Building and decoding ubiquitin chains for mitophagy

Nature Reviews Molecular Cell Biology 19, 93-108 DOI: 10.1038/nrm.2017.129

Citation Report

#	Article	IF	CITATIONS
1	The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 293-302.	3.3	19
2	Linear ubiquitin chainâ€binding domains. FEBS Journal, 2018, 285, 2746-2761.	2.2	30
3	Dynamics of PARKIN-Dependent Mitochondrial Ubiquitylation in Induced Neurons and Model Systems Revealed by Digital Snapshot Proteomics. Molecular Cell, 2018, 70, 211-227.e8.	4.5	145
4	Phosphorylation of Parkin at serine 65 is essential for its activation <i>in vivo</i> . Open Biology, 2018, 8, 180108.	1.5	81
5	RAB7A phosphorylation by TBK1 promotes mitophagy via the PINK-PARKIN pathway. Science Advances, 2018, 4, eaav0443.	4.7	128
6	ISG15, a Small Molecule with Huge Implications: Regulation of Mitochondrial Homeostasis. Viruses, 2018, 10, 629.	1.5	33
7	Autophagy: An Essential Degradation Program for Cellular Homeostasis and Life. Cells, 2018, 7, 278.	1.8	245
8	Mitophagy Modulators. , 2018, , 433-433.		5
9	Rapamycin Enhances Mitophagy and Attenuates Apoptosis After Spinal Ischemia-Reperfusion Injury. Frontiers in Neuroscience, 2018, 12, 865.	1.4	79
10	<scp>USP</scp> 14 inhibition corrects an <i>inÂvivo</i> model of impaired mitophagy. EMBO Molecular Medicine, 2018, 10, .	3.3	69
11	Analysis of the Ub to Ub-CR Transition in Ubiquitin. Biochemistry, 2018, 57, 6180-6186.	1.2	10
13	Enzymatic Assembly of Ubiquitin Chains. Methods in Molecular Biology, 2018, 1844, 73-84.	0.4	29
14	A Bifunctional Role for the UHRF1ÂUBL Domain in the Control of Hemi-methylated DNA-Dependent Histone Ubiquitylation. Molecular Cell, 2018, 72, 753-765.e6.	4.5	58
15	Hepatic Mitochondrial Defects in a Nonalcoholic Fatty Liver Disease Mouse Model Are Associated with Increased Degradation of Oxidative Phosphorylation Subunits. Molecular and Cellular Proteomics, 2018, 17, 2371-2386.	2.5	59
16	Coordinating Mitochondrial Biology Through the Stress-Responsive Regulation of Mitochondrial Proteases. International Review of Cell and Molecular Biology, 2018, 340, 79-128.	1.6	17
17	PTEN-L is a novel protein phosphatase for ubiquitin dephosphorylation to inhibit PINK1–Parkin-mediated mitophagy. Cell Research, 2018, 28, 787-802.	5.7	124
18	Organelle Turnover: A USP30 Safety Catch Restrains the Trigger for Mitophagy and Pexophagy. Current Biology, 2018, 28, R842-R845.	1.8	8
19	Optineurin Functions for Optimal Immunity. Frontiers in Immunology, 2018, 9, 769.	2.2	26

#	Article	IF	Citations
20	Mechanism of parkin activation by PINK1. Nature, 2018, 559, 410-414.	13.7	271
21	Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes?. Biogerontology, 2018, 19, 461-480.	2.0	44
22	Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nature Cell Biology, 2018, 20, 1013-1022.	4.6	876
23	No Parkin Zone: Mitophagy without Parkin. Trends in Cell Biology, 2018, 28, 882-895.	3.6	165
24	MicroRNAs in Cardiac Autophagy: Small Molecules and Big Role. Cells, 2018, 7, 104.	1.8	48
25	Principles of Ubiquitin-Dependent Signaling. Annual Review of Cell and Developmental Biology, 2018, 34, 137-162.	4.0	225
26	Elusive mitochondrial connection to inflammation uncovered. Nature, 2018, 561, 185-186.	13.7	1
27	Loss of the ubiquitin conjugating enzyme UBE2E3 induces cellular senescence. Redox Biology, 2018, 17, 411-422.	3.9	9
28	Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 57-61.	1.1	8
29	Stress-induced phospho-ubiquitin formation causes parkin degradation. Scientific Reports, 2019, 9, 11682.	1.6	10
30	Insights into ubiquitin chain architecture using Ub-clipping. Nature, 2019, 572, 533-537.	13.7	155
31	Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux. Cells, 2019, 8, 894.	1.8	12
32	The ubiquitinâ€conjugating enzyme <scp>UBE</scp> 2 <scp>QL</scp> 1 coordinates lysophagy in response to endolysosomal damage. EMBO Reports, 2019, 20, e48014.	2.0	71
33	The role of mitophagy in selected neurodegenerative diseases. Postepy Psychiatrii I Neurologii, 2019, 28, 154-161.	0.2	2
34	High-affinity free ubiquitin sensors for quantifying ubiquitin homeostasis and deubiquitination. Nature Methods, 2019, 16, 771-777.	9.0	26
35	Mitophagy in Parkinson's Disease: From Pathogenesis to Treatment. Cells, 2019, 8, 712.	1.8	138
36	Methods to detect mitophagy in neurons during disease. Journal of Neuroscience Methods, 2019, 325, 108351.	1.3	5
37	Autophagy and cancer cell metabolism. International Review of Cell and Molecular Biology, 2019, 347, 145-190.	1.6	38

# 38	ARTICLE Parkin the bus to manage stress. EMBO Molecular Medicine, 2019, 11, e10968.	IF 3.3	CITATIONS 2
39	The N-Degron Pathway Mediates ER-phagy. Molecular Cell, 2019, 75, 1058-1072.e9.	4.5	96
40	Mitochondrial clearance and maturation of autophagosomes are compromised in LRRK2 G2019S familial Parkinson's disease patient fibroblasts. Human Molecular Genetics, 2019, 28, 3232-3243.	1.4	48
41	AUTACs: Cargo-Specific Degraders Using Selective Autophagy. Molecular Cell, 2019, 76, 797-810.e10.	4.5	319
42	Mitophagy in Hepatic Insulin Resistance: Therapeutic Potential and Concerns. Frontiers in Pharmacology, 2019, 10, 1193.	1.6	40
43	Image Inpainting for Digital Dunhuang Murals Using Partial Convolutions and Sliding Window Method. Journal of Physics: Conference Series, 2019, 1302, 032040.	0.3	8
44	Ubiquitin-mediated regulation of autophagy. Journal of Biomedical Science, 2019, 26, 80.	2.6	157
45	MCL1 as a Therapeutic Target in Parkinson's Disease?. Trends in Molecular Medicine, 2019, 25, 1056-1065.	3.5	9
46	The Overcrowded Crossroads: Mitochondria, Alpha-Synuclein, and the Endo-Lysosomal System Interaction in Parkinson's Disease. International Journal of Molecular Sciences, 2019, 20, 5312.	1.8	78
47	Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discovery, 2019, 9, 1167-1181.	7.7	579
48	Current Progress of Mitochondrial Quality Control Pathways Underlying the Pathogenesis of Parkinson's Disease. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-11.	1.9	27
49	The Parkinson's gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P3. Journal of Cell Science, 2019, 132, .	1.2	26
50	Ubiquitin-specific protease USP36 knockdown impairs Parkin-dependent mitophagy via downregulation of Beclin-1-associated autophagy-related ATG14L. Experimental Cell Research, 2019, 384, 111641.	1.2	26
51	PGC-1α acts as an mediator of Sirtuin2 to protect annulus fibrosus from apoptosis induced by oxidative stress through restraining mitophagy. International Journal of Biological Macromolecules, 2019, 136, 1007-1017.	3.6	39
52	New aspects of USP30 biology in the regulation of pexophagy. Autophagy, 2019, 15, 1634-1637.	4.3	10
53	Interrogating Parkinson's disease associated redox targets: Potential application of CRISPR editing. Free Radical Biology and Medicine, 2019, 144, 279-292.	1.3	18
54	NIPSNAP Beacons in Mitophagy. Developmental Cell, 2019, 49, 503-505.	3.1	2
55	Emerging Role of the Nucleolar Stress Response in Autophagy. Frontiers in Cellular Neuroscience, 2019, 13, 156.	1.8	50

