A novel zinc-ion hybrid supercapacitor for long-life and applications

Energy Storage Materials 13, 1-7 DOI: 10.1016/j.ensm.2017.12.022

Citation Report

#	Article	IF	CITATIONS
2	Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Materials, 2018, 15, 22-30.	18.0	125
3	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	30.8	263
4	Fast Naâ€lon Intercalation in Zinc Vanadate for Highâ€Performance Naâ€lon Hybrid Capacitor. Advanced Energy Materials, 2018, 8, 1802800.	19.5	72
5	Low-temperature synthesis of edge-rich graphene paper for high-performance aluminum batteries. Energy Storage Materials, 2018, 15, 361-367.	18.0	73
6	Metal organic frameworks route to prepare two-dimensional porous zinc-cobalt oxide plates as anode materials for lithium-ion batteries. Journal of Power Sources, 2018, 396, 659-666.	7.8	33
7	Copper molybdenum sulfide anchored nickel foam: a high performance, binder-free, negative electrode for supercapacitors. Nanoscale, 2018, 10, 13883-13888.	5.6	59
8	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 1800848.	3.7	476
9	Abnormal Volatile Memory Characteristic in Normal Nonvolatile ZnSnO Resistive Switching Memory. IEEE Transactions on Electron Devices, 2018, 65, 2812-2819.	3.0	14
10	Rational design of nano-architecture composite hydrogel electrode towards high performance Zn-ion hybrid cell. Nanoscale, 2018, 10, 13083-13091.	5.6	101
11	A Low-Cost Zn-Based Aqueous Supercapacitor with High Energy Density. ACS Applied Energy Materials, 2019, 2, 5835-5842.	5.1	80
12	Great Enhancement of Carbon Energy Storage through Narrow Pores and Hydrogen-Containing Functional Groups for Aqueous Zn-Ion Hybrid Supercapacitor. Molecules, 2019, 24, 2589.	3.8	38
13	Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. Journal of Materials Chemistry A, 2019, 7, 23280-23300.	10.3	44
14	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In‣ervice Batteries. Advanced Materials, 2019, 31, e1903778.	21.0	494
15	Boosting Znâ€lon Energy Storage Capability of Hierarchically Porous Carbon by Promoting Chemical Adsorption. Advanced Materials, 2019, 31, e1904948.	21.0	304
16	Flexible Zincâ€lon Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	10.0	143
17	Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors. Nano Research, 2019, 12, 2835-2841.	10.4	144
18	Achieving high-energy-density and ultra-stable zinc-ion hybrid supercapacitors by engineering hierarchical porous carbon architecture. Electrochimica Acta, 2019, 327, 134999.	5.2	116
19	An Aqueous Znâ€lon Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80 000 Cycles. Advanced Energy Materials, 2019, 9, 1902915.	19.5	244

	Сіт.	CITATION REPORT	
# 20	ARTICLE A new dual-ion battery based on amorphous carbon. Science Bulletin, 2019, 64, 1634-1642.	IF 9.0	CITATIONS
21	High energy-power Zn-ion hybrid supercapacitors enabled by layered B/N co-doped carbon cathode. Nano Energy, 2019, 66, 104132.	16.0	344
22	Tuning the detection limit in hybrid organic-inorganic materials for improving electrical performance of sensing devices. Sensors and Actuators A: Physical, 2019, 298, 111480.	4.1	4
23	Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy, 2019, 62, 550-587.	16.0	817
24	The Road Towards Planar Microbatteries and Microâ€Supercapacitors: From 2D to 3D Device Geometri Advanced Materials, 2019, 31, e1900583.	ies. 21.0	160
25	Hollow Carbon Nanobelts Codoped with Nitrogen and Sulfur via a Selfâ€Templated Method for a Highâ€Performance Sodiumâ€lon Capacitor. Small, 2019, 15, e1902659.	10.0	50
26	Roadmap of in-plane electrochemical capacitors and their advanced integrated systems. Energy Storage Materials, 2019, 21, 219-239.	18.0	30
27	3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Materials, 2019, 23, 522-529.	18.0	190
28	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	10.3	312
29	Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. Journal of Materials Chemistry A, 2019, 7, 9708-9715.	10.3	111
30	Graphene oxide spontaneous reduction and self-assembly on the zinc metal surface enabling a dendrite-free anode for long-life zinc rechargeable aqueous batteries. Applied Surface Science, 2019, 481, 852-859.	6.1	206
31	Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chemical Engineering Journal, 2019, 370, 330-336.	12.7	56
32	Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances. Journal of Energy Chemistry, 2019, 38, 26-33.	12.9	30
33	A Metal-Organic Framework Host for Highly Reversible Dendrite-free Zinc Metal Anodes. Joule, 2019, 3, 1289-1300.	24.0	672
34	High capacity aqueous periodate batteries featuring a nine-electron transfer process. Energy Storage Materials, 2019, 19, 206-211.	18.0	17
35	Aqueous V2O5/activated carbon zinc-ion hybrid capacitors with high energy density and excellent cycling stability. Journal of Materials Science: Materials in Electronics, 2019, 30, 5478-5486.	2.2	41
36	A Calciumâ€lon Hybrid Energy Storage Device with High Capacity and Long Cycling Life under Room Temperature. Advanced Energy Materials, 2019, 9, 1803865.	19.5	104
37	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	10.3	254

#	Article	IF	CITATIONS
38	A high-capacity aqueous Zn-ion hybrid energy storage device using poly(4,4′-thiodiphenol)-modified activated carbon as a cathode material. Journal of Materials Chemistry A, 2019, 7, 23076-23083.	10.3	52
39	Novel zinc–iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry A, 2019, 7, 24400-24407.	10.3	68
40	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	10.3	183
41	Znâ€lon Hybrid Microâ€&upercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	21.0	266
42	Surface tailoring of zinc electrodes for energy storage devices with high-energy densities and long cycle life. Applied Surface Science, 2019, 467-468, 1157-1160.	6.1	48
43	Two-dimensional materials for lithium/sodium-ion capacitors. Materials Today Energy, 2019, 11, 30-45.	4.7	88
44	Sodiumâ€Ion Hybrid Battery Combining an Anionâ€Intercalation Cathode with an Adsorptionâ€Type Anode for Enhanced Rate and Cycling Performance. Batteries and Supercaps, 2019, 2, 440-447.	4.7	46
45	Mesoporous hollow carbon spheres boosted, integrated high performance aqueous Zn-Ion energy storage. Energy Storage Materials, 2020, 25, 858-865.	18.0	289
46	Metal Organic framework derived carbon for ultrahigh power and long cyclic life aqueous Zn ion capacitor. Nano Materials Science, 2020, 2, 159-163.	8.8	37
47	Waste polyurethane foam filler-derived mesoporous carbons as superior electrode materials for EDLCs and Zn-ion capacitors. Diamond and Related Materials, 2020, 101, 107603.	3.9	45
48	Construction of sugar gourd-like yolk-shell Ni–Mo–Co–S nanocage arrays for high-performance alkaline battery. Energy Storage Materials, 2020, 25, 105-113.	18.0	46
49	Phosphorus Regulated Cobalt Oxide@Nitrogenâ€Doped Carbon Nanowires for Flexible Quasiâ€Solidâ€State Supercapacitors. Small, 2020, 16, e1906458.	10.0	90
50	A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chemical Engineering Journal, 2020, 392, 123733.	12.7	212
51	A novel rechargeable iodide ion battery with zinc and copper anodes. Journal of Power Sources, 2020, 449, 227511.	7.8	28
52	A Highâ€Voltage, Dendriteâ€Free, and Durable Zn–Graphite Battery. Advanced Materials, 2020, 32, e1905681.	21.0	96
53	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	12.7	78
54	2D Metal Zn Nanostructure Electrodes for Highâ€Performance Zn Ion Supercapacitors. Advanced Energy Materials, 2020, 10, 1902981.	19.5	158
55	MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Materials, 2020, 26, 550-559.	18.0	108

