Numerical investigation of CO2 fringe behaviour on a lo

International Journal of Coal Geology 186, 80-96 DOI: 10.1016/j.coal.2017.12.004

Citation Report

#	Article	IF	CITATIONS
1	Investigations of Ventilation Airflow Characteristics on a Longwall Face—A Computational Approach. Energies, 2018, 11, 1564.	1.6	22
2	Philosophy of longwall goaf inertisation for coal self-heating control, proactive or reactive?. International Journal of Heat and Mass Transfer, 2019, 141, 542-553.	2.5	21
3	Investigating the Impact of Caving on Longwall Mine Ventilation Using Scaled Physical Modeling. Mining, Metallurgy and Exploration, 2019, 36, 729-740.	0.4	10
4	Quantitative analysis of coal nanopore characteristics using atomic force microscopy. Powder Technology, 2019, 346, 332-340.	2.1	81
5	Numerical investigations of airflow patterns on a longwall face. International Journal of Oil, Gas and Coal Technology, 2020, 24, 321.	0.1	6
6	Targeted inertization with flue gas injection in fully mechanized caving gob for residual coal spontaneous combustion prevention with CFD modeling. Energy Science and Engineering, 2020, 8, 3961-3979.	1.9	11
7	Permeability and inertial resistance coefficient correction model of broken rocks in coal mine goaf. Powder Technology, 2021, 384, 247-257.	2.1	13
8	Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining: A systematic literature review. Chemical Engineering Research and Design, 2021, 151, 373-400.	2.7	24
9	Improved Computational Fluid Dynamics Modelling of Coal Spontaneous Combustioncontrol and Gas Management. SSRN Electronic Journal, 0, , .	0.4	1
10	Porosity model of the goaf based on overlying strata movement and deformation. Environmental Earth Sciences, 2022, 81, 1.	1.3	7
11	New insight into proactive goaf inertisation for spontaneous combustion management and control. Chemical Engineering Research and Design, 2022, 161, 739-757.	2.7	24
12	Improved computational fluid dynamics modelling of coal spontaneous combustion control and gas management. Fuel, 2022, 324, 124456.	3.4	17
13	Field trials of nitrogen injection enhanced gas drainage in hard-to-drain coal seam by using underground in-seam (UIS) boreholes. Fuel, 2022, 328, 125293.	3.4	3
14	Analysis of diffusion behavior of harmful emissions from trackless rubber-wheel diesel vehicles in underground coal mines. International Journal of Mining Science and Technology, 2022, 32, 1285-1299.	4.6	18