#	Article	IF	CITATIONS
56	Studies of Jatrogossone A as a Reactive Oxygen Species Inducer in Cancer Cellular Models. Journal of Natural Products, 2019, 82, 1301-1311.	1.5	5
57	Mitophagy is a protective response against oxidative damage in bone marrow mesenchymal stem cells. Life Sciences, 2019, 229, 36-45.	2.0	41
58	Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 2019, 218, 1776-1786.	2.3	186
59	TEX264 Is an Endoplasmic Reticulum-Resident ATG8-Interacting Protein Critical for ER Remodeling during Nutrient Stress. Molecular Cell, 2019, 74, 891-908.e10.	4.5	193
60	Mitofusins: Disease Gatekeepers and Hubs in Mitochondrial Quality Control by E3 Ligases. Frontiers in Physiology, 2019, 10, 517.	1.3	55
61	Breaking the chains: deubiquitylating enzyme specificity begets function. Nature Reviews Molecular Cell Biology, 2019, 20, 338-352.	16.1	512
62	Fisetin induces autophagy in pancreatic cancer cells via endoplasmic reticulum stress- and mitochondrial stress-dependent pathways. Cell Death and Disease, 2019, 10, 142.	2.7	85
63	Novel Compound Heterozygous <i>PRKN</i> Variants in a Han-Chinese Family with Early-Onset Parkinson's Disease. Parkinson's Disease, 2019, 2019, 1-6.	0.6	2
64	Integrated proteogenetic analysis reveals the landscape of a mitochondrial-autophagosome synapse during PARK2-dependent mitophagy. Science Advances, 2019, 5, eaay4624.	4.7	55
65	Agephagy – Adapting Autophagy for Health During Aging. Frontiers in Cell and Developmental Biology, 2019, 7, 308.	1.8	43
66	PPEF2 Opposes PINK1-Mediated Mitochondrial Quality Control by Dephosphorylating Ubiquitin. Cell Reports, 2019, 29, 3280-3292.e7.	2.9	20
67	New insights into the complex role of mitochondria in Parkinson's disease. Progress in Neurobiology, 2019, 177, 73-93.	2.8	268
68	Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Nature Reviews Cardiology, 2019, 16, 33-55.	6.1	188
69	Roles of ubiquitin in autophagy and cell death. Seminars in Cell and Developmental Biology, 2019, 93, 125-135.	2.3	47
70	Parkin inhibits BAK and BAX apoptotic function by distinct mechanisms during mitophagy. EMBO Journal, 2019, 38, .	3.5	66
71	Impact of Autophagy of Innate Immune Cells on Inflammatory Bowel Disease. Cells, 2019, 8, 7.	1.8	34
72	Are PARKIN patients ideal candidates for dopaminergic cell replacement therapies?. European Journal of Neuroscience, 2019, 49, 453-462.	1.2	15
73	Mitochondrial proteins: from biogenesis to functional networks. Nature Reviews Molecular Cell Biology, 2019, 20, 267-284.	16.1	569

#	Article	IF	CITATIONS
74	Sphingolipids in the Pathogenesis of Parkinson's Disease and Parkinsonism. Trends in Endocrinology and Metabolism, 2019, 30, 106-117.	3.1	82
75	Autophagy in the renewal, differentiation and homeostasis of immune cells. Nature Reviews Immunology, 2019, 19, 170-183.	10.6	240
76	The Cellular Mitochondrial Genome Landscape in Disease. Trends in Cell Biology, 2019, 29, 227-240.	3.6	70
77	Mitochondrial Morphofunction in Mammalian Cells. Antioxidants and Redox Signaling, 2019, 30, 2066-2109.	2.5	75
78	The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harbor Perspectives in Biology, 2020, 12, a033985.	2.3	49
79	Mechanisms of Autophagy in Metabolic Stress Response. Journal of Molecular Biology, 2020, 432, 28-52.	2.0	52
80	Outstanding Questions in Mitophagy: What We Do and Do Not Know. Journal of Molecular Biology, 2020, 432, 206-230.	2.0	147
81	Somatic and germline mutations in the tumor suppressor gene PARK2 impair PINK1/Parkin-mediated mitophagy in lung cancer cells. Acta Pharmacologica Sinica, 2020, 41, 93-100.	2.8	29
82	Mitophagy and Mitochondrial Dysfunction in Cancer. Annual Review of Cancer Biology, 2020, 4, 41-60.	2.3	45
83	Ubiquitin and Receptor-Dependent Mitophagy Pathways and Their Implication in Neurodegeneration. Journal of Molecular Biology, 2020, 432, 2510-2524.	2.0	53
84	Post-translational Modifications of Key Machinery in the Control of Mitophagy. Trends in Biochemical Sciences, 2020, 45, 58-75.	3.7	71
85	Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 2020, 9, 82.	1.8	62
86	The ubiquitin-editing enzyme A20 regulates synapse remodeling and efficacy. Brain Research, 2020, 1727, 146569.	1.1	9
87	Primate differential redoxome (PDR) – A paradigm for understanding neurodegenerative diseases. Redox Biology, 2020, 36, 101683.	3.9	1
88	A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Redox Biology, 2020, 37, 101676.	3.9	17
89	Exaggerated Autophagy in Stanford Type A Aortic Dissection: A Transcriptome Pilot Analysis of Human Ascending Aortic Tissues. Genes, 2020, 11, 1187.	1.0	15
90	Mitophagy-Mediated mtDNA Release Aggravates Stretching-Induced Inflammation and Lung Epithelial Cell Injury via the TLR9/MyD88/NF-κB Pathway. Frontiers in Cell and Developmental Biology, 2020, 8, 819.	1.8	26
91	Defective mitophagy in Alzheimer's disease. Ageing Research Reviews, 2020, 64, 101191. 	5.0	157

