An extremely safe and wearable solid-state zinc ion bat structured polymer electrolyte

Energy and Environmental Science 11, 941-951 DOI: 10.1039/c7ee03232c

Citation Report

#	Article	IF	CITATIONS
2	A capacity recoverable zinc-ion micro-supercapacitor. Energy and Environmental Science, 2018, 11, 3367-3374.	15.6	263
3	A high-rate aqueous rechargeable zinc ion battery based on the VS ₄ @rGO nanocomposite. Journal of Materials Chemistry A, 2018, 6, 23757-23765.	5.2	196
4	Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. Journal of Materials Chemistry A, 2018, 6, 23046-23054.	5.2	127
5	One-pot growth of Co(OH) ₂ nanowire bundle arrays on <i>in situ</i> functionalized carbon cloth for robust flexible supercapacitor electrodes. Dalton Transactions, 2018, 47, 15416-15423.	1.6	20
6	A Nanofibrillated Cellulose/Polyacrylamide Electrolyteâ€Based Flexible and Sewable Highâ€Performance Zn–MnO ₂ Battery with Superior Shear Resistance. Small, 2018, 14, e1803978.	5.2	191
7	Recent Progress of <scp>MX</scp> eneâ€Based Nanomaterials in Flexible Energy Storage and Electronic Devices. Energy and Environmental Materials, 2018, 1, 183-195.	7.3	135
8	Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO ₂ Battery and a Flexible Battery–Sensor System. ACS Applied Materials & Interfaces, 2018, 10, 44527-44534.	4.0	105
9	Redoxâ€Active Organic Sodium Anthraquinoneâ€2â€5ulfonate (AQS) Anchored on Reduced Graphene Oxide for Highâ€Performance Supercapacitors. Advanced Energy Materials, 2018, 8, 1802088.	10.2	147
10	Inhibition of Zinc Dendrite Growth in Zincâ€Based Batteries. ChemSusChem, 2018, 11, 3996-4006.	3.6	291
11	Present and Future Perspective on Electrode Materials for Rechargeable Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2620-2640.	8.8	676
12	Hydrogel Electrolytes for Flexible Aqueous Energy Storage Devices. Advanced Functional Materials, 2018, 28, 1804560.	7.8	433
13	Allâ€Metalâ€Organic Frameworkâ€Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energyâ€Storage Device. Advanced Science, 2018, 5, 1801462.	5.6	89
14	Three new bifunctional additives for safer nickel-cobalt-aluminum based lithium ion batteries. Chinese Chemical Letters, 2018, 29, 1781-1784.	4.8	32
15	High-Performance Quasi-Solid-State Flexible Aqueous Rechargeable Ag–Zn Battery Based on Metal–Organic Framework-Derived Ag Nanowires. ACS Energy Letters, 2018, 3, 2761-2768.	8.8	125
16	Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Letters, 2018, 3, 2480-2501.	8.8	1,553
17	An Aqueous Rechargeable Zincâ€Organic Battery with Hybrid Mechanism. Advanced Functional Materials, 2018, 28, 1804975.	7.8	462
18	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	5.2	110
19	Recent Advances in Materials and Design of Electrochemically Rechargeable Zinc–Air Batteries. Small, 2018, 14, e1801929.	5.2	192

ARTICLE IF CITATIONS # Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for 20 5.4 88 asymmetric lithium ion capacitors. Carbon, 2018, 140, 296-305. 3D zinc@carbon fiber composite framework anode for aqueous Zn–MnO₂ batteries. RSC 1.7 Advances, 2018, 8, 19157-19163. Nanostructured Anode Materials for Nonâ€aqueous Lithium Ion Hybrid Capacitors. Energy and 22 7.3 97 Environmental Materials, 2018, 1, 75-87. Advances in Flexible and Wearable Energyâ€Storage Textiles. Small Methods, 2018, 2, 1800124. 123 Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen 24 7.3 257 Vacancies-Rich Cobalt Oxide. ACS Nano, 2018, 12, 8597-8605. Fractal (Ni<i>_x</i>Co_{1â[^]}<i>_x</i>)₉Se₈ Nanodendrite Arrays with Highly Exposed () Surface for Wearable, Allâ€Solidâ€State Supercapacitor. Advanced Energy Materials, 2018, 8, 1801392. 10.2 Wearable Lithium Ion Batteries Based on Carbon Nanotubes and Graphene. Advanced Materials 26 3.0 24 Technologies, 2018, 3, 1800041. A flexible membrane electrode with an electrolyte-affinity surface for energy storage: effects of amphiphilic block copolymers and membrane thickness. Sustainable Energy and Fuels, 2018, 2, 1844-1854. 2.5 Integrating a Triboelectric Nanogenerator and a Zincâ€ion Battery on a Designed Flexible 3D Spacer 28 78 4.6 Fabric. Small Methods, 2018, 2, 1800150. Toward Tailorable Znâ€lon Textile Batteries with High Energy Density and Ultrafast Capability: Building 5.2 Highâ€Performance Textile Electrode in 3D Hierarchical Branched Design. Small, 2018, 14, e1802320. "Carbonâ€Clue―Enabled Highly Stable and Highâ€Rate Fe₃O₄ Nanorod Anode for Flexible Quasiâ€Solidâ€State Nickel–Copper//Iron Alkaline Battery. Advanced Materials Interfaces, 2018, 5, 30 1.9 20 1801043. Recent Advances in Znâ€lon Batteries. Advanced Functional Materials, 2018, 28, 1802564. 1,595 Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. Advanced Materials Interfaces, 2018, 5, 32 1.9 476 1800848. NaCl-templated synthesis of hierarchical porous carbon with extremely large specific surface area and improved graphitization degree for high energy density lithium ion capacitors. Journal of Materials Chemistry A, 2018, 6, 17057-17066. 5.2 149 Breathable 3D Supercapacitors Based on Activated Carbon Fiber Veil. Advanced Materials 34 3.0 19 Technologies, 2018, 3, 1800209. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. Journal of Materials 5.2 169 Chemistry A, 2018, 6, 12237-12243. Initiating a mild aqueous electrolyte Co₃O₄/Zn battery with 2.2 V-high 36 voltage and 5000-cycle lifespan by a Co(<scp>iii</scp>) rich-electrode. Energy and Environmental 15.6 414 Science, 2018, 11, 2521-2530. Quasi-Isolated Au Particles as Heterogeneous Seeds To Guide Uniform Zn Deposition for Aqueous 247 Zinc-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6490-6496.

#	Article	IF	CITATIONS
38	Ultrafast Zinc-Ion Diffusion Ability Observed in 6.0-Nanometer Spinel Nanodots. ACS Nano, 2019, 13, 10376-10385.	7.3	124
39	Recent Progress in the Electrolytes of Aqueous Zincâ€ion Batteries. Chemistry - A European Journal, 2019, 25, 14480-14494.	1.7	312
40	A Superior δ-MnO ₂ Cathode and a Self-Healing Zn-δ-MnO ₂ Battery. ACS Nano, 2019, 13, 10643-10652.	7.3	535
41	A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures. Journal of Materials Chemistry A, 2019, 7, 20398-20404.	5.2	57
42	A Universal Principle to Design Reversible Aqueous Batteries Based on Deposition–Dissolution Mechanism. Advanced Energy Materials, 2019, 9, 1901838.	10.2	151
43	All-Printed Substrate-Versatile Microsupercapacitors with Thermoreversible Self-Protection Behavior Based on Safe Sol–Gel Transition Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 29960-29969.	4.0	17
44	A Flexible Quasiâ€Solidâ€State Bifunctional Device with Zincâ€Ion Microbattery and Photodetector. ChemElectroChem, 2019, 6, 3933-3939.	1.7	32
45	An innovation: Dendrite free quinone paired with ZnMn2O4 for zinc ion storage. Materials Today Energy, 2019, 13, 323-330.	2.5	73
46	Dendriteâ€Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Znâ€lon Batteries. Advanced Materials, 2019, 31, e1903675.	11.1	780
47	Moisture-Driven Power Generation for Multifunctional Flexible Sensing Systems. Nano Letters, 2019, 19, 5544-5552.	4.5	89
48	Tuning phase evolution of β-MnO2 during microwave hydrothermal synthesis for high-performance aqueous Zn ion battery. Nano Energy, 2019, 64, 103942.	8.2	154
49	Sustainable Low-Temperature Activation to Customize Pore Structure and Heteroatoms of Biomass-Derived Carbon Enabling Unprecedented Durable Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 14629-14638.	3.2	47
50	One-step synthesis of flower-like Bi ₂ O ₃ /Bi ₂ Se ₃ nanoarchitectures and NiCoSe ₂ /Ni _{0.85} Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. Journal of Materials	5.2	57
51	Chemistry A, 2019, 7, 17613-17625. Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 17581-17593.	5.2	130
52	A high-performance, highly bendable quasi-solid-state zinc–organic battery enabled by intelligent proton-self-buffering copolymer cathodes. Journal of Materials Chemistry A, 2019, 7, 17292-17298.	5.2	40
53	A low-cost and dendrite-free rechargeable aluminium-ion battery with superior performance. Journal of Materials Chemistry A, 2019, 7, 17420-17425.	5.2	111
54	A Fully Integrated and Self-Powered Smartwatch for Continuous Sweat Glucose Monitoring. ACS Sensors, 2019, 4, 1925-1933.	4.0	184
55	A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18209-18236.	5.2	387

#	Article	IF	CITATIONS
56	Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries. ACS Applied Energy Materials, 2019, 2, 7980-7990.	2.5	36
57	Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In‣ervice Batteries. Advanced Materials, 2019, 31, e1903778.	11.1	494
58	Unlocking the Potential of Disordered Rocksalts for Aqueous Zincâ€lon Batteries. Advanced Materials, 2019, 31, e1904369.	11.1	171
59	Lignin@Nafion Membranes Forming Zn Solid–Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zincâ€ion Batteries. ChemSusChem, 2019, 12, 4889-4900.	3.6	120
60	Hofmeister Effectâ€Aided Assembly of Enhanced Hydrogel Supercapacitor with Excellent Interfacial Contact and Reliability. Small Methods, 2019, 3, 1900558.	4.6	48
61	Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Materials Today Energy, 2019, 14, 100349.	2.5	77
62	Recent Progress on Zinc-Ion Rechargeable Batteries. Nano-Micro Letters, 2019, 11, 90.	14.4	191
63	Utilizing polyaniline to decorate graphene and its effect on the electrochemical properties of polyaniline/graphene electrode composite. Materials Research Express, 2019, 6, 105614.	0.8	11
64	Building better zinc-ion batteries: A materials perspective. EnergyChem, 2019, 1, 100022.	10.1	153
65	A Method to Calculate the Capacity of Unsignalized Intersection for Connected and Automated Vehicles Based on Gap Acceptance Theory. , 2019, , .		3
66	A high-performance flexible direct ethanol fuel cell with drop-and-play function. Nano Energy, 2019, 65, 104052.	8.2	30
67	Flexible all-in-one zinc-ion batteries. Nanoscale, 2019, 11, 17630-17636.	2.8	45
68	A Semisolid Electrolyte for Flexible Zn-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6904-6910.	2.5	77
69	An inorganic salt reinforced Zn ²⁺ -conducting solid-state electrolyte for ultra-stable Zn metal batteries. Journal of Materials Chemistry A, 2019, 7, 22287-22295.	5.2	62
70	An intelligent and portable power storage device able to visualize the energy status. Journal of Materials Chemistry A, 2019, 7, 23028-23037.	5.2	38
71	Recent advances in flexible aqueous zinc-based rechargeable batteries. Nanoscale, 2019, 11, 17992-18008.	2.8	83
72	Modified supramolecular carboxylated chitosan as hydrogel electrolyte for quasi-solid-state supercapacitors. Journal of Power Sources, 2019, 441, 227174.	4.0	52
73	Homogeneous Deposition of Zinc on Three-Dimensional Porous Copper Foam as a Superior Zinc Metal Anode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17737-17746.	3.2	151

