Growth on Conductive Substrates: A Multi-Scale Understanding from Atomistic, Nano-, Meso-, to Micro-Scales. Journal of the Electrochemical Society, 2022, 169, 112505.	1.3	4
951	Tradeâ€offs between ionâ€conducting and mechanical properties: The case of polyacrylate electrolytes. , 2023, 5, .		10
952	An additive-enabled ether-based electrolyte to realize stable cycling of high-voltage anode-free lithium metal batteries. Energy Storage Materials, 2023, 54, 450-460.	9.5	19
953	Constructing inorganic-rich solid electrolyte interphase via abundant anionic solvation sheath in commercial carbonate electrolytes. Nano Energy, 2022, 104, 107881.	8.2	33
954	Solid-state nanocomposite ionogel electrolyte with in-situ formed ionic channels for uniform ion-flux and suppressing dendrite formation in lithium metal batteries. Energy Storage Materials, 2023, 54, 40-50.	9.5	17
955	Three-dimensional LLZO/PVDF-HFP fiber network-enhanced ultrathin composite solid electrolyte membrane for dendrite-free solid-state lithium metal batteries. Journal of Membrane Science, 2023, 665, 121095.	4.1	26
956	Flexible "polymer-in-ceramic―composite solid electrolyte Pl–PEO _{0.2} –PDA@LATP _{0.8} and its ionic conductivity. Energy Advances, 0, , .	1.4	0
957	Structural design strategies for superionic sodium halide solid electrolytes. Journal of Materials Chemistry A, 2022, 10, 24301-24309.	5.2	9
958	Highly reversible Li metal anode using a binary alloy interface. Chemical Communications, 2022, 58, 13455-13458.	2.2	2
959	Rapid discovery of inorganic-organic solid composite electrolytes by unsupervised learning. Chemical Engineering Journal, 2023, 454, 140151.	6.6	8
960	The Mechanism of Li Deposition on the Cu Substrates in the Anodeâ€Free Li Metal Batteries. Small, 2023, 19, .	5.2	10
961	Influence of the cold sintering process and post annealing on the microstructure and Li-ion conductivity of LiTa2PO8 solid electrolyte. Ceramics International, 2023, 49, 8718-8724.	2.3	5

#	Article	IF	CITATIONS
962	Overcoming Anode Instability in Solid‧tate Batteries through Control of the Lithium Metal Microstructure. Advanced Functional Materials, 2023, 33, .	7.8	11
963	Dual-Layered 3D Composite Skeleton Enables Spatially Ordered Lithium Plating/Stripping for Lithium Metal Batteries with Ultra-Low N/P Ratios. ACS Applied Energy Materials, 2022, 5, 14071-14080.	2.5	3
964	TiO2/Cu2O heterostructure enabling selective and uniform lithium deposition towards stable lithium metal anodes. Nano Research, 2023, 16, 4917-4925.	5.8	6
965	Controlling dendrite propagation in solid-state batteries with engineered stress. Joule, 2022, 6, 2794-2809.	11.7	43
966	A Review of the Application of Carbon Materials for Lithium Metal Batteries. Batteries, 2022, 8, 246.	2.1	9
967	Discovery of Salt Hydrates for Thermal Energy Storage. Journal of the American Chemical Society, 2022, 144, 21617-21627.	6.6	6
968	Recent Progresses in <scp>Liquidâ€Free</scp> Soft Ionic Conductive Elastomers ^{â€} . Chinese Journal of Chemistry, 2023, 41, 835-860.	2.6	11
969	State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles. Applied Energy, 2023, 329, 120307.	5.1	26
970	Nitrogen-doped biomass activated carbon induced uniform lithium deposition for highly stable lithium metal anodes. Vacuum, 2023, 209, 111770.	1.6	4
971	Sulfurâ€doped hard carbon hybrid anodes with dual lithiumâ€ion/metal storage bifunctionality for highâ€energyâ€density lithiumâ€ion batteries. , 2023, 5, .		5
972	Improved Cyclability of Lithium-Ion Batteries Using Pyroprotein-Assisted Silicon Anodes. ACS Applied Energy Materials, 2022, 5, 15538-15547.	2.5	3