#	Article	IF	CITATIONS
56	Hollow Mesoporous Carbon Spheres for High Performance Symmetrical and Aqueous Zinc-Ion Hybrid Supercapacitor. Frontiers in Chemistry, 2020, 8, 663.	3.6	38
57	Introducing Na2SO4 in aqueous ZnSO4 electrolyte realizes superior electrochemical performance in zinc-ion hybrid capacitor. Materials Today Energy, 2020, 18, 100529.	4.7	32
58	Ultrathin carbon nanosheets for highly efficient capacitive K-ion and Zn-ion storage. Journal of Materials Chemistry A, 2020, 8, 22874-22885.	10.3	58
59	From starch to porous carbon nanosheets: Promising cathodes for high-performance aqueous Zn-ion hybrid supercapacitors. Microporous and Mesoporous Materials, 2020, 306, 110445.	4.4	53
60	Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon. Applied Surface Science, 2020, 530, 147220.	6.1	79
61	Acetonitrileâ€Based Electrolytes for Rechargeable Zinc Batteries. Energy Technology, 2020, 8, 2000358.	3.8	19
62	In Situ Twoâ€Step Activation Strategy Boosting Hierarchical Porous Carbon Cathode for an Aqueous Znâ€Based Hybrid Energy Storage Device with High Capacity and Ultraâ€Long Cycling Life. Small, 2020, 16, e2003174.	10.0	105
63	Recent Progress in "Water-in-Salt―Electrolytes Toward Non-lithium Based Rechargeable Batteries. Frontiers in Chemistry, 2020, 8, 595.	3.6	47
64	Recent progress and challenges of carbon materials for Znâ€ion hybrid supercapacitors. , 2020, 2, 521-539.		144
65	Highly Flexible and Selfâ€Healable Zincâ€lon Hybrid Supercapacitors Based on MWCNTsâ€RGO Fibers. Advanced Materials Technologies, 2020, 5, 2000268.	5.8	44
66	Zinc based microâ€electrochemical energy storage devices: Present status and future perspective. EcoMat, 2020, 2, e12042.	11.9	34
67	An In Situ Cross‣inked Nonaqueous Polymer Electrolyte for Zincâ€Metal Polymer Batteries and Hybrid Supercapacitors. Small, 2020, 16, e2002528.	10.0	24
68	Uniformizing the electric field distribution and ion migration during zinc plating/stripping <i>via</i> a binary polymer blend artificial interphase. Journal of Materials Chemistry A, 2020, 8, 17725-17731.	10.3	71
69	Electrochemical Zinc Ion Capacitors Enhanced by Redox Reactions of Porous Carbon Cathodes. Advanced Energy Materials, 2020, 10, 2001705.	19.5	189
70	Recent advances in biomass derived activated carbon electrodes for hybrid electrochemical capacitor applications: Challenges and opportunities. Carbon, 2020, 170, 1-29.	10.3	132
71	A Novel Aqueous Zincâ€lon Hybrid Supercapacitor Based on TiS ₂ (De)Intercalation Batteryâ€Type Anode. Advanced Electronic Materials, 2020, 6, 2000388.	5.1	46
72	Theoretical Insights into the Favorable Functionalized Ti ₂ C-Based MXenes for Lithium–Sulfur Batteries. ACS Omega, 2020, 5, 29272-29283.	3.5	28
73	Flexible Diamond Fibers for Highâ€Energyâ€Density Zincâ€Ion Supercapacitors. Advanced Energy Materials, 2020, 10, 2002202.	19.5	69

#	Article	IF	CITATIONS
74	Synergistic Effects of Phosphorus and Boron Co-Incorporated Activated Carbon for Ultrafast Zinc-Ion Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 41342-41349.	8.0	145
75	Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries. National Science Review, 2021, 8, nwaa178.	9.5	132
76	Rechargeable Aqueous Zincâ€ion Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	4.7	68
77	Zinc ion trapping in a cellulose hydrogel as a solid electrolyte for a safe and flexible supercapacitor. Journal of Materials Chemistry A, 2020, 8, 12314-12318.	10.3	87
78	Hydrogen‧ubstituted Graphdiyne Ion Tunnels Directing Concentration Redistribution for Commercialâ€Grade Dendriteâ€Free Zinc Anodes. Advanced Materials, 2020, 32, e2001755.	21.0	261
79	Recent advances and challenges in biomass-derived porous carbon nanomaterials for supercapacitors. Chemical Engineering Journal, 2020, 397, 125418.	12.7	225
80	Ultrathin hetero-nanosheets assembled hollow Ni-Co-P/C for hybrid supercapacitors with enhanced rate capability and cyclic stability. Journal of Colloid and Interface Science, 2020, 577, 368-378.	9.4	39
81	Graphene Hydrogel Film Adsorbed with Redox-Active Molecule Toward Energy Storage Device with Improved Energy Density and Unfading Superior Rate Capability. ACS Sustainable Chemistry and Engineering, 2020, 8, 9896-9905.	6.7	19
82	Facile Ion-Exchange Strategy for Na ⁺ /K ⁺ Hybrid-Ion Batteries with Superior Rate Capability and Cycling Performance. ACS Applied Energy Materials, 2020, 3, 7030-7038.	5.1	13
83	Simultaneously pre-alloying and artificial solid electrolyte interface towards highly stable aluminum anode for high-performance Li hybrid capacitor. Energy Storage Materials, 2020, 28, 357-363.	18.0	50
84	Zn ²⁺ Preâ€Intercalation Stabilizes the Tunnel Structure of MnO ₂ Nanowires and Enables Zincâ€Ion Hybrid Supercapacitor of Batteryâ€Level Energy Density. Small, 2020, 16, e2000091.	10.0	139
85	Liquid–liquid micromixing strategy enables low KOH-amount synthesis of ultrahighly porous carbon for zinc-ion storage. SN Applied Sciences, 2020, 2, 1.	2.9	1
86	Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Materials, 2020, 31, 252-266.	18.0	141
87	Photo-Rechargeable Zinc-Ion Capacitor Using 2D Graphitic Carbon Nitride. Nano Letters, 2020, 20, 5967-5974.	9.1	106
88	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Storage Materials, 2020, 31, 328-343.	18.0	68
89	A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. Journal of Materials Chemistry A, 2020, 8, 15042-15050.	10.3	79
90	Metal ion capacitor composed of the thin-walled surfaces enabling high-rate performance and long cycling stability. Current Applied Physics, 2020, 20, 605-610.	2.4	19
91	Controlled swelling of graphene films towards hierarchical structures for supercapacitor electrodes. Journal of Power Sources, 2020, 453, 227851.	7.8	69

#	Article	IF	CITATIONS
92	A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Applied Surface Science, 2020, 510, 145384.	6.1	127
93	Hybrid Energy Storage Device: Combination of Zinc-Ion Supercapacitor and Zinc–Air Battery in Mild Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 7239-7248.	8.0	88
94	Flexible and anti-freezing quasi-solid-state zinc ion hybrid supercapacitors based on pencil shavings derived porous carbon. Energy Storage Materials, 2020, 28, 307-314.	18.0	279
95	Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Materials, 2020, 30, 34-41.	18.0	113
96	An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density. Chinese Chemical Letters, 2021, 32, 926-931.	9.0	57
97	Regulating Oxygen Substituents with Optimized Redox Activity in Chemically Reduced Graphene Oxide for Aqueous Znâ€lon Hybrid Capacitor. Advanced Functional Materials, 2021, 31, 2007843.	14.9	127
98	Recent advances in off-grid electrochemical capacitors. Energy Storage Materials, 2021, 34, 53-75.	18.0	26
99	Recent advances in vanadium-based cathode materials for rechargeable zinc ion batteries. Materials Chemistry Frontiers, 2021, 5, 744-762.	5.9	49
100	Toward Flexible Zincâ€Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie, 2021, 133, 1003-1010.	2.0	130
101	Polyarylimide and porphyrin based polymer microspheres for zinc ion hybrid capacitors. Chemical Engineering Journal, 2021, 405, 127038.	12.7	76
102	Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units. Nano-Micro Letters, 2021, 13, 19.	27.0	81
103	Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Metals, 2021, 40, 309-328.	7.1	115
104	A High-rate, Long Life, and Anti-self-discharge Aqueous N-doped Ti3C2/Zn Hybrid Capacitor. Materials Today Energy, 2021, 19, 100598.	4.7	22
105	Ni(OH)2 cathode with oxygen vacancies induced from electroxidizing Ni3S2 nanosheets for aqueous rechargeable Ni–Zn battery. Journal of Alloys and Compounds, 2021, 855, 157488.	5.5	16
106	Zinc Metal Energy Storage Devices under Extreme Conditions of Low Temperatures. Batteries and Supercaps, 2021, 4, 389-406.	4.7	23
107	Recent Advances in Aqueous Zincâ€ion Hybrid Capacitors: A Minireview. ChemElectroChem, 2021, 8, 484-491.	3.4	21
108	Allâ€solidâ€state supercapacitors based on yarns of Co3O4-anchored porous carbon nanofibers. Chemical Engineering Journal, 2021, 409, 128124.	12.7	35
109	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie, 2021, 133, 1024-1034.	2.0	21

