Bioinspired Underwater Adhesives by Using the Supran

Advanced Materials 30, e1704640

DOI: 10.1002/adma.201704640

Citation Report

#	Article	IF	CITATIONS
1	Dynamic Interfacial Adhesion through Cucurbit $\{\langle i \rangle n \langle i \rangle\}$ uril Molecular Recognition. Angewandte Chemie, 2018, 130, 8992-8996.	2.0	35
2	Dynamic Interfacial Adhesion through Cucurbit[<i>n</i>]uril Molecular Recognition. Angewandte Chemie - International Edition, 2018, 57, 8854-8858.	13.8	83
3	Self-assembled adhesive biomaterials formed by a genetically designed fusion protein. Chemical Communications, 2018, 54, 12642-12645.	4.1	17
4	Bioinspired reversible hydrogel adhesives for wet and underwater surfaces. Journal of Materials Chemistry B, 2018, 6, 8064-8070.	5.8	81
5	Mussel-Inspired Tissue-Adhesive Hydrogel Based on the Polydopamine–Chondroitin Sulfate Complex for Growth-Factor-Free Cartilage Regeneration. ACS Applied Materials & Interfaces, 2018, 10, 28015-28026.	8.0	227
6	Exploring a naturally tailored small molecule for stretchable, self-healing, and adhesive supramolecular polymers. Science Advances, 2018, 4, eaat8192.	10.3	422
7	Exploiting CH/Ï€ interactions in robust supramolecular adhesives. Polymer Chemistry, 2018, 9, 4303-4308.	3.9	1
8	Functional Polymeric Materials Inspired by Geckos, Mussels, and Spider Silk. Macromolecular Chemistry and Physics, 2018, 219, 1800051.	2.2	5
9	Reversible Supramolecular Assembly of Velvet Worm Adhesive Fibers via Electrostatic Interactions of Charged Phosphoproteins. Biomacromolecules, 2018, 19, 4034-4043.	5 . 4	22
10	Enhanced Adhesion and Cohesion of Bioinspired Dry/Wet Pressure-Sensitive Adhesives. ACS Applied Materials & Samp; Interfaces, 2019, 11, 28296-28306.	8.0	92
11	Design of Nanocomposite Injectable Hydrogels for Minimally Invasive Surgery. Accounts of Chemical Research, 2019, 52, 2101-2112.	15.6	149
12	Decoupling the roles of the catechol content from those of glass transition temperature and dynamic mechanical modulus in determining self-healing and anti-corrosion of mussel-inspired polymers. Polymer, 2019, 185, 121928.	3.8	8
13	Supramolecular silicone coating capable of strong substrate bonding, readily damage healing, and easy oil sliding. Science Advances, 2019, 5, eaaw5643.	10.3	132
14	Hierarchical Cross-Linked Poly(caprolactone- <i>co</i> -urethane) toward Connective Tissue-like Properties and Multifunctional Integration. Chemistry of Materials, 2019, 31, 9295-9306.	6.7	10
15	Injectable Adhesive Hydrogel through a Microcapsule Cross-Link for Periodontitis Treatment. ACS Applied Bio Materials, 2019, 2, 5985-5994.	4.6	27
16	Adjacent cationic–aromatic sequences yield strong electrostatic adhesion of hydrogels in seawater. Nature Communications, 2019, 10, 5127.	12.8	202
17	Strong Adhesives from Corn Protein and Tannic Acid. Advanced Sustainable Systems, 2019, 3, 1900077.	5. 3	22
18	Toughening of Glassy Supramolecular Polymer Networks. ACS Macro Letters, 2019, 8, 1484-1490.	4.8	25

#	Article	IF	CITATIONS
19	Instant, Tough, Noncovalent Adhesion. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40749-40757.	8.0	60
20	DNA-Inspired Adhesive Hydrogels Based on the Biodegradable Polyphosphoesters Tackified by a Nucleobase. Biomacromolecules, 2019, 20, 3672-3683.	5.4	27
21	Identifying adhesive components in a model tunicate. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190197.	4.0	27
22	Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. European Polymer Journal, 2019, 121, 109264.	5.4	39
23	Constructing High Performance Hydrogels with Strong Underwater Adhesion through a "Mussel Feet-Rock―Inspired Strategy. ACS Applied Polymer Materials, 2019, 1, 2883-2889.	4.4	26
24	Metal-Free Electrically Conductive Bioinspired Adhesive Polymers. Chemistry of Materials, 2019, 31, 8358-8365.	6.7	9
25	Poly(N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light- and thermo- responsive bending and adhesive properties. Colloids and Surfaces B: Biointerfaces, 2019, 177, 149-159.	5.0	45
26	Facile Preparation of Lignin-Based Underwater Adhesives with Improved Performances. ACS Sustainable Chemistry and Engineering, 2019, 7, 4508-4514.	6.7	51
27	Engineered Bacillus subtilis biofilms as living glues. Materials Today, 2019, 28, 40-48.	14.2	72
28	Progress in self-healing hydrogels assembled by host–guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7, 1637-1651.	5.8	93
29	Fibers on the Fly: Multiscale Mechanisms of Fiber Formation in the Capture Slime of Velvet Worms. Integrative and Comparative Biology, 2019, 59, 1690-1699.	2.0	12
30	Chirally Twisted Ultrathin Polydopamine Nanoribbons: Synthesis and Spontaneous Assembly of Silver Nanoparticles on Them. Chemistry - A European Journal, 2019, 25, 12905-12910.	3.3	21
31	Musselâ€inspired catecholâ€based chemistry for direct construction of superâ€hydrophilic and waterproof coatings on intrinsic hydrophobic surfaces. Journal of Applied Polymer Science, 2019, 136, 48013.	2.6	16
32	Skinâ€Inspired Antibacterial Conductive Hydrogels for Epidermal Sensors and Diabetic Foot Wound Dressings. Advanced Functional Materials, 2019, 29, 1901474.	14.9	371
33	Engineered horseradish peroxidase-catalyzed hydrogels with high tissue adhesiveness for biomedical applications. Journal of Industrial and Engineering Chemistry, 2019, 78, 34-52.	5.8	47
34	From Molecular Electrostatic Interactions and Hydrogel Architecture to Macroscopic Underwater Adherence. Macromolecules, 2019, 52, 3852-3862.	4.8	13
35	Bioinspired self-assembled films of carboxymethyl cellulose–dopamine/montmorillonite. Journal of Materials Chemistry A, 2019, 7, 14033-14041.	10.3	54
36	(De)bonding on Demand with Optically Switchable Adhesives. Advanced Optical Materials, 2019, 7, 1900230.	7.3	82

3

#	Article	IF	Citations
37	Boron nitride nanosheet embedded bio-inspired wet adhesives with switchable adhesion and oxidation resistance. Journal of Materials Chemistry A, 2019, 7, 12266-12275.	10.3	32
38	Self-assembly of oppositely charged polyelectrolyte block copolymers containing short thermoresponsive blocks. Polymer Chemistry, 2019, 10, 3127-3134.	3.9	19
39	Thermoresponsive Complex Coacervateâ€Based Underwater Adhesive. Advanced Materials, 2019, 31, e1808179.	21.0	137
40	Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nature Communications, 2019, 10, 1487.	12.8	675
41	Marine-inspired polymers in medical adhesion. European Polymer Journal, 2019, 116, 134-143.	5.4	98
42	Strong, tough, and repeatable adhesion of an alternating peptide comprising phenyl glycine as a repeating unit. Journal of Materials Chemistry B, 2019, 7, 2766-2770.	5 . 8	7
43	Bioinspired Adhesive Architectures: From Skin Patch to Integrated Bioelectronics. Advanced Materials, 2019, 31, e1803309.	21.0	203
44	Bioinspired Binders Actively Controlling Ion Migration and Accommodating Volume Change in High Sulfur Loading Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1902938.	19.5	70
45	Phenolic Building Blocks for the Assembly of Functional Materials. Angewandte Chemie - International Edition, 2019, 58, 1904-1927.	13.8	302
46	Phenolische Bausteine f $\tilde{A}^{1}\!\!/\!4$ r die Assemblierung von Funktionsmaterialien. Angewandte Chemie, 2019, 131, 1920-1945.	2.0	34
47	Reversible Underwater Dry Adhesion of a Shape Memory Polymer. Advanced Materials Interfaces, 2019, 6, 1801542.	3.7	34
48	Hydrogel Adhesion: A Supramolecular Synergy of Chemistry, Topology, and Mechanics. Advanced Functional Materials, 2020, 30, 1901693.	14.9	507
49	A reversible underwater glue based on photo- and thermo-responsive dynamic covalent bonds. Materials Horizons, 2020, 7, 282-288.	12.2	113
50	Bioinspired Multiscale Wet Adhesive Surfaces: Structures and Controlled Adhesion. Advanced Functional Materials, 2020, 30, 1905287.	14.9	137
51	Tough polyacrylamide-tannic acid-kaolin adhesive hydrogels for quick hemostatic application. Materials Science and Engineering C, 2020, 109, 110649.	7.3	75
52	Nanomechanics of Anionâ^Ï€ Interaction in Aqueous Solution. Journal of the American Chemical Society, 2020, 142, 1710-1714.	13.7	67
53	Ultra-thin trinity coating enabled by competitive reactions for unparalleled molecular separation. Journal of Materials Chemistry A, 2020, 8, 5078-5085.	10.3	103
54	Recent progress in synthesis and application of mussel-inspired adhesives. Nanoscale, 2020, 12, 1307-1324.	5. 6	230

