Oxygen Activation and Radical Transformations in Hen

Chemical Reviews 118, 2491-2553

DOI: 10.1021/acs.chemrev.7b00373

Citation Report

#	Article	IF	CITATIONS
3	Hybrid Metalloporphyrin Magnetic Nanoparticles as Catalysts for Sequential Transformation of Alkenes and CO ₂ into Cyclic Carbonates. ChemCatChem, 2018, 10, 2792-2803.	1.8	34
4	Immune-modulating enzyme indoleamine 2,3-dioxygenase is effectively inhibited by targeting its apo-form. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3249-3254.	3.3	157
5	Mn-Mimochrome VI*a: An Artificial Metalloenzyme With Peroxygenase Activity. Frontiers in Chemistry, 2018, 6, 590.	1.8	23
6	Photoexcited state chemistry of metal–oxygen complexes. Dalton Transactions, 2018, 47, 16019-16026.	1.6	8
7	Oxygen–Oxygen Bond Cleavage and Formation in Co(II)-Mediated Stoichiometric O ₂ Reduction via the Potential Intermediacy of a Co(IV) Oxyl Radical. Journal of the American Chemical Society, 2018, 140, 16094-16105.	6.6	50
8	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie, 2018, 130, 17084-17088.	1.6	18
9	A Manganese(V)–Oxo Tetraamido Macrocyclic Ligand (TAML) Cation Radical Complex: Synthesis, Characterization, and Reactivity Studies. Chemistry - A European Journal, 2018, 24, 17927-17931.	1.7	17
10	Multifunctional Catalysts for H ₂ O ₂ â€Resistant Hydrogen Fuel Cells. Angewandte Chemie - International Edition, 2018, 57, 15792-15796.	7.2	8
11	Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catalysis, 2018, 8, 10784-10808.	5.5	122
12	Multifunctional Catalysts for H ₂ O ₂ â€Resistant Hydrogen Fuel Cells. Angewandte Chemie, 2018, 130, 16018-16022.	1.6	3
13	Efficient Palladiumâ€Catalyzed Aerobic Arylative Carbocyclization of Enallenynes. Angewandte Chemie - International Edition, 2018, 57, 16842-16846.	7.2	29
14	Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Chemical Reviews, 2018, 118, 10840-11022.	23.0	166
15	Copper-Catalyzed Radical Relay for Asymmetric Radical Transformations. Accounts of Chemical Research, 2018, 51, 2036-2046.	7.6	422
16	Mechanistic study of styrene aziridination by iron(iv) nitrides. Chemical Science, 2018, 9, 8542-8552.	3.7	20
17	Hydrogen Atom Transfer Reactions of Mononuclear Nonheme Metal–Oxygen Intermediates. Accounts of Chemical Research, 2018, 51, 2014-2022.	7.6	94
18	Thiyl radical promoted chemo- and regioselective oxidation of C bonds using molecular oxygen via iron catalysis. Green Chemistry, 2018, 20, 4521-4527.	4.6	43
19	Engineered Metalloenzymes with Nonâ€Canonical Coordination Environments. Chemistry - A European Journal, 2018, 24, 11821-11830.	1.7	33
20	Relationship between Hydrogen-Atom Transfer Driving Force and Reaction Rates for an Oxomanganese(IV) Adduct. Inorganic Chemistry, 2018, 57, 8253-8263.	1.9	19

#	Article	IF	CITATIONS
21	Mechanisms of catalytic reduction of CO ₂ with heme and nonheme metal complexes. Chemical Science, 2018, 9, 6017-6034.	3.7	105
22	Intramolecular Hydrogen Bonding Enhances Stability and Reactivity of Mononuclear Cupric Superoxide Complexes. Journal of the American Chemical Society, 2018, 140, 9042-9045.	6.6	70
23	Transition State Search Using rPM6: Iron- and Manganese-Catalyzed Oxidation Reactions as a Test Case. Bulletin of the Chemical Society of Japan, 2018, 91, 1377-1389.	2.0	4
24	Formation and Cleavage of C–C Bonds by Enzymatic Oxidation–Reduction Reactions. Chemical Reviews, 2018, 118, 6573-6655.	23.0	172
25	Engineering P450 _{LaMO} stereospecificity and product selectivity for selective C–H oxidation of tetralin-like alkylbenzenes. Catalysis Science and Technology, 2018, 8, 4638-4644.	2.1	17
26	Mn(III)-Iodosylarene Porphyrins as an Active Oxidant in Oxidation Reactions: Synthesis, Characterization, and Reactivity Studies. Inorganic Chemistry, 2018, 57, 10232-10240.	1.9	30
27	Enantioselective aliphatic C–H bond oxidation catalyzed by bioinspired complexes. Chemical Communications, 2018, 54, 9559-9570.	2.2	69
28	Quantum Mechanics/Molecular Mechanics Studies on the Relative Reactivities of Compound I and II in Cytochrome P450 Enzymes. International Journal of Molecular Sciences, 2018, 19, 1974.	1.8	14
29	Metalloporphyrin-Catalyzed Oxidation of Sunitinib and Pazopanib, Two Anticancer Tyrosine Kinase Inhibitors: Evidence for New Potentially Toxic Metabolites. Journal of Medicinal Chemistry, 2018, 61, 7849-7860.	2.9	25
30	Confinement of Fe–Al-PMOF catalytic sites favours the formation of pyrazoline from ethyl diazoacetate with an unusual sharp increase of selectivity upon recycling. Chemical Communications, 2018, 54, 10308-10311.	2.2	19
31	Design of oxophilic metalloporphyrins: an experimental and DFT study of methanol binding. Dalton Transactions, 2018, 47, 11572-11585.	1.6	12
32	Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt–Oxygen Complex. Inorganic Chemistry, 2018, 57, 10945-10952.	1.9	14
33	Enhancement of Peroxidase Activity in Artificial Mimochromeâ€VI Catalysts through Rational Design. ChemBioChem, 2018, 19, 1823-1826.	1.3	38
34	Mapping hole hopping escape routes in proteins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15811-15816.	3.3	35
35	Stabilization of different redox levels of a tridentate benzoxazole amidophenoxide ligand when bound to Co(iii) or V(v). Dalton Transactions, 2019, 48, 13326-13336.	1.6	7
36	Chemoselectivity in the Oxidation of Cycloalkenes with a Non-Heme Iron(IV)-Oxo-Chloride Complex: Epoxidation vs. Hydroxylation Selectivity. Journal of the American Society for Mass Spectrometry, 2019, 30, 1923-1933.	1.2	9
37	Steric control of dioxygen activation pathways for MnII complexes supported by pentadentate, amide-containing ligands. Dalton Transactions, 2019, 48, 13034-13045.	1.6	10
38	The multifunctional globin dehaloperoxidase strikes again: Simultaneous peroxidase and peroxygenase mechanisms in the oxidation of EPA pollutants. Archives of Biochemistry and Biophysics, 2019, 673, 108079.	1.4	12

#	ARTICLE	IF	CITATIONS
39	Enhanced Rates of C–H Bond Cleavage by a Hydrogen-Bonded Synthetic Heme High-Valent Iron(IV) Oxo Complex. Journal of the American Chemical Society, 2019, 141, 12558-12569.	6.6	39
40	Catalytic recycling of NAD(P)H. Journal of Inorganic Biochemistry, 2019, 199, 110777.	1.5	38
41	Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cull2(O2•–) Complex Driven by Formation of a Cull2(â^'OOH) Compound with a Strong O–H Bond. Journal of the American Chemical Society, 2019, 141, 12682-12696.	6.6	28
42	EPR spin trapping studies of H2O2 activation in metaloporphyrin catalyzed oxygenation reactions: Insights on the biomimetic mechanism. Molecular Catalysis, 2019, 475, 110500.	1.0	7
43	A Combined Experimental and Theoretical Study of the Versatile Reactivity of an Oxocerium(IV) Complex: Concerted Versus Reductive Addition. Chemistry - A European Journal, 2019, 25, 10834-10839.	1.7	6
44	CO ₂ Reduction on an Iron-Porphyrin Center: A Computational Study. Journal of Physical Chemistry A, 2019, 123, 6527-6535.	1.1	45
45	Bioinspired Manganese and Iron Complexes for Enantioselective Oxidation Reactions: Ligand Design, Catalytic Activity, and Beyond. Accounts of Chemical Research, 2019, 52, 2370-2381.	7.6	102
46	Highly Reactive Manganese(IV)-Oxo Porphyrins Showing Temperature-Dependent Reversed Electronic Effect in C–H Bond Activation Reactions. Journal of the American Chemical Society, 2019, 141, 12187-12191.	6.6	53
47	Formation of compound I in heme bound Aβ-peptides relevant to Alzheimer's disease. Chemical Science, 2019, 10, 8405-8410.	3.7	14
48	Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters. Molecules, 2019, 24, 2743.	1.7	29
49	Photocatalytic Oxygenation Reactions Using Water and Dioxygen. ChemSusChem, 2019, 12, 3931-3940.	3.6	33
50	Catalase Involved in Oxidative Cyclization of the Tetracyclic Ergoline of Fungal Ergot Alkaloids. Journal of the American Chemical Society, 2019, 141, 17517-17521.	6.6	20
51	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie, 2019, 131, 17736-17740.	1.6	2
52	UV Resonance Raman Characterization of a Substrate Bound to Human Indoleamine 2,3-Dioxygenase 1. Biophysical Journal, 2019, 117, 706-716.	0.2	1
53	New class of tridentate 3N ligands and copper(II) complexes: A model for type-2 copper site of phenoxazinone synthase. Inorganic Chemistry Communication, 2019, 110, 107608.	1.8	11
54	Boron-based stepwise dioxygen activation with 1,4,2,5-diazadiborinine. Chemical Science, 2019, 10, 2088-2092.	3.7	23
55	DFT studies on the structure and stability of tetraaza macrocyclic nickel(II) complexes containing dicarbinolamine ligand moiety. Journal of Chemical Sciences, 2019, 131, 1.	0.7	3
56	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie, 2019, 131, 16270-16275.	1.6	7

	CITATION RE	PORT	
#	Article	IF	CITATIONS
57	Impact of Intramolecular Hydrogen Bonding on the Reactivity of Cupric Superoxide Complexes with Oâ^'H and Câ^'H Substrates. Angewandte Chemie - International Edition, 2019, 58, 17572-17576.	7.2	28
58	A Highâ€Valent Manganese(IV)–Oxo–Cerium(IV) Complex and Its Enhanced Oxidizing Reactivity. Angewandte Chemie - International Edition, 2019, 58, 16124-16129.	7.2	34
59	Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicology in Vitro, 2019, 61, 104646.	1.1	7
60	A Career in Catalysis: Odile Eisenstein. ACS Catalysis, 2019, 9, 10375-10388.	5.5	2
61	Heme–Cu Binucleating Ligand Supports Heme/O2and Fell–Cul/O2Reactivity Providing High- and Low-Spin Felll–Peroxo–CullComplexes. Inorganic Chemistry, 2019, 58, 15423-15432.	1.9	8
62	High-Spin Mn(V)-Oxo Intermediate in Nonheme Manganese Complex-Catalyzed Alkane Hydroxylation Reaction: Experimental and Theoretical Approach. Inorganic Chemistry, 2019, 58, 14842-14852.	1.9	46
63	The influencing factors of satisfaction and lending intention in online lending investment: an empirical study based on the Chinese market. Accounting and Finance, 2019, 59, 2045-2071.	1.7	2
64	Selective Synthesis of 2â€(4â€Aminoaryl)â€2â€(4â€pyranonyl)acetates and 2,2â€Bis(4â€aminoaryl)â€2â€(4â€pyranonyl)acetates from 2â€Diazoâ€3,5â€dioxoâ€6â€ynoates (ynones) and / European Journal of Organic Chemistry, 2019, 2019, 6871-6883.	Arom2atic/	Amines.
65	Oxidaseâ€Like Feâ€N Singleâ€Atom Nanozymes for the Detection of Acetylcholinesterase Activity. Small, 2019, 15, e1903108.	5.2	207
66	Spectroscopic and Reactivity Comparisons between Nonheme Oxoiron(IV) and Oxoiron(V) Species Bearing the Same Ancillary Ligand. Journal of the American Chemical Society, 2019, 141, 15078-15091.	6.6	48
67	Assessment of the intramolecular magnetic interactions in the highly saddled iron(<scp>iii</scp>) porphyrin π-radical cations: the change from planar to saddle conformations. Dalton Transactions, 2019, 48, 13820-13833.	1.6	5
68	Superstructured metallocorroles for electrochemical CO ₂ reduction. Chemical Communications, 2019, 55, 11912-11915.	2.2	16
69	Evidence for Modulation of Oxygen Rebound Rate in Control of Outcome by Iron(II)- and 2-Oxoglutarate-Dependent Oxygenases. Journal of the American Chemical Society, 2019, 141, 15153-15165.	6.6	28
70	Acid p <i>K</i> _a Dependence in O–O Bond Heterolysis of a Nonheme Fe ^{III} –OOH Intermediate To Form a Potent Fe ^V â•O Oxidant with Heme Compound I-Like Reactivity. Journal of the American Chemical Society, 2019, 141, 16093-16107.	6.6	35
71	Hydrogen Bond-Enabled Heterolytic and Homolytic Peroxide Activation within Nonheme Copper(II)-Alkylperoxo Complexes. Inorganic Chemistry, 2019, 58, 12964-12974.	1.9	22
72	Manganese-Catalyzed Desaturation of N-Acyl Amines and Ethers. ACS Catalysis, 2019, 9, 9513-9517.	5.5	33
73	Properties and reactivity of μ-nitrido-bridged dimetal porphyrinoid complexes: how does ruthenium compare to iron?. Journal of Biological Inorganic Chemistry, 2019, 24, 1127-1134.	1.1	5
74	Influence of intramolecular secondary sphere hydrogen-bonding interactions on cytochrome <i>c</i> oxidase inspired low-spin heme–peroxo–copper complexes. Chemical Science, 2019, 10, 2893-2905	3.7	20