	Citation Report	
Article	IF	Citations
Self-Healable Hydrogel Electrolyte toward High-Performance and Reliable Quasi-Solid-State Zn–MnO ₂ Batteries. ACS Applied Materials & Interfaces, 2019, 11, 38762-3877	70. 4.0) 62
Hydrated Layered Vanadium Oxide as a Highly Reversible Cathode for Rechargeable Aqueous Zinc Batteries. Advanced Functional Materials, 2019, 29, 1807331.	7.8	3 359
Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-55	533. 23	.0 822
Recent Progress in Stretchable Batteries for Wearable Electronics. Batteries and Supercaps, 2019, 2 181-199.	, 2.4	1 98
A Selfâ€Healing Integrated Allâ€inâ€One Zincâ€ion Battery. Angewandte Chemie, 2019, 131, 4357	-4361. 1.6	5 113
A Selfâ€Healing Integrated Allâ€inâ€One Zincâ€ion Battery. Angewandte Chemie - International Edi 4313-4317.	tion, 2019, 58, _{7.2}	2 311
Flexible Zn″on Batteries: Recent Progresses and Challenges. Small, 2019, 15, e1804760.	5.2	2 412
Recent progress in flexible non-lithium based rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4353-4382.	5.2	2 91
A flexible rechargeable aqueous zinc manganese-dioxide battery working at â^'20 °C. Energy and Environmental Science, 2019, 12, 706-715.	15.	.6 511
Crystallized lithium titanate nanosheets prepared <i>via</i> spark plasma sintering for ultra-high rat lithium ion batteries. Journal of Materials Chemistry A, 2019, 7, 455-460.	.e 5.2	2 26
Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550-587.	' 8.2	2 817
Flexible self-powered textile formed by bridging photoactive and electrochemically active fiber electrodes. Journal of Materials Chemistry A, 2019, 7, 14447-14454.	5.2	2 27
Horizontal Growth of Lithium on Parallelly Aligned MXene Layers towards Dendriteâ€Free Metallic Lithium Anodes. Advanced Materials, 2019, 31, e1901820.	11.	.1 174
Organic quinones towards advanced electrochemical energy storage: recent advances and challenges. Journal of Materials Chemistry A, 2019, 7, 23378-23415.	5.2	2 248
A Novel Dendriteâ€Free Mn ²⁺ /Zn ²⁺ Hybrid Battery with 2.3 V Voltage W and 11000 ycle Lifespan. Advanced Energy Materials, 2019, 9, 1901469.	'indow 10	.2 175
Flexible quasi-solid-state zinc ion batteries enabled by highly conductive carrageenan bio-polymer electrolyte. RSC Advances, 2019, 9, 16313-16319.	1.7	y 88

90	An ultra-dense NiS ₂ /reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel–zinc batteries. Journal of Materials Chemistry A, 2019, 7, 15654-15661.	5.2	108
91	An Ultrastable Presodiated Titanium Disulfide Anode for Aqueous "Rocking hair―Zinc Ion Battery. Advanced Energy Materials, 2019, 9, 1900993.	10.2	178

#

74

76

78

80

82

84

86

88

#	ARTICLE All-printed solid-state supercapacitors with versatile shapes and superior flexibility for wearable	IF 5.2	CITATIONS
93	energy storage. Journal of Materials Chemistry A, 2019, 7, 15960-15968. Recent Advances in Electrode Fabrication for Flexible Energyâ€6torage Devices. Advanced Materials Technologies, 2019, 4, 1900083.	3.0	54
94	Activating C oordinated Iron of Iron Hexacyanoferrate for Zn Hybridâ€Ion Batteries with 10 000â€Cycle Lifespan and Superior Rate Capability. Advanced Materials, 2019, 31, e1901521.	11.1	363
95	Integrated System of Solar Cells with Hierarchical NiCo2O4 Battery-Supercapacitor Hybrid Devices for Self-Driving Light-Emitting Diodes. Nano-Micro Letters, 2019, 11, 42.	14.4	67
96	Electrode Materials for Rechargeable Zinc-Ion and Zinc-Air Batteries: Current Status and Future Perspectives. Electrochemical Energy Reviews, 2019, 2, 395-427.	13.1	122
97	Nanoscale Parallel Circuitry Based on Interpenetrating Conductive Assembly for Flexible and Highâ€Power Zinc Ion Battery. Advanced Functional Materials, 2019, 29, 1901336.	7.8	145
98	Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh apacity Cathode for Rechargeable Zinc Ion Battery. Advanced Science, 2019, 6, 1900151.	5.6	165
99	Flexible and High-Voltage Coaxial-Fiber Aqueous Rechargeable Zinc-Ion Battery. Nano Letters, 2019, 19, 4035-4042.	4.5	202
100	Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.	9.5	525
101	A Phase Transformationâ€Resistant Electrode Enabled by a MnO ₂ â€Confined Effect for Enhanced Energy Storage. Advanced Functional Materials, 2019, 29, 1901342.	7.8	18
102	Highly compressible zinc-ion batteries with stable performance. Journal of Materials Chemistry A, 2019, 7, 11734-11741.	5.2	53
103	Towards the practical use of flexible lithium ion batteries. Energy Storage Materials, 2019, 23, 434-438.	9.5	73
104	Flexible Hydrogel Electrolyte with Superior Mechanical Properties Based on Poly(vinyl alcohol) and Bacterial Cellulose for the Solid-State Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 15537-15542.	4.0	113
105	Ultra-endurance coaxial-fiber stretchable sensing systems fully powered by sunlight. Nano Energy, 2019, 60, 267-274.	8.2	46
106	A Usage Scenario Independent "Air Chargeable―Flexible Zinc Ion Energy Storage Device. Advanced Energy Materials, 2019, 9, 1900509.	10.2	80
107	Holey nickel nanotube reticular network scaffold for high-performance flexible rechargeable Zn/MnO2 batteries. Chemical Engineering Journal, 2019, 370, 330-336.	6.6	56
108	A review of rechargeable batteries for portable electronic devices. InformaÄnÃ-Materiály, 2019, 1, 6-32.	8.5	694
109	Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Research, 2019, 12, 1347-1353.	5.8	95

#	Article	IF	CITATIONS
110	A mechanically durable and device-level tough Zn-MnO2 battery with high flexibility. Energy Storage Materials, 2019, 23, 636-645.	9.5	159
111	Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for Allâ€Solidâ€State Stretchable Microâ€Supercapacitor Arrays. Advanced Science, 2019, 6, 1900529.	5.6	250
112	Biopolymer-based carboxylated chitosan hydrogel film crosslinked by HCl as gel polymer electrolyte for all-solid-sate supercapacitors. Journal of Power Sources, 2019, 426, 47-54.	4.0	122
113	Nanoscale design of zinc anodes for high-energy aqueous rechargeable batteries. Materials Today Nano, 2019, 6, 100032.	2.3	125
114	Functional Hydrogels for Next-Generation Batteries and Supercapacitors. Trends in Chemistry, 2019, 1, 335-348.	4.4	158
115	High-Energy and High-Power Nonaqueous Lithium-Ion Capacitors Based on Polypyrrole/Carbon Nanotube Composites as Pseudocapacitive Cathodes. ACS Applied Materials & Interfaces, 2019, 11, 15646-15655.	4.0	43
116	V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy, 2019, 60, 752-759.	8.2	272
117	Superâ€Stretchable Zinc–Air Batteries Based on an Alkalineâ€Tolerant Dualâ€Network Hydrogel Electrolyte. Advanced Energy Materials, 2019, 9, 1803046.	10.2	287
118	One-Step Construction of Ni/Co-Doped C–N Nanotube Composites as Excellent Cathode Catalysts for Neutral Zinc–Air Battery. Nano, 2019, 14, 1950028.	0.5	12
119	In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite. Polymers, 2019, 11, 178.	2.0	25
120	A physically crosslinked, self-healing hydrogel electrolyte for nano-wire PANI flexible supercapacitors. Chemical Engineering Journal, 2019, 367, 139-148.	6.6	119
121	Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Science China Chemistry, 2019, 62, 609-615.	4.2	51
122	A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. Journal of Materials Chemistry A, 2019, 7, 7784-7790.	5.2	254
123	Laser-Etched Stretchable Graphene–Polymer Composite Array for Sensitive Strain and Viscosity Sensors. Nano-Micro Letters, 2019, 11, 99.	14.4	28
124	Hydrated hybrid vanadium oxide nanowires as the superior cathode for aqueous Zn battery. Materials Today Energy, 2019, 14, 100361.	2.5	67
125	Issues and opportunities facing aqueous zinc-ion batteries. Energy and Environmental Science, 2019, 12, 3288-3304.	15.6	1,313
126	High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte. Journal of Materials Chemistry A, 2019, 7, 26524-26532.	5.2	183
127	A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni–Zn batteries. Journal of Materials Chemistry A, 2019, 7, 27217-27224.	5.2	73

#	Article	IF	CITATIONS
128	All Binder-Free Electrodes for High-Performance Wearable Aqueous Rechargeable Sodium-Ion Batteries. Nano-Micro Letters, 2019, 11, 101.	14.4	38
129	Biomimetic organohydrogel electrolytes for highâ€environmental adaptive energy storage devices. EcoMat, 2019, 1, e12008.	6.8	95
130	Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. Advanced Fiber Materials, 2019, 1, 197-204.	7.9	33
131	Environmental Stability of MXenes as Energy Storage Materials. Frontiers in Materials, 2019, 6, .	1.2	65
132	A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO ₂ nanosheets. Nanoscale Advances, 2019, 1, 4365-4372.	2.2	33
133	Rechargeable Zn ^{2+/} Al ³⁺ dual-ion electrochromic device with long life time utilizing dimethyl sulfoxide (DMSO)-nanocluster modified hydrogel electrolytes. RSC Advances, 2019, 9, 32047-32057.	1.7	40
134	Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy Storage Materials, 2019, 16, 527-534.	9.5	199
135	"Water-in-deep eutectic solvent―electrolytes enable zinc metal anodes for rechargeable aqueous batteries. Nano Energy, 2019, 57, 625-634.	8.2	467
136	Resist-Dyed Textile Alkaline Zn Microbatteries with Significantly Suppressed Zn Dendrite Growth. ACS Applied Materials & Interfaces, 2019, 11, 5095-5106.	4.0	43
137	Recent Advances in Flexible Zincâ€Based Rechargeable Batteries. Advanced Energy Materials, 2019, 9, 1802605.	10.2	296
138	Biomimetic Solid-State Zn ²⁺ Electrolyte for Corrugated Structural Batteries. ACS Nano, 2019, 13, 1107-1115.	7.3	66
139	Fully Solarâ€Powered Uninterrupted Overall Waterâ€Splitting Systems. Advanced Functional Materials, 2019, 29, 1808889.	7.8	24
140	The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. Journal of Electroanalytical Chemistry, 2019, 832, 69-74.	1.9	147
141	Zinc-ion batteries: Materials, mechanisms, and applications. Materials Science and Engineering Reports, 2019, 135, 58-84.	14.8	604
143	Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes. Small Methods, 2019, 3, 1800272.	4.6	387
144	Geckoâ€Inspired Paper Artificial Skin for Intimate Skin Contact and Multisensing. Advanced Materials Technologies, 2019, 4, 1800392.	3.0	30
145	Metal Organic framework derived carbon for ultrahigh power and long cyclic life aqueous Zn ion capacitor. Nano Materials Science, 2020, 2, 159-163.	3.9	37
146	Inverse-opal-structured hybrids of N, S-codoped-carbon-confined Co9S8 nanoparticles as bifunctional oxygen electrocatalyst for on-chip all-solid-state rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 260, 118209.	10.8	156

#	Article	IF	CITATIONS
147	Recent nanosheet-based materials for monovalent and multivalent ions storage. Energy Storage Materials, 2020, 25, 382-403.	9.5	14
148	Binder-free NaTi2(PO4)3 anodes for high-performance coaxial-fiber aqueous rechargeable sodium-ion batteries. Nano Energy, 2020, 67, 104212.	8.2	70
149	A Review on Graphene Fibers: Expectations, Advances, and Prospects. Advanced Materials, 2020, 32, e1902664.	11.1	206
150	An Overview of Fiberâ€Shaped Batteries with a Focus on Multifunctionality, Scalability, and Technical Difficulties. Advanced Materials, 2020, 32, e1902151.	11.1	207
151	Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor. Chemical Engineering Journal, 2020, 381, 122695.	6.6	131
152	Deep-NFVOrch: leveraging deep reinforcement learning to achieve adaptive vNF service chaining in DCI-EONs. Journal of Optical Communications and Networking, 2020, 12, A18.	3.3	33
153	Analysis of precipitation changes and its possible reasons in Songhua River Basin of China. Journal of Water and Climate Change, 2020, 11, 839-864.	1.2	11
154	Electrochemically Derived Graphene‣ike Carbon Film as a Superb Substrate for Highâ€Performance Aqueous Znâ€Ion Batteries. Advanced Functional Materials, 2020, 30, 1907120.	7.8	78
155	Antifreezing Hydrogel with High Zinc Reversibility for Flexible and Durable Aqueous Batteries by Cooperative Hydrated Cations. Advanced Functional Materials, 2020, 30, 1907218.	7.8	209
156	LncRNA SNHG3 is activated by E2F1 and promotes proliferation and migration of nonâ€smallâ€cell lung cancer cells through activating TGFâ€i² pathway and ILâ€6/JAK2/STAT3 pathway. Journal of Cellular Physiology, 2020, 235, 2891-2900.	2.0	69
157	A high energy efficiency and long life aqueous Zn–I ₂ battery. Journal of Materials Chemistry A, 2020, 8, 3785-3794.	5.2	82
158	High-performance solid-state Zn batteries based on a free-standing organic cathode and metal Zn anode with an ordered nano-architecture. Nanoscale Advances, 2020, 2, 296-303.	2.2	21
159	Phase Transition Induced Unusual Electrochemical Performance of V ₂ CT _X MXene for Aqueous Zinc Hybrid-Ion Battery. ACS Nano, 2020, 14, 541-551.	7.3	179
160	A Highly Flexible Yet >300 mAh cm â^'3 Energy Density Lithiumâ€lon Battery Assembled with the Cathoo Redoxâ€Active Polyether Binder. Energy Technology, 2020, 8, 1901159.	de of a 1.8	3
161	Scalable Production of the Cobaltous Hydroxide Nanosheet Electrode for Ultrahigh-Energy and Stable Aqueous Cobalt–Zinc Batteries. ACS Sustainable Chemistry and Engineering, 2020, 8, 1464-1470.	3.2	12
162	Oxygen Defects in \hat{l}^2 -MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. IScience, 2020, 23, 100797.	1.9	184
163	Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine. Chemical Engineering Journal, 2020, 391, 123535.	6.6	15
164	Challenges and perspectives for manganeseâ€based oxides for advanced aqueous zincâ€ion batteries. InformaAnĀ-MateriĀ¡ly, 2020, 2, 237-260.	8.5	264