#	Article	IF	CITATIONS
110	Combustion conversion of wood to N, O co-doped 2D carbon nanosheets for zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2021, 413, 127502.	12.7	149
111	Sâ€doped <scp>3D</scp> porous carbons derived from potassium thioacetate activation strategy for zincâ€ion hybrid supercapacitor applications. International Journal of Energy Research, 2021, 45, 2498-2510.	4.5	41
112	Effects of Anion Carriers on Capacitance and Selfâ€Discharge Behaviors of Zinc Ion Capacitors. Angewandte Chemie - International Edition, 2021, 60, 1011-1021.	13.8	122
113	Toward Flexible Zincâ€Ion Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 990-997.	13.8	215
114	Recent progress in carbon-based materials for supercapacitor electrodes: a review. Journal of Materials Science, 2021, 56, 173-200.	3.7	474
115	<i>Operando</i> constructing vanadium tetrasulfide-based heterostructures enabled by extrinsic adsorbed oxygen for enhanced zinc ion storage. Journal of Materials Chemistry A, 2021, 9, 11433-11441.	10.3	22
116	Developing high voltage Zn(TFSI) ₂ /Pyr ₁₄ TFSI/AN hybrid electrolyte for a carbon-based Zn-ion hybrid capacitor. Nanoscale, 2021, 13, 17068-17076.	5.6	19
117	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	10.3	60
118	Coupling of EDLC and the reversible redox reaction: oxygen functionalized porous carbon nanosheets for zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2021, 9, 15404-15414.	10.3	62
119	Identifying Heteroatomic and Defective Sites in Carbon with Dual-Ion Adsorption Capability for High Energy and Power Zinc Ion Capacitor. Nano-Micro Letters, 2021, 13, 59.	27.0	78
120	A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors. Nanoscale, 2021, 13, 15869-15881.	5.6	34
121	Preparation and Characterization of ZnCo2O4 as a Binary Transitional Metal Oxide Towards Pseudocapacitor Electrode Materials. Brazilian Journal of Physics, 2021, 51, 420-428.	1.4	5
122	Boosting Zn-ion adsorption in cross-linked N/P co-incorporated porous carbon nanosheets for the zinc-ion hybrid capacitor. Journal of Materials Chemistry A, 2021, 9, 16565-16574.	10.3	67
123	A new type of zinc ion hybrid supercapacitor based on 2D materials. Nanoscale, 2021, 13, 11004-11016.	5.6	33
124	A robust magnesiothermic reduction combined self-activation strategy towards highly-curved carbon nanosheets for advanced zinc-ion hybrid supercapacitors applications. Nanotechnology, 2021, 32, 185403.	2.6	4
125	Designing a Zn(BF ₄) ₂ â€Based Ionic Liquid Electrolyte to Realize Superior Energy Density in a Carbonâ€Based Zincâ€Ion Hybrid Capacitor. ChemElectroChem, 2021, 8, 1289-1297.	3.4	22
126	Investigation of Voltage Range and Selfâ€Discharge in Aqueous Zincâ€Ion Hybrid Supercapacitors. ChemSusChem, 2021, 14, 1700-1709.	6.8	51
127	3D-Printed Zn-Ion Hybrid Capacitor Enabled by Universal Divalent Cation-Gelated Additive-Free Ti ₃ C ₂ MXene Ink. ACS Nano, 2021, 15, 3098-3107.	14.6	131

#	Article	IF	CITATIONS
128	Recent Developments and Future Prospects for Zincâ€lon Hybrid Capacitors: a Review. Advanced Energy Materials, 2021, 11, 2003994.	19.5	219
129	N, P, S co-doped biomass-derived hierarchical porous carbon through simple phosphoric acid-assisted activation for high-performance electrochemical energy storage. International Journal of Hydrogen Energy, 2021, 46, 8197-8209.	7.1	40
130	Deep Eutectic Solventâ€Induced Polyacrylonitrileâ€Derived Hierarchical Porous Carbon for Zincâ€Ion Hybrid Supercapacitors. Batteries and Supercaps, 2021, 4, 680-686.	4.7	10
131	Recent Progress and Challenges in Multivalent Metalâ€ion Hybrid Capacitors. Batteries and Supercaps, 2021, 4, 1201-1220.	4.7	14
132	Reversible Electrochemical Energy Storage Based on Zinc-Halide Chemistry. ACS Applied Materials & Interfaces, 2021, 13, 14112-14121.	8.0	18
133	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	19.1	74
134	Carbonâ€Based Materials for a New Type of Zincâ€ion Capacitor. ChemElectroChem, 2021, 8, 1541-1557.	3.4	35
135	Towards High-Energy and Anti-Self-Discharge Zn-Ion Hybrid Supercapacitors with New Understanding of the Electrochemistry. Nano-Micro Letters, 2021, 13, 95.	27.0	115
136	Frontiers in Hybrid Ion Capacitors: A Review on Advanced Materials and Emerging Devices. ChemElectroChem, 2021, 8, 1393-1429.	3.4	43
137	Design and Synthesis of Zincâ€Activated Co _{<i>x</i>} Ni _{2â^'<i>x</i>} P/Graphene Anode for Highâ€Performance Zinc Ion Storage Device. ChemSusChem, 2021, 14, 2205-2215.	6.8	11
138	Flexible Antifreeze Zn-Ion Hybrid Supercapacitor Based on Gel Electrolyte with Graphene Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 16454-16468.	8.0	134
139	In-Situ Annealed Ti3C2Tx MXene Based All-Solid-State Flexible Zn-Ion Hybrid Micro Supercapacitor Array with Enhanced Stability. Nano-Micro Letters, 2021, 13, 100.	27.0	56
140	Electrochemical Zinc Ion Capacitors: Fundamentals, Materials, and Systems. Advanced Energy Materials, 2021, 11, 2100201.	19.5	156
141	An electro-activated bimetallic zinc-nickel hydroxide cathode for supercapacitor with super-long 140,000 cycle durability. Nano Energy, 2021, 82, 105727.	16.0	68
142	Tailored Hierarchical Porous Carbon through Template Modification for Antifreezing Quasiâ€Solidâ€State Zinc Ion Hybrid Supercapacitors. Advanced Energy and Sustainability Research, 2021, 2, 2000112.	5.8	9
143	Phosphorus in honeycomb-like carbon as a cathode boosting pseudocapacitive properties for Zn-ion storage. Journal of Power Sources, 2021, 493, 229687.	7.8	38
144	Zincâ€ion Hybrid Supercapacitors: Progress and Future Perspective. Batteries and Supercaps, 2021, 4, 1529-1546.	4.7	48
145	High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. Journal of Power Sources, 2021, 495, 229789.	7.8	18

#	ARTICLE Glycerol derived mesopore-enriched hierarchically carbon nanosheets as the cathode for ultrafast	IF	CITATIONS
146 147	zinc ion hybrid supercapacitor applications. Electrochimica Acta, 2021, 379, 138170. The Advance and Perspective on Electrode Materials for Metal–Ion Hybrid Capacitors. Advanced Energy and Sustainability Research, 2021, 2, 2100022.	5.2	39 13
148	Granular Vanadium Nitride (VN) Cathode for High-Capacity and Stable Zinc-Ion Batteries. Industrial & amp; Engineering Chemistry Research, 2021, 60, 8649-8658.	3.7	21
149	A ZIFâ€8 Host for Dendriteâ€Free Zinc Anodes and N,O Dualâ€doped Carbon Cathodes for Highâ€Performance Zincâ€Ion Hybrid Capacitors. Chemistry - an Asian Journal, 2021, 16, 2146-2153.	3.3	16
150	Operando non-topological conversion constructing the high-performance nickel-zinc battery anode. Chemical Engineering Journal, 2021, 414, 128716.	12.7	11
151	A Gasâ€Steamed MOF Route to Pâ€Doped Open Carbon Cages with Enhanced Znâ€lon Energy Storage Capability and Ultrastability. Advanced Materials, 2021, 33, e2101698.	21.0	120
152	Finely crafted polyaniline cathode for high-performance flexible quasi-solid-state Zn-ion battery. Solid State Ionics, 2021, 364, 115612.	2.7	13
153	Recent Progress on Two-Dimensional Carbon Materials for Emerging Post-Lithium (Na+, K+, Zn2+) Hybrid Supercapacitors. Polymers, 2021, 13, 2137.	4.5	19
154	Design of honeycomb-like hierarchically porous carbons with engineered mesoporosity for aqueous zinc-ion hybrid supercapacitors applications. Journal of Energy Storage, 2021, 38, 102534.	8.1	23
155	Zincâ€ion Hybrid Capacitor with High Energy Density Constructed by Bamboo Shavings Derived Spongyâ€like Porous Carbon. ChemistrySelect, 2021, 6, 6937-6943.	1.5	12
156	Zn-ion hybrid supercapacitors: Achievements, challenges and future perspectives. Nano Energy, 2021, 85, 105942.	16.0	230
157	Materials Development in Hybrid Zincâ€lon Capacitors. ChemNanoMat, 2021, 7, 1082-1098.	2.8	16
158	Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review. Nano Energy, 2021, 86, 106070.	16.0	85
159	A robust strategy of solvent choice to synthesize optimal nanostructured carbon for efficient energy storage. Carbon, 2021, 180, 135-145.	10.3	88
160	Flower-like carbon cathode prepared via in situ assembly for Zn-ion hybrid supercapacitors. Carbon, 2021, 180, 254-264.	10.3	63
161	O-doped porous carbon derived from biomass waste for high-performance zinc-ion hybrid supercapacitors. Ionics, 2021, 27, 4495-4505.	2.4	14
162	Pyrrolic-Dominated Nitrogen Redox Enhances Reaction Kinetics of Pitch-Derived Carbon Materials in Aqueous Zinc Ion Hybrid Supercapacitors. , 2021, 3, 1291-1299.		54
163	Exploration of Metal/Ti3C2 MXene-derived composites as anode for high-performance zinc-ion supercapacitor. Journal of Power Sources, 2021, 506, 230197.	7.8	43