		CITATION REPORT		
#	Article		IF	CITATIONS
92	Unanchored Ubiquitin Chains, Revisited. Frontiers in Cell and Developmental Biology, 20	020, 8, 582361.	1.8	15
93	Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. F 2021, 288, 5231-5251.	EBS Journal,	2.2	40
94	Ubiquitination of Intramitochondrial Proteins: Implications for Metabolic Adaptability. B 2020, 10, 1559.	iomolecules,	1.8	14
95	The role of mitophagy in innate immune responses triggered by mitochondrial stress. C Communication and Signaling, 2020, 18, 186.	ell	2.7	48
96	Network Protein Interaction in Parkinson's Disease and Periodontitis Interplay: A Pr Bioinformatic Analysis. Genes, 2020, 11, 1385.	eliminary	1.0	11
97	Mitophagy Receptors in Tumor Biology. Frontiers in Cell and Developmental Biology, 20	020, 8, 594203.	1.8	40
98	Recent advances in autophagic machinery: a proteomic perspective. Expert Review of P 17, 561-579.	roteomics, 2020,	1.3	5
99	Mitochondrial Sirtuin 3: New emerging biological function and therapeutic target. Thera 2020, 10, 8315-8342.	anostics,	4.6	213
100	Parkinson's: A Disease of Aberrant Vesicle Trafficking. Annual Review of Cell and Develo Biology, 2020, 36, 237-264.	pmental	4.0	54
101	Mechanisms and Functions of Mitophagy and Potential Roles in Renal Disease. Frontier 2020, 11, 935.	s in Physiology,	1.3	33
102	Age-related cerebral small vessel disease and inflammaging. Cell Death and Disease, 202	20, 11, 932.	2.7	67
103	Mitochondrial Surveillance by Cdc48/p97: MAD vs. Membrane Fusion. International Jour Molecular Sciences, 2020, 21, 6841.	rnal of	1.8	15
104	Sensitive ELISA-based detection method for the mitophagy marker p-S65-Ub in human obrain, and blood samples. Autophagy, 2021, 17, 2613-2628.	cells, autopsy	4.3	29
105	Aggregationâ€Induced Emission Luminogens for Mitochondriaâ€Targeted Cancer Thera 2020, 15, 2220-2227.	apy. ChemMedChem,	1.6	17
106	Role of Mitofusins and Mitophagy in Life or Death Decisions. Frontiers in Cell and Devel Biology, 2020, 8, 572182.	opmental	1.8	25
107	Mitophagy in degenerative joint diseases. Autophagy, 2021, 17, 2082-2092.		4.3	161
108	Inhibition of proteasome reveals basal mitochondrial ubiquitination. Journal of Proteom 229, 103949.	ics, 2020,	1.2	26
109	Complex interplay between autophagy and oxidative stress in the development of pulm Redox Biology, 2020, 36, 101679.	ionary disease.	3.9	187

#	Article	IF	CITATIONS
110	The Ubiquitin E3 Ligase Parkin Inhibits Innate Antiviral Immunity Through K48-Linked Polyubiquitination of RIG-I and MDA5. Frontiers in Immunology, 2020, 11, 1926.	2.2	17
111	Ubiquitin, Autophagy and Neurodegenerative Diseases. Cells, 2020, 9, 2022.	1.8	44
112	Aberrant mitochondrial morphology and function associated with impaired mitophagy and DNM1L-MAPK/ERK signaling are found in aged mutant Parkinsonian LRRK2 ^{R1441G} mice. Autophagy, 2021, 17, 3196-3220.	4.3	45
113	A potent nuclear export mechanism imposes USP16 cytoplasmic localization during interphase. Journal of Cell Science, 2020, 133, .	1.2	13
114	Parkin deficiency accentuates chronic alcohol intake-induced tissue injury and autophagy defects in brain, liver and skeletal muscle. Acta Biochimica Et Biophysica Sinica, 2020, 52, 665-674.	0.9	10
115	Genetic perspective on the synergistic connection between vesicular transport, lysosomal and mitochondrial pathways associated with Parkinson's disease pathogenesis. Acta Neuropathologica Communications, 2020, 8, 63.	2.4	45
116	Mitochondrial Homeostasis and Signaling in Parkinson's Disease. Frontiers in Aging Neuroscience, 2020, 12, 100.	1.7	27
117	Overview of Mitochondrial E3 Ubiquitin Ligase MITOL/MARCH5 from Molecular Mechanisms to Diseases. International Journal of Molecular Sciences, 2020, 21, 3781.	1.8	22
118	The Long and the Short of PTEN in the Regulation of Mitophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 299.	1.8	19
119	ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity. Nature Communications, 2020, 11, 2682.	5.8	63
120	A Healthy Heart and a Healthy Brain: Looking at Mitophagy. Frontiers in Cell and Developmental Biology, 2020, 8, 294.	1.8	20
121	The Aging Heart: Mitophagy at the Center of Rejuvenation. Frontiers in Cardiovascular Medicine, 2020, 7, 18.	1.1	36
122	Global Landscape and Dynamics of Parkin and USP30-Dependent Ubiquitylomes in iNeurons during Mitophagic Signaling. Molecular Cell, 2020, 77, 1124-1142.e10.	4.5	143
123	Epigenetic Control of Mitochondrial Function in the Vasculature. Frontiers in Cardiovascular Medicine, 2020, 7, 28.	1.1	39
124	PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Molecular Neurodegeneration, 2020, 15, 20.	4.4	264
125	Pyridiniumâ€Substituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angewandte Chemie, 2020, 132, 10128-10137.	1.6	13
126	The Skp2 Pathway: A Critical Target for Cancer Therapy. Seminars in Cancer Biology, 2020, 67, 16-33.	4.3	81
127	BRCA1 Deficiency Impairs Mitophagy and Promotes Inflammasome Activation and Mammary Tumor Metastasis. Advanced Science, 2020, 7, 1903616.	5.6	39

