Elastic metasurfaces for splitting SV- and P-waves in ela

Journal of Applied Physics 123, DOI: 10.1063/1.5007731

Citation Report

#	Article	IF	CITATIONS
1	Design of a thin-plate based tunable high-quality narrow passband filter for elastic transverse waves propagate in metals. AIP Advances, 2018, 8, .	0.6	1
2	Total-internal-reflection elastic metasurfaces: Design and application to structural vibration isolation. Applied Physics Letters, 2018, 113, .	1.5	48
3	Retrieval method for the bianisotropic polarizability tensor of Willis acoustic scatterers. Physical Review B, 2018, 98, .	1.1	22
4	Wavefront steering of elastic shear vertical waves in solids via a composite-plate-based metasurface. Journal of Applied Physics, 2018, 124, .	1.1	16
5	Asymmetric flexural wave transmission based on dual-layer elastic gradient metasurfaces. Applied Physics Letters, 2018, 113, .	1.5	69
6	Deflecting flexural wave with high transmission by using pillared elastic metasurface. Smart Materials and Structures, 2018, 27, 075051.	1.8	69
7	Transmodal elastic metasurface for broad angle total mode conversion. Applied Physics Letters, 2018, 112, .	1.5	72
8	Beam splitting of flexural waves with a coding meta-slab. Applied Physics Express, 2019, 12, 097002.	1.1	16
9	Theory and Realization of Nonresonant Anisotropic Singly Polarized Solids Carrying Only Shear Waves. Physical Review Applied, 2019, 12, .	1.5	23
10	Inertial amplified resonators for tunable metasurfaces. Meccanica, 2019, 54, 2053-2065.	1.2	32
11	Spatial waveguide mode separation for acoustic waves in a meta-slab composed of subunits with graded thicknesses. Journal of Applied Physics, 2019, 126, 165110.	1.1	4
12	Tailoring one-dimensional layered metamaterials to achieve unidirectional transmission and reflection. Physical Review B, 2019, 99, .	1.1	6
13	Experimental study of vibration isolation in thin-walled structural assemblies with embedded total-internal-reflection metasurfaces. Journal of Sound and Vibration, 2019, 456, 162-172.	2.1	16
14	Anomalous refraction control of mode-converted elastic wave using compact notch-structured metasurface. Materials Research Express, 2019, 6, 065802.	0.8	18
15	Willis Metamaterial on a Structured Beam. Physical Review X, 2019, 9, .	2.8	41
16	Metasurface constituted by thin composite beams to steer flexural waves in thin plates. International Journal of Solids and Structures, 2019, 162, 14-20.	1.3	53
17	A transformation elasticity based device for wavefront manipulation. NDT and E International, 2019, 102, 304-310.	1.7	12
18	Multifunctional elastic metasurface design with topology optimization. Acta Materialia, 2020, 185, 382-399.	3.8	47

#	Article	IF	CITATIONS
19	Nonlocal elastic metasurfaces: Enabling broadband wave control via intentional nonlocality. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26099-26108.	3.3	56
20	Inverse band gap design of elastic metamaterials for P and SV wave control. Computer Methods in Applied Mechanics and Engineering, 2020, 370, 113263.	3.4	12
21	Broad-angle refractive transmodal elastic metasurface. Applied Physics Letters, 2020, 117, .	1.5	32
22	Design of metasurfaces to enable shear horizontal wave trapping. Journal of Applied Physics, 2020, 128, .	1.1	10
23	Retroreflection of flexural wave by using elastic metasurface. Journal of Applied Physics, 2020, 128, .	1.1	37
24	Tunable multifunctional fish-bone elastic metasurface for the wavefront manipulation of the transmitted in-plane waves. Journal of Applied Physics, 2020, 128, .	1.1	32
25	Efficient Asymmetric Transmission of Elastic Waves in Thin Plates with Lossless Metasurfaces. Physical Review Applied, 2020, 14, .	1.5	57
26	Elastic Wave Energy Entrapment for Reflectionless Metasurface. Physical Review Applied, 2020, 13, .	1.5	28
27	Vibration control of flexural waves in thin plates by 3D-printed metasurfaces. Journal of Sound and Vibration, 2020, 481, 115440.	2.1	46
28	Shaping elastic wave mode conversion with a piezoelectric-based programmable meta-boundary. Extreme Mechanics Letters, 2020, 39, 100837.	2.0	29
29	Flexural wave absorption by lossy gradient elastic metasurface. Journal of the Mechanics and Physics of Solids, 2020, 143, 104052.	2.3	72
30	Single-layer elastic metasurface with double negativity for anomalous refraction. Journal Physics D: Applied Physics, 2020, 53, 265301.	1.3	19
31	Recent Advances in Non-Traditional Elastic Wave Manipulation by Macroscopic Artificial Structures. Applied Sciences (Switzerland), 2020, 10, 547.	1.3	29
32	Non-resonant metasurface for broadband elastic wave mode splitting. Applied Physics Letters, 2020, 116, .	1.5	42
33	Pillared elastic metasurface with constructive interference for flexural wave manipulation. Mechanical Systems and Signal Processing, 2021, 146, 107035.	4.4	59
34	Surface corrugated laminates as elastic grating couplers: Splitting of SV- and P-waves by selective diffraction. Journal of Applied Physics, 2021, 129, 045103.	1.1	1
35	Enabling the complete mode conversion of Lamb waves into shear horizontal waves via a resonance-based elastic metamaterial. Applied Physics Letters, 2021, 118, .	1.5	19
36	Elastic Metasurfaces for Full Wavefront Control and Low-Frequency Energy Harvesting. Journal of Vibration and Acoustics, Transactions of the ASME, 2021, 143, .	1.0	24