ARTICLE IF CITATIONS Recent Advancements in Energy Storage Based on Sodium Ion and Zinc Ion Hybrid Supercapacitors. 5.1 17 164 Energy & amp; Fuels, 2021, 35, 14241-14264. Polyacrylonitrile Derived Porous Carbon for Zincâ€ion Hybrid Capacitors with High Energy Density. 3.4 9 ChémElectroChem, 2021, 8, 3572-3578. Porous Carbon Derived from Sweet Potato Biomass as Electrode for Zinc-ion Hybrid Supercapacitors. 166 7 1.3 International Journal of Electrochemical Science, 2021, 16, 210937. A Templateâ€Engaged, Selfâ€Doped Strategy to Nâ€Doped Hollow Carbon Nanoboxes for Zincâ€Ion Hybrid Supercapacitors. ChemElectroChem, 2021, 8, 4096-4107. Monitoring of Monocrystalline Silicon PERC Solar Cell with Laser-Doped Selective Emitter Using Infrared and Electroluminescence Imaging. International Journal of Electrochemical Science, 2021, 16, 168 1.3 1 210911. Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 148, 111288. 16.4 A dendrite-free Zn@CuxZny composite anode for rechargeable aqueous batteries. Electrochimica Acta, 170 5.2 22 2021, 399, 139334. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon 171 nanocage framework. Journal of Power Sources, 2021, 506, 230224. Biomass-based porous carbon/graphene self-assembled composite aerogels for high-rate performance 172 9.3 45 supercapacitor. Journal of Cleaner Production, 2021, 315, 128110. Super hydrophilic carbon fiber film for freestanding and flexible cathodes of zinc-ion hybrid 12.7 supercapacitors. Chemical Engineering Journal, 2021, 421, 129786. Hydrogen-bonded frameworks crystals-assisted synthesis of flower-like carbon materials with penetrable meso/macropores from heavy fraction of bio-oil for Zn-ion hybrid supercapacitors. Journal 174 22 9.4 of Colloid and Interface Science, 2021, 600, 681-690. Recent advances in potassium-ion hybrid capacitors: Electrode materials, storage mechanisms and 18.0 performance evaluation. Energy Storage Materials, 2021, 41, 108-132. State-of-charge estimation and remaining useful life prediction of supercapacitors. Renewable and 176 16.4 113 Sustainable Energy Reviews, 2021, 150, 111408. A ZnCl2 nonaqueous deep-eutectic-solvent electrolyte for zinc-ion hybrid supercapacitors. Materials 2.6 Letters, 2021, 301, 130237. Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and 178 10.3 71 beyond. Carbon, 2021, 185, 126-151. Analysis of inventive problem-solving capacities for renewable energy storage investments. Energy 179 5.1 Reports, 2021, 7, 4779-4791. Dual-doped carbon hollow nanospheres achieve boosted pseudocapacitive energy storage for 180 18.0 96 aqueous zinc ion hybrid capacitors. Energy Storage Materials, 2021, 42, 705-714. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid 181 supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy, 2021, 90, 106500.

#	Article	IF	Citations
182	Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. Journal of Materials Chemistry A, 2021, 9, 17292-17299.	10.3	31
183	Minimization of ion transport resistance: diblock copolymer micelle derived nitrogen-doped hierarchically porous carbon spheres for superior rate and power Zn-ion capacitors. Journal of Materials Chemistry A, 2021, 9, 8435-8443.	10.3	45
184	Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn–organic batteries. Materials Horizons, 2021, 8, 3124-3132.	12.2	17
185	Synthesis of Activated Carbon Derived from Garlic Peel and Its Electrochemical Properties. International Journal of Electrochemical Science, 2021, 16, 150653.	1.3	10
186	Emerging miniaturized energy storage devices for microsystem applications: from design to integration. International Journal of Extreme Manufacturing, 2020, 2, 042001.	12.7	96
187	Direct Ink Printing for Flexible Zinc″onâ€Hybrid Microâ€Supercapacitors Based on Hierarchical Porous Carbon as Cathode. ChemElectroChem, 2021, 8, 4498-4508.	3.4	4
188	Flexible Quasiâ€Solidâ€State Highâ€Performance Aqueous Zinc Ion Hybrid Supercapacitor with Waterâ€inâ€Salt Hydrogel Electrolyte and N/Pâ€Dual Doped Graphene Hydrogel Electrodes. Advanced Sustainable Systems, 2022, 6, 2100191.	5.3	26
189	Selfâ€Assembled Carbon Superstructures Achieving Ultraâ€Stable and Fast Protonâ€Coupled Charge Storage Kinetics. Advanced Materials, 2021, 33, e2104148.	21.0	174
190	Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors. Materials Today Energy, 2021, 22, 100878.	4.7	17
191	Highly mesoporous carbons derived from corn silks as high performance electrode materials of supercapacitors and zinc ion capacitors. Journal of Energy Storage, 2021, 44, 103385.	8.1	21
192	New chitosan Schiff base and its nanocomposite: Removal of methyl green from aqueous solution and its antibacterial activities. International Journal of Biological Macromolecules, 2021, 192, 1-6.	7.5	17
193	Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors. Journal of Power Sources, 2021, 516, 230663.	7.8	36
194	Fabrication of Porous Electrodes for Zinc-Ion Supercapacitors with Improved Energy Storage Performance. Korean Journal of Materials Research, 2019, 29, 505-510.	0.2	5
195	Thin-walled porous carbon tile-packed paper for high-rate Zn-ion capacitor cathode. Chemical Engineering Journal, 2022, 431, 133241.	12.7	23
196	Correlations for Total Entropy Generation and Bejan Number for Free Convective Heat Transfer of an Eco-Friendly Nanofluid in a Rectangular Enclosure under Uniform Magnetic Field. Processes, 2021, 9, 1930.	2.8	0
197	Self-chargeable zinc-ion hybrid supercapacitor driven by salt-concentrated cellulose hydrogel. Cellulose, 2021, 28, 11483-11492.	4.9	9
198	Two-step nitrogen and sulfur doping in porous carbon dodecahedra for Zn-ion hybrid supercapacitors with long term stability. Chemical Engineering Journal, 2022, 431, 133250.	12.7	65
199	Engineering zincophilic sites on Zn surface via plant extract additives for dendrite-free Zn anode. Energy Storage Materials, 2022, 44, 408-415.	18.0	95

#	Article	IF	CITATIONS
200	High-density three-dimensional graphene cathode with a tailored pore structure for high volumetric capacity zinc-ion storage. Carbon, 2022, 186, 624-631.	10.3	15
201	Preparation and characterization of zinc–aluminum layered doubled hydroxide/ graphene nanosheets composite for supercapacitor electrode. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 115005.	2.7	4
202	MOF-derived porous carbon inlaid with MnO ₂ nanoparticles as stable aqueous Zn-ion battery cathodes. Dalton Transactions, 2021, 50, 17723-17733.	3.3	14
203	Polypyrrole nanoparticles embedded nitrogen-doped graphene composites as novel cathode for long life cycles and high-power zinc-ion hybrid supercapacitors. RSC Advances, 2021, 11, 35205-35214.	3.6	12
204	<i>In situ</i> nanoarchitecturing of conjugated polyamide network-derived carbon cathodes toward high energy-power Zn-ion capacitors. Journal of Materials Chemistry A, 2022, 10, 611-621.	10.3	117
205	Carbon nanomaterials for highly stable Zn anode: Recent progress and future outlook. Journal of Electroanalytical Chemistry, 2022, 904, 115883.	3.8	19
206	Rational modulation of emerging MXene materials for zincâ€ion storage. , 2022, 4, 60-76.		46
207	High-performance activated carbon cathodes from green cokes for Zn-ion hybrid supercapacitors. Fuel, 2022, 310, 122485.	6.4	26
208	High energy-power density Zn-ion hybrid supercapacitors with N/P co-doped graphene cathode. Journal of Power Sources, 2022, 521, 230941.	7.8	60
209	Regulating zinc electroplating chemistry to achieve high energy coaxial fiber Zn ion supercapacitor for self-powered textile-based monitoring system. Nano Energy, 2022, 93, 106893.	16.0	36
210	A flexible Zinc-ion hybrid supercapacitor constructed by porous carbon with controllable structure. Applied Surface Science, 2022, 579, 152247.	6.1	59
211	Boosting effects of hydroxyl groups on porous carbon for improved aqueous zinc-ion capacitors. Journal of Energy Storage, 2022, 48, 103996.	8.1	18
212	Synergistic effects of B/S co-doped spongy-like hierarchically porous carbon for a high performance zinc-ion hybrid capacitor. Nanoscale, 2022, 14, 2004-2012.	5.6	21
213	High-rate performance zinc-ion hybrid capacitors constructed by multi-layered carbon nanosheet cathode. Ionics, 2022, 28, 1419-1426.	2.4	12
214	Revisiting Charge Storage Mechanism of Reduced Graphene Oxide in Zinc Ion Hybrid Capacitor beyond the Contribution of Oxygenâ€Containing Groups. Advanced Functional Materials, 2022, 32, .	14.9	45
215	Concentrated Electrolyte for Highâ€Performance Caâ€lon Battery Based on Organic Anode and Graphite Cathode. Angewandte Chemie - International Edition, 2022, 61, .	13.8	39
216	Non-lithium-based metal ion capacitors: recent advances and perspectives. Journal of Materials Chemistry A, 2022, 10, 357-378.	10.3	34
217	Concentrated Electrolyte for Highâ€performance Caâ€ion Battery based on Organic Anode and Graphite Cathode. Angewandte Chemie, 0, , .	2.0	4