#	ARTICLE	IF	Citations
55	Selfâ€Hydrophobization in a Dynamic Hydrogel for Creating Nonspecific Repeatable Underwater Adhesion. Advanced Functional Materials, 2020, 30, 1907064.	14.9	159
56	Fabrication of strong hydrogen-bonding induced coacervate adhesive hydrogels with antibacterial and hemostatic activities. Biomaterials Science, 2020, 8, 1455-1463.	5.4	71
57	Molecular recognition-directed site-specific release of stem cell differentiation inducers for enhanced joint repair. Biomaterials, 2020, 232, 119644.	11.4	45
58	Bioinspired synthetic wet adhesives: from permanent bonding to reversible regulation. Current Opinion in Colloid and Interface Science, 2020, 47, 84-98.	7.4	26
59	Temperature-responsive polyelectrolyte complexes for bio-inspired underwater adhesives. European Polymer Journal, 2020, 141, 110034.	5.4	15
60	Crystallizable Supramolecular Polymers: Binding Motif and Processing Matter. Macromolecules, 2020, 53, 9086-9096.	4.8	8
61	A supramolecular copolymer based on small molecules, used for a multifunctional adhesive and rapid hemostasis. Polymer Chemistry, 2020, 11, 6670-6680.	3.9	16
62	Connecting the Stimuli-Responsive Rheology of Biopolymer Hydrogels to Underlying Hydrogen-Bonding Interactions. Macromolecules, 2020, 53, 10503-10513.	4.8	15
63	Supramolecular adhesive materials from smallâ€molecule selfâ€assembly. SmartMat, 2020, 1, e1012.	10.7	79
64	Hydrogel-Tissue Adhesion Using Blood Coagulation Induced by Silica Nanoparticle Coatings. ACS Applied Bio Materials, 2020, 3, 8808-8819.	4.6	10
65	Graphene oxide/mussel foot protein composites for high-strength and ultra-tough thin films. Scientific Reports, 2020, 10, 19082.	3.3	5
66	One-step fabrication of Salvinia-inspired superhydrophobic surfaces with High adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 590, 124517.	4.7	14
67	Biomaterial surface modification for underwater adhesion. Smart Materials in Medicine, 2020, 1, 77-91.	6.7	39
68	Recent Advances in Mussel-Inspired Synthetic Polymers as Marine Antifouling Coatings. Coatings, 2020, 10, 653.	2.6	18
69	Dueling Backbones: Comparing Peptoid and Peptide Analogues of a Mussel Adhesive Protein. Macromolecules, 2020, 53, 6767-6779.	4.8	16
70	Interfacial assembly of self-healing and mechanically stable hydrogels for degradation of organic dyes in water. Communications Materials, 2020, 1, .	6.9	10
71	Bocâ€Protection on Lâ€DOPA: an Easy Way to Promote Underwater Adhesion. European Journal of Organic Chemistry, 2020, 2020, 7144-7150.	2.4	7
72	Growth factor-mimicking 3,4-dihydroxyphenylalanine-encoded bioartificial extracellular matrix like protein promotes wound closure and angiogenesis. Biomaterials Science, 2020, 8, 6773-6785.	5.4	7

#	Article	IF	CITATIONS
73	Sequence-defined positioning of amine and amide residues to control catechol driven wet adhesion. Chemical Science, 2020, 11, 9919-9924.	7.4	16
74	Recent Progress of Highly Adhesive Hydrogels as Wound Dressings. Biomacromolecules, 2020, 21, 3966-3983.	5.4	127
75	Influences of Phosphates on the Adhesion of a Catechol-Containing Polymer. ACS Applied Polymer Materials, 2020, 2, 4632-4639.	4.4	9
76	Supramolecular Cross-Links in Mussel-Inspired Tissue Adhesives. ACS Macro Letters, 2020, 9, 1439-1445.	4.8	31
77	Structure and sequence features of mussel adhesive protein lead to its salt-tolerant adhesion ability. Science Advances, 2020, 6, .	10.3	47
78	Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Nano-Micro Letters, 2020, 12, 169.	27.0	98
79	Heteropoly acid-driven assembly of glutathione into redox-responsive underwater adhesive. Chemical Communications, 2020, 56, 11034-11037.	4.1	25
80	Combined Catalysis for Engineering Bioinspired, Lignin-Based, Long-Lasting, Adhesive, Self-Mending, Antimicrobial Hydrogels. ACS Nano, 2020, 14, 17004-17017.	14.6	101
81	Switchable Underwater Adhesion by Deformable Cupped Microstructures. Advanced Materials Interfaces, 2020, 7, 2001269.	3.7	26
82	Water-Resistant Zein-Based Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 7668-7679.	6.7	39
83	Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host–Guest Interactions. Chemical Reviews, 2020, 120, 6070-6123.	47.7	466
84	Mussel-inspired hydrogels: from design principles to promising applications. Chemical Society Reviews, 2020, 49, 3605-3637.	38.1	346
85	Coaxial mussel-inspired biofibers: making of a robust and efficacious depot for cancer drug delivery. Journal of Materials Chemistry B, 2020, 8, 5064-5079.	5.8	17
86	Semiâ€Interpenetrated Hydrogelsâ€Microfibers Electroactive Assemblies for Release and Realâ€Time Monitoring of Drugs. Macromolecular Bioscience, 2020, 20, e2000074.	4.1	3
87	Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan–Polyoxometalate Complexes for Wearable Strain Sensor. ACS Applied Polymer Materials, 2020, 2, 2541-2549.	4.4	73
88	Cooperativity of Catechols and Amines in Highâ€Performance Dry/Wet Adhesives. Angewandte Chemie - International Edition, 2020, 59, 16616-16624.	13.8	76
89	An Antifreezing/Antiheating Hydrogel Containing Catechol Derivative Urushiol for Strong Wet Adhesion to Various Substrates. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32031-32040.	8.0	70
90	Mussel-inspired, self-healing polymer blends. Polymer, 2020, 198, 122528.	3.8	10

#	Article	IF	CITATIONS
91	Coacervate-Based Underwater Adhesives in Physiological Conditions. ACS Applied Polymer Materials, 2020, 2, 3397-3410.	4.4	21
92	Injectable hydrogel wound dressing based on strontium ion cross-linked starch. Frontiers of Materials Science, 2020, 14, 232-241.	2.2	14
93	Hydrogel networks as underwater contact adhesives for different surfaces. Materials Horizons, 2020, 7, 2063-2070.	12.2	88
94	Cooperativity of Catechols and Amines in Highâ€Performance Dry/Wet Adhesives. Angewandte Chemie, 2020, 132, 16759-16767.	2.0	25
95	Strength and toughness of adhesion of soft materials measured in lap shear. Journal of the Mechanics and Physics of Solids, 2020, 143, 103988.	4.8	44
96	Fabrication of Bioinspired Hydrogels: Challenges and Opportunities. Macromolecules, 2020, 53, 2769-2782.	4.8	185
97	Improving the capacity and cycling-stability of Lithium–sulfur batteries using self-healing binders containing dynamic disulfide bonds. Sustainable Energy and Fuels, 2020, 4, 2760-2767.	4.9	27
98	Polypeptide-based self-healing hydrogels: Design and biomedical applications. Acta Biomaterialia, 2020, 113, 84-100.	8.3	100
99	A fast UV-curable PU-PAAm hydrogel with mechanical flexibility and self-adhesion for wound healing. RSC Advances, 2020, 10, 4907-4915.	3.6	33
100	Tuning the Interactions in Multiresponsive Complex Coacervate-Based Underwater Adhesives. International Journal of Molecular Sciences, 2020, 21, 100.	4.1	14
101	Multifunctional composite hydrogel bolus with combined self-healing, antibacterial and adhesive functions for radiotherapy. Journal of Materials Chemistry B, 2020, 8, 2627-2635.	5.8	18
102	Thermally Triggered Injectable Underwater Adhesives. Macromolecular Rapid Communications, 2020, 41, e1900653.	3.9	16
103	Tough, Long-Term, Water-Resistant, and Underwater Adhesion of Low-Molecular-Weight Supramolecular Adhesives. Journal of the American Chemical Society, 2020, 142, 5371-5379.	13.7	172
104	An electrospun polyurethane scaffold-reinforced zwitterionic hydrogel as a biocompatible device. Journal of Materials Chemistry B, 2020, 8, 2443-2453.	5.8	13
105	Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chemical Society Reviews, 2020, 49, 433-464.	38.1	517
106	Bioactive Poreâ€Forming Bone Adhesives Facilitating Cell Ingrowth for Fracture Healing. Advanced Materials, 2020, 32, e1907491.	21.0	54
107	Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomaterials Science, 2020, 8, 1240-1255.	5.4	80
108	Charge Matters: Electrostatic Complexation As a Green Approach to Assemble Advanced Functional Materials. ACS Omega, 2020, 5, 1296-1304.	3.5	24