973	Bonding Heterogeneity Leads to Hierarchical and Ultralow Lattice Thermal Conductivity in Sodium Metavanadate. Journal of Physical Chemistry Letters, 2022, 13, 11160-11168.	2.1	2
974	Review—Lithium Carbon Composite Material for Practical Lithium Metal Batteries. Chinese Journal of Chemistry, 2023, 41, 814-824.	2.6	4
975	Characterization of the Solid Electrolyte Interphase at the Li Metal–Ionic Liquid Interface. Advanced Energy Materials, 2023, 13, .	10.2	10
976	Asymmetric Volume Expansion of the Lithium Metal Electrode in Symmetric Lithium/Lithium Cells under Lean Electrolyte and High Areal Capacity Conditions. ACS Applied Energy Materials, 2023, 6, 573-579.	2.5	3
977	A Quasiâ€Solid Electrolyte by In Situ Polymerization of Selective Solvent for Lithiumâ€Metal Batteries. ChemElectroChem, 2022, 9, .	1.7	2
978	Fluorinated Solid‣tate Electrolytes for Lithium Batteries: Interface Design and Ion Conduction Mechanisms. Advanced Engineering Materials, 2023, 25, .	1.6	2
980	Multiâ€Scale Characterization Techniques for Polymerâ€Based Solidâ€State Lithium Batteries. Macromolecular Chemistry and Physics, 2023, 224, .	1.1	1

#	Article	IF	CITATIONS
981	Transforming Interface Chemistry throughout Garnet Electrolyte for Dendrite-Free Solid-State Batteries. ACS Energy Letters, 2023, 8, 537-544.	8.8	16
982	The role of grain boundaries in solid-state Li-metal batteries. Materials Futures, 2023, 2, 013501.	3.1	12
983	Designing better electrolytes. Science, 2022, 378, .	6.0	146
984	Engineering Lithiophilic Silver Sponge Integrated with Ion-Conductive PVDF/LiF Protective Layer for Dendrite-Free and High-Performance Lithium Metal Batteries. ACS Applied Energy Materials, 2023, 6, 519-529.	2.5	8
985	Construction of Hierarchical Surface on Carbon Fiber Paper for Lithium Metal Batteries with Superior Stability. Advanced Energy Materials, 2023, 13, .	10.2	11
986	Highâ€Performance Lithium Metal Batteries Enabled by a Fluorinated Cyclic Ether with a Low Reduction Potential. Angewandte Chemie, 0, , .	1.6	1
987	Anode-free Na metal batteries developed by nearly fully reversible Na plating on the Zn surface. Nanoscale, 2023, 15, 3255-3262.	2.8	11
988	Fluorinated Covalent Organic Framework-Based Nanofluidic Interface for Robust Lithium–Sulfur Batteries. ACS Nano, 2023, 17, 2901-2911.	7.3	20
989	Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries. Chemistry of Materials, 0, , .	3.2	1
990	Novel single-ion conducting polymer electrolytes with high toughness and high resistance against lithium dendrites. Nano Research, 2023, 16, 8457-8468.	5.8	4
991	Multifunctional surface-engineering of 3D-lithiophilic nanocarbon scaffold for high-voltage anode-minimized lithium metal batteries. Chemical Engineering Journal, 2023, 458, 141478.	6.6	1
992	Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte. Nano Materials Science, 2024, 6, 60-67.	3.9	4
993	Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Nature Communications, 2023, 14, .	5.8	25
994	Highâ€Performance Lithium Metal Batteries Enabled by a Fluorinated Cyclic Ether with a Low Reduction Potential. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
995	Highly stable 3D Li metal anodes enabled by a shielding/rectifying polymer layer. Electrochimica Acta, 2023, 441, 141858.	2.6	2
996	Early Stage Li Plating by Liquid Phase and Cryogenic Transmission Electron Microscopy. ACS Energy Letters, 2023, 8, 715-721.	8.8	9