#	Article	IF	CITATIONS
218	Recent progress in graphenes: synthesis, covalent functionalization and environmental applications. Journal of Nanostructure in Chemistry, 2022, 12, 1033-1051.	9.1	8
219	Photocatalytic transition-metal-oxides-based p–n heterojunction materials: synthesis, sustainable energy and environmental applications, and perspectives. Journal of Nanostructure in Chemistry, 2023, 13, 129-166.	9.1	17
220	Developing High-Performance Flexible Zinc Ion Capacitors from Agricultural Waste-Derived Carbon Sheets. ACS Sustainable Chemistry and Engineering, 2022, 10, 1471-1481.	6.7	23
221	Electrochemical Characteristics of Zn-Ion Hybrid Supercapacitors Based on Aqueous Solution of Different Electrolytes. Journal of the Electrochemical Society, 2022, 169, 020512.	2.9	10
222	Plasma boosted N, P, O co-doped carbon microspheres for high performance Zn ion hybrid supercapacitors. Journal of Alloys and Compounds, 2022, 901, 163588.	5.5	50
223	Carbon material/MnO2 as conductive skeleton for supercapacitor electrode material: A review. Renewable and Sustainable Energy Reviews, 2022, 158, 112131.	16.4	98
224	Ultrafast, long-life, high-loading, and wide-temperature zinc ion supercapacitors. Energy Storage Materials, 2022, 46, 233-242.	18.0	53
225	Harmonizing Graphene Laminate Spacing and Zincâ€lon Solvated Structure toward Efficient Compact Capacitive Charge Storage. Advanced Functional Materials, 2022, 32, .	14.9	31
226	Continuous Fabrication of Ti3C2Tx MXene-Based Braided Coaxial Zinc-Ion Hybrid Supercapacitors with Improved Performance. Nano-Micro Letters, 2022, 14, 34.	27.0	46
227	Sulfur incorporation modulated absorption kinetics and electron transfer behavior for nitrogen rich porous carbon nanotubes endow superior aqueous zinc ion storage capability. Journal of Materials Chemistry A, 2022, 10, 9355-9362.	10.3	31
228	MoS ₂ nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor. Inorganic Chemistry Frontiers, 2022, 9, 1666-1673.	6.0	16
229	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	10.3	47
230	Nanoâ€scale <scp>BN</scp> interface for ultraâ€stable and wide temperature range tolerable Zn anode. EcoMat, 2022, 4, .	11.9	27
231	Recent advances and future perspectives for aqueous zinc-ion capacitors. Materials Futures, 2022, 1, 022101.	8.4	34
232	Unlocking Zinc-Ion Energy Storage Performance of Onion-Like Carbon by Promoting Heteroatom Doping Strategy. ACS Applied Materials & Interfaces, 2022, 14, 9013-9023.	8.0	27
233	A Better Zn-Ion Storage Device: Recent Progress for Zn-Ion Hybrid Supercapacitors. Nano-Micro Letters, 2022, 14, 64.	27.0	65
234	Transition metal dichalcogenide nanostructured electrodes without calcination for aqueous asymmetric supercapacitors. International Journal of Energy Research, 2022, 46, 9414-9430.	4.5	7
235	A Review of High-Energy Density Lithium-Air Battery Technology: Investigating the Effect of Oxides and Nanocatalysts. Journal of Chemistry, 2022, 2022, 1-32.	1.9	23

# 236	ARTICLE Ureaâ€Mediated Monoliths Made of Nitrogenâ€Enriched Mesoporous Carbon Nanosheets for Highâ€Performance Aqueous Zinc Ion Hybrid Capacitors. Small, 2022, 18, e2108057.	lF 10.0	CITATIONS
237	Ti1.1V0.7Cr Nb1.0Ta0.6C3T high-entropy MXene freestanding films for charge storage applications. Electrochemistry Communications, 2022, 137, 107264.	4.7	23
238	Organohydrogel electrolyte-based flexible zinc-ion hybrid supercapacitors with dendrite-free anode, broad temperature adaptability and ultralong cycling life. Journal of Power Sources, 2022, 528, 231210.	7.8	25
239	Multifunctional quasi-solid-state zinc-ion hybrid supercapacitors beyond state-of-the-art structural energy storage. Materials Today Physics, 2022, 24, 100654.	6.0	8
240	Towards high-performance supercapacitors with cellulose-based carbon for zinc-ion storage. Journal of Energy Storage, 2022, 50, 104252.	8.1	8
241	N, S co-doped porous carbons with well-developed pores for supercapacitor and zinc ion hybrid capacitor. Journal of Alloys and Compounds, 2022, 907, 164536.	5.5	38
242	High-energy-density aqueous zinc-based hybrid supercapacitor-battery with uniform zinc deposition achieved by multifunctional decoupled additive. Nano Energy, 2022, 96, 107120.	16.0	24
243	Zinc-ion hybrid supercapacitors with ultrahigh areal and gravimetric energy densities and long cycling life. Journal of Energy Chemistry, 2022, 70, 480-491.	12.9	19
244	Electro-magnetic vibration behavior of smart curved micro-/nanoshells. Waves in Random and Complex Media, 0, , 1-28.	2.7	1
245	Flexible quasi-solid-state zinc-ion hybrid supercapacitor based on carbon cloths displays ultrahigh areal capacitance. Fundamental Research, 2023, 3, 288-297.	3.3	13
246	Enabling Multi-Chemisorption Sites on Carbon Nanofibers Cathodes by an In-situ Exfoliation Strategy for High-Performance Zn–Ion Hybrid Capacitors. Nano-Micro Letters, 2022, 14, 106.	27.0	63
247	Hierarchically nitrogen-doped mesoporous carbon nanospheres with dual ion adsorption capability for superior rate and ultra-stable zinc ion hybrid supercapacitors. Science China Materials, 2022, 65, 2401-2411.	6.3	17
248	Metal-organic frameworks-derived carbon modified wood carbon monoliths as three-dimensional self-supported electrodes with boosted electrochemical energy storage performance. Journal of Colloid and Interface Science, 2022, 620, 376-387.	9.4	23
249	Fabrication of a cost-effective cation exchange membrane for advanced energy storage in a decoupled alkaline-neutral electrolyte system. Chemical Engineering Journal, 2022, 443, 136435.	12.7	5
251	N, P Dual Doped Foamy-Like Carbons with Abundant Defect Sites for Zinc Ion Hybrid Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
252	Redox-active sodium 3,4-dihydroxy anthraquinone-2-sulfonate anchored on reduced graphene oxide for high-performance Zn-ion hybrid capacitors. Journal of Materials Chemistry A, 2022, 10, 12532-12543.	10.3	20
253	A Review on the Conventional Capacitors, Supercapacitors, and Emerging Hybrid Ion Capacitors: Past, Present, and Future. Advanced Energy and Sustainability Research, 2022, 3, .	5.8	74
254	Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon. lonics, 2022, 28, 3477-3488.	2.4	5

#	Article	IF	Citations
255	Simultaneous application of active and passive methods in cooling of a cylindrical lithium-ion battery by changing the size of the elliptical cavity filled with nano phase change materials. Journal of Energy Storage, 2022, 50, 104693.	8.1	9
256	Rational-design heteroatom-doped cathode and ion modulation layer modified Zn anode for ultrafast zinc-ion hybrid capacitors with simultaneous high power and energy densities. Journal of Power Sources, 2022, 536, 231484.	7.8	17
257	General overview of sodium, potassium, and zinc-ion capacitors. Journal of Alloys and Compounds, 2022, 913, 165216.	5.5	17
258	Construction of vacancies-enriched CuS/Fe2O3 with nano-heterojunctions as negative electrode for flexible solid-state supercapacitor. Journal of Alloys and Compounds, 2022, 916, 165443.	5.5	30
259	Effect of using a heatsink with nanofluid flow and phase change material on thermal management of plate lithium-ion battery. Journal of Energy Storage, 2022, 52, 104686.	8.1	10
260	Production of a hybrid capacitive storage device via hydrogen gas and carbon electrodes coupling. Nature Communications, 2022, 13, 2805.	12.8	26
261	CO ₂ â€Derived Oxygenâ€Rich Carbon with Enhanced Redox Reactions as a Cathode Material for Aqueous Znâ€lon Batteries. ChemistrySelect, 2022, 7, .	1.5	1
262	MXene-based Zn-ion hybrid supercapacitors: Effects of anion carriers and MXene surface coatings on the capacities and life span. Journal of Energy Storage, 2022, 52, 104823.	8.1	12
263	Unveiling the cooperative roles of pyrrolic-N and carboxyl groups in biomass-derived hierarchical porous carbon nanosheets for high energy-power Zn-ion hybrid supercapacitors. Applied Surface Science, 2022, 598, 153819.	6.1	30
264	Organic–inorganic hybrid ferrocene/AC as cathodes for wide temperature range aqueous Zn-ion supercapacitors. RSC Advances, 2022, 12, 18466-18474.	3.6	3
265	Anion Concentration Gradient-Assisted Construction of a Solid–Electrolyte Interphase for a Stable Zinc Metal Anode at High Rates. Journal of the American Chemical Society, 2022, 144, 11168-11177.	13.7	94
266	Highly active N, S Co-Doped Ultramicroporous Carbon for High-Performance Supercapacitor Electrodes. Micromachines, 2022, 13, 905.	2.9	4
267	A supramolecular gel polymer electrolyte for ultralong-life zinc-ion hybrid supercapacitors. Journal of Energy Storage, 2022, 53, 105089.	8.1	18
268	Nanoporous core–shell–structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: Mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. Journal of Power Sources, 2022, 541, 231627.	7.8	12
269	Flexible Zinc Ion Hybrid Capacitors with High Energy Density and Long Cycling Life Based on Nanoneedle-Like Mno2@Cc Electrode. SSRN Electronic Journal, 0, , .	0.4	0
270	Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor. Rare Metals, 2022, 41, 2985-2991.	7.1	24
271	Metal-organic framework derived zinc and nitrogen co-doped porous carbon materials for high performance zinc-ion hybrid supercapacitors. Electrochimica Acta, 2022, 427, 140854.	5.2	13
272	Zincâ€ŀon Hybrid Supercapacitors Employing Acetateâ€Based Waterâ€inâ€Salt Electrolytes. Small, 2022, 18, .	10.0	22