#	Article	IF	CITATIONS
109	Factors That Determine the Adhesive Strength in a Bioinspired Bone Tissue Adhesive. ChemEngineering, 2020, 4, 19.	2.4	10
110	VATA: A Poly(vinyl alcohol)- and Tannic Acid-Based Nontoxic Underwater Adhesive. ACS Applied Materials & Company: Interfaces, 2020, 12, 20933-20941.	8.0	116
111	Musselâ€Inspired Hydrogels for Selfâ€Adhesive Bioelectronics. Advanced Functional Materials, 2020, 30, 1909954.	14.9	285
112	Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polymers and Polymer Composites, 2021, 29, 246-258.	1.9	69
113	Novel trends in self-healable polymer nanocomposites. Journal of Thermoplastic Composite Materials, 2021, 34, 834-858.	4.2	61
114	Polyphenol scaffolds in tissue engineering. Materials Horizons, 2021, 8, 145-167.	12.2	203
115	Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate. Materials Science and Engineering C, 2021, 118, 111529.	7.3	28
116	Sandcastle worm-inspired phytic acid and magnesium oxychloride cement copolymerization for performance enhancement. Journal of Hazardous Materials, 2021, 404, 123992.	12.4	20
117	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie - International Edition, 2021, 60, 2346-2354.	13.8	34
118	Facile biomimetic self-coacervation of tannic acid and polycation: Tough and wide pH range of underwater adhesives. Chemical Engineering Journal, 2021, 404, 127069.	12.7	113
119	Polyphenolâ€Induced Adhesive Liquid Metal Inks for Substrateâ€Independent Direct Pen Writing. Advanced Functional Materials, 2021, 31, 2007336.	14.9	84
120	Mussel foot protein inspired tough tissue-selective underwater adhesive hydrogel. Materials Horizons, 2021, 8, 997-1007.	12.2	124
121	A supramolecular polymer with ultra-stretchable, notch-insensitive, rapid self-healing and adhesive properties. Polymer Chemistry, 2021, 12, 660-669.	3.9	26
122	Wearable Stretchable Dry and Selfâ€Adhesive Strain Sensors with Conformal Contact to Skin for Highâ€Quality Motion Monitoring. Advanced Functional Materials, 2021, 31, 2007495.	14.9	160
123	Engineered Coatings via the Assembly of Aminoâ€Quinone Networks. Angewandte Chemie, 2021, 133, 2376-2384.	2.0	5
124	Mixed solvent synthesis of polydopamine nanospheres for sustainable multilayer flame retardant nanocoating. Polymer Chemistry, 2021, 12, 2389-2396.	3.9	11
125	Strategic Advances in Spatiotemporal Control of Bioinspired Phenolic Chemistries in Materials Science. Advanced Functional Materials, 2021, 31, 2008821.	14.9	39
126	Structure–property relations in linear viscoelasticity of supramolecular hydrogels. RSC Advances, 2021, 11, 16860-16880.	3.6	5

#	ARTICLE	IF	CITATIONS
127	A catechol-chitosan-based adhesive and injectable hydrogel resistant to oxidation and compatible with cell therapy. Journal of Materials Chemistry B, 2021, 9, 8406-8416.	5.8	10
128	Complex coacervation and metal–ligand bonding as synergistic design elements for aqueous viscoelastic materials. Soft Matter, 2021, 17, 3294-3305.	2.7	6
129	A review on process and characterization of mussels and cirripeds for adhesive properties and applications thereof. Current Research in Green and Sustainable Chemistry, 2021, 4, 100092.	5.6	3
130	Transition-metal coordinate bonds for bioinspired macromolecules with tunable mechanical properties. Nature Reviews Materials, 2021, 6, 421-436.	48.7	148
131	Photoswitching between Waterâ€Tolerant Adhesion and Swift Release by Inverting Liquid Crystal Fingerprint Topography. Advanced Science, 2021, 8, 2004051.	11.2	18
132	Ultraâ€Conformable Ionic Skin with Multiâ€Modal Sensing, Broadâ€Spectrum Antimicrobial and Regenerative Capabilities for Smart and Expedited Wound Care. Advanced Science, 2021, 8, 2004627.	11.2	52
133	Starch-based adhesive hydrogel with gel-point viscoelastic behavior and its application in wound sealing and hemostasis. Journal of Materials Science and Technology, 2021, 63, 228-235.	10.7	45
134	Bioâ€Inspired Soft Grippers Based on Impactive Gripping. Advanced Science, 2021, 8, 2002017.	11.2	68
135	Switching (bio-) adhesion and friction in liquid by stimulus responsive polymer coatings. European Polymer Journal, 2021, 147, 110298.	5.4	29
136	A plant-inspired long-lasting adhesive bilayer nanocomposite hydrogel based on redox-active Ag/Tannic acid-Cellulose nanofibers. Carbohydrate Polymers, 2021, 255, 117508.	10.2	77
137	Photoactive mussels inspired polymer coatings: Preparation and antibacterial activity. Journal of Applied Polymer Science, 2021, 138, 50769.	2.6	3
138	Bioinspired Polyurethane Using Multifunctional Block Modules with Synergistic Dynamic Bonds. ACS Macro Letters, 2021, 10, 510-517.	4.8	36
139	Biomimetic hydroxyapate/polydopamine composites with good biocompatibility and efficiency for uncontrolled bleeding. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 1876-1892.	3.4	7
140	Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomaterials Science and Engineering, 2021, 7, 4048-4076.	5.2	89
141	Gecko's Feet-Inspired Self-Peeling Switchable Dry/Wet Adhesive. Chemistry of Materials, 2021, 33, 2785-2795.	6.7	48
142	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie, 2021, 133, 23880-23887.	2.0	8
143	An Artificial Phaseâ€Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. Angewandte Chemie, 2021, 133, 12189-12196.	2.0	14
144	Bioinspired Self-Healable Polyallylamine-Based Hydrogels for Wet Adhesion: Synergistic Contributions of Catechol-Amino Functionalities and Nanosilicate. ACS Applied Materials & Samp; Interfaces, 2021, 13, 18324-18337.	8.0	50

#	Article	IF	CITATIONS
145	An Artificial Phaseâ€Transitional Underwater Bioglue with Robust and Switchable Adhesion Performance. Angewandte Chemie - International Edition, 2021, 60, 12082-12089.	13.8	48
146	Genetically Engineered Polypeptide Adhesive Coacervates for Surgical Applications. Angewandte Chemie - International Edition, 2021, 60, 23687-23694.	13.8	78
147	Electrically programmable adhesive hydrogels for climbing robots. Science Robotics, 2021, 6, .	17.6	83
148	Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 2021, 116, 101388.	24.7	251
149	Applications of Bioinspired Reversible Dry and Wet Adhesives: A Review. Frontiers in Mechanical Engineering, 2021, 7, .	1.8	11
150	Efficacy evaluation of an in situ forming tissue adhesive hydrogel as sealant for lung and vascular injury. Biomedical Materials (Bristol), 2021, 16, 044106.	3.3	10
151	Underwater Communication and Optical Camouflage Ionogels. Advanced Materials, 2021, 33, e2008479.	21.0	269
152	Atmospheric Pressure Tornado Plasma Jet of Polydopamine Coating on Graphite Felt for Improving Electrochemical Performance in Vanadium Redox Flow Batteries. Catalysts, 2021, 11, 627.	3.5	4
153	Substrateâ€Independent Design of Liquidâ€Infused Slippery Surfaces via Musselâ€Inspired Chemistry. Advanced Materials Interfaces, 2021, 8, 2100156.	3.7	8
154	Multifaceted Design and Emerging Applications of Tissue Adhesives. Advanced Materials, 2021, 33, e2007663.	21.0	117
155	Super Strong and Multi-Reusable Supramolecular Epoxy Hot Melt Adhesives., 2021, 3, 1003-1009.		62
156	Endowing water-based polyacrylics adhesives with enhanced water-resistant capability by integrating with tannic acid. Reactive and Functional Polymers, 2021, 163, 104890.	4.1	13
157	Biocompatible Catecholâ€Functionalized Celluloseâ€Based Adhesives with Strong Water Resistance. Macromolecular Materials and Engineering, 2021, 306, 2100232.	3.6	19
158	Cooperative Multivalent Weak and Strong Interfacial Interactions Enhance the Adhesion of Mussel-Inspired Adhesives. Macromolecules, 2021, 54, 5417-5428.	4.8	12
159	Effect of Metals on Underwater Adhesion of Gastropod Adhesive Mucus. ACS Omega, 2021, 6, 15580-15589.	3.5	3
160	Competitive Binding-Modulated Metal–Phenolic Assemblies for Adaptable Nanofilm Engineering. Chemistry of Materials, 2021, 33, 4733-4744.	6.7	7
161	Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. Frontiers in Medical Technology, 2021, 3, 675744.	2.5	7
162	Light-Activated Adhesion and Debonding of Underwater Pressure-Sensitive Adhesives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 29048-29057.	8.0	16