#	Article	IF	CITATIONS
75	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie - International Edition, 2019, 58, 4012-4016.	7.2	41
76	Dioxygen activation by a dinuclear thiolate-ligated Fe(<scp>ii</scp>) complex. Dalton Transactions, 2019, 48, 379-386.	1.6	4
77	Highly Active Catalysis of Cobalt Tetrakis(pentafluorophenyl)porphyrin Promoted by Chitosan for Cyclohexane Oxidation in Responseâ€Surfaceâ€Methodologyâ€Optimized Reaction Conditions. ChemistryOpen, 2019, 8, 104-113.	0.9	19
78	Ligand and Redox Partner Binding Generates a New Conformational State in Cytochrome P450cam (CYP101A1). Journal of the American Chemical Society, 2019, 141, 2678-2683.	6.6	23
79	Biocatalytic selective functionalisation of alkenes <i>via</i> single-step and one-pot multi-step reactions. Chemical Communications, 2019, 55, 883-896.	2.2	58
80	Fenton-Derived OH Radicals Enable the MPnS Enzyme to Convert 2-Hydroxyethylphosphonate to Methylphosphonate: Insights from Ab Initio QM/MM MD Simulations. Journal of the American Chemical Society, 2019, 141, 9284-9291.	6.6	32
81	Efficient atrazine degradation catalyzed by manganese porphyrins: Determination of atrazine degradation products and their toxicity evaluation by human blood cells test models. Journal of Hazardous Materials, 2019, 378, 120748.	6.5	13
82	Specific heme binding to heme regulatory motifs in iron regulatory proteins and its functional significance. Journal of Inorganic Biochemistry, 2019, 198, 110726.	1.5	12
83	Aromatic hydroxylation of anthracene derivatives by a chromium(<scp>iii</scp>)-superoxo complex <i>via</i> proton-coupled electron transfer. Chemical Communications, 2019, 55, 8286-8289.	2.2	1
84	Electrochemical C–H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chemical Science, 2019, 10, 7542-7548.	3.7	51
85	BrÃ,nsted Acid Scaling Relationships Enable Control Over Product Selectivity from O ₂ Reduction with a Mononuclear Cobalt Porphyrin Catalyst. ACS Central Science, 2019, 5, 1024-1034.	5.3	58
86	Generation of Carbon Radical from Iron-Hydride/Alkene: Exchange-Enhanced Reactivity Selects the Reactive Spin State. ACS Catalysis, 2019, 9, 6080-6086.	5.5	25
87	Small Reorganization Energy for Ligand-Centered Electron-Transfer Reduction of Compound I to Compound II in a Heme Model Study. Inorganic Chemistry, 2019, 58, 8263-8266.	1.9	12
88	Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. Journal of Organic Chemistry, 2019, 84, 8815-8836.	1.7	68
89	Oxidoâ€Hydroxido―and Oxidoâ€Aminatoâ€Osmium(V) Complexes with a Cyclohexanediamineâ€Based Tetradentate Ligand as Active Oxidants for Dihydroxylation and Aminohydroxylation of Alkenes. European Journal of Inorganic Chemistry, 2019, 2019, 2891-2898.	1.0	5
90	Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome <i>c</i> Oxidase. Journal of the American Chemical Society, 2019, 141, 10632-10643.	6.6	21
91	Bio-inspired iron-catalyzed oxidation of alkylarenes enables late-stage oxidation of complex methylarenes to arylaldehydes. Nature Communications, 2019, 10, 2425.	5.8	64
92	Site-selective enzymatic C‒H amidation for synthesis of diverse lactams. Science, 2019, 364, 575-578.	6.0	53

ARTICLE IF CITATIONS # Mâ[°]O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)â€Oxyl and Cobalt(III)â€Oxo 93 13 1.6 Complexes. Angewandte Chemie, 2019, 131, 9721-9726. Catalytic antioxidants for therapeutic medicine. Journal of Materials Chemistry B, 2019, 7, 3165-3191. 94 Bioinspired molecular catalysts for homogenous electrochemical activation of dioxygen. Current 95 2.5 12 Opinion in Electrochemistry, 2019, 15, 118-124. Mâ[°]O Bonding Beyond the Oxo Wall: Spectroscopy and Reactivity of Cobalt(III)â€Oxyl and Cobalt(III)â€Oxo 96 Complexes. Angewandte Chemie - International Edition, 2019, 58, 9619-9624. Self-Assembly of Anionic Polyoxometalateâ€"Organic Architectures Based on Lacunary 97 6.6 91 Phosphomolybdates and Pyridyl Ligands. Journal of the American Chemical Society, 2019, 141, 7687-7692. Structure and reactivity of the first-row d-block metal-superoxo complexes. Dalton Transactions, 1.6 2019, 48, 9469-9489 99 Single-atom nanozymes. Science Advances, 2019, 5, eaav5490. 4.7 615 Mechanism of Catalytic O₂ Reduction by Iron Tetraphenylporphyrin. Journal of the 100 6.6 99 American Chemical Śociety, 2019, 141, 8315-8326. Why Can Normal Palladium Catalysts Efficiently Mediate Aerobic Câ€"H Hydroxylation of Arylpyridines 101 by Intercepting Aldehyde Autoxidation? A Nascent Palladium(III)–Peracid Intermediate Makes a 7 1.9 Difference. Inorganic Chemistry, 2019, 58, 4376-4384. RASPT2 study of the valence excited states of an ironâ€"porphyrinâ€"carbonyl model complex. Journal of 1.5 Computational Chemistry, 2019, 40, 1614-1621. Spin Interconversion of Heme-Peroxo-Copper Complexes Facilitated by Intramolecular 103 6.6 13 Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2019, 141, 4936-4951. Nitrobenzene method: A keystone in <i>meso</i>-substituted halogenated porphyrin synthesis and 104 0.4 applications. Journal of Porphyrins and Phthalocyanines, 2019, 23, 329-346. Supramolecular assemblies of phenolic metalloporphyrins: Structures and electrochemical studies. 105 0.4 4 Journal of Porphyrins and Phthalocyanines, 2019, 23, 103-116. Enantioselective Arylation of Benzylic Câ^'H Bonds by Copperâ€Catalyzed Radical Relay. Angewandte Chemie, 2019, 131, 6491-6495. 1.6 Enantioselective Arylation of Benzylic Câ[^]H Bonds by Copper atalyzed Radical Relay. Angewandte 107 7.2 92 Chemie - International Edition, 2019, 58, 6425-6429. Tuning the Geometric and Electronic Structure of Synthetic High-Valent Heme Iron(IV)-Oxo Models in the Presence of a Lewis Acid and Various Axial Ligands. Journal of the American Chemical Society, 2019, 54 141, 5942-5960. Aerobic oxygenation catalyzed by first row transition metal complexes coordinated by tetradentate 109 mono-carbon bridged bis-phenanthroline ligands: intra- <i>versus</i> intermolecular 1.6 3 carbon–hydrogen bond activation. Dalton Transactions, 2019, 48, 6396-6407. Synthesis of Poly(aromatic)s II: Enzyme-Model Complexes as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 307-341.

#	Article	IF	CITATIONS
111	Reactive Oxygen Species (ROS)-Based Nanomedicine. Chemical Reviews, 2019, 119, 4881-4985.	23.0	1,519
112	The Equatorial Ligand Effect on the Properties and Reactivity of Iron(V) Oxo Intermediates. Chemistry - A European Journal, 2019, 25, 8092-8104.	1.7	17
113	Electron Transfer Control of Reductase versus Monooxygenase: Catalytic C–H Bond Hydroxylation and Alkene Epoxidation by Molecular Oxygen. ACS Central Science, 2019, 5, 671-682.	5.3	47
114	Harnessing the Oxidative Power of Monooxygenases through Electrochemistry. ACS Central Science, 2019, 5, 577-579.	5.3	2
115	An Aromatic Dyad Motif in Dye Decolourising Peroxidases Has Implications for Free Radical Formation and Catalysis. Chemistry - A European Journal, 2019, 25, 6141-6153.	1.7	21
116	Enzymatic Polymerization towards Green Polymer Chemistry. Green Chemistry and Sustainable Technology, 2019, , .	0.4	12
117	Trapping of a Highly Reactive Oxoiron(IV) Complex in the Catalytic Epoxidation of Olefins by Hydrogen Peroxide. Angewandte Chemie, 2019, 131, 4052-4056.	1.6	13
118	Characterized cis-FeV(O)(OH) intermediate mimics enzymatic oxidations in the gas phase. Nature Communications, 2019, 10, 901.	5.8	48
119	Induction of Enzyme-like Peroxidase Activity in an Iron Porphyrin Complex Using Second Sphere Interactions. Inorganic Chemistry, 2019, 58, 2954-2964.	1.9	27
120	Aerobic Epoxidation of Low-Molecular-Weight and Polymeric Olefins by a Supramolecular Manganese Porphyrin Catalyst. Catalysts, 2019, 9, 195.	1.6	25
121	In search of the most active MN4 catalyst for the oxygen reduction reaction. The case of perfluorinated Fe phthalocyanine. Journal of Materials Chemistry A, 2019, 7, 24776-24783.	5.2	52
122	Photoinduced charge flow inside an iron porphyrazine complex. Chemical Communications, 2019, 55, 13606-13609.	2.2	8
123	Thiyl radical promoted iron-catalyzed-selective oxidation of benzylic sp ³ C–H bonds with molecular oxygen. Chemical Communications, 2019, 55, 12699-12702.	2.2	34
124	Heme: emergent roles of heme in signal transduction, functional regulation and as catalytic centres. Chemical Society Reviews, 2019, 48, 5624-5657.	18.7	138
125	Computational study on epoxidation of propylene by dioxygen using the silanol-functionalized polyoxometalate-supported osmium oxide catalyst. Inorganic Chemistry Frontiers, 2019, 6, 3482-3492.	3.0	7
126	Measuring and Modulating Substrate Confinement during Nitrogen-Atom Transfer in a Ru ₂ -Based Metal-Organic Framework. Journal of the American Chemical Society, 2019, 141, 19203-19207.	6.6	21
127	Selective Hydrogen Atom Abstraction from Dihydroflavonol by a Nonheme Iron Center Is the Key Step in the Enzymatic Flavonol Synthesis and Avoids Byproducts. Journal of the American Chemical Society, 2019, 141, 20278-20292.	6.6	66
128	Theory Demonstrated a "Coupled―Mechanism for O ₂ Activation and Substrate Hydroxylation by Binuclear Copper Monooxygenases. Journal of the American Chemical Society, 2019, 141, 19776-19789.	6.6	36