#	Article	IF	CITATIONS
128	Lanthanum chloride impairs spatial learning and memory by inducing [Ca2+]m overload, mitochondrial fission–fusion disorder and excessive mitophagy in hippocampal nerve cells of rats. Metallomics, 2020, 12, 592-606.	1.0	19
129	Regulation and roles of mitophagy at synapses. Mechanisms of Ageing and Development, 2020, 187, 111216.	2.2	37
130	Pyridiniumâ€ s ubstituted Tetraphenylethylenes Functionalized with Alkyl Chains as Autophagy Modulators for Cancer Therapy. Angewandte Chemie - International Edition, 2020, 59, 10042-10051.	7.2	66
131	Alterations in α-synuclein and PINK1 expression reduce neurite length and induce mitochondrial fission and Golgi fragmentation in midbrain neurons. Neuroscience Letters, 2020, 720, 134777.	1.0	11
132	The PINK1–Parkin axis: An Overview. Neuroscience Research, 2020, 159, 9-15.	1.0	94
133	Imaging Mitochondrial Functions: From Fluorescent Dyes to Genetically-Encoded Sensors. Genes, 2020, 11, 125.	1.0	27
134	Redox homeostasis, oxidative stress and mitophagy. Mitochondrion, 2020, 51, 105-117.	1.6	85
135	Mitochondrial fission and fusion: A dynamic role in aging and potential target for age-related disease. Mechanisms of Ageing and Development, 2020, 186, 111212.	2.2	174
137	Mitophagy in Acute Kidney Injury and Kidney Repair. Cells, 2020, 9, 338.	1.8	79
138	Cracking the Monoubiquitin Code of Genetic Diseases. International Journal of Molecular Sciences, 2020, 21, 3036.	1.8	18
139	Bovine papillomavirus E5 oncoprotein upregulates parkin-dependent mitophagy in urothelial cells of cattle with spontaneous papillomavirus infection: A mechanistic study. Comparative Immunology, Microbiology and Infectious Diseases, 2020, 70, 101463.	0.7	10
140	Mitochondrial damage & lipid signaling in traumatic brain injury. Experimental Neurology, 2020, 329, 113307.	2.0	34
141	Two sides of a coin: Physiological significance and molecular mechanisms for damage-induced mitochondrial localization of PINK1 and Parkin. Neuroscience Research, 2020, 159, 16-24.	1.0	8
142	Quantitative Middle-Down MS Analysis of Parkin-Mediated Ubiquitin Chain Assembly. Journal of the American Society for Mass Spectrometry, 2020, 31, 1132-1139.	1.2	16
143	Mitophagy in the Pathogenesis of Liver Diseases. Cells, 2020, 9, 831.	1.8	48
144	Role and Mechanisms of Mitophagy in Liver Diseases. Cells, 2020, 9, 837.	1.8	132
145	Mitochondrial Reactive Oxygen Species and Mitophagy: A Complex and Nuanced Relationship. Antioxidants and Redox Signaling, 2021, 34, 517-530.	2.5	109
146	Selective autophagy as a therapeutic target for neurological diseases. Cellular and Molecular Life Sciences, 2021, 78, 1369-1392.	2.4	45

#	Article	IF	CITATIONS
147	Mediators of mitophagy that regulate mitochondrial quality control play crucial role in diverse pathophysiology. Cell Biology and Toxicology, 2021, 37, 333-366.	2.4	14
148	Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 2021, 46, 329-343.	3.7	234
149	Mono-2-ethylhexyl phthalate drives progression of PINK1-parkin-mediated mitophagy via increasing mitochondrial ROS to exacerbate cytotoxicity. Redox Biology, 2021, 38, 101776.	3.9	56
150	Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain, Behavior, and Immunity, 2021, 91, 142-158.	2.0	108
151	Protein Turnover Intracellular Protein Degradation. , 2021, , 212-224.		0
152	Paeoniflorin prevents depression like behavior in rats by suppressing mitophagy mediated nod like receptor protein 3 inflammasome signaling. Pharmacognosy Magazine, 2021, 17, 327.	0.3	0
153	NLRX1/FUNDC1/NIPSNAP1â€2 axis regulates mitophagy and alleviates intestinal ischaemia/reperfusion injury. Cell Proliferation, 2021, 54, e12986.	2.4	45
154	Oxidative stress factors in Parkinson's disease. Neural Regeneration Research, 2021, 16, 1383.	1.6	83
155	Mitochondrial biogenesis and mitophagy. , 2021, , 35-90.		2
156	Canonical versus noncanonical autophagy. , 2021, , 1-8.		1
157	Loss of the ubiquitin-conjugating enzyme Rad6B disturbs mitochondrial function and cellular homeostasis in mouse skin. Biocell, 2021, 45, 761-772.	0.4	0
159	Interaction between Parkin and α-Synuclein in PARK2-Mediated Parkinson's Disease. Cells, 2021, 10, 283.	1.8	31
160	Mitophagy Antagonism by Zika Virus Reveals Ajuba as a Regulator of PINK1-Parkin Signaling, PKR-Dependent Inflammation, and Viral Invasion of Tissues. SSRN Electronic Journal, 0, , .	0.4	1
161	Space-time logic of liver gene expression at sub-lobular scale. Nature Metabolism, 2021, 3, 43-58.	5.1	85
162	Mitophagy in tumorigenesis and metastasis. Cellular and Molecular Life Sciences, 2021, 78, 3817-3851.	2.4	90
163	Quantitative intravital imaging in zebrafish reveals <i>in vivo</i> dynamics of physiological-stress-induced mitophagy. Journal of Cell Science, 2021, 134, .	1.2	35
164	The effects of UCP2 on autophagy through the AMPK signaling pathway in septic cardiomyopathy and the underlying mechanism. Annals of Translational Medicine, 2021, 9, 259-259.	0.7	16
165	Mitophagy in Pancreatic Cancer. Frontiers in Oncology, 2021, 11, 616079.	1.3	10

#	Article	IF	CITATIONS
166	Dysregulation of mitophagy and mitochondrial homeostasis in cancer stem cells: Novel mechanism for anti ancer stem cellâ€ŧargeted cancer therapy. British Journal of Pharmacology, 2022, 179, 5015-5035.	2.7	11
167	Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nature Communications, 2021, 12, 1570.	5.8	45
168	PGC-1s in the Spotlight with Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 3487.	1.8	40
169	Autophagy in tumour immunity and therapy. Nature Reviews Cancer, 2021, 21, 281-297.	12.8	185
170	The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Molecular Psychiatry, 2021, 26, 2721-2739.	4.1	10
171	Cholesterol alters mitophagy by impairing optineurin recruitment and lysosomal clearance in Alzheimer's disease. Molecular Neurodegeneration, 2021, 16, 15.	4.4	37
172	Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion, 2021, 57, 270-293.	1.6	17
173	Combination of autophagy and NFE2L2/NRF2 activation as a treatment approach for neuropathic pain. Autophagy, 2021, 17, 4062-4082.	4.3	46
174	AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy. Science Advances, 2021, 7, .	4.7	74
176	Motor proteins at the mitochondria–cytoskeleton interface. Journal of Cell Science, 2021, 134, .	1.2	64
178	Common Principles and Specific Mechanisms of Mitophagy from Yeast to Humans. International Journal of Molecular Sciences, 2021, 22, 4363.	1.8	23
179	Cardiolipin, Mitochondria, and Neurological Disease. Trends in Endocrinology and Metabolism, 2021, 32, 224-237.	3.1	113
180	An Experimentally Induced Mutation in the UBA Domain of p62 Changes the Sensitivity of Cisplatin by Up-Regulating HK2 Localisation on the Mitochondria and Increasing Mitophagy in A2780 Ovarian Cancer Cells. International Journal of Molecular Sciences, 2021, 22, 3983.	1.8	9
181	Neuroinflammation in Alzheimer's Disease. Biomedicines, 2021, 9, 524.	1.4	120
182	Sestrin2 and mitochondrial quality control: Potential impact in myogenic differentiation. Ageing Research Reviews, 2021, 67, 101309.	5.0	6
183	SAMM50 acts with p62 in piecemeal basal- and OXPHOS-induced mitophagy of SAM and MICOS components. Journal of Cell Biology, 2021, 220, .	2.3	39
184	Ascorbate uptake enables tubular mitophagy to prevent septic AKI by PINK1-PARK2 axis. Biochemical and Biophysical Research Communications, 2021, 554, 158-165.	1.0	10
185	Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. Environmental Science and Pollution Research, 2021, 28, 34121-34153.	2.7	27