#	Article	IF	CITATIONS
163	Perspective for a New Bioinspired Permanent Adhesive for dry Conditions - Insights in the Glue Producing Japanese art of Defence System of the Oita Salamander Hynobius dunni. Frontiers in Mechanical Engineering, $2021, 7, .$	1.8	2
164	Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam. ACS Nano, 2021, 15, 11667-11680.	14.6	195
165	Polymer Network Editing of Elastomers for Robust Underwater Adhesion and Tough Bonding to Diverse Surfaces. ACS Applied Materials & Samp; Interfaces, 2021, 13, 36527-36537.	8.0	11
166	Polymers with Dynamic Bonds: Adaptive Functional Materials for a Sustainable Future. Journal of Physical Chemistry B, 2021, 125, 9389-9401.	2.6	66
167	Musselâ€Inspired Design of a Selfâ€Adhesive Agent for Durable Moisture Management and Bacterial Inhibition on PET Fabric. Advanced Materials, 2021, 33, e2100140.	21.0	68
168	Catecholâ€containing waterborne polyurethane adhesive inspired by mussel proteins. Journal of Applied Polymer Science, 2021, 138, 51382.	2.6	9
169	Colorful Pigments for Hair Dyeing Based on Enzymatic Oxidation of Tyrosine Derivatives. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34851-34864.	8.0	10
170	Fabrication of Soft Tissue Scaffold-Mimicked Microelectrode Arrays Using Enzyme-Mediated Transfer Printing. Micromachines, 2021, 12, 1057.	2.9	6
171	The coâ€effect of microstructures and mucus on the adhesion of abalone from a mechanical perspective. Biosurface and Biotribology, 2021, 7, 180-186.	1.5	6
172	A strong magnesium oxychloride cement wood adhesive via organic–inorganic hybrid. Construction and Building Materials, 2021, 297, 123776.	7.2	24
173	From vesicles to materials: bioinspired strategies for fabricating hierarchically structured soft matter. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200338.	3.4	6
174	Antibacterial Gel Coatings Inspired by the Cryptic Function of a Mussel Byssal Peptide. Advanced Materials, 2021, 33, e2103677.	21.0	46
175	Polymer Pressureâ€Sensitive Adhesive with A Temperatureâ€Insensitive Loss Factor Operating Under Water and Oil. Advanced Functional Materials, 2021, 31, 2104296.	14.9	34
176	Intrinsically Photopolymerizable Dynamic Polymers Derived from a Natural Small Molecule. ACS Applied Materials & Derived Mater	8.0	48
177	Bioinspired Underwater Adhesives. Advanced Materials, 2021, 33, e2102983.	21.0	178
178	Catechol-modified polymers for surface engineering of energetic crystals with reduced sensitivity and enhanced mechanical performance. Applied Surface Science, 2022, 572, 151448.	6.1	8
179	Dismantlable Adhesion Interface Featuring a Thermo/Photocleavable Molecular Layer. Advanced Engineering Materials, 2022, 24, 2100823.	3.5	9
180	A Universal and Reversible Wet Adhesive via Straightforward Aqueous Self-Assembly of Polyethylenimine and Polyoxometalate. ACS Applied Materials & Interfaces, 2021, 13, 47155-47162.	8.0	13

#	ARTICLE	IF	CITATIONS
181	Bioinspired Functionally Graded Composite Assembled Using Cellulose Nanocrystals and Genetically Engineered Proteins with Controlled Biomineralization. Advanced Materials, 2021, 33, e2102658.	21.0	22
182	Noncovalent interactions in catechol/ammonium-rich adhesive motifs: Reassessing the role of cation-ï€ complexes?. Chemical Physics Letters, 2021, 779, 138815.	2.6	4
183	Recent Progress of Spider-Silk-Inspired Adhesive Materials. , 2021, 3, 1453-1467.		15
184	The Crossâ€Linking Mechanism and Applications of Catechol–Metal Polymer Materials. Advanced Materials Interfaces, 2021, 8, 2100239.	3.7	18
185	Designing Cooperative Hydrogen Bonding in Polyethers with Carboxylic Acid Pendants. Macromolecules, 2021, 54, 8478-8487.	4.8	5
186	Complexation of tannic acid with polyoxypropylene diamine in water and application for the preparation of hierarchically structured functional surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 627, 127201.	4.7	1
187	Emerging bioadhesives: from traditional bioactive and bioinert to a new biomimetic protein-based approach. Advances in Colloid and Interface Science, 2021, 296, 102521.	14.7	12
188	Biomimetic nanocomposite hydrogel networks for robust wet adhesion to tissues. Composites Part B: Engineering, 2021, 222, 109071.	12.0	29
189	Bioinspired interface engineering of soybean meal-based adhesive incorporated with biomineralized cellulose nanofibrils and a functional aminoclay. Chemical Engineering Journal, 2021, 421, 129820.	12.7	57
190	Development of soybeans starch based tough, water resistant and mildew-proof adhesives through multiple cross linking cooperation strategy. Journal of Cleaner Production, 2021, 321, 129001.	9.3	35
191	Tunicate-inspired polyallylamine-based hydrogels for wet adhesion: A comparative study of catecholand gallol-functionalities. Journal of Colloid and Interface Science, 2021, 601, 143-155.	9.4	27
192	Mussel-inspired self-healing PDMS/AgNPs conductive elastomer with tunable mechanical properties and efficient antibacterial performances for wearable sensor. Composites Part B: Engineering, 2021, 224, 109213.	12.0	36
193	A Lamellibranchia-inspired epidermal electrode for electrophysiology. Materials Horizons, 2021, 8, 1047-1057.	12.2	28
194	A highly transparent ionogel with strength enhancement ability for robust bonding in an aquatic environment. Materials Horizons, 2021, 8, 2057-2064.	12.2	73
195	Polymeric Tissue Adhesives. Chemical Reviews, 2021, 121, 11336-11384.	47.7	306
196	Recent developments in mussel-inspired materials for biomedical applications. Biomaterials Science, 2021, 9, 6653-6672.	5.4	42
197	Advances in applied supramolecular technologies. Chemical Society Reviews, 2021, 50, 2737-2763.	38.1	105
198	Robust Underwater Adhesives Based on Dynamic Hydrophilic and Hydrophobic Moieties to Diverse Surfaces. ACS Applied Materials & Surfaces, 2021, 13, 3435-3444.	8.0	24

#	Article	IF	CITATIONS
199	Stimuli-responsive polydopamine-based smart materials. Chemical Society Reviews, 2021, 50, 8319-8343.	38.1	262
200	Barnacle Cement Proteinsâ€Inspired Tough Hydrogels with Robust, Longâ€Lasting, and Repeatable Underwater Adhesion. Advanced Functional Materials, 2021, 31, 2009334.	14.9	148
201	A Solventâ€Free and Waterâ€Resistant Dipole–Dipole Interactionâ€Based Super Adhesive. Macromolecular Rapid Communications, 2021, 42, 2100010.	3.9	8
202	Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS Applied Materials & Samp; Interfaces, 2021, 13, 1323-1332.	8.0	33
203	Chitin is a functional component of the larval adhesive of barnacles. Communications Biology, 2020, 3, 31.	4.4	20
204	A mild and quantitative route towards well-defined strong anionic/hydrophobic diblock copolymers: synthesis and aqueous self-assembly. Polymer Chemistry, 2019, 10, 6109-6115.	3.9	10
205	Self-adhesive hydrogels for tissue engineering. Journal of Materials Chemistry B, 2021, 9, 8739-8767.	5.8	46
206	Polyphosphazene and Non atecholâ€Based Antibacterial Injectable Hydrogel for Adhesion of Wet Tissues as Wound Dressing. Advanced Healthcare Materials, 2022, 11, e2101421.	7.6	45
207	Zwitterionâ€Driven Shape Program of Prodrug Nanoassemblies with High Stability, High Tumor Accumulation, and High Antitumor Activity. Advanced Healthcare Materials, 2021, 10, e2101407.	7.6	12
208	Rare metal, precious adhesion. Science, 2021, 374, 148-150.	12.6	8
209	A Transparent, Highly Stretchable, Solventâ€Resistant, Recyclable Multifunctional Ionogel with Underwater Selfâ€Healing and Adhesion for Reliable Strain Sensors. Advanced Materials, 2021, 33, e2105306.	21.0	300
210	Bioengineered Proteinâ€based Adhesives for Biomedical Applications. Chemistry - A European Journal, 2022, 28, .	3.3	14
211	Biocompatible therapeutic albumin/genipin bioglue for postoperative wound adhesion and residual tumor ablation. Biomaterials, 2021, 279, 121179.	11.4	16
212	Mussel-inspired Polymers: Recent Trends. Current Applied Polymer Science, 2019, 3, 30-63.	0.2	1
213	Recent Physical Interaction-based Bioadhesives. , 2020, , 693-721.		1
215	Functionalization of polylactic acid thin films via polydopamine-assisted chelation of copper (II) ions for antibacterial applications. IOP Conference Series: Materials Science and Engineering, 2021, 1195, 012051.	0.6	1
216	A strong underwater adhesive that totally cured in water. Chemical Engineering Journal, 2022, 431, 133460.	12.7	28
217	Underwater and wet adhesion strategies for hydrogels in biomedical applications. Chemical Engineering Journal, 2022, 431, 133372.	12.7	51