997	Asymmetric Contact Loss Dynamics during Plating and Stripping in Solid‣tate Batteries. Advanced Energy Materials, 2023, 13, .	10.2	9
998	A successive "conversion-deposition―mechanism achieved by micro-crystalline Cu2O modified current collector for composite lithium anode. Journal of Industrial and Engineering Chemistry, 2023, 120, 285-292.	2.9	2

#	Article	IF	CITATIONS
999	Anode-free sodium metal batteries as rising stars for lithium-ion alternatives. IScience, 2023, 26, 105982.	1.9	12
1000	A non-academic perspective on the future of lithium-based batteries. Nature Communications, 2023, 14,	5.8	135
1001	Entropyâ€Ðriven Ultrafast Ion Conduction Via Confining Organic Plastic Crystals in Ordered Nanochannels of Covalent Organic Frameworks. Small, 2023, 19, .	5.2	2
1002	SDF-based conjugated microporous polymers cathode materials with high cycle stability for lithium-ion batteries. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	0
1003	Regulating Li ⁺ Transfer and Solvation Structure via Metal-Organic Framework for Stable Li Anode. Key Engineering Materials, 0, 939, 123-127.	0.4	0
1004	Covalent Organic Framework Based Lithium–Sulfur Batteries: Materials, Interfaces, and Solidâ€ S tate Electrolytes. Advanced Energy Materials, 2023, 13, .	10.2	71
1005	The mechanism of external pressure suppressing dendrites growth in Li metal batteries. Journal of Energy Chemistry, 2023, 79, 489-494.	7.1	9
1006	Ultrathin electrochemical layer tailoring of lithiophilic materials with 3D hierarchical configuration for lithium metal batteries: Sn/Cu ₆ Sn ₅ @Cu ₂₊₁ O nanowires on Cu foam. Journal of Materials Chemistry A, 2023, 11, 6144-6156.	5.2	1
1007	Understanding Lithium Dendrite Suppression by Hybrid Composite Separators: Indentation Measurements Informed by <i>Operando</i> X-ray Computed Tomography. ACS Applied Materials & Interfaces, 2023, 15, 8492-8501.	4.0	3
1008	Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries. Applied Mechanics Reviews, 2023, 75, .	4.5	10
1009	Nonâ€Flammable Electrolyte with Lithium Nitrate as the Only Lithium Salt for Boosting Ultraâ€Stable Cycling and Fireâ€Safety Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	24
1010	A Review of Solid Electrolyte Interphase (SEI) and Dendrite Formation in Lithium Batteries. Electrochemical Energy Reviews, 2023, 6, .	13.1	30
1011	Influence of Potassium Metalâ€Support Interactions on Dendrite Growth. Angewandte Chemie, 2023, 135,	1.6	2
1012	Sandwichâ€Structured Quasiâ€Solid Polymer Electrolyte Enables Highâ€Capacity, Longâ€Cycling, and Dendriteâ€Free Lithium Metal Battery at Room Temperature. Small, 2023, 19, .	5.2	4
1013	High stability of solid electrolyte interphase in lithium metal batteries enabled by direct fluorination on metal iron powder. Journal of Industrial and Engineering Chemistry, 2023, 121, 445-451.	2.9	2
1014	Li-phobicity of polyvinyl alcohol for the control of Li electrodeposition in Li-secondary batteries. Materials Letters, 2023, 338, 134060.	1.3	0
1015	Tailoring electrolyte solvation to push the capacity limit of layered oxide cathodes via polarized ferroelectric polymers. Acta Materialia, 2023, 252, 118923.	3.8	1
1016	Recent research progress of alloy-containing lithium anodes in lithium-metal batteries. Current Opinion in Solid State and Materials Science, 2023, 27, 101079.	5.6	7

#	Article	IF	CITATIONS
1017	Effect of nano Al2O3 addition on cycling performance of poly(ether block amide) based solid-state lithium metal batteries. , 2023, 2, 167-176.		1
1018	Enhanced microstructure stability of LiNi0.8Co0.1Mn0.1O2 cathode with negative thermal expansion shell for long-life battery. Journal of Colloid and Interface Science, 2023, 640, 1005-1014.	5.0	4