#	Article	IF	CITATIONS
129	A Mononuclear Nonheme Iron(IV)–Amido Complex Relevant for the Compound II Chemistry of Cytochrome P450. Journal of the American Chemical Society, 2019, 141, 80-83.	6.6	22
130	Heme and Nonheme High-Valent Iron and Manganese Oxo Cores in Biological and Abiological Oxidation Reactions. ACS Central Science, 2019, 5, 13-28.	5.3	275
131	Spinâ€State Variations of Iron(III) Complexes with Tetracarbene Macrocycles. Chemistry - A European Journal, 2019, 25, 3918-3929.	1.7	18
132	Limits of Coupled-Cluster Calculations for Non-Heme Iron Complexes. Journal of Chemical Theory and Computation, 2019, 15, 922-937.	2.3	51
133	Recent advances in the catalytic oxidation of alkene and alkane substrates using immobilized manganese complexes with nitrogen containing ligands. Coordination Chemistry Reviews, 2019, 382, 181-216.	9.5	58
134	Electron Paramagnetic Resonance Signature of Tetragonal Low Spin Iron(V)-Nitrido and -Oxo Complexes Derived from the Electronic Structure Analysis of Heme and Non-Heme Archetypes. Journal of the American Chemical Society, 2019, 141, 2421-2434.	6.6	45
135	Aerobic Co-/ <i>N</i> -Hydroxysuccinimide-Catalyzed Oxidation of <i>p-</i> Tolylsiloxanes to <i>p-</i> Carboxyphenylsiloxanes: Synthesis of Functionalized Siloxanes as Promising Building Blocks for Siloxane-Based Materials. Journal of the American Chemical Society, 2019, 141, 2143-2151.	6.6	32
136	Selective C H bond functionalization with engineered heme proteins: new tools to generate complexity. Current Opinion in Chemical Biology, 2019, 49, 67-75.	2.8	106
137	Mechanistic Studies of Fatty Acid Activation by CYP152 Peroxygenases Reveal Unexpected Desaturase Activity. ACS Catalysis, 2019, 9, 565-577.	5.5	76
138	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2565-2576.	7.2	422
139	When Nanozymes Meet Singleâ€Atom Catalysis. Angewandte Chemie, 2020, 132, 2585-2596.	1.6	117
140	Eight-Membered and Larger Rings. Progress in Heterocyclic Chemistry, 2020, , 649-669.	0.5	6
141	Bioâ€inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong Câ^'H Bonds. Angewandte Chemie - International Edition, 2020, 59, 7332-7349.	7.2	104
142	Bioinspirierte Nichtâ€Häâ€Eisenoxidationskatalyse: Beteiligung von Oxoeisen(V)â€Oxidantien an der Spaltung starker Câ€Hâ€Bindungen. Angewandte Chemie, 2020, 132, 7400-7419.	1.6	13
143	Structural Characterization of a Series of N5â€Ligated Mn IV â€Oxo Species. Chemistry - A European Journal, 2020, 26, 900-912.	1.7	12
144	Heterocycle-appended porphyrins: synthesis and challenges. Coordination Chemistry Reviews, 2020, 407, 213108.	9.5	33
145	Heme-Fe ^{III} Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe ^{III} -O ₂ ^{•–} Complex H-Atom Abstraction Reactivity. Journal of the American Chemical Society, 2020, 142, 3104-3116.	6.6	40
146	Modeling Tryptophan/Indoleamine 2,3-Dioxygenase with Heme Superoxide Mimics: Is Ferryl the Key Intermediate?. Journal of the American Chemical Society, 2020, 142, 1846-1856.	6.6	24

#	Article	IF	CITATIONS
147	Coordination-driven assemblies based on meso-substituted porphyrins: Metal-organic cages and a new type of meso-metallaporphyrin macrocycles. Coordination Chemistry Reviews, 2020, 407, 213165.	9.5	62
148	Metalâ€Metal Cooperation in Dinucleating Complexes Involving Late Transition Metals Directed towards Organic Catalysis. Chinese Journal of Chemistry, 2020, 38, 185-201.	2.6	46
149	A subtle structural change in the distal haem pocket has a remarkable effect on tuning hydrogen peroxide reactivity in dye decolourising peroxidases from <i>Streptomyces lividans</i> . Dalton Transactions, 2020, 49, 1620-1636.	1.6	13
150	Ligand Taxonomy for Bioinorganic Modeling of Dioxygenâ€Activating Nonâ€Heme Iron Enzymes. Chemistry - A European Journal, 2020, 26, 5916-5926.	1.7	17
151	Computational Study on the Catalytic Reaction Mechanism of Heme Haloperoxidase Enzymes. Israel Journal of Chemistry, 2020, 60, 963-972.	1.0	5
152	Tuning Electron-Transfer Reactivity of a Chromium(III)–Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. Journal of the American Chemical Society, 2020, 142, 365-372.	6.6	21
153	Second oordination Sphere Effects on Selectivity and Specificity of Heme and Nonheme Iron Enzymes. Chemistry - A European Journal, 2020, 26, 5308-5327.	1.7	75
154	An enzymatic method for precise oxygen affinity measurements over nanomolar-to-millimolar concentration regime. Journal of Biological Inorganic Chemistry, 2020, 25, 181-186.	1.1	6
155	Formation and kinetic studies of manganese(IV)-oxo porphyrins: Oxygen atom transfer mechanism of sulfide oxidations. Journal of Inorganic Biochemistry, 2020, 204, 110986.	1.5	12
156	Visible light generation of high-valent metal-oxo intermediates and mechanistic insights into catalytic oxidations. Journal of Inorganic Biochemistry, 2020, 212, 111246.	1.5	8
157	Nature's Machinery, Repurposed: Expanding the Repertoire of Iron-Dependent Oxygenases. ACS Catalysis, 2020, 10, 12239-12255.	5.5	78
158	Exploiting attractive non-covalent interactions for the enantioselective catalysis of reactions involving radical intermediates. Nature Chemistry, 2020, 12, 990-1004.	6.6	113
159	Dioxygen at Biomimetic Single Metal-Atom Sites: Stabilization or Activation? The Case of CoTPyP/Au(111). Topics in Catalysis, 2020, 63, 1585-1595.	1.3	4
160	Singlet Oxygen Generation in Ferriporphyrin-Polymer Dots Catalyzed Chemiluminescence System for Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 5020-5029.	2.3	13
161	Mapping and Exploiting the Promiscuity of OxyB toward the Biocatalytic Production of Vancomycin Aglycone Variants. ACS Catalysis, 2020, 10, 9287-9298.	5.5	12
162	Understanding and Predicting Post H-Atom Abstraction Selectivity through Reactive Mode Composition Factor Analysis. Journal of the American Chemical Society, 2020, 142, 3947-3958.	6.6	20
163	Mimochrome, a metalloporphyrinâ€based catalytic Swiss knifeâ€. Biotechnology and Applied Biochemistry, 2020, 67, 495-515.	1.4	26
164	Intramolecular Electrostatic Effects on O ₂ , CO ₂ , and Acetate Binding to a Cationic Iron Porphyrin. Inorganic Chemistry, 2020, 59, 17402-17414.	1.9	20

#	ARTICLE	IF	CITATIONS
165	Encapsulation of Porphyrinâ€Fe/Cu Complexes into Coordination Space for Enhanced Selective Oxidative Dehydrogenation of Aromatic Hydrazides. Small, 2020, 16, e2004679.	5.2	9
166	Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C–H Bond Hydroxylation and Amidation of Equilenin Acetate. Journal of Organic Chemistry, 2020, 85, 14879-14889.	1.7	17
167	Surface Hydrogen Atoms Promote Oxygen Activation for Solar Light-Driven NO Oxidization over Monolithic α-Ni(OH) ₂ /Ni Foam. Environmental Science & Technology, 2020, 54, 16221-16230.	4.6	22
168	Central zinc metal-controlled regioselective meso-bromination of zincated β-silylporphyrins—rapid access to meso,β-dual-functionalized porphyrins. Organic and Biomolecular Chemistry, 2020, 18, 9791-9795.	1.5	1
169	Catalytic Reduction of Oxygen by a Copper Thiosemicarbazone Complex. European Journal of Inorganic Chemistry, 2020, 2020, 4549-4555.	1.0	7
170	Unprecedented Reactivities of Highly Reactive Manganese(III)–Iodosylarene Porphyrins in Oxidation Reactions. Journal of the American Chemical Society, 2020, 142, 19879-19884.	6.6	17
171	How Do Metal Ions Modulate the Rateâ€Determining Electronâ€Transfer Step in Cytochrome P450 Reactions?. Chemistry - A European Journal, 2020, 26, 15270-15281.	1.7	15
172	Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chemical Science, 2020, 11, 9741-9756.	3.7	157
173	QM/MM Calculations Reveal the Important Role of α-Heteroatom Substituents in Controlling Selectivity of Mononuclear Nonheme HppE-Catalyzed Reactions. ACS Catalysis, 2020, 10, 9521-9532.	5.5	7
174	Kinetic and Spectroscopic Characterization of the Catalytic Ternary Complex of Tryptophan 2,3-Dioxygenase. Biochemistry, 2020, 59, 2813-2822.	1.2	10
175	Electrocatalytic O ₂ Activation by Fe Tetrakis(pentafluorophenyl)porphyrin in Acidic Organic Media. Evidence of High-Valent Fe Oxo Species. Inorganic Chemistry, 2020, 59, 11577-11583.	1.9	7
176	Enhanced Redox Reactivity of a Nonheme Iron(V)–Oxo Complex Binding Proton. Journal of the American Chemical Society, 2020, 142, 15305-15319.	6.6	20
177	Proton-promoted disproportionation of iron(<scp>v</scp>)-imido TAML to iron(<scp>v</scp>)-imido TAML cation radical and iron(<scp>iv</scp>) TAML. Chemical Communications, 2020, 56, 11207-11210.	2.2	6
178	Biological concepts for catalysis and reactivity: empowering bioinspiration. Chemical Society Reviews, 2020, 49, 8840-8867.	18.7	42
179	Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. Small, 2020, 16, e2004345.	5.2	17
180	Control of Porphyrin Planarity and Aggregation by Covalent Capping: Bissilyloxy Porphyrin Silanes. Inorganic Chemistry, 2020, 59, 13533-13541.	1.9	4
181	The molecular effect of 1,4,7â€ŧriazacyclononane on oxidative stress parameters in human hepatocellular carcinoma (HepG2) cells. Journal of Biochemical and Molecular Toxicology, 2020, 34, e22607.	1.4	2
182	Oxoiron(<scp>v</scp>) mediated selective electrochemical oxygenation of unactivated C–H and C bonds using water as the oxygen source. Chemical Science, 2020, 11, 11877-11885.	3.7	28

#	Article	IF	CITATIONS
183	AlN ₄ -Graphene as an efficient catalyst for CO oxidation: a DFT study. New Journal of Chemistry, 2020, 44, 17222-17228.	1.4	6
184	Advances in Asymmetric Amino Acid Synthesis Enabled by Radical Chemistry. Advanced Synthesis and Catalysis, 2020, 362, 4325-4367.	2.1	37
185	Current state and future perspectives of engineered and artificial peroxygenases for the oxyfunctionalization of organic molecules. Nature Catalysis, 2020, 3, 690-702.	16.1	70
186	Catalytic Mechanism of Aromatic Nitration by Cytochrome P450 TxtE: Involvement of a Ferric-Peroxynitrite Intermediate. Journal of the American Chemical Society, 2020, 142, 15764-15779.	6.6	55
187	How external perturbations affect the chemoselectivity of substrate activation by cytochrome P450 OleT _{JE} . Physical Chemistry Chemical Physics, 2020, 22, 27178-27190.	1.3	13
188	Catalytic Enantioselective Methylene C(sp ³)–H Hydroxylation Using a Chiral Manganese Complex/Carboxylic Acid System. Organic Letters, 2020, 22, 9529-9533.	2.4	32
189	The Chemical Basis of Intracerebral Hemorrhage and Cell Toxicity With Contributions From Eryptosis and Ferroptosis. Frontiers in Cellular Neuroscience, 2020, 14, 603043.	1.8	17
190	Interaction between Hemin and Prion Peptides: Binding, Oxidative Reactivity and Aggregation. International Journal of Molecular Sciences, 2020, 21, 7553.	1.8	7
191	Generation and Oxidative Reactivity of a Ni(II) Superoxo Complex via Ligand-Based Redox Non-Innocence. Journal of the American Chemical Society, 2020, 142, 10824-10832.	6.6	24
192	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie, 2020, 132, 13683-13687.	1.6	2
193	Catalytic C–H Bond Oxidation Using Dioxygen by Analogues of Heme Superoxide. Inorganic Chemistry, 2020, 59, 7415-7425.	1.9	13
194	Enhancing catalytic alkane hydroxylation by tuning the outer coordination sphere in a heme-containing metal–organic framework. Chemical Science, 2020, 11, 5447-5452.	3.7	4
195	Effects of Noncovalent Interactions on High-Spin Fe(Ⅳ)–Oxido Complexes. Journal of the American Chemical Society, 2020, 142, 11804-11817.	6.6	53
196	Role of oxidation state, ferryl-oxygen, and ligand architecture on the reactivity of popular high-valent FeIV=O species: A theoretical perspective. Coordination Chemistry Reviews, 2020, 419, 213397.	9.5	34
197	Resonance Raman spectroscopic studies of peroxo and hydroperoxo intermediates in lauric acid (LA)-bound cytochrome P450 119. Journal of Inorganic Biochemistry, 2020, 208, 111084.	1.5	1
198	Light and oxygen-enabled sodium trifluoromethanesulfinate-mediated selective oxidation of C–H bonds. Green Chemistry, 2020, 22, 4357-4363.	4.6	68
199	Bioengineering of Cytochrome P450 OleTJE: How Does Substrate Positioning Affect the Product Distributions?. Molecules, 2020, 25, 2675.	1.7	21
200	Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O ₂ . Angewandte Chemie - International Edition, 2020, 59, 16376-16380.	7.2	9