#	Article	IF	CITATIONS
218	A hyperbranched polymer-based water-resistant adhesive: Durable underwater adhesion and primer for anchoring anti-fouling hydrogel coating. Science China Technological Sciences, 2022, 65, 201-213.	4.0	12
219	Influence of divalent ions on composition and viscoelasticity of polyelectrolyte complexes. Journal of Polymer Science, 2021, 59, 2895-2904.	3.8	6
220	Camellia meal-based formaldehyde-free adhesive with self-crosslinking, and anti-mildew performance. Industrial Crops and Products, 2022, 176, 114280.	5.2	11
221	CO2-based Biodegradable Supramolecular Polymers with Well-tunable Adhesive Properties. Chinese Journal of Polymer Science (English Edition), 2022, 40, 47-55.	3.8	7
222	Instant and Strong Underwater Adhesion by Coupling Hygroscopicity and In Situ Photocuring. Chemistry of Materials, 2021, 33, 8822-8830.	6.7	21
223	Urushiol-Induced Hydrogels with Long-Term Durability and Long Service Lifespan in Mechanosensation. Industrial & Engineering Chemistry Research, 2021, 60, 17534-17544.	3.7	3
224	Polymer Adhesion: Seeking New Solutions for an Old Problem. Macromolecules, 2021, 54, 10617-10644.	4.8	59
225	Injectable Double rosslinked Adhesive Hydrogels with High Mechanical Resilience and Effective Energy Dissipation for Joint Wound Treatment. Advanced Functional Materials, 2022, 32, 2109687.	14.9	81
226	Design principles for creating synthetic underwater adhesives. Chemical Society Reviews, 2021, 50, 13321-13345.	38.1	57
227	Conductive ionogel with underwater adhesion and stability as multimodal sensor for contactless signal propagation and wearable devices. Composites Part B: Engineering, 2022, 232, 109612.	12.0	28
228	Facile anchoring mussel adhesive mimic tentacles on biodegradable polymer cargo carriers via self-assembly for microplastic-free cosmetics. Journal of Colloid and Interface Science, 2022, 612, 13-22.	9.4	5
229	Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chemical Reviews, 2022, 122, 5604-5640.	47.7	238
230	Simply Formulated Dry Pressure-Sensitive Adhesives for Substrate-Independent Underwater Adhesion., 2022, 4, 410-417.		24
231	Ecoâ€Friendly Needleless Electrospinning and Tannic Acid Functionalization of Polyurethane Nanofibers with Tunable Wettability and Mechanical Performances. Macromolecular Materials and Engineering, 2022, 307, .	3.6	3
232	Heteromolecular pigmentations of plant-derived catechol and their application on textiles. Journal of Cleaner Production, 2022, 332, 130010.	9.3	5
233	Mussel-inspired injectable chitosan hydrogel modified with catechol for cell adhesion and cartilage defect repair. Journal of Materials Chemistry B, 2022, 10, 1019-1030.	5.8	20
234	Ultrafast self-healing and self-adhesive polysiloxane towards reconfigurable on-skin electronics. Journal of Materials Chemistry A, 2022, 10, 1750-1759.	10.3	31
235	Hot Melt Super Glue: Multiâ€Recyclable Polyphenolâ€Based Supramolecular Adhesives. Macromolecular Rapid Communications, 2022, 43, e2100830.	3.9	19

#	Article	IF	CITATIONS
236	Polyphenol-based hydrogels: Pyramid evolution from crosslinked structures to biomedical applications and the reverse design. Bioactive Materials, 2022, 17, 49-70.	15.6	64
237	Lipophilic monomer tackifying hydrogel antifouling coatings prepared by soap free emulsion polymerization and its performance. Progress in Organic Coatings, 2022, 165, 106724.	3.9	3
238	Surgical adhesives based on silk fibroin: A critical account of past and current research. International Journal of Adhesion and Adhesives, 2022, 114, 103109.	2.9	3
239	Strong interfacial energetics between catalysts and current collectors in aqueous sodium–air batteries. Journal of Materials Chemistry A, 2022, 10, 4601-4610.	10.3	10
240	Environmentally sustainable, high-performance lignin-derived universal adhesive. Green Chemistry, 2022, 24, 2624-2635.	9.0	14
241	Locomotion of Bioinspired Underwater Snake Robots Using Metaheuristic Algorithm. Computers, Materials and Continua, 2022, 72, 1293-1308.	1.9	0
242	Low-molecular-weight supramolecular adhesives based on non-covalent self-assembly of a small molecular gelator. Materials Horizons, 2022, 9, 1700-1707.	12.2	22
243	Multivalent non-covalent interactions lead to strongest polymer adhesion. Nanoscale, 2022, 14, 3768-3776.	5.6	12
245	Robust, Reusable, and Antioxidative Supramolecular Adhesive to Inorganic Surfaces Based on Water-Stimulated Hydrogen Bonding. ACS Applied Polymer Materials, 2022, 4, 1586-1594.	4.4	5
246	Understanding the Role of a Water-Soluble Catechol-Functionalized Binder for Silicon Anodes by Diverse In Situ Analyses. , 2022, 4, 831-839.		15
247	Molecular Engineering Super-Robust Dry/Wet Adhesive with Strong Interface Bonding and Excellent Mechanical Tolerance. ACS Applied Materials & Samp; Interfaces, 2022, 14, 12684-12692.	8.0	9
248	Toward bioinspired polymer adhesives: activation assisted via HOBt for grafting of dopamine onto poly(acrylic acid). Royal Society Open Science, 2022, 9, 211637.	2.4	2
249	Strong Dynamic Interfacial Adhesion by Polymeric Ionic Liquids under Extreme Conditions. ACS Nano, 2022, 16, 5303-5315.	14.6	19
250	An Underwater Longâ€Term Strong Adhesive Based on Boronic Esters with Enhanced Hydrolytic Stability. Advanced Functional Materials, 2022, 32, .	14.9	26
251	From Sticky to Slippery: Self-Functionalizing Lubricants for <i>In Situ</i> Fabrication of Liquid-Infused Surfaces. ACS Applied Materials & Samp; Interfaces, 2022, 14, 16735-16745.	8.0	4
252	Mussel―and Barnacle Cement Proteinsâ€Inspired Dualâ€Bionic Bioadhesive with Repeatable Wetâ€Tissue Adhesion, Multimodal Selfâ€Healing, and Antibacterial Capability for Nonpressing Hemostasis and Promoted Wound Healing. Advanced Functional Materials, 2022, 32, .	14.9	93
253	Strong and Flame-Resistant Thermoplastic Polymer Adhesives Based on Multiple Hydrogen Bonding Interactions. ACS Applied Polymer Materials, 2022, 4, 3520-3531.	4.4	7
254	An instant, repeatable and universal supramolecular adhesive based on natural small molecules for dry/wet environments. Chemical Engineering Journal, 2022, 442, 136206.	12.7	25

#	Article	IF	CITATIONS
255	Protected Poly(3-sulfopropyl methacrylate) Copolymers: Synthesis, Stability, and Orthogonal Deprotection. ACS Polymers Au, 2022, 2, 169-180.	4.1	4
256	Stimulated reversal of the strong adhesion of catechol onto a silica surface. Bulletin of the Korean Chemical Society, 2022, 43, 210-214.	1.9	2
257	Making Protein-Based Adhesives Water Resistant: Role of Protein Water Solubility, Galloyl Modification, and Complexation. ACS Applied Polymer Materials, 2022, 4, 18-23.	4.4	6
258	Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives. Biomacromolecules, 2022, 23, 1009-1019.	5.4	9
259	Supramolecular modulation of the mechanical properties of amino acid-functionalized cellulose nanocrystal films. Materials Today Chemistry, 2022, 24, 100886.	3.5	7
260	Hydrogels for underwater adhesion: adhesion mechanism, design strategies and applications. Journal of Materials Chemistry A, 2022, 10, 11823-11853.	10.3	74
261	Inspired by mussel: biomimetic polyelectrolyte complex coacervate adhesive initiates a connection through water exchange. Bioinspired, Biomimetic and Nanobiomaterials, 2022, 11, 17-22.	0.9	0
262	Dynamic crosslinked poly(acrylic acid-co-acrylonitrile)/polyethylene glycol networks as reworkable adhesives. Reactive and Functional Polymers, 2022, 176, 105283.	4.1	7
263	Peptide-coating combating antimicrobial contaminations: a review of covalent immobilization strategies for industrial applications. Journal of Materials Science, 2022, 57, 10863-10885.	3.7	17
264	Adhesion mechanism and application progress of hydrogels. European Polymer Journal, 2022, 173, 111277.	5.4	28
265	Cross-linked supramolecular polymer networks constructed by pillar[5]arene-based host–guest recognition and coordination/oxidation of catechol. Polymer Chemistry, 2022, 13, 3763-3767.	3.9	5
266	Carbon nanotube reinforced self-healable polythiourethane with excellent bonding strength and improved thermal conductivity. Materials Chemistry Frontiers, 2022, 6, 1850-1857.	5.9	4
267	Mineralized vectors for gene therapy. Acta Biomaterialia, 2022, , .	8.3	2
268	Hydrogen-Bonding Interaction-Driven Catechin Assembly into Solvent-Free Supramolecular Adhesive with Antidrying and Antifreezing Properties. ACS Applied Polymer Materials, 2022, 4, 4319-4328.	4.4	10
269	Development of Biodegradable Osteopromotive Citrateâ€Based Bone Putty. Small, 2022, 18, .	10.0	9
270	Reversible Wetâ€Adhesive and Selfâ€Healing Conductive Composite Elastomer of Liquid Metal. Advanced Functional Materials, 2022, 32, .	14.9	40
271	Molecular Engineered Crownâ€Etherâ€Protein with Strong Adhesion over a Wide Temperature Range from â~'196 to 200 °C. Angewandte Chemie, 2022, 134, .	2.0	6
272	Molecular Engineered Crownâ€Etherâ€Protein with Strong Adhesion over a Wide Temperature Range from â^'196 to 200 °C. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26