#	Article	IF	CITATIONS
165	Cathode materials for rechargeable zinc-ion batteries: From synthesis to mechanism and applications. Journal of Power Sources, 2020, 449, 227596.	4.0	114
166	Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4â^' to PANI via a simple and scalable synthetic method. Chemical Engineering Journal, 2020, 392, 123653.	6.6	36
167	Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life. Nano Energy, 2020, 68, 104369.	8.2	89
168	MnO Stabilized in Carbonâ€Veiled Multivariate Manganese Oxides as Highâ€Performance Cathode Material for Aqueous Znâ€Ion Batteries. Energy and Environmental Materials, 2021, 4, 603-610.	7.3	36
169	A Low Cost Aqueous Zn–S Battery Realizing Ultrahigh Energy Density. Advanced Science, 2020, 7, 2000761.	5.6	86
170	Suppressing surface passivation of bimetallic phosphide by sulfur for long-life alkaline aqueous zinc batteries. Energy Storage Materials, 2020, 33, 230-238.	9.5	36
171	Cellulose Nanofiber/Carbon Nanotubeâ€Based Bicontinuous Ion/Electron Conduction Networks for Highâ€Performance Aqueous Znâ€Ion Batteries. Small, 2020, 16, e2002837.	5.2	25
172	Sewable and Cuttable Flexible Zinc-Ion Hybrid Supercapacitor Using a Polydopamine/Carbon Cloth-Based Cathode. ACS Sustainable Chemistry and Engineering, 2020, 8, 16028-16036.	3.2	43
173	Understanding the Design Principles of Advanced Aqueous Zincâ€ion Battery Cathodes: From Transport Kinetics to Structural Engineering, and Future Perspectives. Advanced Energy Materials, 2020, 10, 2002354.	10.2	193
174	A Regenerable Hydrogel Electrolyte for Flexible Supercapacitors. IScience, 2020, 23, 101502.	1.9	31
175	Long lifespan and high-rate Zn anode boosted by 3D porous structure and conducting network. Journal of Power Sources, 2020, 479, 228808.	4.0	43
176	Flexible quasi-solid-state aqueous Zn-based batteries: rational electrode designs for high-performance and mechanical flexibility. Materials Today Energy, 2020, 18, 100523.	2.5	42
177	Free-standing three-dimensional carbon nanotubes/amorphous MnO2 cathodes for aqueous zinc-ion batteries with superior rate performance. Materials Today Energy, 2020, 18, 100548.	2.5	56
178	Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy and Environmental Science, 2020, 13, 4625-4665.	15.6	497
179	Powering future body sensor network systems: A review of power sources. Biosensors and Bioelectronics, 2020, 166, 112410.	5.3	55
180	Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems. Nature Electronics, 2020, 3, 554-562.	13.1	99
182	Functionalized Zn@ZnO Hexagonal Pyramid Array for Dendriteâ€Free and Ultrastable Zinc Metal Anodes. Advanced Functional Materials, 2020, 30, 2004210.	7.8	148
183	Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers, 2020, 12, 2702.	2.0	321

#	Article	IF	CITATIONS
184	A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers, 2020, 12, 2812.	2.0	33
185	A Flexible Concentric Circle Structured Zincâ€lon Microâ€Battery with Electrodeposited Electrodes. Small Methods, 2020, 4, 2000363.	4.6	42
186	A stretchable solid-state zinc ion battery based on a cellulose nanofiber–polyacrylamide hydrogel electrolyte and a Mg _{0.23} V ₂ O ₅ ·1.0H ₂ O cathode. Journal of Materials Chemistry A, 2020, 8, 18327-18337.	5.2	66
187	Zinc based microâ€electrochemical energy storage devices: Present status and future perspective. EcoMat, 2020, 2, e12042.	6.8	34
188	A rechargeable Al–N ₂ battery for energy storage and highly efficient N ₂ fixation. Energy and Environmental Science, 2020, 13, 2888-2895.	15.6	53
189	Enabling flexible solid-state Zn batteries via tailoring sulfur deficiency in bimetallic sulfide nanotube arrays. Nano Energy, 2020, 77, 105165.	8.2	65
190	High-Performance Anti-freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte. Frontiers in Chemistry, 2020, 8, 603.	1.8	45
191	Intercalation of Metal Ions into Ti ₃ C ₂ T <i>_x</i> MXene Electrodes for Highâ€Arealâ€Capacitance Microsupercapacitors with Neutral Multivalent Electrolytes. Advanced Functional Materials, 2020, 30, 2003721.	7.8	61
192	Vertically Aligned Sn ⁴⁺ Preintercalated Ti ₂ CT _X MXene Sphere with Enhanced Zn Ion Transportation and Superior Cycle Lifespan. Advanced Energy Materials, 2020, 10, 2001394.	10.2	127
193	Polymer electrolytes and interfaces toward solid-state batteries: Recent advances and prospects. Energy Storage Materials, 2020, 33, 26-54.	9.5	123
194	High-value utilization of biomass waste: from garbage floating on the ocean to high-performance rechargeable Zn–MnO ₂ batteries with superior safety. Journal of Materials Chemistry A, 2020, 8, 18198-18206.	5.2	22
196	Recent advances in flexible/stretchable batteries and integrated devices. Energy Storage Materials, 2020, 33, 116-138.	9.5	66
197	Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chemical Reviews, 2020, 120, 7795-7866.	23.0	950
198	A Flexible and Safe Aqueous Zinc–Air Battery with a Wide Operating Temperature Range from â^'20 to 70 °C. ACS Sustainable Chemistry and Engineering, 2020, 8, 11501-11511.	3.2	63
199	Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn–Air Battery. ACS Applied Materials & Interfaces, 2020, 12, 38031-38044.	4.0	24
200	Dendrites in Znâ€Based Batteries. Advanced Materials, 2020, 32, e2001854.	11.1	601
201	Flexible Diamond Fibers for Highâ€Energyâ€Density Zincâ€Ion Supercapacitors. Advanced Energy Materials, 2020, 10, 2002202.	10.2	69
202	Advanced Filter Membrane Separator for Aqueous Zincâ€ion Batteries. Small, 2020, 16, e2003106.	5.2	118

#	Article	IF	CITATIONS
203	Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.	15.6	480
204	An anti-aging polymer electrolyte for flexible rechargeable zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22637-22644.	5.2	41
205	Flexible Supercapacitor Based on Organohydrogel Electrolyte with Longâ€Term Antiâ€Freezing and Antiâ€Drying Property. Advanced Functional Materials, 2020, 30, 2007291.	7.8	152
206	Suppressing Zn dendrite growth by molecular layer deposition to enable long-life and deeply rechargeable aqueous Zn anodes. Journal of Materials Chemistry A, 2020, 8, 22100-22110.	5.2	82
207	Anisotropic Growth of Alâ€Intercalated Vanadate by Tuning Surface Hydrophilicity for Highâ€Rate Znâ€Ion Storage. Small Structures, 2020, 1, 2000040.	6.9	35
208	Stable Hydrogel Electrolytes for Flexible and Submarine-Use Zn-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 46005-46014.	4.0	87
209	Aqueous Zinc–Tellurium Batteries with Ultraflat Discharge Plateau and High Volumetric Capacity. Advanced Materials, 2020, 32, e2001469.	11.1	104
210	Improved Single-Ion Conductivity of Polymer Electrolyte via Accelerated Segmental Dynamics. ACS Applied Energy Materials, 2020, 3, 12540-12548.	2.5	31
211	All-in-One, Solid-State, Solar-Powered Electrochemical Cell. ACS Applied Materials & Interfaces, 2020, 12, 57182-57189.	4.0	6
212	Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano, 2020, 14, 16321-16347.	7.3	340
213	Biodegradable inkjet-printed electrochromic display for sustainable short-lifecycle electronics. Journal of Materials Chemistry C, 2020, 8, 16716-16724.	2.7	37
214	Hydrogel Electrolytes for Quasi-Solid Zinc-Based Batteries. Frontiers in Chemistry, 2020, 8, 546728.	1.8	28
215	One-step electrodeposited MoS ₂ @Ni-mesh electrode for flexible and transparent asymmetric solid-state supercapacitors. Journal of Materials Chemistry A, 2020, 8, 24040-24052.	5.2	34
216	Stabilizing zinc metal anodes by artificial solid electrolyte interphase through a surface ion-exchanging strategy. Chemical Engineering Journal, 2020, 396, 125363.	6.6	81
217	3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. Journal of Materials Chemistry A, 2020, 8, 11719-11727.	5.2	111
218	Atomic Engineering Catalyzed MnO ₂ Electrolysis Kinetics for a Hybrid Aqueous Battery with High Power and Energy Density. Advanced Materials, 2020, 32, e2001894.	11.1	221
219	Freestanding Potassium Vanadate/Carbon Nanotube Films for Ultralong-Life Aqueous Zinc-Ion Batteries. ACS Nano, 2020, 14, 6752-6760.	7.3	145
220	An Overview and Future Perspectives of Rechargeable Zinc Batteries. Small, 2020, 16, e2000730.	5.2	216

#	Article	IF	CITATIONS
221	Rechargeable Aqueous Zincâ€ion Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
222	Materials chemistry for rechargeable zinc-ion batteries. Chemical Society Reviews, 2020, 49, 4203-4219.	18.7	787
223	Electrochemical Activation of Manganeseâ€Based Cathode in Aqueous Zincâ€Ion Electrolyte. Advanced Functional Materials, 2020, 30, 2002711.	7.8	120
225	3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chemical Engineering Journal, 2020, 399, 125627.	6.6	140
226	High-Performance Aqueous Zinc–Manganese Battery with Reversible Mn2+/Mn4+ Double Redox Achieved by Carbon Coated MnOx Nanoparticles. Nano-Micro Letters, 2020, 12, 110.	14.4	58
227	High-Performance and Ultraflexible Aqueous Rechargeable Lithium-Ion Batteries Developed by Constructing All Binder-free Electrode Materials. ACS Applied Materials & Interfaces, 2020, 12, 25700-25708.	4.0	18
228	Recent Advances in Vanadiumâ€Based Aqueous Rechargeable Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2000477.	10.2	265
229	Dendrite-free Zn anode with dual channel 3D porous frameworks for rechargeable Zn batteries. Energy Storage Materials, 2020, 30, 104-112.	9.5	235
230	Principals and strategies for constructing a highly reversible zinc metal anode in aqueous batteries. Nano Energy, 2020, 74, 104880.	8.2	225
231	Nanostructure Design Strategies for Aqueous Zincâ€lon Batteries. ChemElectroChem, 2020, 7, 2957-2978.	1.7	44
232	Wearable Bipolar Rechargeable Aluminum Battery. , 2020, 2, 808-813.		19
234	A FigureÂof Merit for Flexible Batteries. Joule, 2020, 4, 1346-1349.	11.7	81
235	Polyacrylic acid assisted synthesis of free-standing MnO ₂ /CNTs cathode for Zinc-ion batteries. Nanotechnology, 2020, 31, 375401.	1.3	13
236	Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy, 2020, 75, 105027.	8.2	48
237	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
238	Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: A Focused View on Performance, Mechanism, and Developments. ACS Energy Letters, 2020, 5, 2376-2400.	8.8	303
240	An eco-friendly hot-water therapy towards ternary layered double hydroxides laminated flexible	8.2	28
	Tables for wearable supercapationes. Nano Energy, 2020, 70, 105010.		