#	Article	IF	CITATIONS
186	The Role of Mitophagy in Regulating Cell Death. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-12.	1.9	23
187	Ubiquitin conjugating enzymes in the regulation of the autophagy-dependent degradation pathway. Matrix Biology, 2021, 100-101, 23-29.	1.5	7
188	Surveillance of nucleolar homeostasis and ribosome maturation by autophagy and the ubiquitin-proteasome system. Matrix Biology, 2021, 100-101, 30-38.	1.5	5
189	Synergistic effects of autophagy/mitophagy inhibitors and magnolol promote apoptosis and antitumor efficacy. Acta Pharmaceutica Sinica B, 2021, 11, 3966-3982.	5.7	28
190	PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Reports, 2021, 35, 109203.	2.9	25
191	Hidden phenotypes of PINK1/Parkin knockout mice. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129871.	1.1	9
192	Mitochondrial function in development and disease. DMM Disease Models and Mechanisms, 2021, 14, .	1.2	48
193	Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatments of Alzheimer's disease: A comprehensive review. European Journal of Medicinal Chemistry, 2021, 218, 113401.	2.6	12
194	Timer-based proteomic profiling of the ubiquitin-proteasome system reveals a substrate receptor of the GID ubiquitin ligase. Molecular Cell, 2021, 81, 2460-2476.e11.	4.5	39
195	Loss of UCHL1 rescues the defects related to Parkinson's disease by suppressing glycolysis. Science Advances, 2021, 7, .	4.7	29
197	Mitophagy Regulates Neurodegenerative Diseases. Cells, 2021, 10, 1876.	1.8	24
198	Near-Infrared Radiation-Assisted Drug Delivery Nanoplatform to Realize Blood–Brain Barrier Crossing and Protection for Parkinsonian Therapy. ACS Applied Materials & Interfaces, 2021, 13, 37746-37760.	4.0	28
199	Defective Autophagy and Mitophagy in Alzheimer's Disease: Mechanisms and Translational Implications. Molecular Neurobiology, 2021, 58, 5289-5302.	1.9	17
200	Annexin A1 Tripeptide Mimetic Increases Sirtuin-3 and Augments Mitochondrial Function to Limit Ischemic Kidney Injury. Frontiers in Physiology, 2021, 12, 683098.	1.3	9
201	Preparation and characterization of a polyclonal antibody against PTENâ€Long. Biotechnology and Applied Biochemistry, 2022, 69, 1622-1632.	1.4	0
203	The Loss of Mitochondrial Quality Control in Diabetic Kidney Disease. Frontiers in Cell and Developmental Biology, 2021, 9, 706832.	1.8	20
204	Structural and biochemical advances on the recruitment of the autophagy-initiating ULK and TBK1 complexes by autophagy receptor NDP52. Science Advances, 2021, 7, .	4.7	20
205	Effects of Iron and Zinc on Mitochondria: Potential Mechanisms of Glaucomatous Injury. Frontiers in Cell and Developmental Biology, 2021, 9, 720288.	1.8	14

#	Article	IF	Citations
206	Selective Autophagy as a Potential Therapeutic Target in Age-Associated Pathologies. Metabolites, 2021, 11, 588.	1.3	1
207	Role of epigenetic regulation in myocardial ischemia/reperfusion injury. Pharmacological Research, 2021, 170, 105743.	3.1	44
208	The ubiquitin proteoform problem. Current Opinion in Chemical Biology, 2021, 63, 95-104.	2.8	12
209	Biophysical Modulation of the Mitochondrial Metabolism and Redox in Bone Homeostasis and Osteoporosis: How Biophysics Converts into Bioenergetics. Antioxidants, 2021, 10, 1394.	2.2	24
210	Regulation of Ferroptosis Pathway by Ubiquitination. Frontiers in Cell and Developmental Biology, 2021, 9, 699304.	1.8	9
212	AMPK: restoring metabolic homeostasis over space and time. Molecular Cell, 2021, 81, 3677-3690.	4.5	151
213	Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent Mitophagy Signaling in Neonatal Cardiomyocytes. Frontiers in Cardiovascular Medicine, 2021, 8, 748156.	1.1	5
214	The Nucleus/Mitochondria-Shuttling LncRNAs Function as New Epigenetic Regulators of Mitophagy in Cancer. Frontiers in Cell and Developmental Biology, 2021, 9, 699621.	1.8	7
215	Mitochondrial disease, mitophagy, and cellular distress in methylmalonic acidemia. Cellular and Molecular Life Sciences, 2021, 78, 6851-6867.	2.4	16
216	Proteostatic regulation in neuronal compartments. Trends in Neurosciences, 2022, 45, 41-52.	4.2	30
217	Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. ELife, 2021, 10, .	2.8	59
218	Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biology, 2021, 45, 102047.	3.9	66
220	Caveolin-1 attenuates acetaminophen aggravated lipid accumulation in alcoholic fatty liver by activating mitophagy via the Pink-1/Parkin pathway. European Journal of Pharmacology, 2021, 908, 174324.	1.7	11
221	Molecular functions of autophagy adaptors upon ubiquitin-driven mitophagy. Biochimica Et Biophysica Acta - General Subjects, 2021, 1865, 129972.	1.1	7
222	Mitophagy in depression: Pathophysiology and treatment targets. Mitochondrion, 2021, 61, 1-10.	1.6	23
223	Protective effects of fucoidan against ethanol-induced liver injury through maintaining mitochondrial function and mitophagy balance in rats. Food and Function, 2021, 12, 3842-3854.	2.1	23
224	Defective Autophagy and Mitophagy in Aging and Alzheimer's Disease. Frontiers in Neuroscience, 2020, 14, 612757.	1.4	85
225	Ubiquitin/Proteasome. , 2021, , 1-7.		0