#	Article	IF	CITATIONS
273	Biomedical engineering of polysaccharide-based tissue adhesives: Recent advances and future direction. Carbohydrate Polymers, 2022, 295, 119787.	10.2	23
274	Preparation and characterization of wet adhesives based on (poly (vinyl butyral-co-vinyl) Tj ETQq1 1 0.784314 rgB of reptiles and rodents. Journal of Polymer Research, 2022, 29, .	T /Overloc 2.4	k 10 Tf 50 4
275	Phononâ€Suppressing Intermolecular Adhesives: Catecholâ€Based Broadband Organic THz Generators. Advanced Science, 2022, 9, .	11.2	11
276	Mussel Foot Inspired Bionic Adhesive Material Enhanced by a Reconstructed in Vitro System for Interfacial Adhesion. SSRN Electronic Journal, 0, , .	0.4	O
277	Robust and dynamic underwater adhesives enabled by catechol-functionalized poly(disulfides) network. National Science Review, 2023, 10 , .	9.5	30
278	Weak Molecular Interactions in Organic Composite Dry Film Lead to Degradable, Robust Wireless Electrophysiological Signal Sensing. Advanced Materials Interfaces, 2022, 9, .	3.7	4
279	Interfacial Coordination Interaction Enables Soft Elastomer Composites High Thermal Conductivity and High Toughness. ACS Applied Materials & Samp; Interfaces, 2022, 14, 33912-33921.	8.0	15
280	Robust Natural Polyphenolic Adhesives against Various Harsh Environments. Biomacromolecules, 2022, 23, 3493-3504.	5. 4	16
281	Tough Wet Adhesion of Hydrogen-Bond-Based Hydrogel with On-Demand Debonding and Efficient Hemostasis. ACS Applied Materials & Samp; Interfaces, 2022, 14, 36166-36177.	8.0	32
282	Gallol containing adhesive polymers. Journal of Macromolecular Science - Pure and Applied Chemistry, 2022, 59, 625-645.	2.2	2
283	Smallâ€Moleculeâ€based Supramolecular Plastics Mediated by Liquidâ€Liquid Phase Separation**. Angewandte Chemie, 2022, 134, .	2.0	1
284	Molecularly Engineered Protein Glues with Superior Adhesion Performance. Advanced Materials, 2022, 34, .	21.0	20
285	Bioinspired Freezeâ€Tolerant Soft Materials: Design, Properties, and Applications. Small, 2022, 18, .	10.0	29
286	Smallâ€Moleculeâ€based Supramolecular Plastics Mediated by Liquidâ€Liquid Phase Separation**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	4
287	A Bioâ€Based Supramolecular Adhesive: Ultraâ€High Adhesion Strengths at both Ambient and Cryogenic Temperatures and Excellent Multiâ€Reusability. Advanced Science, 2022, 9, .	11.2	31
288	Underwater instant adhesion mechanism of self-assembled amphiphilic hemostatic granular hydrogel from Andrias davidianus skin secretion. IScience, 2022, 25, 105106.	4.1	9
289	Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Advanced Drug Delivery Reviews, 2022, 190, 114460.	13.7	2
290	Self-assembly amino-quinone network coatings onto polyester fabric via single-sided spraying of natural polyphenols and polyethyleneimine for highly efficient moisture conducting and bacteriostatic properties. Applied Surface Science, 2022, 606, 154913.	6.1	4

#	Article	IF	CITATIONS
291	Small-molecule ionic liquid-based adhesive with strong room-temperature adhesion promoted by electrostatic interaction. Nature Communications, $2022,13,\ldots$	12.8	20
292	Bioselectivity of silk protein-based materials and their bio-inspired applications. Beilstein Journal of Nanotechnology, 0, 13, 902-921.	2.8	7
293	Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45869-45879.	8.0	38
294	Ultra-stretchable, Antifatigue, Adhesive, and Self-Healing Hydrogels Based on the Amino Acid Derivative and Ionic Liquid for Flexible Strain Sensors. ACS Applied Polymer Materials, 2022, 4, 7575-7586.	4.4	7
295	Design, synthesis, and characterization of a novel dual cross-linked gelatin-based bioadhesive for hard and soft tissues adhesion capability. Biomedical Materials (Bristol), 2022, 17, 065010.	3.3	5
296	Mussel foot inspired bionic adhesive material enhanced by a reconstructed in vitro system for interfacial adhesion. Chemical Engineering Journal, 2023, 452, 139580.	12.7	4
297	Rational design of adhesives for effective underwater bonding. Frontiers in Chemistry, 0, 10, .	3.6	4
298	Ascidian-Inspired Supramolecular Cellulose Nanocomposite Hydrogels with Antibacterial Activity. ACS Biomaterials Science and Engineering, 2022, 8, 5027-5037.	5.2	8
299	Highly stretchable and self-adhesive ionically cross-linked double-network conductive hydrogel sensor for electronic skin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130363.	4.7	8
300	An Easy-to-Prepare Conductive Hydrogel for Smart Wearable Materials Based on Acrylic Derivatives and Acrylamide. Applied Sciences (Switzerland), 2022, 12, 11404.	2.5	3
301	Bioâ€inspired functional coacervates. Aggregate, 2022, 3, .	9.9	10
302	Anammox-based granulation cycle for sustainable granular sludge biotechnology from mechanisms to strategies: A critical review. Water Research, 2023, 228, 119353.	11.3	12
303	Underwater Adhesion and Antiâ€Swelling Hydrogels. Advanced Materials Technologies, 2023, 8, .	5.8	14
304	Plasticization of a Semicrystalline Metallosupramolecular Polymer Network. ACS Polymers Au, 0, , .	4.1	0
305	Supramolecular polymer network gels constructed by a pillararene-containing polymer and their applications in adhesion between semihard materials. Polymer Chemistry, 2023, 14, 191-200.	3.9	1
306	Application of a biomimetic wellbore stabilizer with strong adhesion performance for hydrate reservoir exploitation. Fuel, 2023, 337, 127184.	6.4	2
307	Recent Developments in Catecholic Polymers: Polymerization and Applications. Current Materials Science, 2023, 16, 262-315.	0.4	1
308	Stepwise Coordination-Driven Metal–Phenolic Nanoparticle as a Neuroprotection Enhancer for Alzheimer's Disease Therapy. ACS Applied Materials & Samp; Interfaces, 2023, 15, 524-540.	8.0	8

#	Article	IF	CITATIONS
309	Supramolecular Pressureâ€Sensitive Adhesives with Rapid, Strong, Waterâ€Resistant, and Underwater Adhesion. Advanced Materials Interfaces, 2023, 10, .	3.7	11
310	Highâ€Performance Supramolecular Adhesives. Macromolecular Chemistry and Physics, 2023, 224, .	2.2	7
311	Interfacial Molecular Lock: A Universal Strategy for Hydrogel Adhesion. ACS Applied Polymer Materials, 2023, 5, 1037-1045.	4.4	4
312	Bioinspired Materials: From Distinct Dimensional Architecture to Thermal Regulation Properties. Journal of Bionic Engineering, 2023, 20, 873-899.	5.0	8
313	Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules, 2023, 24, 319-331.	5.4	8
314	Interfacial Instabilityâ€Induced (31) Adhesives through "Mediator―Solvent Diffusion for Robust Underoil Adhesion. Advanced Materials, 2023, 35, .	21.0	5
315	Adhesion and Cohesion Differences between Catechol―and Pyrogallolâ€Functionalized Chitosan. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
316	Degradable Bioadhesives Based on Star PEG–PLA Hydrogels for Soft Tissue Applications. Biomacromolecules, 2023, 24, 4430-4443.	5 . 4	3
317	Ternary Synergy of Lys, Dopa, and Phe Results in Strong Cohesion of Peptide Films. ACS Applied Bio Materials, 2023, 6, 865-873.	4.6	1
318	An Adhesive Bioink toward Biofabrication under Wet Conditions. Small, 2023, 19, .	10.0	9
319	Long-term antibacterial, antioxidative, and bioadhesive hydrogel wound dressing for infected wound healing applications. Biomaterials Science, 2023, 11, 2080-2090.	5 . 4	4
320	Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chemical Research in Chinese Universities, 2023, 39, 92-106.	2.6	2
321	Bioinspired multifunctional injectable hydrogel for hemostasis and infected wound management. Acta Biomaterialia, 2023, 161, 50-66.	8.3	30
322	Biospecific cation-Ï€ interaction by modulating molecular hydration and supramolecular structure of short peptides. Journal of Colloid and Interface Science, 2023, 635, 50-58.	9.4	0
323	Effect of spatial configuration on adhesion of 1,2-disubstituted cyclohexane derivatives. Chinese Chemical Letters, 2023, 34, 108126.	9.0	1
324	Influence of Charge Block Length on Conformation and Solution Behavior of Polyampholytes. ACS Macro Letters, 2023, 12, 195-200.	4.8	3
325	Mussel-Based Biomimetic Strategies in Musculoskeletal Disorder Treatment: From Synthesis Principles to Diverse Applications. International Journal of Nanomedicine, 0, Volume 18, 455-472.	6.7	3
326	Hydrogen-bonded supramolecular adhesives: Synthesis, responsiveness, and application. , 2023, 2, 100032.		6

#	Article	IF	CITATIONS
327	Bioinspired nucleobase-containing polyelectrolytes as robust and tunable adhesives by balancing the adhesive and cohesive properties. Chemical Science, 2023, 14, 3938-3948.	7.4	5
328	Catechol-free ternary random copolymers for strong and repeatable underwater adhesion. Polymer Chemistry, 2023, 14, 2063-2071.	3.9	1
329	Getting glued in the sea. Polymer Journal, 2023, 55, 653-664.	2.7	2
330	Bone adhesive materials: From bench to bedside. Materials Today Bio, 2023, 19, 100599.	5.5	5
331	Sequential self-assembly and self-coacervation actuate water-triggered robust bonding: From universal underwater adhesion to on-demand detachable bioadhesion. Chemical Engineering Journal, 2023, 463, 142436.	12.7	1
332	Novel bone wax based on DCPA granules and modified starch for hemostasis and bone regeneration. Applied Materials Today, 2023, 32, 101815.	4.3	0
333	Soft underwater adhesives based on weak molecular interactions. Progress in Polymer Science, 2023, 139, 101649.	24.7	9
334	Multi-crosslinked hydrogels with strong wet adhesion, self-healing, antibacterial property, reactive oxygen species scavenging activity, and on-demand removability for seawater-immersed wound healing. Acta Biomaterialia, 2023, 159, 95-110.	8.3	30
335	Increasing the Scale and Decreasing the Cost of Making a Catechol-Containing Adhesive Polymer. Macromolecules, 2023, 56, 1141-1153.	4.8	1
336	Isopropanol-regulated adhesion-controllable conductive gels for robust bioelectric signal monitoring and flexible underwater robots. Chemical Engineering Journal, 2023, 460, 141746.	12.7	5
337	Bioinspired Selfâ€healing Soft Electronics. Advanced Functional Materials, 2023, 33, .	14.9	25
338	Modulation of non-covalent wet adhesion and cohesion via proximally immobilized non-lysine pair structure. Chemical Engineering Journal, 2023, 461, 141738.	12.7	0
339	<i>In situ</i> reaction of modified cellulose nanocrystals in shape memory polyacrylamide/gelatin composite hydrogel with enhanced performance. Polymer International, 0, , .	3.1	0
340	Polyelectrolyte-multivalent molecule complexes: physicochemical properties and applications. Soft Matter, 2023, 19, 2013-2041.	2.7	7
341	A Bioinspired Polymerâ€Based Composite Displaying Both Strong Adhesion and Anisotropic Thermal Conductivity. Advanced Functional Materials, 2023, 33, .	14.9	26
342	Gel-based strain/pressure sensors for underwater sensing: Sensing mechanisms, design strategies and applications. Composites Part B: Engineering, 2023, 255, 110631.	12.0	20
343	A Curable Underwater Adhesive Based on Poly(propylene oxide) and Tannic Acid Coacervate. ACS Applied Polymer Materials, 2023, 5, 1646-1650.	4.4	2
344	Recent advances in biomimetic hemostatic materials. Materials Today Bio, 2023, 19, 100592.	5.5	5