# 201	ARTICLE Iron- and cobalt-catalyzed C(sp ³)–H bond functionalization reactions and their application in organic synthesis. Chemical Society Reviews, 2020, 49, 5310-5358.	IF 18.7	CITATIONS
202	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	5.6	228
203	Probing the Activity of Iron Peroxo Porphyrin Intermediates in the Reaction Layer during the Electrochemical Reductive Activation of O 2. Angewandte Chemie, 2020, 132, 16518.	1.6	0
204	Porphyrin Derivative Nanoformulations for Therapy and Antiparasitic Agents. Molecules, 2020, 25, 2080.	1.7	28
205	Highly Efficient Aerobic Oxidation of Cyclohexene Catalyzed by Iron(III) Porphyrins in Supercritical Carbon Dioxide. ECS Journal of Solid State Science and Technology, 2020, 9, 041014.	0.9	4
206	Olefin, Nitrile and Isonitrile Installation Catalyzed by Metalloenzymes. , 2020, , 191-214.		0
207	The metal- and substrate-dependences of 2,4′-dihydroxyacetophenone dioxygenase. Archives of Biochemistry and Biophysics, 2020, 691, 108441.	1.4	2
208	Disambiguating "Mechanisms―in Pharmacy: Lessons from Mechanist Philosophy of Science. International Journal of Environmental Research and Public Health, 2020, 17, 1833.	1.2	2
209	Acute toxicity of cyanide in aerobic respiration: Theoretical and experimental support for murburn explanation. Biomolecular Concepts, 2020, 11, 32-56.	1.0	28
210	Visualizing the protons in a metalloenzyme electron proton transfer pathway. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6484-6490.	3.3	22
211	Reductive Electrochemical Activation of Molecular Oxygen Catalyzed by an Iron-Tungstate Oxide Capsule: Reactivity Studies Consistent with Compound I Type Oxidants. ACS Catalysis, 2020, 10, 4227-4237.	5.5	17
212	Stoichiometric Formation of an Oxoiron(IV) Complex by a Soluble Methane Monooxygenase Type Activation of O ₂ at an Iron(II)-Cyclam Center. Journal of the American Chemical Society, 2020, 142, 5924-5928.	6.6	27
213	Oxoiron(V) Complexes of Relevance in Oxidation Catalysis of Organic Substrates. Israel Journal of Chemistry, 2020, 60, 1004-1018.	1.0	21
214	The oxidation of cyclo-olefin by the S = 2 ground-state complex [FeIV(O)(TQA)(NCMe)]2+. Journal of Biological Inorganic Chemistry, 2020, 25, 371-382.	1.1	2
215	6. Cytochrome P450. The Dioxygen-Activating Heme Thiolate. , 2020, 20, 165-198.		2
216	Iron and manganese oxo complexes, oxo wall and beyond. Nature Reviews Chemistry, 2020, 4, 404-419.	13.8	167
217	Artificial nonheme iron and manganese oxygenases for enantioselective olefin epoxidation and alkane hydroxylation reactions. Coordination Chemistry Reviews, 2020, 421, 213443.	9.5	82
218	Lignin Biodegradation by a Cytochrome P450 Enzyme: A Computational Study into Syringol Activation by GcoA. Chemistry - A European Journal, 2020, 26, 13093-13102.	1.7	34

	Сітатіс	on Report	
#	Article	IF	CITATIONS
219	Advances in the Molecular Catalysis of Dioxygen Reduction. ACS Catalysis, 2020, 10, 2640-2655.	5.5	76
220	Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. Journal of the American Chemical Society, 2020, 142, 3891-3904.	6.6	43
221	Elucidating the Electronic Structure of High-Spin [Mn ^{III} (TPP)Cl] Using Magnetic Circular Dichroism Spectroscopy. Inorganic Chemistry, 2020, 59, 2144-2162.	1.9	18
222	Spectroscopic Evidence for Acid-Catalyzed Disproportionation Reaction of Oxoiron(IV) Porphyrin to Oxoiron(IV) Porphyrin ï€-Cation Radical and Iron(III) Porphyrin. Journal of the American Chemical Society, 2020, 142, 4980-4984.	6.6	15
223	Post-functionalization of dibenzothiophene to functionalized biphenyls via a photoinduced thia-Baeyer-Villiger oxidation. Nature Communications, 2020, 11, 914.	5.8	11
224	1,2-Disubstituted Benzimidazoles by the Iron Catalyzed Cross-Dehydrogenative Coupling of Isomeric <i>o</i> -Phenylenediamine Substrates. Journal of Organic Chemistry, 2020, 85, 1991-2009.	1.7	35
225	A designed second-sphere hydrogen-bond interaction that critically influences the O–O bond activation for heterolytic cleavage in ferric iron–porphyrin complexes. Chemical Science, 2020, 11, 2681-2695.	3.7	24
226	Rewiring the "Push-Pull―Catalytic Machinery of a Heme Enzyme Using an Expanded Genetic Code. AC Catalysis, 2020, 10, 2735-2746.	S 5.5	25
227	Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chemical Science, 2020, 11, 2121-2129.	3.7	46
228	Singleâ€Atom Catalysts in Catalytic Biomedicine. Advanced Materials, 2020, 32, e1905994.	11.1	260
229	Oxidation of an indole substrate by porphyrin iron(<scp>iii</scp>) superoxide: relevance to indoleamine and tryptophan 2,3-dioxygenases. Chemical Communications, 2020, 56, 3089-3092.	2.2	12
230	Sluggish reactivity by a nonheme iron(<scp>iv</scp>)-tosylimido complex as compared to its oxo analogue. Dalton Transactions, 2020, 49, 5921-5931.	1.6	17
231	Structure and Unprecedented Reactivity of a Mononuclear Nonheme Cobalt(III) Iodosylbenzene Complex. Angewandte Chemie - International Edition, 2020, 59, 13581-13585.	7.2	19
232	Dipyrrin based metal complexes: reactivity and catalysis. Dalton Transactions, 2020, 49, 6161-6175.	1.6	31
233	Penta-coordinated transition metal macrocycles as electrocatalysts for the oxygen reduction reaction. Journal of Solid State Electrochemistry, 2021, 25, 15-31.	1.2	22
234	How Oxygen Binding Enhances Longâ€Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase. Angewandte Chemie, 2021, 133, 2415-2422.	1.6	1
235	The iTRAQ-based quantitative proteomics reveals metabolic changes in Scylla paramamosain under different light intensities during indoor overwintering. Ecotoxicology and Environmental Safety, 2021, 207, 111384.	2.9	6
236	First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Applied Catalysis B: Environmental, 2021, 284, 119717.	10.8	28

#	Article	IF	CITATIONS
237	Recent advances in electroanalytical drug detection by porphyrin/phthalocyanine macrocycles: developments and future perspectives. Analyst, The, 2021, 146, 365-381.	1.7	14
238	Insight into the chemoselective aromatic vs. side-chain hydroxylation of alkylaromatics with H2O2 catalyzed by a non-heme imine-based iron complex. Catalysis Science and Technology, 2021, 11, 171-178.	2.1	5
239	An Efficient Bioâ€inspired Oxygen Reduction Reaction Catalyst: MnO <i>_x</i> Nanosheets Incorporated Iron Phthalocyanine Functionalized Graphene. Energy and Environmental Materials, 2021, 4, 474-480.	7.3	11
240	Cobalt Single Atoms on Tetrapyridomacrocyclic Support for Efficient Peroxymonosulfate Activation. Environmental Science & Technology, 2021, 55, 1242-1250.	4.6	185
241	General Access to Modified αâ€Amino Acids by Bioinspired Stereoselective γâ€Câ^'H Bond Lactonization. Angewandte Chemie - International Edition, 2021, 60, 4740-4746.	7.2	31
242	General Access to Modified αâ€Amino Acids by Bioinspired Stereoselective γ â^'H Bond Lactonization. Angewandte Chemie, 2021, 133, 4790-4796.	1.6	8
243	Self-sufficient Cytochrome P450s and their potential applications in biotechnology. Chinese Journal of Chemical Engineering, 2021, 30, 121-135.	1.7	11
244	A comprehensive insight into aldehyde deformylation: mechanistic implications from biology and chemistry. Organic and Biomolecular Chemistry, 2021, 19, 1879-1899.	1.5	25
245	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie, 2021, 133, 477-483.	1.6	5
246	Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for Hâ€Atom Transfer (HAT). Angewandte Chemie - International Edition, 2021, 60, 5907-5912.	7.2	10
247	Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral photocatalysis. Nature Chemistry, 2021, 13, 24-32.	6.6	20
248	Activation of Molecular Oxygen by a Cobalt(II) Tetraâ€NHC Complex**. Chemistry - A European Journal, 2021, 27, 1311-1315.	1.7	10
249	How Oxygen Binding Enhances Longâ€Range Electron Transfer: Lessons From Reduction of Lytic Polysaccharide Monooxygenases by Cellobiose Dehydrogenase. Angewandte Chemie - International Edition, 2021, 60, 2385-2392.	7.2	15
250	Facile Dinitrogen and Dioxygen Cleavage by a Uranium(III) Complex: Cooperativity Between the Nonâ€Innocent Ligand and the Uranium Center. Angewandte Chemie - International Edition, 2021, 60, 473-479.	7.2	42
251	Stabilization and activation of molecular oxygen at biomimetic tetrapyrroles on surfaces: from UHV to near-ambient pressure. Nanoscale Advances, 2021, 3, 1319-1330.	2.2	5
252	Nanozymes for Environmental Pollutant Monitoring and Remediation. Sensors, 2021, 21, 408.	2.1	44
253	The versatile biochemistry of iron in macrophage effector functions. FEBS Journal, 2021, 288, 6972-6989.	2.2	12
254	Modulating alkene reactivity from oxygenation to halogenation <i>via</i> electrochemical O ₂ activation by Mn porphyrin. Chemical Communications, 2021, 57, <u>1198-1201</u> .	2.2	5

#	Article	IF	CITATIONS
255	Single gold nanoparticle-driven heme cofactor nanozyme as an unprecedented oxidase mimetic. Chemical Communications, 2021, 57, 3399-3402.	2.2	8
256	Manganese-promoted cleavage of acetylacetonate resembling the β-diketone cleaving dioxygenase (Dke1) reactivity. Chemical Communications, 2021, 57, 9462-9465.	2.2	1
257	Photocatalytic CO ₂ reduction to CH ₄ on iron porphyrin supported on atomically thin defective titanium dioxide. Catalysis Science and Technology, 2021, 11, 6103-6111.	2.1	13
258	Histidine orientation in artificial peroxidase regioisomers as determined by paramagnetic NMR shifts. Chemical Communications, 2021, 57, 990-993.	2.2	7
259	Iron hexamesityl-5,15-diazaporphyrin: synthesis, structure and catalytic use for direct oxidation of sp3 C–H bonds. Dalton Transactions, 2021, 50, 6343-6348.	1.6	3
260	Cobalt-Oxo Complexes. , 2021, , 825-845.		0
261	Transition metal-mediated O–O bond formation and activation in chemistry and biology. Chemical Society Reviews, 2021, 50, 4804-4811.	18.7	113
262	Advancements in multifunctional manganese complexes for catalytic hydrogen transfer reactions. Chemical Communications, 2021, 57, 8534-8549.	2.2	41
263	A novel <i>o</i> -vanillin Fe(<scp>iii</scp>) complex catalytically active in C–H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Transactions, 2021, 50, 14782-14796.	1.6	5
264	Aerobic asymmetric oxygenation catalysis: a well forgotten… future?. Mendeleev Communications, 2021, 31, 8-13.	0.6	5
265	Cytochrome P450 Enzyme Mechanisms. , 2021, , 254-268.		0
266	Bio-Relevant Chemistry of Nickel. , 2021, , 846-877.		1
267	Methods for the Extraction of Heme Prosthetic Groups from Hemoproteins. Bio-protocol, 2021, 11, e4156.	0.2	4
268	A Mononuclear Non-Heme Manganese(III)–Aqua Complex in Oxygen Atom Transfer Reactions via Electron Transfer. Journal of the American Chemical Society, 2021, 143, 1521-1528.	6.6	19
269	Formation of cobalt–oxygen intermediates by dioxygen activation at a mononuclear nonheme cobalt(<scp>ii</scp>) center. Dalton Transactions, 2021, 50, 11889-11898.	1.6	6
270	Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chemical Society Reviews, 2021, 50, 2540-2581.	18.7	249
271	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie, 2021, 133, 7654-7659.	1.6	16
272	System: A DFT Mechanistic Study. Organic Letters, 2021, 23, 1535-1540.	2.4	15