#	Article	IF	CITATIONS
242	High-Voltage Flexible Aqueous Zn-Ion Battery with Extremely Low Dropout Voltage and Super-Flat Platform. Nano-Micro Letters, 2020, 12, 75.	14.4	36
243	Energy density issues of flexible energy storage devices. Energy Storage Materials, 2020, 28, 264-292.	9.5	106
244	Metalâ€Organic Framework Integrated Anodes for Aqueous Zincâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 1904215.	10.2	348
245	Anti-freezing flexible aqueous Zn–MnO ₂ batteries working at â^'35 °C enabled by a borax-crosslinked polyvinyl alcohol/glycerol gel electrolyte. Journal of Materials Chemistry A, 2020, 8, 6828-6841.	5.2	196
246	High-Voltage Operation of a V ₂ O ₅ Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15305-15312.	4.0	45
247	Fabrication and characterization of Zn-ion-conducting solid polymer electrolyte films based on PVdF-HFP/Zn(Tf)2 complex system. Journal of Materials Science: Materials in Electronics, 2020, 31, 6160-6173.	1.1	37
248	An Ultrastable Na–Zn Solid-State Hybrid Battery Enabled by a Robust Dual-Cross-linked Polymer Electrolyte. ACS Applied Materials & Interfaces, 2020, 12, 17583-17591.	4.0	22
249	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	7.8	121
250	Thermal Model and Countermeasures for Future Smart Glasses. Sensors, 2020, 20, 1446.	2.1	12
251	Review—Recent Advances in the Development of Carbon Nanotubes Based Flexible Sensors. Journal of the Electrochemical Society, 2020, 167, 047506.	1.3	36
252	Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Znâ€MnO ₂ Batteries with Superior Rate Capabilities. Advanced Energy Materials, 2020, 10, 2000035.	10.2	287
253	A strategy associated with conductive binder and 3D current collector for aqueous zinc-ion batteries with high mass loading. Journal of Electroanalytical Chemistry, 2020, 873, 114395.	1.9	13
254	Boosting the Cycling Stability of Aqueous Flexible Zn Batteries via F Doping in Nickel–Cobalt Carbonate Hydroxide Cathode. Small, 2020, 16, e2001935.	5.2	54
255	Recent advances in architecture design of nanoarrays for flexible solid-state aqueous batteries. Nano Futures, 2020, 4, 032002.	1.0	15
256	Hydrogels and Hydrogel-Derived Materials for Energy and Water Sustainability. Chemical Reviews, 2020, 120, 7642-7707.	23.0	646
257	Progress on zinc ion hybrid supercapacitors: Insights and challenges. Energy Storage Materials, 2020, 31, 252-266.	9.5	141
258	A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity. Journal of Energy Chemistry, 2020, 47, 324-332.	7.1	16
259	Initiating Hexagonal MoO ₃ for Superbâ€&table and Fast NH ₄ ⁺ Storage Based on Hydrogen Bond Chemistry. Advanced Materials, 2020, 32, e1907802.	11.1	186

#	Article	IF	CITATIONS
260	Rational design and demonstration of a high-performance flexible Zn/V2O5 battery with thin-film electrodes and para-polybenzimidazole electrolyte membrane. Energy Storage Materials, 2020, 27, 418-425.	9.5	39
261	Quasi-solid-state fiber-shaped aqueous energy storage devices: recent advances and prospects. Journal of Materials Chemistry A, 2020, 8, 6406-6433.	5.2	47
262	Boost Anion Storage Capacity Using Conductive Polymer as a Pseudocapacitive Cathode for High-Energy and Flexible Lithium Ion Capacitors. ACS Applied Materials & Interfaces, 2020, 12, 10479-10489.	4.0	57
263	Rechargeable Aqueous Zinc–Manganese Dioxide/Graphene Batteries with High Rate Capability and Large Capacity. ACS Applied Energy Materials, 2020, 3, 1742-1748.	2.5	46
264	Effectively suppressing lithium dendrite growth <i>via</i> an es-LiSPCE single-ion conducting nano fiber membrane. Journal of Materials Chemistry A, 2020, 8, 2518-2528.	5.2	33
265	Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries. Nano Energy, 2020, 70, 104523.	8.2	466
266	Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Materials Horizons, 2020, 7, 1246-1278.	6.4	46
267	Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zincâ€ion Batteries. Energy and Environmental Materials, 2020, 3, 146-159.	7.3	475
268	Strongly coupled zinc manganate nanodots and graphene composite as an advanced cathode material for aqueous zinc ion batteries. Ceramics International, 2020, 46, 11237-11245.	2.3	33
269	Noninterference Revealing of "Layered to Layered―Zinc Storage Mechanism of Î'â€MnO ₂ toward Neutral Zn–Mn Batteries with Superior Performance. Advanced Science, 2020, 7, 1902795.	5.6	162
270	2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy, 2020, 70, 104573.	8.2	237
271	In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries. Journal of Power Sources, 2020, 452, 227826.	4.0	52
272	Foldable water-activated reserve battery with diverse voltages. RSC Advances, 2020, 10, 402-410.	1.7	0
273	Flexible high-energy asymmetric supercapacitors based on PANI@CNT-graphene and NiCo2O4@N-C electrode. Materials Letters, 2020, 272, 127859.	1.3	7
274	Self-assembled α-MnO2 urchin-like microspheres as a high-performance cathode for aqueous Zn-ion batteries. Science China Materials, 2020, 63, 1196-1204.	3.5	44
275	Rationally design nickel sulfide@PEDOT arrays as binder-free cathode for durable asymmetric supercapacitor and aqueous Ni–Zn battery. Electrochimica Acta, 2020, 343, 136140.	2.6	31
276	Quasi-solid-state zinc-ion battery based on α-MnO2 cathode with husk-like morphology. Electrochimica Acta, 2020, 345, 136189.	2.6	24
277	High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. ACS Applied Energy Materials, 2020, 3, 4499-4508.	2.5	95

#	Article	IF	CITATIONS
278	Electrode Materials for Practical Rechargeable Aqueous Znâ€ŀon Batteries: Challenges and Opportunities. ChemElectroChem, 2020, 7, 2714-2734.	1.7	54
279	A Chemically Polished Zinc Metal Electrode with a Ridge-like Structure for Cycle-Stable Aqueous Batteries. ACS Applied Materials & Interfaces, 2020, 12, 23028-23034.	4.0	65
280	Recent Progress in Solid Electrolytes for Energy Storage Devices. Advanced Functional Materials, 2020, 30, 2000077.	7.8	115
281	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	11.1	172
282	Water-mediated crystallohydrate–polymer composite as a phase-change electrolyte. Nature Communications, 2020, 11, 1843.	5.8	22
283	Highly Conductive and Reusable Electrolyte Based on Sodium Polyacrylate Composite for Flexible Al-Air Batteries. Journal of the Electrochemical Society, 2020, 167, 080502.	1.3	12
284	A Layered Zn _{0.4} VOPO ₄ ·0.8H ₂ O Cathode for Robust and Stable Zn Ion Storage. ACS Applied Energy Materials, 2020, 3, 3919-3927.	2.5	60
285	A universal and facile approach to suppress dendrite formation for a Zn and Li metal anode. Journal of Materials Chemistry A, 2020, 8, 9331-9344.	5.2	147
286	From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. Journal of Energy Chemistry, 2021, 54, 194-201.	7.1	171
287	Promise and challenge of vanadium-based cathodes for aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 655-667.	7.1	122
288	Recent advances in energy storage mechanism of aqueous zinc-ion batteries. Journal of Energy Chemistry, 2021, 54, 712-726.	7.1	211
289	A Highly Flexible and Lightweight MnO ₂ /Graphene Membrane for Superior Zincâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2007397.	7.8	153
290	Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable Zincâ€ion Batteries. Batteries and Supercaps, 2021, 4, 60-71.	2.4	32
291	Oxide-based cathode materials for rechargeable zinc ion batteries: Progresses and challenges. Journal of Energy Chemistry, 2021, 57, 516-542.	7.1	48
292	Non-metallic charge carriers for aqueous batteries. Nature Reviews Materials, 2021, 6, 109-123.	23.3	250
293	Advances in Natural Biopolymerâ€Based Electrolytes and Separators for Battery Applications. Advanced Functional Materials, 2021, 31, 2005646.	7.8	146
294	Strategies for the Stabilization of Zn Metal Anodes for Znâ€lon Batteries. Advanced Energy Materials, 2021, 11, .	10.2	431
295	High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. Journal of Energy Chemistry, 2021, 58, 602-609.	7.1	44

#	Article	IF	CITATIONS
296	Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Metals, 2021, 40, 309-328.	3.6	115
297	The Current Developments and Perspectives of V ₂ O ₅ as Cathode for Rechargeable Aqueous Zincâ€ion Batteries. Energy Technology, 2021, 9, 2000789.	1.8	55
298	Temperature adaptability issue of aqueous rechargeable batteries. Materials Today Energy, 2021, 19, 100577.	2.5	18
299	Green and low-cost acetate-based electrolytes for the highly reversible zinc anode. Journal of Power Sources, 2021, 485, 229329.	4.0	37
300	How Far Are We from Achieving Selfâ€Powered Flexible Health Monitoring Systems: An Energy Perspective. Advanced Energy Materials, 2021, 11, 2002646.	10.2	70
301	Twoâ€Dimensional Siloxene–Graphene Heterostructureâ€Based Highâ€Performance Supercapacitor for Capturing Regenerative Braking Energy in Electric Vehicles. Advanced Functional Materials, 2021, 31, 2008422.	7.8	121
302	Materials and Structure Design for Solid-State Zinc-Ion Batteries: A Mini-Review. Frontiers in Energy Research, 2021, 8, .	1.2	19
303	Rechargeable aqueous zinc-ion batteries: Mechanism, design strategies and future perspectives. Materials Today, 2021, 42, 73-98.	8.3	159
304	PAM-based hydrogel electrolyte for hybrid rechargeable aqueous (Zn and Li-ion) battery. Materials Today: Proceedings, 2022, 49, 2491-2494.	0.9	2
305	Highly conductive locust bean gum bio-electrolyte for superior long-life quasi-solid-state zinc-ion batteries. RSC Advances, 2021, 11, 24862-24871.	1.7	12
306	Recent advances in wearable self-powered energy systems based on flexible energy storage devices integrated with flexible solar cells. Journal of Materials Chemistry A, 2021, 9, 18887-18905.	5.2	47
307	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
308	High-voltage and long-lasting aqueous chlorine-ion battery by virtue of "water-in-salt―electrolyte. IScience, 2021, 24, 101976.	1.9	12
309	Mn-based oxides for aqueous rechargeable metal ion batteries. Journal of Materials Chemistry A, 2021, 9, 11472-11500.	5.2	44
310	Superior-Performance Aqueous Zinc-Ion Batteries Based on the <i>In Situ</i> Growth of MnO ₂ Nanosheets on V ₂ CT _X MXene. ACS Nano, 2021, 15, 2971-2983.	7.3	205
311	A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature. Energy and Environmental Science, 2021, 14, 3510-3521.	15.6	156
312	Recent Developments of Zinc-Ion Batteries. , 2021, , 27-57.		1
313	Alleviation of Dendrite Formation on Zinc Anodes via Electrolyte Additives. ACS Energy Letters, 2021, 6, 395-403.	8.8	340

#	Article	IF	CITATIONS
314	Confining Aqueous Zn–Br Halide Redox Chemistry by Ti ₃ C ₂ T _X MXene. ACS Nano, 2021, 15, 1718-1726.	7.3	78
315	High Performance Printed AgO-Zn Rechargeable Battery for Flexible Electronics. Joule, 2021, 5, 228-248.	11.7	78
316	Fibre electronics: towards scaled-up manufacturing of integrated e-textile systems. Nanoscale, 2021, 13, 12818-12847.	2.8	37
317	Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.	15.6	314
318	<i>In situ</i> polymerization process: an essential design tool for lithium polymer batteries. Energy and Environmental Science, 2021, 14, 2708-2788.	15.6	140
319	A Co-intercalation enhanced V-based cathode material for fast charge aqueous zinc ion batteries. Chemical Communications, 2021, 57, 10339-10342.	2.2	10
320	Electrospinning Superassembled Mesoporous AlEgen–Organosilica Frameworks Featuring Diversified Forms and Superstability for Wearable and Washable Solid-State Fluorescence Smart Sensors. Analytical Chemistry, 2021, 93, 2367-2376.	3.2	23
321	Advanced separators based on aramid nanofiber (ANF) membranes for lithium-ion batteries: a review of recent progress. Journal of Materials Chemistry A, 2021, 9, 12923-12946.	5.2	54
322	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie, 2021, 133, 7289-7295.	1.6	59
323	Oxidized-Polydopamine-Coated Graphene Anodes and N,P Codoped Porous Foam Structure Activated Carbon Cathodes for High-Energy-Density Lithium-Ion Capacitors. ACS Applied Materials & Interfaces, 2021, 13, 10336-10348.	4.0	20
324	Recent developments in self-powered smart chemical sensors for wearable electronics. Nano Research, 2021, 14, 3669-3689.	5.8	78
325	Tear-Based Aqueous Batteries for Smart Contact Lenses Enabled by Prussian Blue Analogue Nanocomposites. Nano Letters, 2021, 21, 1659-1665.	4.5	22
326	Observation of Structural Decomposition of Na ₃ V ₂ (PO ₄) ₃ and Na ₃ V ₂ (PO ₄) ₂ F ₃ as Cathodes for Aqueous Zn-lon Batteries, ACS Applied Energy Materials, 2021, 4, 2797-2807.	2.5	32
327	Initiating a Roomâ€Temperature Rechargeable Aqueous Fluorideâ€Ion Battery with Long Lifespan through a Rational Buffering Phase Design. Advanced Energy Materials, 2021, 11, 2003714.	10.2	28
328	Anion Texturing Towards Dendriteâ€Free Zn Anode for Aqueous Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 7213-7219.	7.2	209
329	Recent Development of Mnâ€based Oxides as Zincâ€lon Battery Cathode. ChemSusChem, 2021, 14, 1634-1658.	3.6	99
330	High Energy Aqueous Rechargeable Nickel–Zinc Battery Employing Hierarchical NiV-LDH Nanosheet-Built Microspheres on Reduced Graphene Oxide. ACS Applied Energy Materials, 2021, 4, 2377-2387.	2.5	17
331	An Artificial Polyacrylonitrile Coating Layer Confining Zinc Dendrite Growth for Highly Reversible Aqueous Zincâ€Based Batteries. Advanced Science, 2021, 8, e2100309.	5.6	232