#	Article	IF	CITATIONS
226	Neuronal Mitophagy: Friend or Foe?. Frontiers in Cell and Developmental Biology, 2020, 8, 611938.	1.8	29
227	Mitochondrial control of cellular protein homeostasis. Biochemical Journal, 2020, 477, 3033-3054.	1.7	22
234	Fbxo7 and Pink1 play a reciprocal role in regulating their protein levels. Aging, 2021, 13, 77-88.	1.4	12
235	Interplay between the Ubiquitin Proteasome System and Mitochondria for Protein Homeostasis. Current Issues in Molecular Biology, 2020, 35, 35-58.	1.0	14
236	USP30 sets a trigger threshold for PINK1–PARKIN amplification of mitochondrial ubiquitylation. Life Science Alliance, 2020, 3, e202000768.	1.3	72
237	Mitochondria-mediated defense mechanisms against pathogens in Caenorhabditis elegans. BMB Reports, 2018, 51, 274-279.	1.1	22
238	Degradation of engulfed mitochondria is rate-limiting in Optineurin-mediated mitophagy in neurons. ELife, 2020, 9, .	2.8	79
239	Mitophagy antagonism by ZIKV reveals Ajuba as a regulator of PINK1 signaling, PKR-dependent inflammation, and viral invasion of tissues. Cell Reports, 2021, 37, 109888.	2.9	19
240	Mitochondrial Dysfunction, Protein Misfolding and Neuroinflammation in Parkinson's Disease: Roads to Biomarker Discovery. Biomolecules, 2021, 11, 1508.	1.8	59
241	Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy, 2022, 18, 1367-1384.	4.3	32
242	Structural and functional consequences of NEDD8 phosphorylation. Nature Communications, 2021, 12, 5939.	5.8	12
243	Temporal proteomics during neurogenesis reveals large-scale proteome and organelle remodeling via selective autophagy. Molecular Cell, 2021, 81, 5082-5098.e11.	4.5	52
244	Structure-Guided Design of a Small-Molecule Activator of Sirtuin-3 that Modulates Autophagy in Triple Negative Breast Cancer. Journal of Medicinal Chemistry, 2021, 64, 14192-14216.	2.9	26
245	Deubiquitinase OTUB2 exacerbates the progression of colorectal cancer by promoting PKM2 activity and glycolysis. Oncogene, 2022, 41, 46-56.	2.6	26
246	Regulation of Protein Degradation and Homeostasis by the Cytokine- Inducible Deubiquitinating Enzymes. International Journal of Immunotherapy and Cancer Research, 0, , 001-003.	0.4	0
249	Retinal Bioenergetics: New Insights for Therapeutics. Advances in Experimental Medicine and Biology, 2019, 1185, 275-279.	0.8	1
251	Prenatal exposure to environmentally relevant levels of PBDE-99 leads to testicular dysgenesis with steroidogenesis disorders. Journal of Hazardous Materials, 2022, 424, 127547.	6.5	17
252	PTEN-induced kinase 1 (PINK1) and Parkin: Unlocking a mitochondrial quality control pathway linked to Parkinson's disease. Current Opinion in Neurobiology, 2022, 72, 111-119.	2.0	40

#	Article	IF	CITATIONS
253	Mitophagy. , 2020, , 1-11.		0
256	Panax notoginseng saponins protect PC12Âcells against Aβ induced injury via promoting parkin-mediated mitophagy. Journal of Ethnopharmacology, 2022, 285, 114859.	2.0	12
257	New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 774619.	1.1	14
258	Mitochondrial Quality Control Strategies: Potential Therapeutic Targets for Neurodegenerative Diseases?. Frontiers in Neuroscience, 2021, 15, 746873.	1.4	17
259	Starvation-induced proteasome assemblies in the nucleus link amino acid supply to apoptosis. Nature Communications, 2021, 12, 6984.	5.8	29
260	Clobal ubiquitylation analysis of mitochondria in primary neurons identifies endogenous Parkin targets following activation of PINK1. Science Advances, 2021, 7, eabj0722.	4.7	29
261	The Combination of β-Asarone and Icariin Inhibits Amyloid-β and Reverses Cognitive Deficits by Promoting Mitophagy in Models of Alzheimer's Disease. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-20.	1.9	22
262	Fast friends – Ubiquitin-like modifiers as engineered fusion partners. Seminars in Cell and Developmental Biology, 2022, 132, 132-145.	2.3	4
263	Mitophagy mechanisms in neuronal physiology and pathology during ageing. Biophysical Reviews, 2021, 13, 955-965.	1.5	6
264	Ubiquitin/Proteasome. , 2021, , 1529-1535.		0
265	Mitophagy. , 2021, , 976-986.		0
266	Identification of an autoinhibitory, mitophagy-inducing peptide derived from the transmembrane domain of USP30. Autophagy, 2022, 18, 2178-2197.	4.3	21
267	Targeted up-regulation of Drp1 in dorsal horn attenuates neuropathic pain hypersensitivity by increasing mitochondrial fission. Redox Biology, 2022, 49, 102216.	3.9	9
268	Mitochondrial Quality Control in Sarcopenia: Updated Overview of Mechanisms and Interventions. , 2021, 12, 2016.		21
269	Mitochondrial membrane potential-enriched CHO host: a novel and powerful tool for improving biomanufacturing capability. MAbs, 2022, 14, 2020081.	2.6	9
270	Fighting metallodrug resistance through alteration of drug metabolism and blockage of autophagic flux by mitochondria-targeting AlEgens. Chemical Science, 2022, 13, 1428-1439.	3.7	14
271	Inokosterone from Gentiana rigescens Franch Extends the Longevity of Yeast and Mammalian Cells via Antioxidative Stress and Mitophagy Induction. Antioxidants, 2022, 11, 214.	2.2	5
272	Accumulation of APP-CTF induces mitophagy dysfunction in the iNSCs model of Alzheimer's disease. Cell Death Discovery, 2022, 8, 1.	2.0	36

#	Article	IF	CITATIONS
273	Discovery of small-molecule positive allosteric modulators of Parkin E3 ligase. IScience, 2022, 25, 103650.	1.9	11
274	Mapping of a N-terminal α-helix domain required for human PINK1 stabilization, Serine228 autophosphorylation and activation in cells. Open Biology, 2022, 12, 210264.	1.5	21
275	Mitochondrial Quality Control: A Pathophysiological Mechanism and Therapeutic Target for Stroke. Frontiers in Molecular Neuroscience, 2021, 14, 786099.	1.4	18
276	Temporal Analysis of Protein Ubiquitylation and Phosphorylation During Parkin-Dependent Mitophagy. Molecular and Cellular Proteomics, 2022, 21, 100191.	2.5	10
277	PINK1-parkin-mediated neuronal mitophagy deficiency in prion disease. Cell Death and Disease, 2022, 13, 162.	2.7	21
278	Inhibition of the PINK1-Parkin Pathway Enhances the Lethality of Sorafenib and Regorafenib in Hepatocellular Carcinoma. Frontiers in Pharmacology, 2022, 13, 851832.	1.6	5
279	Number 2 Feibi Recipe Inhibits H2O2-Mediated Oxidative Stress Damage of Alveolar Epithelial Cells by Regulating the Balance of Mitophagy/Apoptosis. Frontiers in Pharmacology, 2022, 13, 830554.	1.6	4
280	Anticancer activity of ruthenium(II) plumbagin complexes with polypyridyl as ancillary ligands via inhibiting energy metabolism and GADD45A-mediated cell cycle arrest. European Journal of Medicinal Chemistry, 2022, 236, 114312.	2.6	12
281	Gefitinib facilitates PINK1/Parkin-mediated mitophagy by enhancing mitochondrial recruitment of OPTN. Fundamental Research, 2022, 2, 807-816.	1.6	1
282	Mechanisms underlying ubiquitin-driven selective mitochondrial and bacterial autophagy. Molecular Cell, 2022, 82, 1501-1513.	4.5	46
283	Posttranslational Modifications in Thyroid Cancer: Implications for Pathogenesis, Diagnosis, Classification, and Treatment. Cancers, 2022, 14, 1610.	1.7	7
284	Mitophagy and Neurodegeneration: Between the Knowns and the Unknowns. Frontiers in Cell and Developmental Biology, 2022, 10, 837337.	1.8	17
285	Are mitophagy enhancers therapeutic targets for Alzheimer's disease?. Biomedicine and Pharmacotherapy, 2022, 149, 112918.	2.5	27
286	Activation mechanism of PINK1. Nature, 2022, 602, 328-335.	13.7	59
287	Systematic analysis of PINK1 variants of unknown significance shows intact mitophagy function for most variants. Npj Parkinson's Disease, 2021, 7, 113.	2.5	6
288	Protein Quality Control at the Mitochondrial Surface. Frontiers in Cell and Developmental Biology, 2021, 9, 795685.	1.8	12
289	Autophagy in muscle regeneration: potential therapies for myopathies. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13, 1673-1685.	2.9	24
295	Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. Science of the Total Environment, 2022, 835, 155457.	3.9	5