#	Article	IF	CITATIONS
345	Highly Efficient Switchable Underwater Adhesion in Channeled Hydrogel Networks. Advanced Functional Materials, 0, , .	14.9	10
346	Robust Underwater Adhesion of Catecholâ€Functionalized Polymer Triggered by Water Exchange. Small Methods, 2023, 7, .	8.6	6
347	Musselâ€Inspired, Underwater Selfâ€Healing Ionoelastomers Based on αâ€Lipoic Acid for Iontronics. Small, 2023, 19, .	10.0	8
348	Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS Applied Materials & Samp; Interfaces, 2023, 15, 17256-17267.	8.0	6
349	Bioinspired chemical design to control interfacial wet adhesion. CheM, 2023, 9, 771-783.	11.7	14
350	Oxidized Dopamine Acrylamide Primer to Achieve Durable Resin–Dentin Bonding. Research, 2023, 6, .	5.7	1
351	Visible-Light Transparent, Ultrastretchable, and Self-Healable Semicrystalline Fluorinated Ionogels for Underwater Strain Sensing. ACS Applied Materials & Samp; Interfaces, 2023, 15, 16109-16117.	8.0	7
352	Progress of Hydrophobic Ionogels: A Review. Macromolecular Rapid Communications, 2023, 44, .	3.9	1
353	Water-soluble alginate–based adhesive: catechol modification and adhesion properties. Polymer Journal, 2023, 55, 785-795.	2.7	3
354	Recent advances in adhesive materials used in the biomedical field: adhesive properties, mechanism, and applications. Journal of Materials Chemistry B, 2023, 11, 3338-3355.	5.8	6
356	Naturally sourced hydrogels: emerging fundamental materials for next-generation healthcare sensing. Chemical Society Reviews, 2023, 52, 2992-3034.	38.1	41
357	Supramolecular Adhesives with Extended Tolerance to Extreme Conditions via Waterâ€Modulated Noncovalent Interactions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	11
358	Supramolecular Adhesives with Extended Tolerance to Extreme Conditions via Waterâ€Modulated Noncovalent Interactions. Angewandte Chemie, 0, , .	2.0	0
359	Supramolecular Soft Material Enabled by Metal Coordination and Hydrogen Bonding: Stretchability, Selfâ∈Healing, Impact Resistance, 3D Printing, and Motion Monitoring. Small, 2023, 19, .	10.0	7
360	Hydrogel transformed from sandcastle-worm-inspired powder for adhering wet adipose surfaces. Journal of Colloid and Interface Science, 2023, 646, 472-483.	9.4	5
361	Nanoscale surface coatings based on plant phenolics. , 2023, , 195-216.		1
362	Gastric Acidâ€Responsive ROS Nanogenerators for Effective Treatment of <i>Helicobacter pylori</i> Infection without Disrupting Homeostasis of Intestinal Flora. Advanced Science, 2023, 10, .	11.2	6
363	Glycan-Presenting Coacervates Derived from Charged Poly(active esters): Preparation, Phase Behavior, and Lectin Capture. Biomacromolecules, 2023, 24, 2532-2540.	5.4	2

#	Article	IF	CITATIONS
364	Design of Topologyâ€Controlled Polyethers toward Robust Cooperative Hydrogen Bonding. Advanced Functional Materials, 2023, 33, .	14.9	3
365	Tunable, reusable, and recyclable perfluoropolyether periodic dynamic polymers with high underwater adhesion strength. Matter, 2023, 6, 2439-2453.	10.0	5
366	Tuning Dry and Wet Adhesion with a Branched Supramolecular Polymer Solution. Small Science, 2023, 3, .	9.9	3
367	Enzymeâ€Triggered Intestineâ€Specific Targeting Adhesive Platform for Universal Oral Drug Delivery. Advanced Healthcare Materials, 2023, 12, .	7.6	1
368	Bioâ€inspired Proteinâ€Based and Activatable Adhesion Systems. Advanced Functional Materials, 0, , .	14.9	4
369	An impact-strengthening, reusable hot-melt structural adhesive derived from branching polyurethane-based supramolecular topology capped by self-complementary hydrogen bonding UPy motifs. European Polymer Journal, 2023, 196, 112253.	5.4	1
370	Conductive polymer based hydrogels and their application in wearable sensors: a review. Materials Horizons, 2023, 10, 2800-2823.	12.2	23
371	Designing Bio-Inspired Wet Adhesives through Tunable Molecular Interactions. Journal of Colloid and Interface Science, 2023, 645, 591-606.	9.4	3
372	Scaleâ€Spanning Strong Adhesion Using Celluloseâ€Based Microgels. Small, 2023, 19, .	10.0	1
373	3D light-curing printing to construct versatile octopus-bionic patches. Journal of Materials Chemistry B, 2023, 11, 5010-5020.	5.8	1
374	Achieving strong, stable, and durable underwater adhesives based on a simple and generic amino-acid-resembling design. Materials Horizons, 2023, 10, 2980-2988.	12.2	3
375	Force Regulation by Sequence-Defined Polyelectrolytes. Macromolecules, 2023, 56, 4100-4110.	4.8	1
376	Underwater Bonding with a Biobased Adhesive from Tannic Acid and Zein Protein. ACS Applied Materials & Samp; Interfaces, 2023, 15, 32863-32874.	8.0	2
377	"Deep Eutectic Solvent-in-Water―Hydrogels Enable High-Performance Flexible Strain Sensors for Electronic Skin with a Wide Operating Temperature Range. ACS Sustainable Chemistry and Engineering, 2023, 11, 10578-10589.	6.7	8
378	A review of bio-inspired geotechnics-perspectives from geomaterials, geo-components, and drilling & Lamp; excavation strategies., 2023, 1, 100025.		6
379	Robust and smart underwater adhesion of hydrophobic hydrogel by phase change. Chemical Engineering Journal, 2023, 471, 144625.	12.7	4
380	Mechanically tunable, antibacterial and bioactive mussel adhesive protein/hyaluronic acid coacervates as bioadhesives. International Journal of Biological Macromolecules, 2023, 247, 125773.	7.5	1
381	Transparent, self-adhesive, highly environmental stable, and water-resistant ionogel enabled reliable strain/temperature sensors and underwater communicators. Chemical Engineering Journal, 2023, 471, 144674.	12.7	6

#	Article	IF	CITATIONS
382	Cooperative Tridentate Hydrogen-Bonding Interactions Enable Strong Underwater Adhesion. ACS Applied Materials & Diterfaces, 2023, 15, 35720-35731.	8.0	0
383	A biomimetic closed-loop recyclable, long-term durable, extreme-condition resistant, flame-retardant nanocoating synthesized by reversible flocculation assembly. Materials Horizons, 2023, 10, 4551-4561.	12.2	15
384	Tough and Onâ€Demand Detachable Wet Tissue Adhesive Hydrogel Made from Catechol Derivatives with a Long Aliphatic Side Chain. Advanced Healthcare Materials, 2023, 12, .	7.6	1
385	A Natureâ€Inspired Versatile Bioâ€Adhesive. Advanced Healthcare Materials, 2023, 12, .	7.6	4
386	Tough adhesion enhancing strategies for injectable hydrogel adhesives in biomedical applications. Advances in Colloid and Interface Science, 2023, 319, 102982.	14.7	3
387	A selfâ€adhesive bark veneer for allâ€natural plywood. EcoMat, 0, , .	11.9	0
388	A novel green polyurethane adhesive based on castor oil and tannic acid with excellent water, salt, acid, alkali and antibacterial properties. Industrial Crops and Products, 2023, 204, 117325.	5.2	1
389	Hydrogen Bond-Enabled Bio-Based Random Copolymer/Carbon Nanotube Composites as Multifunctional Adhesives. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0
390	The role of tyrosine in protein-dopamine based bioinspired adhesives: the stoichiometry that maximizes bonding strength. , $0,2,\ldots$		0
391	Recoverable solvent-free small molecular supramolecular pseudoeutectic adhesives with a wide temperature range. Green Chemistry, 2023, 25, 6845-6852.	9.0	4
392	Sustainably sourced components to generate high-strength adhesives. Nature, 2023, 621, 306-311.	27.8	16
393	Development and applications of mussel-inspired composite hydrogels for flexible bioelectronics. Chemical Engineering Journal, 2023, 474, 145891.	12.7	4
394	Facile Synthesis of Catechol-Containing Polyacrylamide Copolymers: Synergistic Effects of Amine, Amide and Catechol Residues in Mussel-Inspired Adhesives. Polymers, 2023, 15, 3663.	4.5	1
396	Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Accounts of Chemical Research, 2023, 56, 2664-2675.	15.6	3
397	Emerging Advances in Microfluidic Hydrogel Droplets for Tissue Engineering and STEM Cell Mechanobiology. Gels, 2023, 9, 790.	4.5	1
398	Development of a Stretchable and Water-Resistant Hydrogel with Antibacterial and Antioxidant Dual Functions for Wound Healing in Movable Parts. ACS Applied Materials & Samp; Interfaces, 2023, 15, 43524-43540.	8.0	1
399	Underwater Adhesives Produced by Chemically Induced Protein Aggregation. Advanced Functional Materials, 0, , .	14.9	0
400	Electrically controlled underwater object manipulation with adhesive borate ester hydrogels. Materials Today Nano, 2023, 24, 100396.	4.6	0