#	Article	IF	CITATIONS
332	Flexible Freeâ€Standing VO ₂ /MXene Conductive Films as Cathodes for Quasiâ€Solidâ€State Zincâ€Ion Batteries. ChemElectroChem, 2021, 8, 1091-1097.	1.7	31
333	The rising zinc anodes for high-energy aqueous batteries. EnergyChem, 2021, 3, 100052.	10.1	74
334	Supplementary Networking of Interpenetrating Polymer System (SNIPSy) Strategy to Develop Strong & High Water Content Ionic Hydrogels for Solid Electrolyte Applications. Advanced Functional Materials, 2021, 31, 2100251.	7.8	22
335	A Review on Electrolytes for Aqueous Zinc-Ion Batteries. Ceramist, 2021, 24, 35-53.	0.0	1
336	Rechargeable quasi-solid-state aqueous hybrid Al3+/H+ battery with 10,000 ultralong cycle stability and smart switching capability. Nano Research, 2021, 14, 4154-4162.	5.8	13
337	Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries. Energy Storage Materials, 2021, 36, 427-434.	9.5	92
339	Insights on Flexible Zincâ€lon Batteries from Lab Research to Commercialization. Advanced Materials, 2021, 33, e2007548.	11.1	191
340	Safe and flexible chitosanâ€based polymer gel as an electrolyte for use in zincâ€alkaline based chemistries. Journal of Applied Polymer Science, 2021, 138, 50813.	1.3	15
341	Achieving better aqueous rechargeable zinc ion batteries with heterostructure electrodes. Nano Research, 2021, 14, 3174-3187.	5.8	40
342	Flexible Antifreeze Zn-Ion Hybrid Supercapacitor Based on Gel Electrolyte with Graphene Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 16454-16468.	4.0	134
343	Ionic Conductivity and Structural Properties for CMC - AN in Propylene Carbonate as Plasticizer in Solid Biopolymer Electrolytes. IOP Conference Series: Materials Science and Engineering, 2021, 1142, 012016.	0.3	1
344	Rechargeable Zinc-Electrolytic Manganese Dioxide (EMD) Battery with a Flexible Chitosan-Alkaline Electrolyte. ACS Applied Energy Materials, 2021, 4, 4248-4258.	2.5	15
345	Aqueous Rechargeable Znâ€ion Batteries: Strategies for Improving the Energy Storage Performance. ChemSusChem, 2021, 14, 1987-2022.	3.6	59
346	Ampere-hour-scale zinc–air pouch cells. Nature Energy, 2021, 6, 592-604.	19.8	149
347	Constructing Three-Dimensional Structured V ₂ O ₅ /Conductive Polymer Composite with Fast Ion/Electron Transfer Kinetics for Aqueous Zinc-Ion Battery. ACS Applied Energy Materials, 2021, 4, 4208-4216.	2.5	45
348	High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy, 2021, 83, 105835.	8.2	100
349	A Safe Flexible Self-Powered Wristband System by Integrating Defective MnO _{2–<i>x</i>} Nanosheet-Based Zinc-Ion Batteries with Perovskite Solar Cells. ACS Nano, 2021, 15, 10597-10608.	7.3	109
350	Sustainable wearable energy storage devices selfâ€charged by humanâ€body bioenergy. SusMat, 2021, 1, 285-302.	7.8	60

#	Article	IF	CITATIONS
351	Crossroads in the renaissance of rechargeable aqueous zinc batteries. Materials Today, 2021, 45, 191-212.	8.3	171
352	High performance flexible quasi-solid-state zinc-ion hybrid supercapacitors enable by electrode potential adjustment. Journal of Power Sources, 2021, 495, 229789.	4.0	18
354	Aqueous Rechargeable Multivalent Metalâ€lon Batteries: Advances and Challenges. Advanced Energy Materials, 2021, 11, 2100608.	10.2	122
355	Metallopolymer as a Solid Electrolyte for Rechargeable Zn-Metal Alkaline Batteries. , 2021, 3, 799-806.		9
356	Jahn–Teller Distortion Induced Mn ²⁺ â€Rich Cathode Enables Optimal Flexible Aqueous Highâ€Voltage Znâ€Mn Batteries. Advanced Science, 2021, 8, 2004995.	5.6	49
357	Recent advances in rechargeable Zn-based batteries. Journal of Power Sources, 2021, 493, 229677.	4.0	41
358	Electrospun Materials for Batteries Moving Beyond Lithium-Ion Technologies. Electrochemical Energy Reviews, 2022, 5, 211-241.	13.1	44
359	Suppressing passivation layer of Al anode in aqueous electrolytes by complexation of H2PO4â^' to Al3+ and an electrochromic Al ion battery. Energy Storage Materials, 2021, 39, 412-418.	9.5	52
360	The energy storage mechanisms of MnO2 in batteries. Current Opinion in Electrochemistry, 2021, 30, 100769.	2.5	19
361	Storage mechanisms and improved strategies for manganese-based aqueous zinc-ion batteries. Journal of Electroanalytical Chemistry, 2021, 888, 115196.	1.9	30
362	Facile electrodeposition of freestanding MnO2/CNT film for high-performance on-chip all-solid-state rechargeable zinc-ion microbattery. Materials Letters, 2021, 292, 129614.	1.3	1
363	Screen-Printed Nickel–Zinc Batteries: A Review of Additive Manufacturing and Evaluation Methods. 3D Printing and Additive Manufacturing, 2021, 8, 176-192.	1.4	4
364	Confinement of Zinc Salt in Ultrathin Heterogeneous Film to Stabilize Zinc Metal Anode. Small, 2021, 17, e2100722.	5.2	22
365	Copper ion chemistry in a new rechargeable all-solid-state copper-ion battery. Journal of Solid State Chemistry, 2021, 298, 122112.	1.4	2
366	Carbon nanotubes-based electrode for Zn ion batteries. Materials Research Bulletin, 2021, 138, 111246.	2.7	18
367	Interlayer Structure Engineering of MXeneâ€Based Capacitorâ€Type Electrode for Hybrid Microâ€Supercapacitor toward Battery‣evel Energy Density. Advanced Science, 2021, 8, e2100775.	5.6	104
368	Advances and Perspectives of Cathode Storage Chemistry in Aqueous Zinc-Ion Batteries. ACS Nano, 2021, 15, 9244-9272.	7.3	272
369	Impact of Binder Functional Groups on Controlling Chemical Reactions to Improve Stability of Rechargeable Zinc-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 7138-7147.	2.5	24

#	Article	IF	CITATIONS
370	Multifunctional tin layer enabled long-life and stable anode for aqueous zinc-ion batteries. Materials Today Energy, 2021, 20, 100675.	2.5	68
371	Ultrafast and reversible anion storage of spinel nanoarchitecture for high-performance alkaline zinc full cells. Applied Physics Reviews, 2021, 8, .	5.5	10
372	A Universal Aqueous Conductive Binder for Flexible Electrodes. Advanced Functional Materials, 2021, 31, 2102284.	7.8	30
373	Dendrite-Free Zinc-Based Battery with High Areal Capacity via the Region-Induced Deposition Effect of Turing Membrane. Journal of the American Chemical Society, 2021, 143, 13135-13144.	6.6	73
374	Regenerated hydrogel electrolyte towards an all-gel supercapacitor. Science China Materials, 2022, 65, 115-123.	3.5	10
375	Rechargeable zinc-air batteries with neutral electrolytes: Recent advances, challenges, and prospects. EnergyChem, 2021, 3, 100055.	10.1	59
376	Core–shell structure γ-MnO2-PANI carbon fiber paper-based flexible electrode material for high-performance supercapacitors. Journal of Industrial and Engineering Chemistry, 2021, 99, 317-325.	2.9	23
377	Wearable and Fully Biocompatible All-in-One Structured ″Paper-Like″ Zinc Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 34349-34356.	4.0	17
378	Selfâ€Assembling Films of Covalent Organic Frameworks Enable Longâ€Term, Efficient Cycling of Zincâ€Ion Batteries. Advanced Materials, 2021, 33, e2101726.	11.1	114
379	Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. Journal of Colloid and Interface Science, 2021, 593, 417-423.	5.0	52
380	Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 36320-36329.	4.0	42
381	Rational reconfiguration of a gradient redox mediator with in-situ fabricated gel electrolyte for Li–air batteries. Chemical Engineering Journal, 2021, 416, 129016.	6.6	9
382	Multiâ€Functional Hydrogels for Flexible Zincâ€Based Batteries Working under Extreme Conditions. Advanced Energy Materials, 2021, 11, 2101749.	10.2	116
383	Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Research, 2022, 15, 2030-2039.	5.8	45
384	Challenges and strategies on Zn electrodeposition for stable Zn-ion batteries. Energy Storage Materials, 2021, 39, 365-394.	9.5	139
385	Biomechanical Energy Harvesters Based on Ionic Conductive Organohydrogels via the Hofmeister Effect and Electrostatic Interaction. ACS Nano, 2021, 15, 13427-13435.	7.3	56
386	Rechargeable Mg-Ion Full Battery System with High Capacity and High Rate. ACS Applied Materials & Interfaces, 2021, 13, 40451-40459.	4.0	19
387	Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries. Materials Today Physics, 2021, 20, 100458.	2.9	33

#	Article	IF	CITATIONS
388	A high-strength and ultra-stable halloysite nanotubes-crosslinked polyacrylamide hydrogel electrolyte for flexible zinc-ion batteries. Journal of Power Sources, 2021, 506, 230196.	4.0	35
389	In situ visualization of zinc plating in gel polymer electrolyte. Electrochimica Acta, 2021, 391, 138877.	2.6	6
390	Stacked Lamellar Matrix Enabling Regulated Deposition and Superior Thermoâ€Kinetics for Advanced Aqueous Zn″on System under Practical Conditions. Advanced Functional Materials, 2021, 31, 2107397.	7.8	52
391	Porous manganese dioxide nanosheets on modified graphite felt for cathodes in high-capacity flexible Zinc-MnO2 batteries. Vacuum, 2021, 191, 110353.	1.6	10
392	Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. Small, 2021, 17, e2103195.	5.2	172
393	Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Materials, 2021, 40, 10-21.	9.5	88
394	Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Materials Today Energy, 2021, 21, 100712.	2.5	23
395	CO ₂ Ionized Poly(vinyl alcohol) Electrolyte for CO ₂ â€Tolerant Znâ€Air Batteries. Advanced Energy Materials, 2021, 11, 2102047.	10.2	32
396	Multi-channel sulfurized polyacrylonitrile with hollow structure as cathode for room temperature sodium–sulfur batteries. Journal of Solid State Chemistry, 2021, 301, 122359.	1.4	8
397	Adhesive and cohesive force matters in deformable batteries. Npj Flexible Electronics, 2021, 5, .	5.1	13
398	Precise Proton Redistribution for Twoâ€Electron Redox in Aqueous Zinc/Manganese Dioxide Batteries. Advanced Energy Materials, 2021, 11, 2102055.	10.2	55
399	High-performance reversible aqueous zinc-ion battery based on iron-doped alpha-manganese dioxide coated by polypyrrole. Journal of Colloid and Interface Science, 2021, 598, 419-429.	5.0	46
400	Issues and rational design of aqueous electrolyte for Znâ€ion batteries. SusMat, 2021, 1, 432-447.	7.8	62
401	Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries. Chemical Engineering Journal, 2021, 422, 130375.	6.6	105
402	Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. Journal of Colloid and Interface Science, 2021, 600, 586-593.	5.0	32
403	Modifying hydrogel electrolyte to induce zinc deposition for dendrite-free zinc metal anode. Electrochimica Acta, 2021, 393, 139094.	2.6	30
404	Highly sensitive and wearable self-powered sensors based on a stretchable hydrogel comprising dynamic hydrogen bond and dual coordination bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127336.	2.3	18
405	Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Materials, 2021, 42, 533-569.	9.5	74