1019	Electrode-level strategies enabling kinetics-controlled metallic Li confinement by the heterogeneity of interfacial activity and porosity. Energy Storage Materials, 2023, 56, 515-523.	9.5	4
1020	A 10â€Ĥ⁄4m Ultrathin Lithium Metal Composite Anodes with Superior Electrochemical Kinetics and Cycling Stability. Energy and Environmental Materials, 2023, 6, .	7.3	5
1021	Constructing a lithiophilic polyaniline coating via in situ polymerization for dendrite-free lithium metal anode. Nano Research, 2023, 16, 8448-8456.	5.8	6
1022	Composite cathode for all-solid-state lithium batteries: Progress and perspective. Materials Today Physics, 2023, 32, 101009.	2.9	10
1023	Artificial Graphite Paper as a Corrosionâ€Resistant Current Collector for Longâ€Life Lithium Metal Batteries. Advanced Functional Materials, 2023, 33, .	7.8	7
1024	Accelerated Short Circuiting in Anodeâ€Free Solidâ€State Batteries Driven by Local Lithium Depletion. Advanced Energy Materials, 2023, 13, .	10.2	13
1025	Reaction Current Heterogeneity at the Interface between a Lithium Electrode and Polymer/Ceramic Composite Electrolytes. ACS Applied Energy Materials, 2023, 6, 2160-2177.	2.5	6
1026	An overview of 2D metal sulfides and carbides as Na host materials for Na-ion batteries. Chemical Engineering Journal, 2023, 461, 141924.	6.6	15
1027	Complementary combination of lithium protection strategies for robust and longevous lithium metal batteries. Energy Storage Materials, 2023, 57, 229-248.	9.5	16
1028	A reactive wetting strategy improves lithium metal reversibility. Energy Storage Materials, 2023, 58, 176-183.	9.5	8
1029	12µmâ€Thick Sintered Garnet Ceramic Skeleton Enabling Highâ€Energyâ€Density Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	35
1030	Cu Current Collector with Binderâ€Free Lithiophilic Nanowire Coating for High Energy Density Lithium Metal Batteries. Small, 2023, 19, .	5.2	12
1031	A jigsaw-structured artificial solid electrolyte interphase for high-voltage lithium metal batteries. Communications Materials, 2023, 4, .	2.9	5
1032	Importance of uniformly redistributing external pressure on cycling of pouch-type Li-metal batteries. Korean Journal of Chemical Engineering, 2023, 40, 524-531.	1.2	2
1033	Engineering Li Metal Anode for Garnet-Based Solid-State Batteries. Accounts of Chemical Research, 2023, 56, 667-676.	7.6	13
1034	In-situ constructed polymer/alloy composite with high ionic conductivity as an artificial solid electrolyte interphase to stabilize lithium metal anode. Nano Research, 2023, 16, 3888-3894.	5.8	2

#	Article	IF	CITATIONS
1035	Species Distribution During Solid Electrolyte Interphase Formation on Lithium Using MD/DFT-Parameterized Kinetic Monte Carlo Simulations. Journal of Physical Chemistry C, 2023, 127, 4872-4886.	1.5	7
1036	Feasible approaches for anode-free lithium-metal batteries as next generation energy storage systems. Energy Storage Materials, 2023, 57, 471-496.	9.5	10
1037	Current Status and Enhancement Strategies for All-Solid-State Lithium Batteries. Accounts of Materials Research, 2023, 4, 472-483.	5.9	21
1038	A lithiophilic and conductive interlayer for dendrite-free lithium metal anodes. Chemical Engineering Journal, 2023, 462, 142223.	6.6	8
1039	Facile synthesis of nitrogen-doped graphene, and its advanced electrochemical activity toward efficient lithium ion storage. Functional Materials Letters, 0, , .	0.7	0