#	Article	IF	CITATIONS
273	Preparation of Nitrogen Doped Carbon Materials and Analysis of Their Electrochemical Performance. International Journal of Electrochemical Science, 2022, 17, 220825.	1.3	3
274	Synergistic effects of an artificial carbon coating layer and Cu2+-electrolyte additive for high-performance zinc-based hybrid supercapacitors. Carbon, 2022, 198, 34-45.	10.3	17
275	N, P dual doped foamy-like carbons with abundant defect sites for zinc ion hybrid capacitors. Chemical Engineering Journal, 2022, 450, 137919.	12.7	53
276	MXenes in aqueous electrochemical energy systems. Journal of Solid State Electrochemistry, 2022, 26, 1777-1790.	2.5	5
277	High-performance Zn-ion hybrid supercapacitor enabled by the hierarchical N/S co-doped graphene/polyaniline cathode. Journal of Alloys and Compounds, 2022, 924, 166493.	5.5	12
278	Graphene oxide grafting naphthoquinone derivative with enhanced specific capacitance and energy density for zinc-ion hybrid supercapacitors. Ionics, 2022, 28, 4425-4433.	2.4	12
279	Energy-efficient system and charge balancing topology for electric vehicle application. Sustainable Energy Technologies and Assessments, 2022, 53, 102516.	2.7	11
280	Artificial Interphase Layer for Stabilized Zn Anodes: Progress and Prospects. Small, 2022, 18, .	10.0	49
281	Electrostatic <scp>Interactionâ€directed</scp> Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for <scp>Zincâ€ion</scp> Hybrid Capacitors with Ultrastability. Energy and Environmental Materials, 2024, 7, .	12.8	4
282	Znâ€Metal–Organic Framework Derived Ordered Mesoporous Carbonâ€Based Nanostructure for Highâ€Performance and Universal Multivalent Metal Ion Storage. Advanced Materials, 2022, 34, .	21.0	13
283	Eliminating the Micropore Confinement Effect of Carbonaceous Electrodes for Promoting Znâ€ l on Storage Capability. Advanced Materials, 2022, 34, .	21.0	61
284	Eutectic salt induced self-activation technique for porous graphene-like carbon nanosheets as the high-capacity cathodes for Zn-ion hybrid supercapacitors. Journal of Electroanalytical Chemistry, 2022, 921, 116673.	3.8	4
285	Flexible thermotolerant Zn-ion hybrid supercapacitors enabled by heat-resistant polymer electrolyte. Chemical Engineering Journal, 2023, 451, 138512.	12.7	6
286	Reduced water activity in co-solvent electrolyte enables 2 V zinc-ion hybrid capacitors with prolonged stability and high energy density. Journal of Materials Chemistry A, 2022, 10, 20431-20445.	10.3	3
287	Metal–organic frameworks and their derivatives for metal-ion (Li, Na, K and Zn) hybrid capacitors. Chemical Science, 2022, 13, 11981-12015.	7.4	31
288	Diameter-optimized PVA@PPy nanofibers: MXene interlayer space expansion without sacrificing electron transport. Journal of Materials Chemistry C, 2022, 10, 13056-13063.	5.5	8
289	P-doped porous carbon derived from walnut shell for zinc ion hybrid capacitors. RSC Advances, 2022, 12, 24724-24733.	3.6	2
290	Biomimetic Dendriteâ€Free Multivalent Metal Batteries. Advanced Materials, 2022, 34, .	21.0	35

	Сітатіо	tion Report		
#	Article	IF	CITATIONS	
291	Zincâ€ion hybrid supercapacitors: Design strategies, challenges, and perspectives. , 2022, 1, 159-188.		15	
292	Lewis Pair Interaction Selfâ€Assembly of Carbon Superstructures Harvesting Highâ€Energy and Ultralongâ€Life Zincâ€Ion Storage. Advanced Functional Materials, 2022, 32, .	14.9	65	
293	MXene (Ti ₃ C ₂ T _x) modified α-Co(OH) ₂ battery-type cathode and highly capacitive binder-free Ti ₃ C ₂ T _x anode for high-performance electrochemical hybrid capacitor. 2D Materials, 2022, 9, 045031.	4.4	2	
294	Regulating Uniform Zn Deposition via Hybrid Artificial Layer for Stable Aqueous Zn-Ion Batteries. Energy Material Advances, 2022, 2022, .	11.0	16	
295	Rice husk-derived carbon materials for aqueous Zn-ion hybrid supercapacitors. Applied Surface Science, 2023, 608, 155215.	6.1	15	
296	Bioinspired design of graphene-based N/O self-doped nanoporous carbon from carp scales for advanced Zn-ion hybrid supercapacitors. Electrochimica Acta, 2022, 434, 141312.	5.2	17	
297	Supermolecule-mediated defect engineering of porous carbons for zinc-ion hybrid capacitors. Nano Energy, 2022, 103, 107827.	16.0	37	
298	Comprehensive utilization of lignocellulosic biomass for the electrode and electrolyte in zinc-ion hybrid supercapacitors. Journal of Materials Chemistry A, 2022, 10, 24208-24215.	10.3	10	
299	Microstructure Modulation of Zn Doped VO2(B) Nanorods with Improved Electrochemical Properties towards High Performance Aqueous Batteries. Batteries, 2022, 8, 172.	4.5	5	
300	Progress on carbonene-based materials for Zn-ion hybrid supercapacitors. New Carbon Materials, 2022, 37, 918-935.	6.1	3	
301	3D printed pure carbon-based electrodes for zinc-ion hybrid supercapacitor. Carbon Trends, 2022, 9, 100222.	3.0	2	
302	Engineering Pore Nanostructure of Carbon Cathodes for Zinc Ion Hybrid Supercapacitors. Advanced Functional Materials, 2022, 32, .	14.9	45	
303	Synthesis strategies of optimized cathodes and mechanisms for zinc ion capacitors. Materials Today Energy, 2022, 30, 101188.	4.7	6	
304	Preparation of chitosan and citric acid crosslinked membrane and its application in quasi-solid supercapacitors. Rare Metals, 2023, 42, 430-437.	7.1	6	
305	Flexible zinc ion hybrid capacitors with high energy density and long cycling life based on nanoneedle-like MnO2@CC electrode. Electrochimica Acta, 2022, 434, 141321.	5.2	5	
306	Flexible zinc ion hybrid supercapacitors enabled by N/S co-doped porous carbon and bacterial cellulose/ZnSO4 electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130424.	4.7	7	
307	Ultrahigh level heteroatoms doped carbon nanosheets as cathode materials for Zn-ion hybrid capacitor: The indispensable roles of B containing functional groups. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130528.	4.7	4	
308	Interface engineering with porous graphene as deposition regulator of stable Zn metal anode for long-life Zn-ion capacitor. Journal of Colloid and Interface Science, 2023, 631, 135-146.	9.4	13	

#	Article	IF	CITATIONS
309	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
310	A flexible and stable zinc-ion hybrid capacitor with polysaccharide-reinforced cross-linked hydrogel electrolyte and binder-free carbon cathode. Journal of Materials Chemistry A, 2022, 10, 24639-24648.	10.3	7
311	Co/Zn bimetallic organic framework nanoparticles on carbon fibers as cathode for a high-performance rechargeable aqueous Zn-ion hybrid supercapacitor. Scripta Materialia, 2023, 225, 115171.	5.2	6
312	Nitrogen and oxygen co-doped carbon micro-foams derived from gelatin as high-performance cathode materials of Zn-ion capacitors. Journal of Energy Storage, 2023, 57, 106169.	8.1	11
313	Coal-derived N,O co-doped mesoporous carbon as electrode material for high performance aqueous electric-double layer capacitors and zinc-ion hybrid supercapacitors. Electrochimica Acta, 2023, 439, 141576.	5.2	6
314	Hydrothermally etching commercial carbon cloth to form a porous structure for flexible zinc-ion hybrid supercapacitors. Applied Surface Science, 2023, 613, 156093.	6.1	19
315	Construction of porous carbon nanosheets by dual-template strategy for zinc ion hybrid capacitor. Applied Surface Science, 2023, 613, 156021.	6.1	15
316	Hybrid Anionic Electrolytes for the High Performance of Aqueous Zinc-Ion Hybrid Supercapacitors. Energies, 2023, 16, 248.	3.1	3
317	Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendriteâ€Free Zinc Anode for Zincâ€Ion Hybrid Capacitors. Small Methods, 2023, 7, .	8.6	6
318	The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives. Sustainable Materials and Technologies, 2023, 35, e00536.	3.3	4
319	Discriminating Active BN Sites in Coralloidal B, N Dualâ€Doped Carbon Nanoâ€Bundles for Boosted Znâ€lon Storage Capability. Advanced Functional Materials, 2023, 33, .	14.9	28
320	Supramolecular engineering of cathode materials for aqueous zinc-ion hybrid supercapacitors: novel thiophene-bridged donor–acceptor sp ² carbon-linked polymers. Journal of Materials Chemistry A, 2023, 11, 2718-2725.	10.3	5
321	Hierarchical Porous Doped Carbon Plates Derived from Chitosan Aerogel as Cathode for High Performance Znâ€ion Hybrid Capacitor. ChemElectroChem, 2023, 10, .	3.4	6
322	Facile synthesis of accordion-like porous carbon from waste PET bottles-based MIL-53(Al) and its application for high-performance Zn-ion capacitor. Green Energy and Environment, 2023, , .	8.7	3
323	Revealing the Self-Doping Defects in Carbon Materials for the Compact Capacitive Energy Storage of Zn-Ion Capacitors. ACS Applied Materials & amp; Interfaces, 2023, 15, 3006-3016.	8.0	8
324	A flexible Zn-ion capacitor based on wood derived porous carbon and polyacrylamide/cellulose nanofiber hydrogel. Industrial Crops and Products, 2023, 193, 116216.	5.2	10
325	Co-precipitation reaction: A facile strategy for designing hierarchical porous carbon nanosheets for EDLCs and zinc-ion hybrid supercapacitors. Applied Surface Science, 2023, 615, 156280.	6.1	24
326	V-Mn-O aerogel composite-based high-energy Zn-ion hybrid supercapacitor. Journal of Energy Storage, 2023, 60, 106601.	8.1	5