	CITATION	REPORT	
#	Article	IF	CITATIONS
406	Beyond flexible-Li-ion battery systems for soft electronics. Energy Storage Materials, 2021, 42, 773-785.	9.5	33
407	Zwitterionic triple-network hydrogel electrolyte for advanced flexible zinc ion batteries. Composites Communications, 2021, 28, 100942.	3.3	21
408	Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chemical Engineering Journal, 2022, 429, 132576.	6.6	33
409	Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies. Journal of Energy Chemistry, 2022, 64, 246-262.	7.1	128
410	Study on the Construction and Properties of Bacterial Cellulose-Based Cathode for Flexible Zn-Ion Batteries. Acta Chimica Sinica, 2021, 79, 670.	0.5	1
411	Cathode Design for Aqueous Rechargeable Multivalent Ion Batteries: Challenges and Opportunities. Advanced Functional Materials, 2021, 31, 2010445.	7.8	102
412	Guiding uniform Zn deposition by cocoons for long-life Zn metal batteries. New Journal of Chemistry, 2021, 45, 9747-9750.	1.4	1
413	A liquid metal assisted dendrite-free anode for high-performance Zn-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5597-5605.	5.2	78
414	Stretchable Ti ₃ C ₂ T _x MXene microsupercapacitors with high areal capacitance and quasi-solid-state multivalent neutral electrolyte. Journal of Materials Chemistry A, 2021, 9, 4664-4672.	5.2	15
415	Interfaceâ€Engineered Dendriteâ€Free Anode and Ultraconductive Cathode for Durable and Highâ€Rate Fibe Zn Dualâ€Ion Microbattery. Advanced Functional Materials, 2021, 31, 2008894.	r 7.8	35
416	Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. Journal of Materials Chemistry A, 2021, 9, 6013-6028.	5.2	105
417	The rise of metal–organic frameworks for electrolyte applications. Journal of Materials Chemistry A, 2021, 9, 20837-20856.	5.2	26
418	Development of solid electrolytes in Zn–air and Al–air batteries: from material selection to performance improvement strategies. Journal of Materials Chemistry A, 2021, 9, 4415-4453.	5.2	67
419	Human joint-inspired structural design for a bendable/foldable/stretchable/twistable battery: achieving multiple deformabilities. Energy and Environmental Science, 2021, 14, 3599-3608.	15.6	49
420	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
421	Electrochemically activated MnO cathodes for high performance aqueous zinc-ion battery. Chemical Engineering Journal, 2020, 402, 125509.	6.6	109
422	Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 745-754.	4.0	64
423	Revealing the Local pH Value Changes of Acidic Aqueous Zinc Ion Batteries with a Manganese Dioxide Electrode during Cycling. Journal of the Electrochemical Society, 2020, 167, 020545.	1.3	83

#	Article	IF	CITATIONS
424	Effects of the Low Coulombic Efficiency of Zinc Anode on the Cycle Performance of Zn–Ni Battery. Journal of the Electrochemical Society, 2020, 167, 130509.	1.3	12
425	Laser fabrication of graphene-based supercapacitors. Photonics Research, 2020, 8, 577.	3.4	35
426	Recent progress in quasi-solid and solid polymer electrolytes for multivalent metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 24175-24194.	5.2	45
427	A sulfonated polyvinyl alcohol ionomer membrane favoring smooth electrodeposition of zinc for aqueous rechargeable zinc metal batteries. Sustainable Energy and Fuels, 2021, 5, 5557-5564.	2.5	3
428	Recent progress in tackling Zn anode challenges for Zn ion batteries. Journal of Materials Chemistry A, 2021, 9, 25750-25772.	5.2	29
429	Direct Ink Printing for Flexible Zincâ€Ionâ€Hybrid Microâ€Supercapacitors Based on Hierarchical Porous Carbon as Cathode. ChemElectroChem, 2021, 8, 4498-4508.	1.7	4
430	Categorizing wearable batteries: Unidirectional and omnidirectional deformable batteries. Matter, 2021, 4, 3146-3160.	5.0	44
431	Recently advances in flexible zinc ion batteries. Journal of Semiconductors, 2021, 42, 101603.	2.0	20
432	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
434	Vacancy Modulating Co ₃ Sn ₂ S ₂ Topological Semimetal for Aqueous Zincâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, e202111826.	7.2	21
435	Encapsulation of Metallic Zn in a Hybrid MXene/Graphene Aerogel as a Stable Zn Anode for Foldable Znâ€ l on Batteries. Advanced Materials, 2022, 34, e2106897.	11.1	153
437	Green Electrochemical Energy Storage Devices Based on Sustainable Manganese Dioxides. ACS ES&T Engineering, 2022, 2, 20-42.	3.7	24
438	High Cyclability Energy Storage Device with Optimized Hydroxyethyl Cellulose-Dextran-Based Polymer Electrolytes: Structural, Electrical and Electrochemical Investigations. Polymers, 2021, 13, 3602.	2.0	5
439	Flexible energy storage devices for wearable bioelectronics. Journal of Semiconductors, 2021, 42, 101602.	2.0	26
440	Nanopolysaccharides in Energy Storage Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 137-169.	0.7	2
441	Preparation and Electrochemical Performance of Water-Based Solid-State Zinc Ion Batteries. Hans Journal of Nanotechnology, 2019, 09, 79-85.	0.1	0
442	A Tissue‣ike Soft Allâ€Hydrogel Battery. Advanced Materials, 2022, 34, e2105120.	11.1	65
443	A Polycationâ€Modified Nanofillers Tailored Polymer Electrolytes Fiber for Versatile Biomechanical Energy Harvesting and Fullâ€Range Personal Healthcare Sensing. Advanced Functional Materials, 2022, 32, 2106731.	7.8	33

#	Article	IF	CITATIONS
444	Highly Reversible Zn Metal Anode Stabilized by Dense and Anionâ€Derived Passivation Layer Obtained from Concentrated Hybrid Aqueous Electrolyte. Advanced Functional Materials, 2022, 32, 2103959.	7.8	48
445	Mn-doped K0.23V2O5 nanobelts as cathode materials for high performance flexible all-in-one zinc ion batteries. Journal of Power Sources, 2021, 516, 230699.	4.0	9
446	Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Materials, 2022, 44, 104-135.	9.5	94
447	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	9.5	92
448	A cellulose nanofiber–polyacrylamide hydrogel based on a co-electrolyte system for solid-state zinc ion batteries to operate at extremely cold temperatures. Journal of Materials Chemistry A, 2021, 9, 25651-25662.	5.2	34
449	Dual-ion electrochromic battery with long lifetime based on dimethyl sulfoxide (DMSO)-nanocluster modified hydrogel electrolytes. , 2020, , .		0
450	Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte. Transactions of the Korean Hydrogen and New Energy Society, 2021, 32, 401-409.	0.1	0
451	Fumaronitrile-fixed in-situ gel polymer electrolyte balancing high safety and superior electrochemical performance for Li metal batteries. Energy Storage Materials, 2022, 44, 537-546.	9.5	40
452	Flexible Transparent Electrochemical Energy Conversion and Storage: From Electrode Structures to Integrated Applications. Energy and Environmental Materials, 2023, 6, .	7.3	15
453	Manganese Dioxide (MnO2): A High-Performance Energy Material for Electrochemical Energy Storage Applications. Environmental Chemistry for A Sustainable World, 2021, , 91-119.	0.3	1
454	Flexible one-dimensional Zn-based electrochemical energy storage devices: recent progress and future perspectives. Journal of Materials Chemistry A, 2021, 9, 26573-26602.	5.2	7
455	Bandage based energy generators activated by sweat in wireless skin electronics for continuous physiological monitoring. Nano Energy, 2022, 92, 106755.	8.2	19
456	High-Performance Aqueous Zn Battery Based on MoS ₂ -Loaded MnO _{2–<i>x</i>} @Carbon Aerogel. Journal of Physical Chemistry Letters, 2021, 12, 11114-11121.	2.1	3
457	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€ŀon Batteries. Angewandte Chemie, 2022, 134, .	1.6	24
458	Stabilizing Interface pH by Nâ€Modified Graphdiyne for Dendriteâ€Free and Highâ€Rate Aqueous Znâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	124
459	Recent Advances in Electrolytes for "Beyond Aqueous―Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2106409.	11.1	167
460	Electrospinning for flexible sodium-ion batteries. Energy Storage Materials, 2022, 45, 704-719.	9.5	48
461	Direct electrochemical grafting of crystalline PAEK macromolecule on carbon fiber to enhance the interfacial properties of PFEK/CE composites. Composites Science and Technology, 2022, 220, 109262	3.8	17

#	Article	IF	CITATIONS
462	Coupling Bimetallic NiMn-MOF Nanosheets on NiCo2O4 Nanowire Arrays with Boosted Electrochemical Performance for Hybrid Supercapacitor. Materials Research Bulletin, 2022, 149, 111707.	2.7	19
463	Boosting uniform charge distribution using 3D rigid electrodes with interconnected gyroid channels to achieve stable and reliable zinc-ion batteries. Journal of Materials Chemistry A, 2022, 10, 7195-7206.	5.2	9
464	Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode. Advanced Science, 2022, 9, e2104832.	5.6	119
465	Issues and opportunities of manganese-based materials for enhanced Zn-ion storage performances. Journal of Energy Storage, 2022, 45, 103729.	3.9	30
466	Strategies of regulating Zn ²⁺ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries. Energy and Environmental Science, 2022, 15, 499-528.	15.6	313
467	Synergistic effect of multi-electron conversion and anion redox media chemistry for high-performance rechargeable aqueous Zn ion batteries. Journal of Materials Chemistry A, 2022, 10, 2807-2812.	5.2	9
468	<scp>Twoâ€Dimensional</scp> Cathode Materials for Aqueous Rechargeable <scp>Zincâ€lon</scp> Batteries ^{â€} . Chinese Journal of Chemistry, 2022, 40, 973-988.	2.6	10
469	Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy and Environmental Science, 2022, 15, 1086-1096.	15.6	141
470	Engineering the interplanar spacing of K-birnessite for ultra-long cycle Zn-ion battery through "hydrothermal potassium insertion―strategy. Chemical Engineering Journal, 2022, 435, 134754.	6.6	9
471	Environment-friendly degradable zinc-ion battery based on guar gum-cellulose aerogel electrolyte. Biomaterials Science, 2022, 10, 1476-1485.	2.6	14
472	Foldable batteries: from materials to devices. Nanoscale Advances, 2022, 4, 1494-1516.	2.2	8
473	Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for Highâ€Performance Zincâ€Ion Batteries. Advanced Materials, 2022, 34, e2110140.	11.1	186
474	A Flexible Aqueous Zinc–lodine Microbattery with Unprecedented Energy Density. Advanced Materials, 2022, 34, e2109450.	11.1	49
475	Revisiting recent and traditional strategies for surface protection of Zn metal anode. Journal of Power Sources, 2022, 525, 231122.	4.0	41
476	CO2-sourced anti-freezing hydrogel electrolyte for sustainable Zn-ion batteries. Chemical Engineering Journal, 2022, 435, 135051.	6.6	30
477	An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Science Advances, 2021, 7, eabl3742.	4.7	145
478	Enhanced cathode integrity for zinc–manganese oxide fiber batteries by a durable protective layer. Journal of Materials Chemistry A, 2022, 10, 10201-10208.	5.2	7
479	A two-electron transfer mechanism of the Zn-doped δ-MnO ₂ cathode toward aqueous Zn-ion batteries with ultrahigh capacity. Journal of Materials Chemistry A, 2022, 10, 6762-6771.	5.2	29

#	Article	IF	CITATIONS
480	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	15.6	71
481	MoS ₂ nanosheets with expanded interlayer spacing for ultra-stable aqueous Mg-ion hybrid supercapacitor. Inorganic Chemistry Frontiers, 2022, 9, 1666-1673.	3.0	16
482	Unraveling the role of solvent–precursor interaction in fabricating heteroatomic carbon cathode for high-energy-density Zn-ion storage. Journal of Materials Chemistry A, 2022, 10, 9837-9847.	5.2	47
483	Simultaneous reversible tuning of H ⁺ and Zn ²⁺ coinsertion in MnO ₂ cathode for high-capacity aqueous Zn-ion battery. Nanoscale, 2022, 14, 6085-6093.	2.8	21
484	Electrolyte Engineering Enables High Performance Zincâ€lon Batteries. Small, 2022, 18, e2107033.	5.2	118
485	Research Progresses and Challenges of Flexible Zinc Battery. Frontiers in Chemistry, 2022, 10, 827563.	1.8	10
486	Superâ€Assembled Hierarchical Cellulose Aerogelâ€Gelatin Solid Electrolyte for Implantable and Biodegradable Zinc Ion Battery. Advanced Functional Materials, 2022, 32, .	7.8	48
487	Unlocking Zinc-Ion Energy Storage Performance of Onion-Like Carbon by Promoting Heteroatom Doping Strategy. ACS Applied Materials & Interfaces, 2022, 14, 9013-9023.	4.0	27
489	Wet spinning of fiber-shaped flexible Zn-ion batteries toward wearable energy storage. Journal of Energy Chemistry, 2022, 71, 192-200.	7.1	37
490	Highly Crystalline Flower-Like Covalent-Organic Frameworks Enable Highly Stable Zinc Metal Anodes. ACS Applied Energy Materials, 2022, 5, 3715-3723.	2.5	29
491	Electronic textiles for energy, sensing, and communication. IScience, 2022, 25, 104174.	1.9	30
492	Nonâ€Electrode Components for Rechargeable Aqueous Zinc Batteries: Electrolytes, Solidâ€Electrolyteâ€Interphase, Current Collectors, Binders, and Separators. Advanced Materials, 2022, 34, e2108206.	11.1	58
493	A solid hydrogel electrolyte-based micro fuel cell integrated with fuel/electrolyte storage and supply function. Chinese Science Bulletin, 2022, 67, 3487-3496.	0.4	1
494	Comprehensive review on <scp>zincâ€ion</scp> battery anode: Challenges and strategies. InformaÄnÃ- Materiály, 2022, 4, .	8.5	121
495	Manganeseâ€based materials as cathode for rechargeable aqueous zincâ€ion batteries. , 2022, 1, .		33
496	Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671.	14.8	30
497	Building Ultra-Stable and Low-Polarization Composite Zn Anode Interface via Hydrated Polyzwitterionic Electrolyte Construction. Nano-Micro Letters, 2022, 14, 93.	14.4	46
498	Optimized cyclic and electrochemical performance by organic ion N(CH3)4+ pre-inserted into N(CH3)4V8O20 cathode and hierarchy distributive Zn anode in aqueous zinc ion batteries. Electrochimica Acta, 2022, 412, 140160.	2.6	6