#	Article	IF	CITATIONS
273	An Iron(IV)–Oxo Intermediate Initiating <scp>l</scp> -Arginine Oxidation but Not Ethylene Production by the 2-Oxoglutarate-Dependent Oxygenase, Ethylene-Forming Enzyme. Journal of the American Chemical Society, 2021, 143, 2293-2303.	6.6	18
274	meso-Substitution Activates Oxoiron(IV) Porphyrin π-Cation Radical Complex More Than Pyrrole-β-Substitution for Atom Transfer Reaction. Inorganic Chemistry, 2021, 60, 3207-3217.	1.9	12
275	A Highly Reactive Chromium(V)–Oxo TAML Cation Radical Complex in Electron Transfer and Oxygen Atom Transfer Reactions. ACS Catalysis, 2021, 11, 2889-2901.	5.5	10
276	Electrifying catalytic aerobic oxidation. Nature Catalysis, 2021, 4, 96-97.	16.1	4
277	Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for Hâ€Atom Transfer (HAT). Angewandte Chemie, 2021, 133, 5972-5977.	1.6	1
278	Enzymeâ€Inspired Iron Porphyrins for Improved Electrocatalytic Oxygen Reduction and Evolution Reactions. Angewandte Chemie - International Edition, 2021, 60, 7576-7581.	7.2	164
279	Molecular Rationale for Partitioning between C–H and C–F Bond Activation in Heme-Dependent Tyrosine Hydroxylase. Journal of the American Chemical Society, 2021, 143, 4680-4693.	6.6	16
280	QM-Cluster Model Study of the Guaiacol Hydrogen Atom Transfer and Oxygen Rebound with Cytochrome P450 Enzyme GcoA. Journal of Physical Chemistry B, 2021, 125, 3296-3306.	1.2	13
281	Effect of 3d/4p Mixing on 1s2p Resonant Inelastic X-ray Scattering: Electronic Structure of Oxo-Bridged Iron Dimers. Journal of the American Chemical Society, 2021, 143, 4569-4584.	6.6	10
282	Ligand Architecture Perturbation Influences the Reactivity of Nonheme Iron(V)-Oxo Tetraamido Macrocyclic Ligand Complexes: A Combined Experimental and Theoretical Study. Inorganic Chemistry, 2021, 60, 4058-4067.	1.9	7
283	Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chemical Research in Toxicology, 2021, 34, 959-987.	1.7	11
284	A previously unknown way of heme detoxification in the digestive tract of cats. Scientific Reports, 2021, 11, 8290.	1.6	0
285	Unveiling the Nature of Room-Temperature O ₂ Activation and O ₂ ^{•–} Enrichment on MgO-Loaded Porous Carbons with Efficient H ₂ S Oxidation. ACS Catalysis, 2021, 11, 5974-5983.	5.5	53
286	Effect of solvent on the electronic absorption spectral properties of mixed \hat{l}^2 -octasubstituted free base tetraphenylporphyrins. Journal of Porphyrins and Phthalocyanines, 2021, 25, 500-510.	0.4	1
287	Removal of hard COD from acidic eucalyptus kraft pulp bleach plant effluent streams using oxidoreductases. Biotechnology and Applied Biochemistry, 2022, 69, 687-700.	1.4	0
288	Substrate promiscuity of a de novo designed peroxidase. Journal of Inorganic Biochemistry, 2021, 217, 111370.	1.5	8
289	Pursuit of an Electron Deficient Titanium Nitride. Inorganic Chemistry, 2021, 60, 5635-5646.	1.9	7
290	De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in <i>E. coli</i> and incorporation into hemoproteins. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	11

#	Article	IF	CITATIONS
291	Local Electric Fields As a Natural Switch of Heme-Iron Protein Reactivity. ACS Catalysis, 2021, 11, 6534-6546.	5.5	40
292	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie - International Edition, 2021, 60, 14083-14090.	7.2	29
293	Mechanism of Oxidative Ring losure as Part of the Hygromycin Biosynthesis Step by a Nonheme Iron Dioxygenase. ChemCatChem, 2021, 13, 3054-3066.	1.8	13
294	Bionic design of cytochrome c oxidase-like single-atom nanozymes for oxygen reduction reaction in enzymatic biofuel cells. Nano Energy, 2021, 83, 105798.	8.2	34
295	Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coordination Chemistry Reviews, 2021, 435, 213807.	9.5	35
296	Ironâ€Catalyzed Wackerâ€type Oxidation of Olefins at Room Temperature with 1,3â€Diketones or Neocuproine as Ligands**. Angewandte Chemie, 2021, 133, 14202-14209.	1.6	12
297	Significance of Heme and Heme Degradation in the Pathogenesis of Acute Lung and Inflammatory Disorders. International Journal of Molecular Sciences, 2021, 22, 5509.	1.8	18
298	Dioxygen Activation and Pyrrole αâ€Cleavage with Calix[4]pyrrolato Aluminates: Enzyme Model by Structural Constraint. Angewandte Chemie - International Edition, 2021, 60, 15632-15640.	7.2	24
299	Substrate sulfoxidation by a biomimetic cytochrome P450 Compound I mimic: How do porphyrin and phthalocyanine equatorial ligands compare?. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
300	Density Functional Theory Study into the Reaction Mechanism of Isonitrile Biosynthesis by the Nonheme Iron Enzyme ScoE. Topics in Catalysis, 2022, 65, 528-543.	1.3	8
301	Disauerstoffaktivierung und Pyrrolâ€Î±â€6paltung mit Calix[4]pyrrolatoaluminaten: Enzymmodell durch strukturellen Zwang. Angewandte Chemie, 2021, 133, 15761-15769.	1.6	7
302	Electrostatic Perturbations from the Protein Affect Câ^'H Bond Strengths of the Substrate and Enable Negative Catalysis in the TmpA Biosynthesis Enzyme. Chemistry - A European Journal, 2021, 27, 8851-8864.	1.7	20
303	Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nature Communications, 2021, 12, 3375.	5.8	163
304	Aerobic Heterogeneous Palladium-Catalyzed Oxidative Allenic Câ^'H Arylation: Benzoquinone as a Direct Redox Mediator between O ₂ and Pd. CCS Chemistry, 2021, 3, 1127-1137.	4.6	6
305	Significant Solvent Effect on Reactivity of Oxoiron(IV) Porphyrin π-Cation Radical Complex: Activation in <i>n</i> -Alkane Solvent. Inorganic Chemistry, 2021, 60, 9243-9247.	1.9	5
306	Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations. Journal of Medicinal Chemistry, 2021, 64, 8545-8563.	2.9	7
307	Nanozymes Inspired by Natural Enzymes. Accounts of Materials Research, 2021, 2, 534-547.	5.9	304
308	H-Bonding Networks Dictate the Molecular Mechanism of H ₂ O ₂ Activation by P450. ACS Catalysis, 2021, 11, 8774-8785.	5.5	37

#	Article	IF	CITATIONS
309	Calix[3]pyrrole: A Missing Link in Porphyrin-Related Chemistry. Journal of the American Chemical Society, 2021, 143, 12355-12360.	6.6	30
310	Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catalysis, 2021, 11, 9407-9417.	5.5	22
311	pH Changes That Induce an Axial Ligand Effect on Nonheme Iron(IV) Oxo Complexes with an Appended Aminopropyl Functionality. Inorganic Chemistry, 2021, 60, 13821-13832.	1.9	0
312	Design of flexible dendritic systems bearing donor-acceptor groups (pyrene-porphyrin) for FRET applications. Dyes and Pigments, 2021, 191, 109382.	2.0	7
313	Recent advances in the practical use of the redox properties of manganese porphyrins. Journal of Organometallic Chemistry, 2021, 945, 121880.	0.8	6
314	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie - International Edition, 2021, 60, 19262-19271.	7.2	275
315	Product Distributions of Cytochrome P450 OleTJE with Phenyl-Substituted Fatty Acids: A Computational Study. International Journal of Molecular Sciences, 2021, 22, 7172.	1.8	6
316	An Adjacent Atomic Platinum Site Enables Singleâ€Atom Iron with High Oxygen Reduction Reaction Performance. Angewandte Chemie, 2021, 133, 19411-19420.	1.6	32
317	Aliphatic C–H hydroxylation activity and durability of a nickel complex catalyst according to the molecular structure of the bis(oxazoline) ligands. Molecular Catalysis, 2021, 511, 111718.	1.0	6
318	Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catalysis, 2021, 11, 9761-9797.	5.5	54
319	Negative catalysis / non-Bell-Evans-Polanyi reactivity by metalloenzymes: Examples from mononuclear heme and non-heme iron oxygenases. Coordination Chemistry Reviews, 2021, 439, 213914.	9.5	41
320	Enzymatic Hydroxylations of sp ³ -Carbons. ACS Catalysis, 2021, 11, 9168-9203.	5.5	51
321	The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide. Biochemistry, 2021, 60, 2436-2446.	1.2	6
322	Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Research, 2022, 15, 1509-1516.	5.8	31
323	Electrocatalytic Oxyesterification of Hydrocarbons by Tetravalent Lead. ACS Catalysis, 2021, 11, 10494-10501.	5.5	0
324	Role of PhOH and Tyrosine in Selective Oxidation of Hydrocarbons. Catalysts, 2021, 11, 1032.	1.6	2
325	Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. Jacs Au, 2021, 1, 1296-1311.	3.6	10
326	From mononuclear iron phthalocyanines in catalysis to μ-nitrido diiron complexes and beyond. Catalysis Today, 2021, 373, 38-58.	2.2	20

#	Article	IF	CITATIONS
327	Semiempirical method for examining asynchronicity in metal–oxido-mediated C–H bond activation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	28
328	Dehaloperoxidase: An enzymatic Swiss army knife. Coordination Chemistry Reviews, 2021, 441, 213976.	9.5	8
329	Liquid-phase epoxidation of propylene with molecular oxygen by chloride manganese meso-tetraphenylporphyrins. Chinese Journal of Chemical Engineering, 2022, 48, 61-65.	1.7	1
330	Matrix isolation infrared study of the interaction of dioxygen with chromium(II)tetraphenylporphyrin. Inorganica Chimica Acta, 2021, 524, 120439.	1.2	2
331	How does Lewis acid affect the reactivity of mononuclear <scp>highâ€valent chromium–oxo</scp> species? A theoretical study. Bulletin of the Korean Chemical Society, 2021, 42, 1501-1505.	1.0	5
332	Nitrene transfers mediated by natural and artificial iron enzymes. Journal of Inorganic Biochemistry, 2021, 225, 111613.	1.5	5
333	Electronic properties and reactivity patterns of <scp>highâ€valent metalâ€oxo</scp> species of Mn, Fe, Co, and Ni. Bulletin of the Korean Chemical Society, 2021, 42, 1506-1512.	1.0	9
334	Mechanistic Studies on the Hexadecafluorophthalocyanine–Iron atalyzed Wackerâ€Type Oxidation of Olefins to Ketones**. Chemistry - A European Journal, 2021, 27, 16776-16787.	1.7	11
335	A Mononuclear Non-heme Iron(III)–Peroxo Complex with an Unprecedented High O–O Stretch and Electrophilic Reactivity. Journal of the American Chemical Society, 2021, 143, 15556-15561.	6.6	11
336	Structural and Spectroscopic Evidence for a Side-on Fe(III)–Superoxo Complex Featuring Discrete O–O Bond Distances. Jacs Au, 2021, 1, 1389-1398.	3.6	9
337	C–H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorganic Chemistry, 2021, 60, 13759-13783.	1.9	36
338	Synthesis, characterization, and reactivity of oxoiron(IV) porphyrin π-cation radical complexes bearing cationic N-methyl-2-pyridinium group. Journal of Inorganic Biochemistry, 2021, 223, 111542.	1.5	4
339	Degradation of imatinib mesylate by manganese peroxidase (MnP): Optimization, identification of transformation products, pathway proposal and in silico predictions. Journal of Environmental Chemical Engineering, 2021, 9, 106246.	3.3	2
340	Synthesis, characterization and catalytic activity of a mononuclear nonheme copper(II)-iodosylbenzene adduct. Journal of Inorganic Biochemistry, 2021, 223, 111524.	1.5	3
341	Atomically dispersed Fe/Bi dual active sites single-atom nanozymes for cascade catalysis and peroxymonosulfate activation to degrade dyes. Journal of Hazardous Materials, 2022, 422, 126929.	6.5	69
342	Computational insight into biotransformation of halophenols by cytochrome P450: Mechanism and reactivity for epoxidation. Chemosphere, 2022, 286, 131708.	4.2	8
343	TEMPO-radical-bearing metal–organic frameworks and covalent organic frameworks for catalytic applications. Dalton Transactions, 2021, 50, 14081-14090.	1.6	8
344	Characterization and reactivity study of non-heme high-valent iron–hydroxo complexes. Chemical Science, 2021, 12, 4418-4424.	3.7	12

#	Article	IF	CITATIONS
345	Molecular understanding of heteronuclear active sites in heme–copper oxidases, nitric oxide reductases, and sulfite reductases through biomimetic modelling. Chemical Society Reviews, 2021, 50, 2486-2539.	18.7	30
346	Electrocatalysis as an enabling technology for organic synthesis. Chemical Society Reviews, 2021, 50, 7941-8002.	18.7	534
347	Visible light-promoted aerobic oxidative cleavage and cyclization of olefins to access 3-hydroxy-isoindolinones. Organic Chemistry Frontiers, 2021, 9, 25-31.	2.3	6
348	Synthesis of a light-harvesting ruthenium porphyrin complex substituted with BODIPY units. Implications for visible light-promoted catalytic oxidations. New Journal of Chemistry, 2021, 45, 4977-4985.	1.4	9
350	A mechanistic study of the manganese porphyrin-catalyzed C–H isocyanation reaction. Organic Chemistry Frontiers, 2021, 8, 1858-1866.	2.3	7
351	Proton-coupled electron transfer reactivities of electronically divergent heme superoxide intermediates: a kinetic, thermodynamic, and theoretical study. Chemical Science, 2021, 12, 8872-8883.	3.7	13
352	Recent Advances in Understanding, Enhancing and Creating Heme Peroxidases. , 2021, , 238-253.		1
353	Electronic structures, bonding, and spin state energetics of biomimetic mononuclear and bridged dinuclear iron complexes: a computational examination. Structural Chemistry, 2021, 32, 1473-1488.	1.0	7
354	Mangana(<scp>iii</scp> / <scp>iv</scp>)electro-catalyzed C(sp ³)–H azidation. Chemical Science, 2021, 12, 2890-2897.	3.7	69
355	Organic synthesis with the most abundant transition metal–iron: from rust to multitasking catalysts. Chemical Society Reviews, 2021, 50, 243-472.	18.7	175
356	Fungal Peroxygenases: A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions. Grand Challenges in Biology and Biotechnology, 2020, , 369-403.	2.4	53
357	Emerging Structural and Functional Diversity in Proteins With Dioxygen-Reactive Dinuclear Transition Metal Cofactors. , 2020, , 215-250.		23
358	Alternative modes of O2 activation in P450 and NOS enzymes are clarified by DFT modeling and resonance Raman spectroscopy. Journal of Inorganic Biochemistry, 2020, 207, 111054.	1.5	5
359	Redox reactions of heme proteins with flavonoids. Journal of Inorganic Biochemistry, 2020, 208, 111095.	1.5	11
360	CHAPTER 1. Dioxygen Binding and Activation Mediated by Transition Metal Porphyrinoid Complexes. 2-Oxoglutarate-Dependent Oxygenases, 2018, , 1-36.	0.8	5
361	Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chemical Society Reviews, 2020, 49, 8988-9027.	18.7	61
362	Anaerobic fixed-target serial crystallography. IUCrJ, 2020, 7, 901-912.	1.0	12
364	Quantitative evaluation of O ₂ activation half-reaction for Fe–N–C in oxidase-like activity enhancement. Catalysis Science and Technology, 2021, 11, 7255-7259.	2.1	9