1040	Influence of Potassium Metalâ€Support Interactions on Dendrite Growth. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1041	Twoâ€6tep Redox in Polyimide: Witness by In Situ Electron Paramagnetic Resonance in Lithiumâ€ion Batteries. Angewandte Chemie, 2023, 135, .	1.6	0
1042	Twoâ€Step Redox in Polyimide: Witness by In Situ Electron Paramagnetic Resonance in Lithiumâ€ion Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1043	Perovskiteâ€Solarâ€Cellâ€Powered Integrated Fuel Conversion and Energyâ€Storage Devices. Advanced Materials, 2023, 35, .	11.1	6
1044	Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries. Materials, 2023, 16, 2240.	1.3	3
1045	Origin of the lithium metal anode instability in solid-state batteries during discharge. Matter, 2023, 6, 1463-1483.	5.0	11
1046	Computational and Experimental Analysis of a Triode Microfuse with a WO3 Heater. Journal of Sensors, 2023, 2023, 1-20.	0.6	1
1047	Li-metal anode of fixed volume located behind current collector for safe li storage. Journal of Energy Storage, 2023, 63, 107119.	3.9	0
1048	Less is more: a perspective on thinning lithium metal towards high-energy-density rechargeable lithium batteries. Chemical Society Reviews, 2023, 52, 2553-2572.	18.7	36
1049	Sb Ultraâ€5mall Nanoparticles Embedded within N, S coâ€Doped Flexible Carbon Nanofiber Films with Longitudinal Tunnels as High Performance Anode Materials for Sodiumâ€Ion Batteries. Batteries and Supercaps, 2023, 6, .	2.4	1
1050	The Proofâ€ofâ€Concept of Anodeâ€Free Rechargeable Mg Batteries. Advanced Science, 2023, 10, .	5.6	5
1051	Comprehensive Review of Recent Advancements in Battery Technology, Propulsion, Power Interfaces, and Vehicle Network Systems for Intelligent Autonomous and Connected Electric Vehicles. Energies, 2023, 16, 2925.	1.6	4
1052	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie, 2023, 135, .	1.6	1

#	Article	IF	CITATIONS
1053	Cyclopentylmethyl Ether, a Nonâ€Fluorinated, Weakly Solvating and Wide Temperature Solvent for Highâ€Performance Lithium Metal Battery. Angewandte Chemie - International Edition, 2023, 62, .	7.2	22
1054	Nanoconfined Expansion Behavior of Hollow MnS@Carbon Anode with Extended Lithiation Cyclic Stability. Advanced Functional Materials, 2023, 33, .	7.8	6
1055	<i>In Situ</i> Measurement of Buried Electrolyte–Electrode Interfaces for Solid State Batteries with Nanometer Level Precision. ACS Energy Letters, 2023, 8, 1985-1991.	8.8	4
1056	A Novel Potassium Salt Regulated Solvation Chemistry Enabling Excellent Liâ€Anode Protection in Carbonate Electrolytes. Advanced Materials, 2023, 35, .	11.1	10
1057	The TWh challenge: Next generation batteries for energy storage and electric vehicles. , 2023, 1, 100015.		12
1058	Reconstruction of Solid Electrolyte Interphase with Srl ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie, 2023, 135, .	1.6	2
1059	Reconstruction of Solid Electrolyte Interphase with Srl ₂ Reactivates Dead Li for Durable Anodeâ€Free Liâ€Metal Batteries. Angewandte Chemie - International Edition, 2023, 62, .	7.2	13
1060	Influence of Lithium Metal Deposition on Thermal Stability: Combined DSC and Morphology Analysis of Cyclic Aged Lithium Metal Batteries. Journal of the Electrochemical Society, 0, , .	1.3	1
1061	Choosing Carbon Conductive Additives for NMC-LATP Composite Cathodes: Impact on Thermal Stability. Journal of the Electrochemical Society, 2023, 170, 040523.	1.3	2
1062	Stable Lithium Plating in "Lithium Metal-Free―Solid-State Batteries Enabled by Seeded Lithium Nucleation. Journal of the Electrochemical Society, 2023, 170, 040524.	1.3	8