#	Article	IF	CITATIONS
401	Biomedical applications of supramolecular hydrogels with enhanced mechanical properties. Advances in Colloid and Interface Science, 2023, 321, 103000.	14.7	12
402	Robust but On-Demand Detachable Wet Tissue Adhesive Hydrogel Enhanced with Modified Tannic Acid. ACS Applied Materials & Detachable Wet Tissue Adhesive Hydrogel Enhanced with Modified Tannic Acid.	8.0	0
403	Wet adhesion enhancement through citric-acid-regulated supramolecular network. Composites Part B: Engineering, 2023, 265, 110964.	12.0	2
404	Engineering Protein Coacervates into a Robust Adhesive for Real-Time Skin Healing. Engineering, 2023, ,	6.7	0
405	Colonial sandcastle-inspired low-carbon building materials. Matter, 2023, 6, 3864-3876.	10.0	2
406	Waterâ€Induced Phase Separation for Antiâ€Swelling Hydrogel Adhesives in Underwater Soft Electronics. Advanced Science, 2023, 10, .	11.2	4
407	Underwater Adhesives from Redoxâ€responsive Polyplexes of Thiolated Polyamide Polyelectrolytes. Chemistry - A European Journal, 0, , .	3.3	0
408	Bioinspired materials for underwater adhesion with pathways to switchability. Cell Reports Physical Science, 2023, 4, 101597.	5.6	1
409	Partially Biobased Block Copolymers Derived from Phenol and Butanol for High-Performance Elastomers and Pressure-Sensitive Adhesives. ACS Applied Polymer Materials, 2023, 5, 7805-7812.	4.4	0
410	Mussel-bionic composite coatings based on biomass polyurethane and its adhesive mechanisms of humid interface with cementitious materials. Progress in Organic Coatings, 2024, 186, 108001.	3.9	1
411	Antioxidant $\langle i \rangle N \langle i \rangle$ -acetylcysteine removing ROS: an antifouling strategy inspired by mussels. Environmental Sciences: Processes and Impacts, 0, , .	3.5	0
412	Hydrophobically modified complex coacervates for designing aqueous pressure-sensitive adhesives. Soft Matter, 2023, 19, 8832-8848.	2.7	1
413	Catheterâ€Assisted Bioinspired Adhesive Magnetic Soft Millirobot for Drug Delivery. Small, 0, , .	10.0	0
414	One-step synthesis of Janus hydrogel via heterogeneous distribution of sodium \hat{l}_{\pm} -linoleate driven by surfactant self-aggregation. Science Advances, 2023, 9, .	10.3	1
415	An underwater stable and durable gelatin composite hydrogel coating for biomedical applications. Journal of Materials Chemistry B, 2023, 11, 11372-11383.	5.8	0
416	Multifunctional coatings hinging on the catechol/amine interplay. European Journal of Organic Chemistry, 0, , .	2.4	0
417	Self-Healing Polymers Designed for Underwater Applications. Advances in Polymer Technology, 2023, 2023, 1-21.	1.7	0
418	Mechanistic Analysis and Control of Electroâ€Fabrication with Soft Matter: Polysaccharide Selfâ€Assembly with Electrochemically Produced Metal Ions. Advanced Materials Interfaces, 0, , .	3.7	0

#	Article	IF	CITATIONS
419	Construction of Waterborne Thermoplastic Polymeric Adhesives Based on Hierarchical Hydrogen Bonds in Miniemulsions. ACS Applied Polymer Materials, 2023, 5, 10170-10184.	4.4	1
420	Bioinspired by Sandcastle Worm Glue: An Underwater Reversible Adhesive Modulated by pH Environments Based on Urushiol. Industrial & Engineering Chemistry Research, 2023, 62, 19690-19701.	3.7	1
421	Bionic Adhesion Systems: From Natural Design to Artificial Application. Advanced Materials Technologies, 0 , , .	5.8	0
422	Bioadhesive Technology Platforms. Chemical Reviews, 2023, 123, 14084-14118.	47.7	5
423	Water-responsive entangled underwater adhesives enable strong adhesion in natural dynamic water. Chemical Engineering Journal, 2024, 479, 147639.	12.7	0
424	An Environment-Tolerant, Reprocessable, and Self-Healable Ionogel with High Performance Retention for Reliable Sensing. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	0
425	An ecoâ€friendly and high shear strength adhesive from catecholâ€modified polyethyleneimine. Journal of Applied Polymer Science, 0, , .	2.6	0
426	Reversible, ultra-strong underwater adhesive based on supramolecular interaction for instant liquid leakage sealing and robust tissue adhesion. Chemical Engineering Journal, 2024, 480, 148064.	12.7	3
427	Enhancing Water Resistance in Cationic Cellulose Nanofibril Adhesive with Natural Rubber Latex. ACS Applied Nano Materials, 2024, 7, 195-204.	5.0	1
428	Structural Element of Vitamin Uâ€Mimicking Antibacterial Polypeptide with Ultrahigh Selectivity for Effectively Treating MRSA Infections. Angewandte Chemie, 2024, 136, .	2.0	0
429	Structural Element of Vitamin Uâ€Mimicking Antibacterial Polypeptide with Ultrahigh Selectivity for Effectively Treating MRSA Infections. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
430	Solvent-free urethane-based prepolymer as a versatile underwater adhesive material. Chemical Engineering Journal, 2024, 481, 148487.	12.7	0
431	Harsh environment resistible and recyclable thermoplastic polyurea adhesive based on stable and density hydrogen bonds. Chemical Engineering Journal, 2024, 482, 148663.	12.7	0
432	Effect of Polyelectrolyte Charge Density on the Linear Viscoelastic Behavior and Processing of Complex Coacervate Adhesives. Macromolecules, 2024, 57, 652-663.	4.8	0
433	Citric acid/chitosan adhesive with viscosity-controlled for wood bonding through supramolecular self-assembly. Carbohydrate Polymers, 2024, 329, 121765.	10.2	0
434	Combining and concentrating nanocelluloses for cryogels with remarkable strength and wet resilience. Carbohydrate Polymers, 2024, 330, 121740.	10.2	0
435	A Sandcastle-Worm-Inspired Strategy toward Antimicrobial Fouling and Fireproof Composite. , 2024, 6, 627-639.		0
436	Natureâ€Inspired Wet Drug Delivery Platforms. Small Methods, 0, , .	8.6	0

#	ARTICLE	IF	CITATIONS
437	Simple and complex coacervation in systems involving plant proteins. Soft Matter, 2024, 20, 1966-1977.	2.7	0
438	Facile Bond Exchanging Strategy for Engineering Wet Adhesion and Antioxidant/Antibacterial Thin Layer over a Dynamic Hydrogel via the Carbon Dots Derived from Tannic Acid/ε-Polylysine. ACS Applied Materials & Derived Romannic Acid/ε-Polylysine. ACS Applied Materials & Derived Romannic Rom	8.0	0
439	Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chemistry - A European Journal, 2024, 30, .	3.3	0
440	Natural Polymerâ€Polyphenol Bioadhesive Coacervate with Stable Wet Adhesion, Antibacterial Activity, and Onâ€Demand Detachment. Advanced Healthcare Materials, 0, , .	7.6	O
441	Nanoscale Hierarchical Structures Formed by Sequence-Defined Polycations and Homopolyanions for High Salt-Tolerance Adhesives. Macromolecules, 2024, 57, 1859-1867.	4.8	0
443	Fully Biobased Adhesive from Chitosan and Tannic Acid with High Water Resistance. ACS Sustainable Chemistry and Engineering, 2024, 12, 4456-4463.	6.7	0
444	Clay Sculptureâ€Inspired 3D Printed Microcage Module Using Bioadhesion Assembly for Specificâ€Shaped Tissue Vascularization and Regeneration. Advanced Science, 0, , .	11.2	0
445	A tough bioadhesive based on co-assembly of polypeptide and polysaccharide for adhesion of soft tissues. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 689, 133719.	4.7	0
446	Trends in polysaccharide-based hydrogels and their role in enhancing the bioavailability and bioactivity of phytocompounds. Carbohydrate Polymers, 2024, 334, 122033.	10.2	0
447	Ferried Albuminâ€Inspired Bioadhesive With Dynamic Interfacial Bonds for Emergency Rescue. Advanced Healthcare Materials, 0, , .	7.6	0