#	Article	IF	CITATIONS
365	Bioinspired mononuclear Mn complexes for O ₂ activation and biologically relevant reactions. Dalton Transactions, 2021, 50, 16871-16886.	1.6	6
366	A new regime of heme-dependent aromatic oxygenase superfamily. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
367	Oxygen Atom Transfer Mechanism for <scp>Vanadiumâ€Oxo</scp> Porphyrin Complexes Mediated Aerobic Olefin Epoxidation. Chinese Journal of Chemistry, 2022, 40, 115-122.	2.6	10
368	Degradation: A critical challenge for M–N–C electrocatalysts. Journal of Energy Chemistry, 2021, 63, 667-674.	7.1	21
369	The Oxo-Wall Remains Intact: A Tetrahedrally Distorted Co(IV)–Oxo Complex. Journal of the American Chemical Society, 2021, 143, 16943-16959.	6.6	12
371	The catalytic cycle of cytochrome P450: a fascinating choreography. Trends in Chemistry, 2021, 3, 1027-1044.	4.4	27
372	Deeper Understanding of Mononuclear Manganese(Ⅳ)–Oxo Binding BrÃ,nsted and Lewis Acids and the Manganese(Ⅳ)–Hydroxide Complex. Inorganic Chemistry, 2021, 60, 16996-17007.	1.9	16
373	Enthalpy–Entropy Compensation Effect in Oxidation Reactions by Manganese(IV)-Oxo Porphyrins and Nonheme Iron(IV)-Oxo Models. Journal of the American Chemical Society, 2021, 143, 18559-18570.	6.6	16
374	Heme Peroxidases. , 2021, , 1-6.		0
375	<i>>De Novo</i> Design, Solution Characterization, and Crystallographic Structure of an Abiological Mn–Porphyrin-Binding Protein Capable of Stabilizing a Mn(V) Species. Journal of the American Chemical Society, 2021, 143, 252-259.	6.6	19
376	Oxidative Degradation of Pharmaceuticals: The Role of Tetrapyrrole-Based Catalysts. Catalysts, 2021, 11, 1335.	1.6	17
377	Mechanistic Insight into the O–O Bond Activation by Manganese Corrole Complexes. Topics in Catalysis, 2022, 65, 493-504.	1.3	2
378	Homogeneous oxidation of C–H bonds with <i>m</i> -CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catalysis Science and Technology, 2022, 12, 282-299.	2.1	7
379	Coupling-promoted oxidative degradation of organic micropollutants by iron oxychloride (FeOCl) with dual active sites. Chemical Engineering Journal Advances, 2022, 9, 100214.	2.4	1
380	Catalytic Aerobic Oxidation of Alkenes with Ferric Boroperoxo Porphyrin Complex; Reduction of Oxygen by Iron Porphyrin. Bulletin of the Chemical Society of Japan, 2021, 94, 2493-2497.	2.0	3
381	Rate-Limiting Step of Epoxidation Reaction of the Oxoiron(Ⅳ) Porphyrin Ï€-Cation Radical Complex: Electron Transfer Coupled Bond Formation Mechanism. Inorganic Chemistry, 2021, 60, 17687-17698.	1.9	9
382	Plasmon-Accelerated Water Oxidation at Ni-Modified Au Nanodimers on TiO ₂ Single Crystals. ACS Energy Letters, 2021, 6, 4374-4382.	8.8	14
383	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie - International Edition, 2022, 61, e202111492.	7.2	5

#	Article	IF	CITATIONS
384	Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chemical Reviews, 2022, 122, 2017-2291.	23.0	211
385	Synthetic heme dioxygen adducts: electronic structure and reactivity. Trends in Chemistry, 2022, 4, 15-31.	4.4	3
386	Capture of carbon monoxide using a heme protein model: from biomimetic chemistry of heme proteins to physiological and therapeutic applications. Polymer Journal, 2022, 54, 465-472.	1.3	5
387	A hypervalent iodine secondary oxidant synthesized by photosensitized singlet oxygen: Synthesis, characterization and oxidative reactivity. Journal of Catalysis, 2021, 405, 545-545.	3.1	2
388	An Iron(III) Superoxide Corrole from Iron(II) and Dioxygen. Angewandte Chemie, 0, , .	1.6	3
389	SERS Enhancement of Porphyrin-Type Molecules on Metal-Free Cellulose-Based Substrates. ACS Sustainable Chemistry and Engineering, 2021, 9, 16808-16819.	3.2	14
390	Methane Activation by the Heteronuclear Cluster [TiAlO ₄] ⁺ : Direct Hydrogen Abstraction by a Nonradical Oxygen. Journal of Physical Chemistry Letters, 2021, 12, 11730-11735.	2.1	6
391	Metal-catalyzed biomimetic aerobic oxidation of organic substrates. Advances in Catalysis, 2021, 69, 1-57.	0.1	1
392	Recent advances in electrocatalysis with phthalocyanines. Chemical Society Reviews, 2021, 50, 12985-13011.	18.7	135
393	dâ€Orbital Reconstructions Forced by Double Bowâ€Shaped Deformations and Second Coordination Sphere Effects of Cu(II) Heme Analogs in HER**. Chemistry - A European Journal, 2022, 28, e202103892.	1.7	4
394	Exploring the folding energy landscapes of heme proteins using a hybrid AWSEM-heme model. Journal of Biological Physics, 2022, 48, 37-53.	0.7	3
395	An active site at work – the role of key residues in C. diphteriae coproheme decarboxylase. Journal of Inorganic Biochemistry, 2022, 229, 111718.	1.5	9
396	Dual enzyme-mimic nanozyme based on single-atom construction strategy for photothermal-augmented nanocatalytic therapy in the second near-infrared biowindow. Biomaterials, 2022, 281, 121325.	5.7	66
397	Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Industrial & Engineering Chemistry Research, 2020, 59, 19982-19988.	1.8	7
398	An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catalysis, 2022, 12, 1614-1625.	5.5	29
399	Melatonin: Regulation of Prion Protein Phase Separation in Cancer Multidrug Resistance. Molecules, 2022, 27, 705.	1.7	14
400	Computational insights into different regioselectivities in the Ir-porphyrin-catalyzed C–H insertion reaction of quinoid carbene. Organic Chemistry Frontiers, 2022, 9, 1143-1151.	2.3	2
401	Metal-porphyrin in epoxidation of olefins: Recent advances. Tetrahedron, 2022, 104, 132604.	1.0	9

#	Article	IF	CITATIONS
402	Therapeutic applications. , 2022, , 623-659.		0
403	Second-Sphere Lattice Effects in Copper and Iron Zeolite Catalysis. Chemical Reviews, 2022, 122, 12207-12243.	23.0	12
404	Single-atom Pd catalysts as oxidase mimics with maximum atom utilization for colorimetric analysis. Nano Research, 2022, 15, 4411-4420.	5.8	55
405	Boosting Electrochemical Oxygen Reduction Performance of Iron Phthalocyanine through Axial Coordination Sphere Interaction. ChemSusChem, 2022, 15, .	3.6	30
406	End-On Copper(I) Superoxo and Cu(II) Peroxo and Hydroperoxo Complexes Generated by Cryoreduction/Annealing and Characterized by EPR/ENDOR Spectroscopy. Journal of the American Chemical Society, 2022, 144, 377-389.	6.6	17
407	Self-Adaptive Single-Atom Catalyst Boosting Selective Ferroptosis in Tumor Cells. ACS Nano, 2022, 16, 855-868.	7.3	84
408	Activation of O ₂ across a C(sp ³)–C(sp ³) bond. Chemical Communications, 2022, 58, 3122-3125.	2.2	0
409	Following Nature's Footprint: Mimicking the High-Valent Heme-Oxo Mediated Indole Monooxygenation Reaction Landscape of Heme Enzymes. Journal of the American Chemical Society, 2022, 144, 3843-3854.	6.6	10
410	Copper-catalyzed radical relay in C(sp ³)–H functionalization. Chemical Society Reviews, 2022, 51, 1640-1658.	18.7	133
411	Reactivity vs. Selectivity of Biomimetic Catalyst Systems of the Fe(PDP) Family through the Nature and Spin State of the Active Ironâ€Oxygen Species. Chemical Record, 2022, 22, e202100334.	2.9	8
412	Interlayer Structure Manipulation of Iron Oxychloride by Potassium Cation Intercalation to Steer H ₂ O ₂ Activation Pathway. Journal of the American Chemical Society, 2022, 144, 4294-4299.	6.6	52
413	Electrocatalytic Water Oxidation Activity of Molecular Copper Complexes: Effect of Redox-Active Ligands. Inorganic Chemistry, 2022, 61, 3152-3165.	1.9	14
414	The chameleon-like nature of elusive cobalt–oxygen intermediates in C–H bond activation reactions. Dalton Transactions, 2022, 51, 4317-4323.	1.6	6
415	DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal–Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. Jacs Au, 2022, 2, 745-761.	3.6	6
416	Oxygen and Chlorine Dual Vacancies Enable Photocatalytic O ₂ Dissociation into Monatomic Reactive Oxygen on BiOCl for Refractory Aromatic Pollutant Removal. Environmental Science & Technology, 2022, 56, 3587-3595.	4.6	79
417	Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. National Science Review, 2022, 9, .	4.6	19
418	Structure and Reactivity of Nonporphyrinic Terminal Manganese(IV)–Hydroxide Complexes in the Oxidative Electrophilic Reaction. Inorganic Chemistry, 2022, 61, 4292-4301.	1.9	6
419	Creating Hybrid Coordination Environment in Feâ€Based Single Atom Catalyst for Efficient Oxygen Reduction. ChemSusChem, 2022, 15, .	3.6	12

#	Article	IF	CITATIONS
420	Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial <scp> <i>Corynebacterium diphtheriae</i> </scp> . Journal of Raman Spectroscopy, 0, , .	1.2	4
421	Methane Monooxygenase Mimic Asymmetric Oxidation: Self-Assembling μ-Hydroxo, Carboxylate-Bridged Diiron(III)-Catalyzed Enantioselective Dehydrogenation. Journal of the American Chemical Society, 2022, 144, 5976-5984.	6.6	12
422	Theoretical perspective on mononuclear copper-oxygen mediated C–H and O–H activations: A comparison between biological and synthetic systems. Chinese Journal of Catalysis, 2022, 43, 913-927.	6.9	10
423	The remarkable effects of a ligand nitro substituent in organoplatinum chemistry related to activation of dioxygen or reductive elimination of methane. Polyhedron, 2022, 217, 115722.	1.0	2
424	Biotransformation of BPA via epoxidation catalyzed by Cytochrome P450. Inorganic Chemistry Communication, 2022, 139, 109321.	1.8	2
425	Overview: Some Basic Controversies and Applications of Cytochrome P450 Compound I. , 2021, , .		0
426	Tandem Mass Tag-Based Proteomics Reveals the effect of Electron Beam Irradiation on Metabolism-Related Differentially Expressed Proteins in <i>Solenocera melantho</i> Postmortem. Journal of Aquatic Food Product Technology, 2022, 31, 60-70.	0.6	1
427	De novo metalloprotein design. Nature Reviews Chemistry, 2022, 6, 31-50.	13.8	44
428	Reactive High-Valent Iron Intermediates in Enhancing Treatment of Water by Ferrate. Environmental Science & Technology, 2022, 56, 30-47.	4.6	63
429	Which is the real oxidant in the competitive ligand self-hydroxylation and substrate oxidation, a biomimetic iron(II)-hydroperoxo species or an oxo-iron(IV)-hydroxy one?. Dalton Transactions, 2022, , .	1.6	2
430	Heme compound II models in chemoselectivity and disproportionation reactions. Chemical Science, 0, ,	3.7	8
431	Engineering single-atom catalysts toward biomedical applications. Chemical Society Reviews, 2022, 51, 3688-3734.	18.7	43
432	Generation and Spectral Properties of Oxidized Forms of Iridium and Rhenium Porphyrin Complexes. Russian Journal of Inorganic Chemistry, 2022, 67, 338-349.	0.3	2
433	Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chemical Reviews, 2022, 122, 12370-12426.	23.0	44
434	Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp ³)–H Functionalization via Radical and Cationic Intermediates. Journal of the American Chemical Society, 2022, 144, 7391-7401.	6.6	16
435	Controllable synthesis of boron-doped Zn–N–C single-atom nanozymes for the ultrasensitive colorimetric detection of p-phenylenediamine. Biosensors and Bioelectronics, 2022, 210, 114294.	5.3	44
437	Hemin-catalyzed oxidative oligomerization of <i>p</i> -aminodiphenylamine (PADPA) in the presence of aqueous sodium dodecylbenzenesulfonate (SDBS) micelles. RSC Advances, 2022, 12, 13154-13167.	1.7	5
438	Progress in the application of metalloporphyrins compounds in catalytic oxidation reactions. Scientia Sinica Chimica, 2022, 52, 1224-1238.	0.2	1