#	Article	IF	CITATIONS
499	Suppressed Dissolution and Enhanced Desolvation in Core–Shell MoO ₃ @TiO ₂ Nanorods as a Highâ€Rate and Longâ€Life Anode Material for Proton Batteries. Advanced Energy Materials, 2022, 12, .	10.2	44
500	Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Materials, 2022, 49, 172-180.	9.5	77
501	Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability. Chemical Engineering Journal, 2022, 438, 135607.	6.6	37
502	Molecular Crowded ″Water-in-Salt″ Polymer Gel Electrolyte for an Ultra-stable Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 1138-1148.	4.0	16
503	Eutectic Electrolytes in Advanced Metal-Ion Batteries. ACS Energy Letters, 2022, 7, 247-260.	8.8	61
504	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	2.0	7
505	A Novel Power-Aware Task Scheduling for Energy Harvesting-Based Wearable Biomedical Devices Using FPA. , 2021, , .		5
506	Anionic organo-hydrogel electrolyte with enhanced ionic conductivity and balanced mechanical properties for flexible supercapacitors. Journal of Materials Chemistry A, 2022, 10, 11277-11287.	5.2	33
507	Recent progress and perspectives on advanced flexible Zn-based batteries with hydrogel electrolytes. Materials Research Letters, 2022, 10, 501-520.	4.1	20
508	Recent Progress and Prospects on Dendriteâ€free Engineerings for Aqueous Zinc Metal Anodes. Energy and Environmental Materials, 2023, 6, .	7.3	15
509	Zwitterionic Bifunctional Layer for Reversible Zn Anode. ACS Energy Letters, 2022, 7, 1719-1727.	8.8	81
510	Recent advances in two-dimensional MXenes for power and smart energy systems. Journal of Energy Storage, 2022, 50, 104604.	3.9	19
511	Recent progress in advanced flexible zinc ion battery design. Applied Physics Reviews, 2022, 9, .	5.5	26
513	An in-depth understanding of improvement strategies and corresponding characterizations towards Zn anode in aqueous Zn-ions batteries. Green Energy and Environment, 2023, 8, 1006-1042.	4.7	15
514	All-Starch-Based Hydrogel for Flexible Electronics: Strain-Sensitive Batteries and Self-Powered Sensors. ACS Sustainable Chemistry and Engineering, 2022, 10, 6724-6735.	3.2	34
515	Borax-crosslinked hydrogel electrolyte membranes for quasi-solid state aqueous energy storage devices. Journal of Membrane Science, 2022, 655, 120606.	4.1	7
516	Rationally designed In@Zn@In trilayer structure on 3D porous Cu towards high-performance Zn-Ion batteries. Chemical Engineering Journal, 2022, 445, 136799.	6.6	21
517	A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chemical Communications, 2022, 58, 7070-7073.	2.2	1

#	Article	IF	CITATIONS
518	Recent Advances of Carbon Materials in Anodes for Aqueous Zinc Ion Batteries. Chemical Record, 2022, 22, .	2.9	14
519	Synergistic Optimization Strategy Involving Sandwich-like MnO ₂ @rGO and Laponite-Modified PAM for High-Performance Zinc-Ion Batteries and Zinc Dendrite Suppression. ACS Applied Materials & Interfaces, 2022, 14, 25962-25971.	4.0	15
520	Structural, thermal and electrochemical characterization of cellulose acetate–based solid biopolymer electrolyte for zinc ion batteries. Ionics, 2022, 28, 3865-3875.	1.2	7
521	A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. Journal of Materials Chemistry A, 2022, 10, 14399-14410.	5.2	79
522	Polyaniline-Based Flexible Nanocomposite Materials. ACS Symposium Series, 0, , 367-395.	0.5	2
523	BiOI Nanopaper As a High-Capacity, Long-Life and Insertion-Type Anode for a Flexible Quasi-Solid-State Zn-Ion Battery. ACS Applied Materials & Interfaces, 2022, 14, 25516-25523.	4.0	19
524	A Review of MnO ₂ Composites Incorporated with Conductive Materials for Energy Storage. Chemical Record, 2022, 22, .	2.9	12
525	Ultraviolet-assisted printing of flexible all-solid-state zinc batteries with enhanced interfacial bond. Chemical Engineering Journal, 2022, 449, 137710.	6.6	18
526	Ionic Liquid-Softened Polymer Electrolyte for Anti-Drying Flexible Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2022, 14, 27287-27293.	4.0	20
527	Nonionic Surfactant Coconut Diethanol Amide Inhibits the Growth of Zinc Dendrites for More Stable Zinc-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 7590-7599.	2.5	10
528	Nanoporous core–shell–structured multi-wall carbon nanotube/graphene oxide nanoribbons as cathodes and protection layer for aqueous zinc-ion capacitors: Mechanism study of zinc dendrite suppression by in-situ transmission X-ray microscopy. Journal of Power Sources, 2022, 541, 231627.	4.0	12
529	Regulating zinc metal anodes <i>via</i> novel electrolytes in rechargeable zinc-based batteries. Journal of Materials Chemistry A, 2022, 10, 14692-14708.	5.2	12
530	CoFe Prussian blue analogues on 3D porous N-doped carbon nanosheets boost the intercalation kinetics for a high-performance quasi-solid-state hybrid capacitor. Journal of Materials Chemistry A, 2022, 10, 14501-14512.	5.2	18
531	Experimental methods in chemical engineering: Hazard and operability analysis— <scp>HAZOP</scp> . Canadian Journal of Chemical Engineering, 2022, 100, 3450-3469.	0.9	3
532	Polymer Hydrogel Electrolytes for Flexible and Multifunctional Zincâ€ion Batteries and Capacitors. Energy and Environmental Materials, 2023, 6, .	7.3	34
533	High-adhesion anionic copolymer as solid-state electrolyte for dendrite-free Zn-ion battery. Nano Research, 2022, 15, 7190-7198.	5.8	13
534	Realizing high-voltage aqueous zinc-ion batteries with expanded electrolyte electrochemical stability window. Chinese Chemical Letters, 2023, 34, 107629.	4.8	16
535	Rechargeable Manganese Dioxideâ^'Zinc Batteries: A Review Focusing on Challenges and Optimization Strategies under Alkaline and Mild Acidic Electrolyte Media. ChemNanoMat, 2022, 8, .	1.5	4

#	Article	IF	CITATIONS
536	Triggering Zn ²⁺ Unsaturated Hydration Structure via Hydrated Salt Electrolyte for High Voltage and Cycling Stable Rechargeable Aqueous Zn Battery. Advanced Energy Materials, 2022, 12, .	10.2	28
537	A novel flexible dual-functional energy storage device with switchability based on NiCo2S4-x. Journal of Power Sources, 2022, 543, 231826.	4.0	4
538	An ultrahigh rate dendrite-free Zn metal deposition/striping enabled by silver nanowire aerogel with optimal atomic affinity with Zn. Energy Storage Materials, 2022, 51, 453-464.	9.5	22
539	Aqueous zinc-ion batteries at extreme temperature: Mechanisms, challenges, and strategies. Energy Storage Materials, 2022, 51, 683-718.	9.5	54
540	Electrolyte additive engineering for aqueous Zn ion batteries. Energy Storage Materials, 2022, 51, 733-755.	9.5	179
541	Solid-state electrolytes for beyond lithium-ion batteries: A review. Renewable and Sustainable Energy Reviews, 2022, 167, 112694.	8.2	28
542	High-performance dual carbon lithium-ion capacitors based on nitrogen-doped 2D carbon nanosheets as both anode and cathode. Electrochimica Acta, 2022, 428, 140921.	2.6	7
543	A Review on 3D Zinc Anodes for Zinc Ion Batteries. Small Methods, 2022, 6, .	4.6	124
544	In-situ formation of hierarchical solid-electrolyte interphase for ultra-long cycling of aqueous zinc-ion batteries. Nano Research, 2023, 16, 449-457.	5.8	18
545	Effect of Ionic Liquid on Plasticized Cs-Pvp-Nai Based Bio-Polymer Blend Electrolytes: Structural, Thermal, Dielectric and Ion Transport Properties Study. SSRN Electronic Journal, 0, , .	0.4	0
546	Electrolytes for Multivalent Metalâ€lon Batteries: Current Status and Future Prospect. ChemSusChem, 2022, 15, .	3.6	7
547	Bismuth-based metal-organic frameworks derived rod-like nanoreactors for neutral aqueous battery-type anode. Science China Materials, 2023, 66, 106-117.	3.5	8
548	Construction of hollow mesoporous ZnMn2O4/C microspheres with carbon nanotubes embedded in shells for high-performance aqueous zinc ions batteries. Nano Research, 2023, 16, 1726-1732.	5.8	15
549	A Zinc″on Batteryâ€Type Selfâ€Powered Pressure Sensor with Long Service Life. Advanced Materials, 2022, 34, .	11.1	31
550	Environmentally adaptable hydrogel electrolyte with the triple interpenetrating network in the flexible zinc-ion battery with ultralong stability. Journal of Power Sources, 2022, 548, 232072.	4.0	14
551	Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor. Nano Energy, 2022, 103, 107789.	8.2	52
552	Revitalizing zinc-ion batteries with advanced zinc anode design. Nanoscale Horizons, 2022, 8, 29-54.	4.1	19
553	<i>In situ</i> polymerized synthesis of MnO nanoparticles anchored on N,S co-doped carbon as efficient cathodes for quasi-solid-state zinc ion batteries. Materials Chemistry Frontiers, 2022, 6, 3193-3204	3.2	3

#	Article	IF	CITATIONS
554	Environmentally AdaptableÂHydrogel Electrolyte with the Triple Interpenetrating Network in the Flexible Zinc-Ion Battery with Ultralong Stability. SSRN Electronic Journal, 0, , .	0.4	0
555	Recent Advancement in Zn-Ion Batteries. , 2022, , 1-27.		0
556	Application of celluloseâ€based hydrogel electrolytes in flexible batteries. , 2022, 1, 126-139.		19
557	Intrinsically Freezing-Tolerant, Conductive, and Adhesive Proton Donor–Acceptor Hydrogel for Multifunctional Applications. ACS Applied Polymer Materials, 2022, 4, 7710-7722.	2.0	5
558	Advanced polymer-based electrolytes in zinc–air batteries. EScience, 2022, 2, 453-466.	25.0	117
559	Organic electrochromic energy storage materials and device design. Frontiers in Chemistry, 0, 10, .	1.8	7
560	Development of Proteins for Highâ€Performance Energy Storage Devices: Opportunities, Challenges, and Strategies. Advanced Energy Materials, 2022, 12, .	10.2	5
561	Material Design and Energy Storage Mechanism of Mnâ€Based Cathodes for Aqueous Zincâ€lon Batteries. Chemical Record, 2022, 22, .	2.9	14
562	Hydrogels Enable Future Smart Batteries. ACS Nano, 2022, 16, 15528-15536.	7.3	39
563	Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy and Environment, 2023, 8, 1531-1552.	4.7	27
564	A sustainable chitosan-zinc electrolyte for high-rate zinc-metal batteries. Matter, 2022, 5, 3402-3416.	5.0	97
565	Fiber-Based Materials for Aqueous Zinc Ion Batteries. Advanced Fiber Materials, 2023, 5, 36-58.	7.9	36
566	Stable Thermochromic Hydrogel for a Flexible and Wearable Zinc-Ion Yarn Battery with High-Temperature Warning Function. ACS Applied Energy Materials, 2022, 5, 12448-12455.	2.5	5
567	Anode optimization strategies for aqueous zinc-ion batteries. Chemical Science, 2022, 13, 14246-14263.	3.7	36
568	Novel low-carbon energy solutions for powering emerging wearables, smart textiles, and medical devices. Energy and Environmental Science, 2022, 15, 4928-4981.	15.6	30
569	Enhancing the Kinetics of Zinc Ion Deposition by Catalytic Ion in Polymer Electrolytes for Advanced Zn–MnO ₂ Batteries. Advanced Functional Materials, 2022, 32, .	7.8	25
570	Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes. Chemical Reviews, 2022, 122, 17155-17239.	23.0	67
571	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19