#	Article	IF	Citations
327	A novel zinc ion supercapacitor with ultrahigh capacity and ultralong cycling lives enhanced by redox electrolyte. Journal of Energy Storage, 2023, 60, 106597.	8.1	2
328	Urea-Based Deep Eutectic Solvent with Magnesium/Lithium Dual Ions as an Aqueous Electrolyte for High-Performance Battery-Supercapacitor Hybrid Devices. Batteries, 2023, 9, 69.	4.5	3
329	A zinc-conducting chalcogenide electrolyte. Science Advances, 2023, 9, .	10.3	14
330	Functional porous carbons for zinc ion energy storage: Structure-Function relationship and future perspectives. Coordination Chemistry Reviews, 2023, 482, 215056.	18.8	5
331	High-performance aqueous zinc-ion hybrid capacitors based on 3D printed metal-organic framework cathodes. Chemical Engineering Journal, 2023, 465, 142544.	12.7	8
332	Designing layered V2O3@C with stable oxygen defects via UV-curing technology for high‑performance Zn-ion hybrid supercapacitors. Applied Surface Science, 2023, 622, 156951.	6.1	7
333	Synergistic effect of nitrogen and oxygen dopants in 3D hierarchical porous carbon cathodes for ultra-fast zinc ion hybrid supercapacitors. Journal of Colloid and Interface Science, 2023, 640, 1029-1039.	9.4	13
334	Rechargeable Zinc–Air Batteries with an Ultralarge Discharge Capacity per Cycle and an Ultralong Cycle Life. Advanced Materials, 2023, 35, .	21.0	23
335	Rational design of pyrrolic-N dominated carbon material derived from aminated lignin for Zn-ion supercapacitors. Journal of Colloid and Interface Science, 2023, 641, 155-165.	9.4	10
336	Fabrication and morphological effect of waxberry-like carbon for high-performance aqueous zinc-ion electrochemical storage. Carbon, 2023, 205, 226-235.	10.3	7
337	Morphology controllable fabrication of arch-like covalent triazine framework nanosheets for high-rate and high energy density zinc-ion hybrid supercapacitors. Chemical Engineering Journal, 2023, 461, 141925.	12.7	9
338	Explosive effect-assisted synthesis of hierarchical porous carbon for high-performance aqueous Zn-ion hybrid supercapacitors with commercial level mass loading. Electrochimica Acta, 2023, 447, 142114.	5.2	5
339	Redox-enhanced zinc-ion hybrid capacitors with high energy density enabled by high-voltage active aqueous electrolytes based on low salt concentration. Energy Storage Materials, 2023, 58, 30-39.	18.0	4
340	Mass-producible in-situ amorphous solid/electrolyte interface with high ionic conductivity for long-cycling aqueous Zn-ion batteries. Journal of Colloid and Interface Science, 2023, 641, 229-238.	9.4	7
341	A New (De)Intercalation MXene/Bi Cathode for Ultrastable Aqueous Zincâ€ l on Battery. Advanced Functional Materials, 2024, 34, .	14.9	5
342	Layered and honeycomb N-doped porous carbon for advanced Zn-ion hybrid supercapacitors and Li-ion batteries. Chemical Engineering Science, 2023, 276, 118702.	3.8	2
343	Amorphous Thin-Walled Carbon Nanotubes Modified by Simple Oxidation for Zinc-Ion Hybrid Supercapacitors. ACS Applied Energy Materials, 2023, 6, 4144-4149.	5.1	6
344	N, O co-doped porous carbon derived from pine needles for zinc-ion hybrid supercapacitors. New Journal of Chemistry, 2023, 47, 9692-9700.	2.8	1

#	Article	IF	CITATIONS
345	Hydrosoluble diacetone acrylamide as an electrolyte additive for high-capacity Zn-ion hybrid supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670, 131602.	4.7	2
346	Zinc-ion hybrid supercapacitor-batteries with a leaf-like ZIF-L/MgNiO ₂ micro-sphere composite and a Zn ²⁺ /sulfonated poly(ether ether ketone) gel. Sustainable Energy and Fuels, 2023, 7, 2627-2644.	4.9	0
347	Cross-linking and self-assembly synthesis of tannin-based carbon frameworks cathode for Zn-ion hybrid supercapacitors. Journal of Colloid and Interface Science, 2023, 644, 478-486.	9.4	6
348	3D nitrogen and boron dual-doped carbon quantum dots/reduced graphene oxide aerogel for advanced aqueous and flexible quasi-solid-state zinc-ion hybrid capacitors. Rare Metals, 2023, 42, 2307-2323.	7.1	28
349	A crystal splitting growth and self-assembly route to carbon superstructures with high energy and superstable Zn-ion storage. Chemical Engineering Journal, 2023, 467, 143497.	12.7	24
350	Shrimp shell-derived N, O-doped honeycomb-carbon for high-performance supercapacitor. Diamond and Related Materials, 2023, 136, 110041.	3.9	10
351	Hierarchically porous N-doped carbon nanosheet aerogel cathodes for Zn-ion hybrid supercapacitors with superhigh energy density. Journal of Energy Storage, 2023, 68, 107822.	8.1	7
352	3D Printed Microâ€Electrochemical Energy Storage Devices. Batteries and Supercaps, 2023, 6, .	4.7	4
353	Zincophilic multilayer graphene structures leveraging fast and ultrastable Zn-ion storage. Journal of Materials Chemistry A, 2023, 11, 12297-12307.	10.3	3
354	Multi-protection of zinc anode via employing a natural additive in aqueous zinc ion batteries. Chemical Engineering Journal, 2023, 468, 143834.	12.7	16
356	Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. Sustainable Energy and Fuels, 2023, 7, 3776-3795.	4.9	5
357	Recent Progress on Functional Metal–Organic Frameworks for Supercapacitive Energy Storage Systems. Energy Technology, 2023, 11, .	3.8	1
358	An extremely safe and flexible zinc-ion hybrid supercapacitor based on a scalable, thin and high-performance hierarchical structured gel electrolyte. Chemical Engineering Journal, 2023, 470, 144339.	12.7	2
359	Ultrahigh-rate and ultralong-life aqueous batteries enabled by special pair-dancing proton transfer. Science Advances, 2023, 9, .	10.3	12
360	Recent progress on the heteroatom-doped carbon cathode for zinc ion hybrid capacitors. Chemical Engineering Journal, 2023, 468, 143576.	12.7	10
361	Coupling Uniform Pore Size And Multi‑Chemisorption Sites: Hierarchically Ordered Porous Carbon For Ultraâ€Fast And Large Zinc Ion Storage. Advanced Functional Materials, 2023, 33, .	14.9	16
362	Facile Self-Assembly of Exfoliated Graphene/PANI Film for High-Energy Zn-Ion Micro-Supercapacitors. Molecules, 2023, 28, 4470.	3.8	1
363	Stable β-form zinc phthalocyanine cathodes for flexible Zn-ion hybrid supercapacitors with ultra-long cycling life. Chemical Engineering Journal, 2023, 468, 143875.	12.7	4