#	Article	IF	CITATIONS
439	Lanthanide Complexes Containing a Terminal Lnâ•O Oxo Bond: Revealing Higher Stability of Tetravalent Praseodymium versus Terbium. Inorganic Chemistry, 2022, 61, 7075-7087.	1.9	2
440	Second Sphere Interactions in Amyloidogenic Diseases. Chemical Reviews, 2022, 122, 12132-12206.	23.0	8
441	Mechanistic Studies on the Epoxidation of Alkenes by Macrocyclic Manganese Porphyrin Catalysts. European Journal of Organic Chemistry, 2022, 2022, .	1.2	2
442	Second Coordination Sphere Effects on the Mechanistic Pathways for Dioxygen Activation by a Ferritin: Involvement of a Tyr Radical and the Identification of a Cation Binding Site. ChemBioChem, 2022, 23, .	1.3	12
443	Structural Modeling of Drosophila melanogaster Gut Cytochrome P450s and Docking Comparison of Fruit Fly Gut and Human Cytochrome P450s. Current Drug Metabolism, 2022, 23, .	0.7	0
444	Electrochemical Formation and Reactivity of a Mnâ€Peroxo Complex Bearing an Amido N5 Ligand. ChemElectroChem, 0, , .	1.7	1
445	Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. Journal of the American Chemical Society, 2022, 144, 8402-8429.	6.6	7
446	Effective Proficiency of Manganese Porphyrins as Catalysts in Chemical Transformations: A Review. Mini-Reviews in Organic Chemistry, 2022, 19, .	0.6	0
447	Radical C(sp3)–H functionalization and cross-coupling reactions. Nature Reviews Chemistry, 2022, 6, 405-427.	13.8	73
448	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie - International Edition, 2022, 61, .	7.2	14
449	Use of Noncanonical Tyrosine Analogues to Probe Control of Radical Intermediates during Endoperoxide Installation by Verruculogen Synthase (FtmOx1). ACS Catalysis, 2022, 12, 6968-6979.	5.5	12
450	Chemoselective Oxyfunctionalization of Functionalized Benzylic Compounds with a Manganese Catalyst. Angewandte Chemie, 2022, 134, .	1.6	0
451	Bromoacetic Acid-Promoted Nonheme Manganese-Catalyzed Alkane Hydroxylation Inspired by α-Ketoglutarate-Dependent Oxygenases. ACS Catalysis, 2022, 12, 6756-6769.	5.5	17
452	Probing the reactive intermediate species generated during electrocatalysis by scanning electrochemical microscopy. Current Opinion in Electrochemistry, 2022, 35, 101071.	2.5	6
453	Oxygen reduction reaction by metal complexes containing non-macrocyclic ligands. , 2022, , 125-172.		1
455	Oxygen reduction reaction in nature and its importance in life. , 2022, , 1-43.		1
456	Oxygen reduction reaction by metalloporphyrins. , 2022, , 45-77.		0
457	Single Metal Atom Catalysts and ORR: H-Bonding, Solvation, and the Elusive Hydroperoxyl Intermediate. ACS Catalysis, 2022, 12, 7950-7959.	5.5	4

#	Article	IF	CITATIONS
459	Achieving Selectivity for Phosphate over Pyrophosphate in Ethanol with Iron(III)-Based Fluorescent Probes. Jacs Au, 2022, 2, 1604-1609.	3.6	2
460	C(sp ³)–H oxidation and chlorination catalysed by a bioinspired pincer iron(<scp>iii</scp>) complex. Dalton Transactions, 2022, 51, 11620-11624.	1.6	2
461	Kinetics of Chromium(V)-Oxo and Chromium(Iv)-Oxo Porphyrins: Reactivity and Mechanism for Sulfoxidation Reactions. SSRN Electronic Journal, 0, , .	0.4	0
462	Bioenhanced Rapid Redox Initiation for RAFT Polymerization in the Air. Macromolecular Rapid Communications, 2022, 43, .	2.0	4
463	Catalysis and Electron Transfer in <i>De Novo</i> Designed Metalloproteins. Chemical Reviews, 2022, 122, 12046-12109.	23.0	25
464	A Cu-based metal-organic framework with two types of connecting nodes as catalyst for oxygen activation. Chinese Chemical Letters, 2023, 34, 107635.	4.8	2
465	Modeling Heme Peroxidase: Heme Saddling Facilitates Reactions with Hyperperoxides to Form Highâ€Valent Fe(IV)–Oxo Species. Chemistry - A European Journal, 0, , .	1.7	1
466	Oriented External Electric Fields Regurating the Reaction Mechanism of CH4 Oxidation Catalyzed by Fe(IV)-Oxo-Corrolazine: Insight from Density Functional Calculations. Frontiers in Chemistry, 0, 10, .	1.8	3
467	Incorporation of Cation Affects the Redox Reactivity of Fe– <i>NNN</i> Complexes on C–H Oxidation. Inorganic Chemistry, 2022, 61, 11066-11074.	1.9	1
468	Roleâ€5pecialized Division of Labor in CO2ÂReduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie, 0, , .	1.6	1
469	Roleâ€Specialized Division of Labor in CO ₂ Reduction with Doublyâ€Functionalized Iron Porphyrin Atropisomers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	23
470	Using Computational Chemistry To Reveal Nature's Blueprints for Single-Site Catalysis of C–H Activation. ACS Catalysis, 2022, 12, 9281-9306.	5.5	15
471	Self-assembled binary structures of Fe(III) and metal-free porphyrins for solar light-assisted catalytic hydrogenation of 4-nitrophenol. Materials Today Sustainability, 2022, 19, 100195.	1.9	0
472	Binding of Dual-Function Hybridized Metal – Organic Capsules to Enzymes for Cascade Catalysis. Jacs Au, 0, , .	3.6	2
473	Influence of phenyl substitutions on the dimerization of highly substituted iron(III) porphyrin hydroxo complexes. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	0
474	Bridging the functional gap between reactivity and inhibition in dehaloperoxidase B from Amphitrite ornata: Mechanistic and structural studies with 2,4- and 2,6-dihalophenols. Journal of Inorganic Biochemistry, 2022, 236, 111944.	1.5	1
475	Isolating Fe-O2 Intermediates in Dioxygen Activation by Iron Porphyrin Complexes. Molecules, 2022, 27, 4690.	1.7	3
476	Caught in the act: Monitoring O O bond cleavage in Acylperoxoferric cytochrome P450cam to form compound I in real time. Journal of Inorganic Biochemistry, 2022, , 111949.	1.5	1

#	Article	IF	CITATIONS
477	Kinetic Solvent Isotope Effect in P450-Mediated Cyclization in Indolactams: Evidence for Branched Reactions and Guide for Their Modulation in Heterocycle Chemoenzymatic Synthesis. ACS Catalysis, 2022, 12, 9857-9863.	5.5	2
478	How Do the Axial and Equatorial Ligands Modulate the Reactivity of a Metal-Bound Terminal Oxidant? An Answer from the Hypochlorite Adduct of Iron(III) Porphyrin. ACS Catalysis, 2022, 12, 10857-10871.	5.5	4
479	Investigation of the efficiency of different biocatalytic systems for the bioconversion of lactose and dairy by-products into lactobionic acid. LWT - Food Science and Technology, 2022, 166, 113781.	2.5	1
480	Formation and Reactivity of a Fleeting Ni ^{III} Bisphenoxyl Diradical Species. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
481	Reduction of a Heme Cofactor Initiates <i>N</i> -Nitroglycine Degradation by NnIA. Applied and Environmental Microbiology, 2022, 88, .	1.4	0
482	Formation and Reactivity of a Fleeting Ni ^{III} Bisphenoxyl Diradical Species. Angewandte Chemie, 2022, 134, .	1.6	2
483	How Do Metalloproteins Tame the Fenton Reaction and Utilize •OH Radicals in Constructive Manners?. Accounts of Chemical Research, 2022, 55, 2280-2290.	7.6	20
484	Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coordination Chemistry Reviews, 2022, 471, 214742.	9.5	12
485	Superoxo and Peroxo Complexes on Single-Atom Catalysts: Impact on the Oxygen Evolution Reaction. ACS Catalysis, 2022, 12, 11682-11691.	5.5	33
486	Design, Synthesis, Biological Evaluation of New Porphyrin and Metalloporphyrin Derivatives. Polycyclic Aromatic Compounds, 0, , 1-19.	1.4	0
487	Dual-signal output paper sensor based on coordinative self-assembly biomimetic nanozyme for point-of-care detection of biomarker. Biosensors and Bioelectronics, 2022, 216, 114656.	5.3	10
488	Elucidation of a multiple S3 intermediates model for water oxidation in the oxygen evolving complex of photosystem II. Calcium-assisted concerted O O bond formation. Chemical Physics Letters, 2022, 806, 140042.	1.2	7
489	Kinetics of chromium(V)-oxo and chromium(IV)-oxo porphyrins: Reactivity and mechanism for sulfoxidation reactions. Journal of Inorganic Biochemistry, 2022, 237, 112006.	1.5	2
490	C-centered radical-initiated cyclization by directed C(sp ³)–H oxidative functionalization. Organic Chemistry Frontiers, 0, , .	2.3	7
491	Photocatalytic Generation of a Non-Heme Fe(III)-Hydroperoxo Species with O ₂ in Water for Oxygen Atom Transfer Reaction. Chemical Science, 0, , .	3.7	1
492	Metal–organic frameworks as O ₂ -selective adsorbents for air separations. Chemical Science, 2022, 13, 10216-10237.	3.7	14
493	Emerging single-atom iron catalysts for advanced catalytic systems. Nanoscale Horizons, 2022, 7, 1340-1387.	4.1	12
494	Heme/Cu-oxygen intermediates of amyloid β peptides associated with Alzheimer's disease. Advances in Inorganic Chemistry, 2022, , .	0.4	0

#	Article	IF	CITATIONS
495	A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catalysis, 2022, 12, 11108-11117.	5.5	6
496	Effect of BrÃ,nsted Acid on the Reactivity and Selectivity of the Oxoiron(V) Intermediates in C-H and C=C Oxidation Reactions. Catalysts, 2022, 12, 949.	1.6	4
497	Peroxide-Selective Reduction of O ₂ at Redox-Inactive Rare-Earth(III) Triflates Generates an Ambiphilic Peroxide. Journal of the American Chemical Society, 2022, 144, 17295-17306.	6.6	4
498	Sustainable Wackerâ€₹ype Oxidations. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
499	Dinuclear Cobalt Complexes for Homogeneous Water Oxidation: Tuning Rate and Overpotential through the Nonâ€Innocent Ligand. ChemSusChem, 2022, 15, .	3.6	3
500	Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O ₂ Activation and Selective NO Oxidation under Visible Light Irradiation. Environmental Science & Technology, 2022, 56, 14478-14486.	4.6	61
501	Reaction of Thiosulfate Dehydrogenase with a Substrate Mimic Induces Dissociation of the Cysteine Heme Ligand Giving Insights into the Mechanism of Oxidative Catalysis. Journal of the American Chemical Society, 2022, 144, 18296-18304.	6.6	2
502	C(sp3)â€H Hydroxylation in Diiron βâ€Hydroxylase CmlA Transpires byÂAmineâ€Assisted O2 Activation Avoiding FelV2O2 Species. Angewandte Chemie - International Edition, 0, , .	7.2	3
503	Ni―and Pdâ€based homogeneous catalyst systems for direct oxygenation of C(sp ³)â€H groups. Applied Organometallic Chemistry, 2023, 37, .	1.7	2
504	Sustainable Wackerâ€Type Oxidations. Angewandte Chemie, 2022, 134, .	1.6	0
505	C(sp3)â€H Hydroxylation in Diiron βâ€Hydroxylase CmlA Transpires byÂAmineâ€Assisted O2 Activation Avoiding FeIV2O2 Species. Angewandte Chemie, 0, , .	1.6	0
507	Interpenetrating dye-functionalized indium–organic frameworks for photooxidative cyanation and oxidative cyclization. Journal of Materials Chemistry A, 2022, 10, 24320-24330.	5.2	1
508	Serial Femtosecond Crystallography Reveals the Role of Water in the One- or Two-Electron Redox Chemistry of Compound I in the Catalytic Cycle of the B-Type Dye-Decolorizing Peroxidase DtpB. ACS Catalysis, 2022, 12, 13349-13359.	5.5	4
509	Designing Hierarchically Porous Single Atoms of Fe-N ₅ Catalytic Sites with High Oxidase-like Activity for Sensitive Detection of Organophosphorus Pesticides. Analytical Chemistry, 2022, 94, 15270-15279.	3.2	24
510	Theoretical Investigation on the Oxidoreductase-Mimicking Activity of Carbon-Based Nanozyme. ACS Symposium Series, 0, , 67-89.	0.5	0
511	Flavonol dioxygenase chemistry mediated by a synthetic nickel superoxide. Journal of Inorganic Biochemistry, 2023, 238, 112021.	1.5	2
512	Fluorescent and Phosphorescent Nitrogen-Containing Heterocycles and Crown Ethers: Biological and Pharmaceutical Applications. Molecules, 2022, 27, 6631.	1.7	7
513	A Computational Study on the Mechanism of Catalytic Cyclopropanation Reaction with Cobalt N-Confused Porphyrin: The Effects of Inner Carbon and Intramolecular Axial Ligand. Molecules, 2022, 27, 7266.	1.7	0