#	ARTICLE	IF	CITATIONS
572	Recent advances in carbon materials for flexible zinc ion batteries. New Carbon Materials, 2022, 37, 827-851.	2.9	13
573	Interface Engineering of Aqueous Zinc/Manganese Dioxide Batteries with High Areal Capacity and Energy Density. Small, 2022, 18, .	5.2	6
574	A review of protein hydrogels: Protein assembly mechanisms, properties, and biological applications. Colloids and Surfaces B: Biointerfaces, 2022, 220, 112973.	2.5	17
575	Phosphonated graphene oxide-modified polyacrylamide hydrogel electrolytes for solid-state zinc-ion batteries. Electrochimica Acta, 2022, 435, 141365.	2.6	15
576	Recent advances of organic polymers for zinc-ion batteries. Sustainable Energy and Fuels, 2022, 6, 5439-5458.	2.5	8
577	A glutamate anion boosted zinc anode for deep cycling aqueous zinc ion batteries. Journal of Materials Chemistry A, 2022, 10, 25029-25038.	5.2	19
578	Stabilizing Interface pH by Mixing Electrolytes for Highâ€Performance Aqueous Zn Metal Batteries. Small, 2022, 18, .	5.2	14
579	Comparative Review on the Aqueous Zinc-Ion Batteries (AZIBs) and Flexible Zinc-Ion Batteries (FZIBs). Nanomaterials, 2022, 12, 3997.	1.9	14
580	Recent progress in flexible Znâ€ion hybrid supercapacitors: Fundamentals, fabrication designs, and applications. , 2023, 5, .		26
581	Molecular deciphering of hydrophobic, Zinc-philic and robust Amino-functionalized Polysilane for Dendrite-free Zn Anode. Energy Storage Materials, 2023, 54, 875-884.	9.5	38
582	Advances in solid-state fiber batteries for wearable bioelectronics. Current Opinion in Solid State and Materials Science, 2022, 26, 101042.	5.6	18
583	A Fullâ€Device Autonomous Selfâ€Healing Stretchable Soft Battery from Selfâ€Bonded Eutectogels. Advanced Materials, 2023, 35, .	11.1	21
584	Establishment of Performance Metrics for Batteries in Large cale Energy Storage Systems from Perspective of Technique, Economics, Environment, and Safety. Energy Technology, 2023, 11, .	1.8	2
585	Constructing nickel-based bifunctional oxygen catalyst and dual network hydrogel electrolyte for high-performance, compressible and rechargeable zinc-air batteries. Materials Today Physics, 2022, 29, 100924.	2.9	4
586	A review on solutions to overcome the structural transformation of manganese dioxide-based cathodes for aqueous rechargeable zinc ion batteries. Journal of Power Sources, 2023, 555, 232385.	4.0	27
587	Boosting zinc storage in potassium-birnessite via organic-inorganic electrolyte strategy with slight N-methyl-2-pyrrolidone additive. Energy Storage Materials, 2023, 54, 784-793.	9.5	2
588	Modulation of poly (acrylic acid) hydrogels with κ-carrageenan for high-performance quasi-solid Al-air batteries. International Journal of Biological Macromolecules, 2023, 226, 554-561.	3.6	4
589	Effect of polyacrylamide morphology templated using lyotropic liquid crystal on the proton conductivity of acid hydrogels. Soft Matter, 2023, 19, 268-275.	1.2	1

#	Article	IF	CITATIONS
590	Data-driven design of carbon-based materials for high-performance flexible energy storage devices. Journal of Power Sources, 2023, 556, 232522.	4.0	5
591	A potential flexible fuel cell with dual-functional hydrogel based on multi-component crosslinked hybrid polyvinyl alcohol. Energy, 2023, 265, 126166.	4.5	3
592	Effect of ionic liquid on plasticized CS-PVP-NaI based bio-polymer blend electrolytes: Structural, thermal, dielectric and ion transport properties study. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 288, 116215.	1.7	6
593	Zinc Batteries: Basics, Materials Functions, and Applications. , 2022, , 1-37.		0
594	A Polyurethane Organic Framework for Flexible Al–Air Batteries. ACS Applied Energy Materials, 2022, 5, 15909-15917.	2.5	3
595	Biocompatible zinc battery with programmable electro-cross-linked electrolyte. National Science Review, 2023, 10, .	4.6	97
596	The Flexible and Wearable Pressure Sensing Microsystems for Medical Diagnostics. , 2023, , 229-262.		0
597	Boosting Liâ€ion Storage Capability of Selfâ€Standing Niâ€Doped LiMn ₂ O ₄ Nanowall Arrays as Superior Cathodes for Highâ€Performance Flexible Aqueous Rechargeable Liâ€ions Batteries. Advanced Materials Interfaces, 2023, 10, .	1.9	5
598	Constructing Carbon Nanotube Hybrid Fiber Electrodes with Unique Hierarchical Microcrack Structure for Highâ€Voltage, Ultrahighâ€Rate, and Ultralongâ€Life Flexible Aqueous Zinc Batteries. Small, 0, , 2206338.	5.2	1
599	Manipulating Deposition Behavior by Polymer Hydrogel Electrolyte Enables Dendriteâ€Free Zinc Anode for Zincâ€Ion Hybrid Capacitors. Small Methods, 2023, 7, .	4.6	6
600	Two-Dimensional Organic–Inorganic Heterostructure as a Multifunctional Protective Layer for High Performance Zinc Metal Anode. Nano Letters, 2023, 23, 42-50.	4.5	13
601	The emerging of zinc-ion hybrid supercapacitors: Advances, challenges, and future perspectives. Sustainable Materials and Technologies, 2023, 35, e00536.	1.7	4
602	Constructing robust heterostructured interface for anode-free zinc batteries with ultrahigh capacities. Nature Communications, 2023, 14, .	5.8	77
603	Supramolecular engineering of cathode materials for aqueous zinc-ion hybrid supercapacitors: novel thiophene-bridged donor–acceptor sp ² carbon-linked polymers. Journal of Materials Chemistry A, 2023, 11, 2718-2725.	5.2	5
604	Influence of Water on Gel Electrolytes for Zincâ€lon Batteries. Chemistry - an Asian Journal, 2023, 18, .	1.7	10
605	Recent advances in manipulating strategy of aqueous electrolytes for Zn anode stabilization. Energy Storage Materials, 2023, 56, 227-257.	9.5	35
606	Achieving Ultralongâ€Cycle Zincâ€lon Battery via Synergistically Electronic and Structural Regulation of a MnO ₂ Nanocrystal–Carbon Hybrid Framework. Small, 2023, 19, .	5.2	8
607	Aqueous transition-metal ion batteries: Materials and electrochemistry. EnergyChem, 2023, 5, 100097.	10.1	6

#	Article	IF	Citations
608	A novel 3D bacterial cellulose network as cathodic scaffold and hydrogel electrolyte for zinc-ion batteries. Journal of Power Sources, 2023, 557, 232553.	4.0	5
609	The Preparation and Modification of Strontium Titanate Ceramic Films for Highâ€Performance Flexible Supercapacitor. ChemElectroChem, 2023, 10, .	1.7	3
610	An Efficient DMO Task Scheduling Technique for Wearable Biomedical Devices. , 2022, , .		0
611	Rational Design of Flexible Zn-Based Batteries for Wearable Electronic Devices. ACS Nano, 2023, 17, 1764-1802.	7.3	50
612	Electro-chemo-mechanical analysis of the effect of bending deformation on the interface of flexible solid-state battery. Applied Mathematics and Mechanics (English Edition), 2023, 44, 189-206.	1.9	4
613	Engineering Chemo-Mechanical Properties of Zn Surfaces via Alucone Coating. Journal of Physical Chemistry C, 2023, 127, 2481-2492.	1.5	0
614	Key approaches and challenges in fabricating advanced flexible zinc-ion batteries with functional hydrogel electrolytes. Energy Storage Materials, 2023, 56, 351-393.	9.5	32
615	Advances and strategies of electrolyte regulation in Zn-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3232-3258.	3.2	11
616	Collagenâ€Based Flexible Electronic Devices for Electrochemical Energy Storage and Sensing. Macromolecular Rapid Communications, 2023, 44, .	2.0	2
617	Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. Journal of Membrane Science, 2023, 672, 121453.	4.1	4
618	BiOIO ₃ @Zn ₃ (PO ₄) ₂ ·4H ₂ O Heterojunction with Fast Ionic Diffusion Kinetics for Long-Life "Rocking-Chair―Zinc Ion Batteries. ACS Applied Materials & Interfaces, 2023, 15, 17757-17766.	4.0	7
619	CoSe2 nanoparticles anchored on CoNC carbon nanoplates as bifunctional electrocatalyst for flexible rechargeable Zn-air batteries. Journal of Colloid and Interface Science, 2023, 643, 73-81.	5.0	8
620	Comprehensive review on gum-based electrolytes for energy applications: current status and future projection. Materials Today Chemistry, 2023, 28, 101373.	1.7	0
621	Weakly Solvating Effect Spawning Reliable Interfacial Chemistry for Aqueous Zn/Na Hybrid Batteries. Advanced Energy Materials, 2023, 13, .	10.2	21
622	Poly (ethylene oxide) based solid polymer electrolyte improved by multifunctional additives of poly (acrylamide) and Lil. Electrochimica Acta, 2023, 445, 142062.	2.6	8
623	Gel Polymer-Based Composite Solid-State Electrolyte for Long-Cycle-Life Rechargeable Zinc–Air Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 3732-3739.	3.2	15
624	Ion Selective and Water Resistant Cellulose Nanofiber/MXene Membrane Enabled Cycling Zn Anode at High Currents. Advanced Energy Materials, 2023, 13, .	10.2	29
625	A Static Tin–Manganese Battery with 30000-Cycle Lifespan Based on Stabilized Mn ³⁺ /Mn ²⁺ Redox Chemistry. ACS Nano, 2023, 17, 5083-5094.	7.3	11

#	ARTICLE	IF	CITATIONS
626	Electrolyte Modulation Strategies for High Performance Zinc Batteries. Batteries and Supercaps, 2023, 6, .	2.4	3
627	Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives. Energy Storage Materials, 2023, 58, 48-73.	9.5	8
628	Application of Biomass Materials in Zinc-Ion Batteries. Molecules, 2023, 28, 2436.	1.7	5
629	High Interspace-Layer Manganese Selenide Nanorods as a High-Performance Cathode for Aqueous Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3225-3235.	2.5	11
630	Technology Roadmap for Flexible Sensors. ACS Nano, 2023, 17, 5211-5295.	7.3	238
632	An Antiâ€Freezing Hydrogel Electrolyte for Flexible Zincâ€Ion Batteries Operating at â^'70°C. Advanced Functional Materials, 2023, 33, .	7.8	30
633	Water Confinement by a Zn ²⁺ -Conductive Aqueous/Inorganic Hybrid Electrolyte for High-Voltage Zinc-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 3705-3713.	2.5	2
634	Recent Progress in Aqueous Zincâ€lon Batteries: From FundamentalScience to Structure Design. Chemical Record, 2023, 23, .	2.9	10
635	A power-aware task scheduler for energy harvesting-based wearable biomedical systems using snake optimizer. Analog Integrated Circuits and Signal Processing, 2023, 115, 183-194.	0.9	6
636	A Sulfur Heterocyclic Quinone Cathode TowardsÂHighâ€Rate and Longâ€Cycle Aqueous Znâ€Organic Batteries. Advanced Materials, 2023, 35, .	11.1	24
637	Uniform Zinc Deposition Regulated by a Nitrogenâ€Doped MXene Artificial Solid Electrolyte Interlayer. Small, 2023, 19, .	5.2	7
638	Zinc Batteries: Basics, Materials Functions, and Applications. , 2023, , 2331-2367.		1
661	Recent technological advances in designing electrodes and electrolytes for efficient zinc ion hybrid supercapacitors. Energy Advances, 2023, 2, 1263-1293.	1.4	5
662	Design strategies for rechargeable aqueous metal-ion batteries. Science China Chemistry, 0, , .	4.2	3
668	Recent advances in aqueous zinc–sulfur batteries: overcoming challenges for sustainable energy storage. Journal of Materials Chemistry A, 2023, 11, 18029-18045.	5.2	1
672	Sustainable stretchable batteries for next-generation wearables. Journal of Materials Chemistry A, 0, ,	5.2	0
680	Ammonium-ion energy storage devices for real-life deployment: storage mechanism, electrode design and system integration. Energy and Environmental Science, 2023, 16, 5568-5604.	15.6	1
716	Advanced cellulose-based materials toward stabilizing zinc anodes. Science China Chemistry, 0, , .	4.2	0