CITATION REPORT List of articles citing

Ozone reaction with human surfaces: Influences of surface reaction probability and indoor air flow condition

DOI: 10.1016/j.buildenv.2017.12.012 Building and Environment, 2018, 130, 40-48.

Source: https://exaly.com/paper-pdf/69170956/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
27	Understanding the Spatial Heterogeneity of Indoor OH and HO due to Photolysis of HONO Using Computational Fluid Dynamics Simulation. <i>Environmental Science & Environmental Sc</i>	.4 7 83	15
26	Indoor ozone/human chemistry and ventilation strategies. <i>Indoor Air</i> , 2019 , 29, 913-925	5.4	27
25	Investigation of the PM, NO and O I/O ratios for office and school microenvironments. <i>Environmental Research</i> , 2019 , 179, 108791	7.9	13
24	Effect of sensor position on the performance of CO2-based demand controlled ventilation. <i>Energy and Buildings</i> , 2019 , 202, 109358	7	12
23	Indoor air pollution in office buildings in mega-cities: Effects of filtration efficiency and outdoor air ventilation rates. <i>Sustainable Cities and Society</i> , 2019 , 49, 101609	10.1	27
22	The impact of clothing on ozone and squalene ozonolysis products in indoor environments. <i>Communications Chemistry</i> , 2019 , 2,	6.3	38
21	Modeling the Time-Dependent Concentrations of Primary and Secondary Reaction Products of Ozone with Squalene in a University Classroom. <i>Environmental Science & Environmental Science & Environmental</i>	2 ¹ 82 ³ 70	23
20	Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1240	- 1 254	22
19	Clothing-Mediated Exposures to Chemicals and Particles. <i>Environmental Science & Environmental Science</i>	10.3	48
18	Measurement of ozone deposition velocity onto human surfaces of Chinese residents and estimation of corresponding production of oxidation products. <i>Environmental Pollution</i> , 2020 , 266, 115	29 3	7
17	A one-pot synthesis of a monolithic CuO/Cu catalyst for efficient ozone decomposition <i>RSC Advances</i> , 2020 , 10, 40916-40922	3.7	4
16	Spatial distributions of ozonolysis products from human surfaces in ventilated rooms. <i>Indoor Air</i> , 2020 , 30, 1229-1240	5.4	13
15	Ozone Deposition on Free-Running Indoor Materials and the Corresponding Volatile Organic Compound Emissions: Implications for Ventilation Requirements. <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 4146	2.6	1
14	Quality control of computational fluid dynamics (CFD) model of ozone reaction with human surface: Effects of mesh size and turbulence model. <i>Building and Environment</i> , 2021 , 189, 107513	6.5	6
13	Yields and Variability of Ozone Reaction Products from Human Skin. <i>Environmental Science & Technology</i> , 2021 , 55, 179-187	10.3	11
12	Controlled adjustments of indoor microclimate parameters for building energy demand management. <i>Energy Reports</i> , 2021 , 7, 216-224	4.6	1
11	Effect of Ozone, Clothing, Temperature, and Humidity on the Total OH Reactivity Emitted from Humans. <i>Environmental Science & Environmental Science & </i>	10.3	3

CITATION REPORT

10	Accumulation of polychlorinated biphenyls in fabrics in a contaminated building, and the effect of laundering. <i>Indoor Air</i> , 2021 ,	5.4	О
9	A review of microbial and chemical assessment of indoor surfaces. <i>Applied Spectroscopy Reviews</i> , 1-73	4.5	O
8	Volatile products generated from reactions between ozone and human skin lipids: A modelling estimation. <i>Building and Environment</i> , 2022 , 109068	6.5	2
7	Reactions and Products of Squalene and Ozone: A Review. Environmental Science & Environmental Science	10.3	3
6	Understanding Ozone Transport and Deposition within Indoor Surface Boundary Layers. <i>Environmental Science & Environmental Sci</i>	10.3	1
5	Characteristics of indoor ozone pollution in residential buildings based on outdoor air pollution. 2022 , 356, 05033		О
4	The human oxidation field. 2022 , 377, 1071-1077		4
3	Quantifying the impact of relative humidity on human exposure to gas phase squalene ozonolysis products.		Ο
2	A model to evaluate ozone distribution and reaction byproducts in aircraft cabin environments. 2022 , 32,		0
1	Human skin oil: a major ozone reactant indoors. 2023 , 3, 640-661		0