A drop penetration method to measure powder blend w

International Journal of Pharmaceutics 538, 112-118 DOI: 10.1016/j.ijpharm.2017.12.034

Citation Report

#	Article	IF	CITATIONS
1	Investigating the Effect of APAP Crystals on Tablet Behavior Manufactured by Direct Compression. AAPS PharmSciTech, 2019, 20, 168.	1.5	8
2	Wetting of binary powder mixtures. International Journal of Pharmaceutics, 2019, 572, 118770.	2.6	4
3	Rheological behavior of porous pharmaceutical materials: Linking torque profiles during wet massing to water diffusion coefficients and penetration time. Chemical Engineering and Processing: Process Intensification, 2020, 157, 108152.	1.8	0
4	Capillary pressure and saturation of pore-controlled granules for powder bed binder jetting. Applied Surface Science, 2020, 515, 145979.	3.1	12
5	The Applicability of a Drop Penetration Method to Measure Contact Angles on TiO2 and ZnO Nanoparticles. Nanomaterials, 2020, 10, 1099.	1.9	7
6	Capillary rise in a closed column: Application to the characterization of powders. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 124822.	2.3	4
7	Wet granulation end point prediction using dimensionless numbers in a mixer torque rheometer: Relationship between capillary and Weber numbers and the optimal wet mass consistency. International Journal of Pharmaceutics, 2021, 605, 120823.	2.6	3
8	Characterization of material properties. , 2022, , 9-28.		1
9	Effective capillary pressure and permeability of a granular material during imbibition in a closed column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 648, 129280.	2.3	2
10	Imbibition-induced ultrafast assembly and printing of colloidal photonic crystals. Journal of Colloid and Interface Science, 2022, 624, 370-376.	5.0	3
11	Perspectives on the Wetting of Solids in Pharmaceutical Systems. Pharmaceutical Research, 2023, 40, 3099-3118.	1.7	4
12	Over-blending effect of lubricants on capsules manufacturing: a simple and fast wettability technique to predict batch dissolution performance. Pharmaceutical Development and Technology, 2023, 28, 363-370.	1.1	0