#	Article	IF	CITATIONS
364	Non-Aqueous Zn-Ion Hybrid Supercapacitors: Acetonitrile vs Propylene Carbonate Based Electrolyte. Journal of the Electrochemical Society, 2023, 170, 060501.	2.9	2
365	Optimizing oxygen substituents of a carbon cathode for improved capacitive behavior in ethanol-based zinc-ion capacitors. New Carbon Materials, 2023, 38, 522-531.	6.1	2
366	Hydrothermal Synthesis of Boron-Doped Graphene for High-Performance Zinc-Ion Hybrid Capacitor Using Aloe Vera Gel Electrolyte. Inorganics, 2023, 11, 280.	2.7	0
368	N,Pâ€coâ€doped 2D Carbon Nanosheets for High Energy Density Zinc″on Capacitors. Batteries and Supercaps, 2023, 6, .	4.7	0
369	Nitrogen and oxygen co-doped hierarchical porous carbon for zinc-ion hybrid capacitor. Journal of Energy Storage, 2023, 72, 108228.	8.1	3
370	Robust deposition of conductive polymer on waste textile assisted by vapor polymerization for flexible zinc-ion hybrid capacitor. Journal of Materials Science: Materials in Electronics, 2023, 34, .	2.2	1
371	All-Round Enhancement in Zn-Ion Storage Enabled by Solvent-Guided Lewis Acid–Base Self-Assembly of Heterodiatomic Carbon Nanotubes. ACS Applied Materials & Interfaces, 2023, 15, 35380-35390.	8.0	26
373	Unleashing recent electrolyte materials for next-generation supercapacitor applications: A comprehensive review. Journal of Energy Storage, 2023, 72, 108352.	8.1	13
374	Achieving high area capacitance of Ti3C2Tx//MnO2 flexible aqueous zinc-ion hybrid microsupercapacitors with wide operating voltage window. Journal of Alloys and Compounds, 2023, 965, 171488.	5.5	1
375	Boosting the Capacitance of Aqueous Zinc-Ion Hybrid Capacitors by Engineering Hierarchical Porous Carbon Architecture. Batteries, 2023, 9, 429.	4.5	1
376	Anion storage for hybrid supercapacitor. Materials Today Energy, 2023, 37, 101388.	4.7	3
377	Chitin and cellulose as constituents of efficient, sustainable, and flexible zinc-ion hybrid supercapacitors. Sustainable Materials and Technologies, 2023, 38, e00726.	3.3	0
379	Overall upgrading Zn-ion storage capability by engineering N/O co-doped hydrophilic hierarchical porous carbon. Journal of Energy Storage, 2023, 72, 108794.	8.1	4
381	Porous polypyrrole-derived carbon nanotubes as a cathode material for zinc-ion hybrid supercapacitors. Journal of Energy Storage, 2023, 73, 108925.	8.1	5
382	Molecularly engineered cellulose hydrogel electrolyte for highly stable zinc ion hybrid capacitors. Energy Storage Materials, 2023, 63, 102963.	18.0	4
383	S and O doped porous carbon hollow bubble for Zn ion capacitors with enhanced energy density and long life. Materials Letters, 2023, , 135316.	2.6	2
384	Modulating pore nanostructure coupled with N/O doping towards competitive coal tar pitch-based carbon cathode for aqueous Zn-ion storage. Carbon, 2024, 216, 118523.	10.3	3
385	Ni3S2/Ni2O3 heterojunction anchored on N-doped carbon nanosheet aerogels for dual-ion hybrid supercapacitors. Journal of Colloid and Interface Science, 2024, 654, 709-718.	9.4	2

#	Article	IF	CITATIONS
386	Wire-type flexible micro-supercapacitor based on MOF-assisted sulfide nano-arrays on dendritic CuCoP and V2O5-polypyrrole/nanocellulose hydrogel. Chemical Engineering Journal, 2023, 476, 146764.	12.7	3
387	Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors. Molecules, 2023, 28, 7187.	3.8	0
388	Porous Carbons Activated by Different Methods as Positive Electrode Materials for Zn-Carbon Capacitors. Journal of the Electrochemical Society, 0, , .	2.9	0
389	Powering the Future: Unleashing the Potential of MXeneâ€Based Dualâ€Functional Photoactive Cathodes in Photoâ€Rechargeable Zincâ€Ion Capacitor. Small, 0, , .	10.0	0
390	Research progress of carbon cathode materials for zinc-ion capacitors. Journal of Energy Storage, 2024, 75, 109571.	8.1	0
391	Teak wood derived porous carbon: An efficient cathode material for zincâ€ion hybrid supercapacitor. Energy Storage, 2024, 6, .	4.3	1
392	Mxenes for Zn-based energy storage devices: Nano-engineering and machine learning. Coordination Chemistry Reviews, 2024, 501, 215565.	18.8	2
393	Functional Oriented Design of Composite Artificial Interface Layers Towards Stable Zinc Anodes In Aqueous Zincâ€ion Batteries. Batteries and Supercaps, 2024, 7, .	4.7	0
394	Extending Cycling Life Beyond 300Â000 Cycles in Aqueous Zinc Ion Capacitors Through Additive Interface Engineering. Small, 0, , .	10.0	0
395	Key to High Performance Ion Hybrid Capacitor: Weakly Solvated Zinc Cations. Advanced Science, 0, , .	11.2	0
396	Flexible low-temperature zinc ion supercapacitor based on gel electrolyte with α-MnO2@rGO electrode. Journal of Power Sources, 2024, 591, 233878.	7.8	2
397	Lowâ€cost porous carbon materials prepared from peanut red peels for novel zincâ€ion hybrid capacitors. ChemistrySelect, 2023, 8, .	1.5	0
398	Novel hemp biomass-derived activated carbon as cathode material for aqueous zinc-ion hybrid supercapacitors: Synthesis, characterization, and electrochemical performance. Journal of Energy Storage, 2024, 77, 109879.	8.1	0
399	Oxygen-enriched pitch-derived hierarchically porous carbon toward boosted zinc-ion storage performance. Journal of Colloid and Interface Science, 2024, 658, 506-517.	9.4	1
400	Supramolecular polymers with dual energy storage mechanism for high-performance supercapacitors. Journal of Colloid and Interface Science, 2024, 658, 783-794.	9.4	0
401	Waste frying oil derived carbon nano-onions as a cost-effective cathode material for high-voltage zinc-ion hybrid supercapacitors. Materials Today Sustainability, 2024, 25, 100656.	4.1	1
402	Ï€-Conjugated molecule mediated self-doped hierarchical porous carbons via self-stacking interaction for high-energy and ultra-stable zinc-ion hybrid capacitors. Journal of Colloid and Interface Science, 2024, 658, 856-864.	9.4	10
403	Study on morphology and N-doping effects of carbon cathodes for zinc-ion hybrid supercapacitors. Journal of Power Sources, 2024, 594, 234006.	7.8	1

#	Article	IF	CITATIONS
404	A comprehensive review on fundamentals and components of zinc-ion hybrid supercapacitors. Journal of Energy Storage, 2024, 81, 110370.	8.1	2
405	Controllable synthesis of electric double-layer capacitance and pseudocapacitance coupled porous carbon cathode material for zinc-ion hybrid capacitors. Nanoscale, 2024, 16, 3701-3713.	5.6	0
406	Sustainable Synthesis of Hierarchically Porous Hollow Carbon Spheres for Enhanced Zinc-Ion Hybrid Supercapacitors. ACS Applied Energy Materials, 2024, 7, 931-940.	5.1	0
407	Synthesis of Porous Carbon Nanomaterials from Vietnamese Coal: Fabrication and Energy Storage Investigations. Applied Sciences (Switzerland), 2024, 14, 965.	2.5	0
408	Recent progress of high-performance in-plane zinc ion hybrid micro-supercapacitors: design, achievements, and challenges. Nanoscale, 2024, 16, 4542-4562.	5.6	1
409	A quinone-amine coupling route to interwoven heterodiatomic carbon nanofiber networks with fast and durable charge storage. , 2024, 2, 100135.		0
410	Full Screen-Printed Zinc-Ion Supercapacitor on Textile for Wearable Electronics. , 2023, , .		0
411	Anti-Oxidant and Anti-Microbial Activities of [ZnO: CoO/ Eugenol] and [ZnO: Fe2O3/ Eugenol] Nanocomposites. Ibn Al-Haitham Journal for Pure and Applied Sciences, 2024, 37, 251-264.	0.3	0
412	High energy density biomass-derived activated carbon materials for sustainable energy storage. Carbon, 2024, 221, 118934.	10.3	0
413	Ultrahigh N-doped carbon with hierarchical porous structure derived from metal-organic framework for high-performance zinc ion hybrid capacitors. Chemical Engineering Journal, 2024, 485, 149820.	12.7	0
414	Ecologically Sustainable N-doped Graphene Nanosheets as High-Performance Electrodes for Zinc–Air Batteries and Zinc-Ion Supercapacitors. ACS Applied Electronic Materials, 2024, 6, 1034-1044.	4.3	0
415	Layered Sâ€Bridged Covalent Triazine Frameworks via a Bifunctional Templateâ€Catalytic Strategy Enabling Highâ€Performance Zincâ€Ion Hybrid Supercapacitors. Small, 0, , .	10.0	0
416	Dendrite-free anodes enabled by MOF-808 and ZIF-8 modified glass microfiber separator for ultralong-life zinc-ion hybrid capacitors. Journal of Energy Storage, 2024, 85, 111063.	8.1	0
417	Synthesis and application of NiLa-layered double hydroxides on nickel-coated carbon nanotubes with Co-ZIF-67 composite in supercapacitors. Journal of Energy Storage, 2024, 85, 111093.	8.1	0
418	In-situ activation of resorcinol-furfural resin derived hierarchical porous carbon for supercapacitors and zinc-ion hybrid capacitors. Journal of Energy Storage, 2024, 85, 111130.	8.1	0
419	Heterostructured and multi-dimensional Ni-Co tellurides/NiTe with enhanced reaction kinetics for hybrid supercapacitors. Journal of Energy Storage, 2024, 86, 111158.	8.1	0
421	Tuning Germanane Band Gaps via Cyanoethyl Functionalization for Cutting-Edge Photoactive Cathodes: Photoenhanced Hybrid Zinc-Ion Capacitor Evaluation. ACS Applied Materials & Interfaces, 2024, 16, 14722-14741.	8.0	0