1063	Beneficial <i>vs.</i> inhibiting passivation by the native lithium solid electrolyte interphase revealed by electrochemical Li ⁺ exchange. Energy and Environmental Science, 2023, 16, 2247-2261.	15.6	14
1064	Electrochemical-mechanical coupling measurements. Joule, 2023, 7, 652-674.	11.7	2
1065	Advances in Strategic Inhibition of Polysulfide Shuttle in Room-Temperature Sodium-Sulfur Batteries via Electrode and Interface Engineering. Batteries, 2023, 9, 223.	2.1	3
1066	Mitigating Concentration Polarization through Acid–Base Interaction Effects for Long-Cycling Lithium Metal Anodes. Nano Letters, 2023, 23, 3369-3376.	4.5	4
1067	Carbide-mediated catalytic hydrogenolysis: defects in graphene on a carbonaceous lithium host for liquid and all-solid-state lithium metal batteries. Energy and Environmental Science, 2023, 16, 2505-2517.	15.6	10
1068	The Role of Silicate Enrichment on the Discharge Duration of Siliconâ€Air Batteries. ChemSusChem, 2023, 16, .	3.6	2
1069	Effect of the Li ₂ O–B ₂ O ₃ –Li ₂ SO ₄ Amorphous Boundary Layer on the Ionic Conductivity and Humidity Stability of the LiTa ₂ PO ₈ Solid Electrolyte. ACS Applied Energy Materials, 2023, 6, 4810-4816.	2.5	2
1070	Lithium Plating and Stripping: Toward Anodeâ€Free Solidâ€State Batteries. Advanced Energy and Sustainability Research, 0, , .	2.8	2

#	Article	IF	CITATIONS
1071	Highly Oxidationâ€Resistant Ether Gel Electrolytes for 4.7ÂV Highâ€Safety Lithium Metal Batteries. Advanced Energy Materials, 2023, 13, .	10.2	7
1072	Anti-perovskite nitrides and oxides: Properties and preparation. Computational Materials Science, 2023, 225, 112188.	1.4	2
1073	Metal–organic frameworks for solid-state electrolytes: A mini review. Electrochemistry Communications, 2023, 150, 107491.	2.3	18
1083	Advances in functional organic material-based interfacial engineering on metal anodes for rechargeable secondary batteries. Nanoscale, 2023, 15, 9256-9289.	2.8	5
1086	Highly Soluble Lithium Nitrate-Containing Additive for Carbonate-Based Electrolyte in Lithium Metal Batteries. ACS Energy Letters, 2023, 8, 2440-2446.	8.8	7
1094	Generalized State of Health Estimation Approach based on Neural Networks for Various Lithium-Ion Battery Chemistries. , 2023, , .		1
1104	State-of-the-Art of Solid-State Electrolytes on the Road Map of Solid-State Lithium Metal Batteries for E-Mobility. ACS Sustainable Chemistry and Engineering, 2023, 11, 7927-7964.	3.2	4
1109	Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chemical Society Reviews, 2023, 52, 4933-4995.	18.7	23
1125	3D printing of hierarchically micro/nanostructured electrodes for high-performance rechargeable batteries. Nanoscale, 0, , .	2.8	1
1130	From material properties to device metrics: a data-driven guide to battery design. Energy Advances, 2023, 2, 1326-1350.	1.4	1
1141	The value of <i>in situ</i> /operando Raman spectroscopy in all-solid-state Li batteries. Journal of Materials Chemistry A, O, , .	5.2	0
1197	Room-temperature reversible F-ion batteries based on sulfone electrolytes with a mild anion acceptor additive. Materials Horizons, 2024, 11, 480-489.	6.4	0
1220	Mechanism and solutions of lithium dendrite growth in lithium metal batteries. Materials Chemistry Frontiers, 2024, 8, 1282-1299.	3.2	1
1242	Advances in solid-state batteries: Materials, interfaces, characterizations, and devices. MRS Bulletin, 2023, 48, 1221-1229.	1.7	0
1263	Metal organic frameworks-based cathode materials for advanced Li-S batteries: A comprehensive	5.8	0

review. Nano Research, 2024, 17, 2592-2618.