ARTICLE IF CITATIONS # Mitochondrial dynamics in the neonatal brain – a potential target following injury?. Bioscience 296 1.1 5 Reports, 2022, 42, . Phospholipids alter activity and stability of mitochondrial membrane-bound ubiquitin ligase MARCH5. 1.3 Life Science Alliance, 2022, 5, e202101309. Interactomic analysis reveals a homeostatic role for the HIV restriction factor TRIM51[±] in mitophagy. 298 2.9 11 Cell Reports, 2022, 39, 110797. Association of p53 with Neurodegeneration in Parkinson's Disease. Parkinson's Disease, 2022, 2022, 1-11. 299 Defective mitophagy in aged macrophages promotes mitochondrial DNA cytosolic leakage to activate 300 3.0 45 STING signaling during liver sterile inflammation. Aging Cell, 2022, 21, . LC3-Mediated Mitophagy After CCCP or Vibrio splendidus Exposure in the Pacific Oyster Crassostrea 1.8 gigas. Frontiers in Cell and Developmental Biology, 2022, 10, . Defective mitophagy and the etiopathogenesis of Alzheimer's disease. Translational 303 3.6 11 Neurodegeneration, 2022, 11, . SS-31, a Mitochondria-Targeting Peptide, Ameliorates Kidney Disease. Oxidative Medicine and Cellular 304 1.9 Longevity, 2022, 2022, 1-13. The Role of PTEN-L in Modulating PINK1-Parkin-Mediated Mitophagy. Neurotoxicity Research, 2022, 40, 305 1.3 7 1103-1114. Inter-organellar Communication in Parkinson's and Alzheimer's Disease: Looking Beyond Endoplasmic 1.4 Reticulum-Mitochondria Contact Sites. Frontiers in Neuroscience, 0, 16, . Insulin and Its Key Role for Mitochondrial Function/Dysfunction and Quality Control: A Shared Link 307 1.3 14 between Dysmetabolism and Neurodegeneration. Biology, 2022, 11, 943. A degradative to secretory autophagy switch mediates mitochondria clearance in the absence of the 5.8 mATG8-conjugation machinery. Nature Communications, 2022, 13, . Mitochondrial Dysfunction in Oxidative Stressâ€Mediated Intervertebral Disc Degeneration. 310 0.7 18 Orthopaedic Surgery, 2022, 14, 1569-1582. Bibliometric Insights of Global Research Landscape in Mitophagy. Frontiers in Molecular Biosciences, 1.6 0,9,. Hallmarks and Molecular Tools for the Study of Mitophagy in Parkinson's Disease. Cells, 2022, 11, 2097. 312 1.8 13 Mitochondrial-Dependent and Independent Functions of PINK1. Frontiers in Cell and Developmental 1.8 Biology, 0, 10, . Role of Mitophagy in neurodegenerative Diseases and potential tagarts for Therapy. Molecular 314 1.0 11 Biology Reports, 2022, 49, 10749-10760. Role of mitophagy in the hallmarks of aging. Journal of Biomedical Research, 2023, 37, 1.

#	Article	IF	CITATIONS
316	Effect and Mechanism of PINK1/Parkin-Mediated Mitochondrial Autophagy in Rat Lung Injury Induced by Nano Lanthanum Oxide. Nanomaterials, 2022, 12, 2594.	1.9	5
317	The Multifaceted Roles of Autophagy in Infectious, Obstructive, and Malignant Airway Diseases. Biomedicines, 2022, 10, 1944.	1.4	3
318	Stressed to death: Mitochondrial stress responses connect respiration and apoptosis in cancer. Molecular Cell, 2022, 82, 3321-3332.	4.5	21
320	Gq Signaling in Autophagy Control: Between Chemical and Mechanical Cues. Antioxidants, 2022, 11, 1599.	2.2	0
321	Unraveling Pathophysiological Link Between Mitophagy Pathway and Vascular Dementia. Archives of Neuroscience, 2022, 9, .	0.1	0
322	Tubule-mitophagic secretion of SerpinG1 reprograms macrophages to instruct anti-septic acute kidney injury efficacy of high-dose ascorbate mediated by NRF2 transactivation. International Journal of Biological Sciences, 2022, 18, 5168-5184.	2.6	8
323	PARK2 Induces Osteoclastogenesis through Activation of the NF-κB Pathway. Molecules and Cells, 2022, 45, 749-760.	1.0	4
325	The Interplay Between Autophagy and Regulated Necrosis. Antioxidants and Redox Signaling, 0, , .	2.5	2
326	Regulation of Host-Pathogen Interactions via the Ubiquitin System. Annual Review of Microbiology, 2022, 76, 211-233.	2.9	14
327	The compartmentalised nature of neuronal mitophagy: molecular insights and implications. Expert Reviews in Molecular Medicine, 2022, 24, .	1.6	2
328	The interplay between oxidative stress and autophagy in chronic obstructive pulmonary disease. Frontiers in Physiology, 0, 13, .	1.3	5
329	Quantitative assessment of mitophagy in irradiated cancer cells. Methods in Cell Biology, 2023, , 93-111.	0.5	0
331	Mitochondrial Dysfunction, Mitophagy and Their Correlation with Perinatal Complications: Preeclampsia and Low Birth Weight. Biomedicines, 2022, 10, 2539.	1.4	3
332	Basal Gp78-dependent mitophagy promotes mitochondrial health and limits mitochondrial ROS. Cellular and Molecular Life Sciences, 2022, 79, .	2.4	8
333	The Emerging Roles of E3 Ligases and DUBs in Neurodegenerative Diseases. Molecular Neurobiology, 2023, 60, 247-263.	1.9	4
334	<scp>BNIP3L</scp> / <scp>NIX</scp> regulates both mitophagy and pexophagy. EMBO Journal, 2022, 41, .	3.5	27
335	Mitochondrial Distress in Methylmalonic Acidemia: Novel Pathogenic Insights and Therapeutic Perspectives. Cells, 2022, 11, 3179.	1.8	7
336	Exploring therapeutic potential of mitophagy modulators using Drosophila models of Parkinson's disease. Frontiers in Aging Neuroscience, 0, 14, .	1.7	1

ARTICLE

High water temperature raised the requirements of methionine for spotted seabass (Lateolabrax) Tj ETQq0 0 0 rgBT/Qverlock 10 Tf 50 2