#	Article	IF	CITATIONS
514	Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C–H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. Journal of the American Chemical Society, 2022, 144, 19542-19558.	6.6	26
515	Dual-active-site Fe/Cu single-atom nanozymes with multifunctional specific peroxidase-like properties for S2â^² detection and dye degradation. Chinese Chemical Letters, 2023, 34, 107969.	4.8	13
516	Serial femtosecond crystallography approaches to understanding catalysis in iron enzymes. Current Opinion in Structural Biology, 2022, 77, 102486.	2.6	8
517	A cobalt(II) porphyrin with a tethered imidazole for efficient oxygen reduction and evolution electrocatalysis. Journal of Energy Chemistry, 2023, 76, 617-621.	7.1	15
518	Comparative oxidative ability of mononuclear and dinuclear high-valent iron–oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity?. Dalton Transactions, 2023, 52, 308-325.	1.6	3
519	Efficient <i>O</i> -demethylation of lignin monoaromatics using the peroxygenase activity of cytochrome P450 enzymes. Chemical Communications, 2022, 58, 13321-13324.	2.2	9
520	Propeller-like structure-stabilized phosphole and its aromaticity-promoted electrochemiluminescence. Sensors and Actuators B: Chemical, 2023, 375, 132977.	4.0	0
521	Dietary Heme-Containing Proteins: Structures, Applications, and Challenges. Foods, 2022, 11, 3594.	1.9	10
522	Aliphatic and Aromatic C–H Bond Oxidation by High-Valent Manganese(IV)-Hydroxo Species. Journal of the American Chemical Society, 2022, 144, 20752-20762.	6.6	6
523	Mechanism of Melatonin Metabolism by CYP1A1: What Determines the Bifurcation Pathways of Hydroxylation versus Deformylation?. Journal of Physical Chemistry B, 2022, 126, 9591-9606.	1.2	8
524	Recent advances in heterogeneous single-atom nanomaterials: From engineered metal-support interaction to applications in sensors. Coordination Chemistry Reviews, 2023, 478, 214976.	9.5	33
525	Spin state dependent peroxidase activity of heme bound amyloid \hat{l}^2 peptides relevant to Alzheimer's disease. Chemical Science, 2022, 13, 14305-14319.	3.7	3
528	Exploring Deep Learning for Metalloporphyrins: Databases, Molecular Representations, and Model Architectures. Catalysts, 2022, 12, 1485.	1.6	1
530	A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: InsightÂinto the Stereoselectivity of P450â€Catalysed Oxidations. Angewandte Chemie, 0, , .	1.6	0
531	X-ray Emission Spectroscopy of Single Protein Crystals Yields Insights into Heme Enzyme Intermediates. Journal of Physical Chemistry Letters, 2023, 14, 41-48.	2.1	3
532	Dehydrogenative αâ€Oxygenation of Cyclic Ethers by a Highâ€Valent Manganese(IV)â€Oxo Species. European Journal of Inorganic Chemistry, 2023, 26, .	1.0	0
533	Catalytic Mechanisms and Active Species of Benzene Hydroxylation Reaction System Based on Fe-Based Enzyme-Mimetic Structure. Catalysis Letters, 0, , .	1.4	0
534	A Compound I Mimic Reveals the Transient Active Species of a Cytochrome P450 Enzyme: Insight into the Stereoselectivity of P450â€Catalysed Oxidations. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2

#	Article	IF	CITATIONS
535	Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nature Chemistry, 2023, 15, 357-365.	6.6	20
536	Confining Bimetal Sites in Porous Metal Silicate Materials for Aerobic Oxidation of Phenols under Mild Conditions. Inorganic Chemistry, 0, , .	1.9	2
537	Oxidation of Aldehydes into Carboxylic Acids by a Mononuclear Manganese(III) Iodosylbenzene Complex through Electrophilic C–H Bond Activation. Journal of the American Chemical Society, 2023, 145, 888-897.	6.6	6
538	Ferric heme <i>b</i> in aqueous micellar and vesicular systems: state-of-the-art and challenges. Quarterly Reviews of Biophysics, 2023, 56, .	2.4	2
539	Theoretical Investigation on the Elusive Structure-Activity Relationship of the Bioinspired High-Valent Nickel-Halogen Complexes in the Oxidative Fluorination Reactions. Dalton Transactions, 0, , .	1.6	1
540	Molecular Dipole Modulation of Porphyrins to Enhance Photocatalytic Oxidation Activity for Inactivation of Intracellular Bacteria. ACS Biomaterials Science and Engineering, 2023, 9, 617-624.	2.6	1
541	Effect of intermacrocyclic interactions: Modulation of metal spin-state in oxo/hydroxo/fluoro-bridged diiron(III)/dimanganese(III) porphyrin dimers. Advances in Inorganic Chemistry, 2023, , 95-184.	0.4	1
542	Biotransformation of Bisphenol by Human Cytochrome P450 2C9 Enzymes: A Density Functional Theory Study. Inorganic Chemistry, 2023, 62, 2244-2256.	1.9	11
543	Cleavable collagenase-assistant nanosonosensitizer for tumor penetration and sonodynamic therapy. Biomaterials, 2023, 293, 121992.	5.7	16
544	Promoting hydrogen evolution reaction with a sulfonic proton relay. Chinese Journal of Catalysis, 2023, 45, 88-94.	6.9	4
545	Metallic Bi and oxygen vacancy dual active sites enable efficient oxygen activation: Facet-dependent effect and interfacial synergy. Applied Catalysis B: Environmental, 2023, 325, 122349.	10.8	10
546	Asymmetric Catalytic Aerobic Oxidative Radical Addition/Hydroxylation/1,4-Aryl Migration Reaction of Olefins. ACS Catalysis, 2023, 13, 815-823.	5.5	3
547	Mechanistic Study of Chemoselectivity for Carbon Radical Hydroxylation versus Chlorination with Fe ^{III} (OH)(Cl) Complexes. Chemistry - an Asian Journal, 2023, 18, .	1.7	1
548	Synthesis and characterization of a masked terminal nickelâ€oxide complex. Chemistry - A European Journal, 0, , .	1.7	2
549	Understanding the Key Roles of pH Buffer in Accelerating Lignin Degradation by Lignin Peroxidase. Jacs Au, 2023, 3, 536-549.	3.6	3
550	Spin polarization assisted facile C–H activation by an <i>S</i> = 1 iron(<scp>iv</scp>)–bisimido complex: a comprehensive spectroscopic and theoretical investigation. Chemical Science, 2023, 14, 2808-2820.	3.7	2
551	Development of a Golgi-targeted fluorescent chemosensor for detecting ferrous ions overload under Golgi stress. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2023, 294, 122560.	2.0	2
552	Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coordination Chemistry Reviews, 2023, 480, 215021.	9.5	7

#	Article	IF	CITATIONS
553	Synergistic mechanism between the endoplasmic reticulum and mitochondria and their crosstalk with other organelles. Cell Death Discovery, 2023, 9, .	2.0	7
554	Molecular insights of nanozymes from design to catalytic mechanism. Science China Chemistry, 2023, 66, 1318-1335.	4.2	13
555	Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1?. International Journal of Molecular Sciences, 2023, 24, 3651.	1.8	6
556	The Role of Heme and Copper in Alzheimer's Disease and Type 2 Diabetes Mellitus. Jacs Au, 2023, 3, 657-681.	3.6	7
557	Horseradish Peroxidase-Encapsulated Fluorescent Bio-Nanoparticle for Ultra-Sensitive and Easy Detection of Hydrogen Peroxide. Biosensors, 2023, 13, 289.	2.3	6
558	Effects of axial C-donor ligands on metalloporphyrin-catalyzed carbene and nitrene transfer reactions. Advances in Organometallic Chemistry, 2023, , 195-259.	0.5	0
559	Oxidation of TDMQ20, a Specific Copper Chelator as Potential Drug Against Alzheimer's Disease. ChemistrySelect, 2023, 8, .	0.7	0
560	Cyclic iron tetra N-heterocyclic carbenes: synthesis, properties, reactivity, and catalysis. Chemical Society Reviews, 2023, 52, 2238-2277.	18.7	7
561	New Paradigms in Catalysis Inspired by Cytochromes P450. Synlett, 2024, 35, 552-564.	1.0	1
562	Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorganic Chemistry, 2023, 62, 4116-4123.	1.9	3
563	Metalloporphyrin-Based Biomimetic Catalysis: Applications, Modifications and Flexible Microenvironment Influences (A Review). Russian Journal of General Chemistry, 2023, 93, 189-214.	0.3	0
564	A trans-ortho asymmetrically di-strapped metalloporphyrin integrating three key structural features of ligand in heme. Chinese Chemical Letters, 2023, 34, 108315.	4.8	2
565	Catalyst Complexity in a Highly Active and Selective Wacker-Type Markovnikov Oxidation of Olefins with a Bioinspired Iron Complex. ACS Catalysis, 2023, 13, 4421-4432.	5.5	5
566	Caffeine Biodegradation by Cytochrome P450 1A2. What Determines the Product Distributions?. Chemistry - A European Journal, 2023, 29, .	1.7	7
567	Reversible thermally induced spin crossover in the myoglobin–nitrito adduct directly monitored by resonance Raman spectroscopy. RSC Advances, 2023, 13, 9020-9025.	1.7	1
568	Mixed-Component Metal–Organic Framework for Boosting Synergistic Photoactivation of C(sp ³)–H and Oxygen. ACS Applied Materials & Interfaces, 2023, 15, 16744-16754.	4.0	7
569	A copper-seamed coordination nanocapsule as a semiconductor photocatalyst for molecular oxygen activation. Chemical Science, 0, , .	3.7	1
570	Rieske Oxygenases and Other Ferredoxinâ€Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. ChemBioChem, 2023, 24, .	1.3	2

#	Article	IF	CITATIONS
571	Atomically dispersed Fe–Zn dual-site nanozymes with synergistic catalytic effects for the simultaneous detection of Cr(<scp>vi</scp>) and 8-hydroxyquinoline. Journal of Materials Chemistry B, 2023, 11, 4020-4027.	2.9	7
572	Electric field effect of positive and negative charges of substituents on electronic structure and reactivity of oxoiron(IV) porphyrin π-cation radical complex. Journal of Inorganic Biochemistry, 2023, 244, 112208.	1.5	0
573	A Manganese Compound I Model with a High Reactivity in the Oxidation of Organic Substrates and Water. Journal of the American Chemical Society, 0, , .	6.6	0
574	Metalloporphyrin reduced C70 fullerenes as adsorbents and detectors of ethenone; A DFT, NBO, and TD-DFT study. Journal of Molecular Graphics and Modelling, 2023, , 108481.	1.3	1
575	Defluorination of Fluorophenols by a Nonheme Iron(IV)â€Oxo Species: Observation of a New Intermediate Along the Reaction. Chemistry - A European Journal, 2023, 29, .	1.7	6
591	Interactions of Mn complexes with DNA: the relevance of therapeutic applications towards cancer treatment. Dalton Transactions, 2023, 52, 10639-10656.	1.6	2
595	Photochemical generation and reactivity of a new phthalocyanine-manganese–oxo intermediate. Chemical Communications, 2023, 59, 6540-6543.	2.2	0
602	The importance and difficulties involved in creating molecular probes for carbon monoxide gasotransmitter. Analyst, The, 0, , .	1.7	Ο
619	Solar-driven green synthesis of epoxides. Science China Chemistry, 2023, 66, 3415-3425.	4.2	3
630	A breath of sunshine: oxygenic photosynthesis by functional molecular architectures. Chemical Science, 0, , .	3.7	1
668	Oxidase-like manganese oxide nanoparticles: a mechanism of organic acids/aldehydes as electron acceptors and potential application in cancer therapy. Nanoscale, 2024, 16, 2860-2867.	2.8	0