339	Simultaneous treatment with sorafenib and glucose restriction inhibits hepatocellular carcinoma in vitro and in vivo by impairing SIAH1-mediated mitophagy. Experimental and Molecular Medicine, 2022, 54, 2007-2021.	3.2	8
340	P2X7 Receptor and Purinergic Signaling: Orchestrating Mitochondrial Dysfunction in Neurodegenerative Diseases. ENeuro, 2022, 9, ENEURO.0092-22.2022.	0.9	7
341	The interaction between E3 ubiquitin ligase Parkin and mitophagy receptor PHB2 links inner mitochondrial membrane ubiquitination to efficient mitophagy. Journal of Biological Chemistry, 2022, 298, 102704.	1.6	11
342	Ablation of Shank3 alleviates cardiac dysfunction in aging mice by promoting CaMKII activation and Parkin-mediated mitophagy. Redox Biology, 2022, 58, 102537.	3.9	11
343	<scp>LUBAC</scp> assembles a ubiquitin signaling platform at mitochondria for signal amplification and transport of <scp>NFâ€₽B</scp> to the nucleus. EMBO Journal, 2022, 41, .	3.5	14
345	Ginsenoside CK improves skeletal muscle insulin resistance by activating DRP1/PINK1-mediated mitophagy. Food and Function, 2023, 14, 1024-1036.	2.1	8
346	PINK1/Parkin-mediated mitophagy in neurodegenerative diseases. Ageing Research Reviews, 2023, 84, 101817.	5.0	29
347	Prospects for the Development of Pink1 and Parkin Activators for the Treatment of Parkinson's Disease. Pharmaceutics, 2022, 14, 2514.	2.0	2
348	Mitochondria and cell death-associated inflammation. Cell Death and Differentiation, 2023, 30, 304-312.	5.0	50
350	Crosstalk between mitophagy and innate immunity in viral infection. Frontiers in Microbiology, 0, 13, .	1.5	4
351	Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light. Nature Communications, 2022, 13, .	5.8	13
352	Parkin-dependent mitophagy occurs via proteasome-dependent steps sequentially targeting separate mitochondrial sub-compartments for autophagy. , 2022, 1, 576-602.		2
353	Orchestration of selective autophagy by cargo receptors. Current Biology, 2022, 32, R1357-R1371.	1.8	32
355	Targeting ATAD3A-PINK1-mitophagy axis overcomes chemoimmunotherapy resistance by redirecting PD-L1 to mitochondria. Cell Research, 2023, 33, 215-228.	5.7	14
356	Ginsenoside Rg1 Protects against Cardiac Remodeling in Heart Failure <i>via</i> SIRT1/PINK1/Parkinâ€Mediated Mitophagy. Chemistry and Biodiversity, 2023, 20,	1.0	8
357	Control of Mitochondrial Activity by the Ubiquitin Code in Health and Cancer. Cells, 2023, 12, 234.	1.8	2
358	Sesn2 Serves as a Regulator between Mitochondrial Unfolded Protein Response and Mitophagy in Intervertebral Disc Degeneration. International Journal of Biological Sciences, 2023, <u>19, 571-592</u> .	2.6	8

#	Article	IF	CITATIONS
359	Mitochondrial dysfunction in cognitive neurodevelopmental disorders: Cause or effect?. Mitochondrion, 2023, 69, 18-32.	1.6	4
360	Spermidine, an Autophagy Inducer, as a Therapeutic Antiaging Strategy. , 2023, , 135-153.		1
361	<scp>PINK1 siRNA</scp> â€loaded poly(lacticâ€ <scp><i>co</i></scp> â€glycolic acid) nanoparticles provide neuroprotection in a mouse model of photothrombosisâ€induced ischemic stroke. Glia, 2023, 71, 1294-1310.	2.5	5
362	From Physiology to Pathology: The Role of Mitochondria in Acute Kidney Injuries and Chronic Kidney Diseases. Kidney Diseases (Basel, Switzerland), 2023, 9, 342-357.	1.2	1
363	Parkin and mitochondrial signalling. Cellular Signalling, 2023, 106, 110631.	1.7	3
364	Mitochondrion: A bridge linking aging and degenerative diseases. Life Sciences, 2023, 322, 121666.	2.0	2
365	Low-dose BPA and its substitute BPS promote ovarian cancer cell stemness via a non-canonical PINK1/p53 mitophagic signaling. Journal of Hazardous Materials, 2023, 452, 131288.	6.5	7
367	Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ, 0, 11, e14797.	0.9	3
368	The Ubiquitin Proteasome System as a Therapeutic Area in Parkinson's Disease. NeuroMolecular Medicine, 2023, 25, 313-329.	1.8	4
369	Role of Mitophagy in Regulating Intestinal Oxidative Damage. Antioxidants, 2023, 12, 480.	2.2	7
370	Hypoxic postconditioning restores mitophagy against transient global cerebral ischemia via Parkin-induced posttranslational modification of TBK1. Neurobiology of Disease, 2023, 179, 106043.	2.1	0
371	Cobaltosic oxide-polyethylene glycol-triphenylphosphine nanoparticles ameliorate the acute-to-chronic kidney disease transition by inducing BNIP3-mediated mitophagy. Kidney International, 2023, 103, 903-916.	2.6	6
372	Saturated fatty acids increase <scp>LPI</scp> to reduce <scp>FUNDC1</scp> dimerization and stability and mitochondrial function. EMBO Reports, 2023, 24, .	2.0	4
373	Hypothermic Oxygenated Machine Perfusion Promotes Mitophagy Flux against Hypoxia-Ischemic Injury in Rat DCD Liver. International Journal of Molecular Sciences, 2023, 24, 5403.	1.8	1
374	Emerging mechanistic insights of selective autophagy in hepatic diseases. Frontiers in Pharmacology, 0, 14, .	1.6	3
375	Neuroprotective effect of engineered <i>Clostridium</i> <scp>butyricumâ€pMTL007â€GLP</scp> â€1 on Parkinson's disease mice models via promoting mitophagy. Bioengineering and Translational Medicine, 2023, 8, .	3.9	2
376	Activators of Nrf2 to Counteract Neurodegenerative Diseases. Antioxidants, 2023, 12, 778.	2.2	7
377	STOML2 restricts mitophagy and increases chemosensitivity in pancreatic cancer through stabilizing PARL-induced PINK1 degradation. Cell Death and Disease, 2023, 14, .	2.7	5

#	Article	IF	CITATIONS
378	Triubiquitin Probes for Identification of Reader and Eraser Proteins of Branched Polyubiquitin Chains. ACS Chemical Biology, 2023, 18, 837-847.	1.6	2
379	The Role of Alternative Mitophagy in Heart Disease. International Journal of Molecular Sciences, 2023, 24, 6362.	1.8	2
380	Pathophysiological Roles of the cGAS-STING Inflammatory Pathway. Physiology, 2023, 38, 167-177.	1.6	3
381	Role of autophagy and mitophagy in neurodegenerative disorders. CNS and Neurological Disorders - Drug Targets, 2023, 22, .	0.8	1
382	Selected Biomarkers of Oxidative Stress and Energy Metabolism Disorders in Neurological Diseases. Molecular Neurobiology, 2023, 60, 4132-4149.	1.9	4
392	Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes. Toxicological Research, 2023, 39, 333-339.	1.1	1
401	Crosstalk between autophagy and CSCs: molecular mechanisms and translational implications. Cell Death and Disease, 2023, 14, .	2.7	2
409	The mitophagy pathway and its implications in human diseases. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	14
428	Deubiquitinases in cancer. Nature Reviews Cancer, 2023, 23, 842-862.	12.8	5