CITATION REPORT

#	ARTICLE	IF	CITATIONS
37	Modulating Lamb waves with a tunable ultrasonic lens. , 2021, , .		0
38	Steering Flexural Waves by Amplitude-Shift Elastic Metasurfaces. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	1.1	17
39	The flexural-wave-based lens design for energy focusing via the trajectory prediction and the phase modulation. Energy, 2021, 220, 119716.	4.5	12
40	Experimental realization of a pillared metasurface for flexural wave focusing. APL Materials, 2021, 9, .	2.2	35
41	Effect of prestress on phononic band gaps induced by inertial amplification. International Journal of Solids and Structures, 2021, 216, 156-166.	1.3	35
42	From Photonic Crystals to Seismic Metamaterials: A Review via Phononic Crystals and Acoustic Metamaterials. Archives of Computational Methods in Engineering, 2022, 29, 1137-1198.	6.0	67
43	Concentric shell gradient index metamaterials for focusing ultrasound in bulk media. Ultrasonics, 2021, 114, 106424.	2.1	6
44	Manipulation of the guided wave propagation in multilayered phononic plates by introducing interface delaminations. European Journal of Mechanics, A/Solids, 2021, 88, 104266.	2.1	21
45	Longitudinal wave steering using beam-type elastic metagratings. Mechanical Systems and Signal Processing, 2021, 156, 107688.	4.4	27
46	Damping in a row of locally-resonant inclusions: Dynamic homogenization and scattering of transient shear waves. Wave Motion, 2021, 107, 102811.	1.0	1
47	Time-domain simulation of wave propagation across resonant meta-interfaces. Journal of Computational Physics, 2020, 414, 109474.	1.9	8
48	Tunable and Active Phononic Crystals and Metamaterials. Applied Mechanics Reviews, 2020, 72, .	4.5	292
49	Manipulation of seismic Rayleigh waves using a phase-gradient rubber metasurface. International Journal of Modern Physics B, 2020, 34, 2050142.	1.0	11
50	Advances in the study of elastic metasurfaces. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52, 911-927.	0.3	2
51	Experimental realization of negative refraction and subwavelength imaging for flexural waves in phononic crystal plates. Journal of Sound and Vibration, 2022, 518, 116552.	2.1	14
52	Modeling and Analysis of Phononic Crystal With Coupled Lanes for Enhanced Elastic Wave Attenuation. Journal of Vibration and Acoustics, Transactions of the ASME, 2021, 143, .	1.0	7
53	Spectral Element Method for the Elastic/Acoustic Waveguide Problem in Anisotropic Metamaterials. IEEE Access, 2021, 9, 153824-153837.	2.6	1
54	A novel aseismic method using seismic metasurface design with mound structures. Journal of Applied Physics, 2021, 130, .	1.1	3

CITATION REPORT

#	Article	IF	CITATIONS
55	On the broadband vibration isolation performance of nonlocal total-internal-reflection metasurfaces. Journal of Sound and Vibration, 2022, 522, 116670.	2.1	6
56	Robust separation of topological in-plane and out-of-plane waves in a phononic crystal. Communications Physics, 2022, 5, .	2.0	3
57	Anomalous wave control by an adaptive elastic metasurface shunted with negative capacitance circuit. Journal of Sound and Vibration, 2022, 525, 116782.	2.1	17
58	A helical elastic wave metasurface based on GSL. Journal of Physics: Conference Series, 2022, 2230, 012002.	0.3	2
59	Gradient folding metasurfaces with simultaneous phase and amplitude modulation. Journal of Mechanical Science and Technology, 2021, 35, 5495-5501.	0.7	7
60	Design of elastic wave metasurfaces based on lattice truss material. Archive of Applied Mechanics, 2022, 92, 2137-2149.	1.2	3
61	Extreme transmission of elastic metasurface for deep subwavelength focusing. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	1.5	11
62	Design of Acoustic/Elastic Phase Gradient Metasurfaces: Principles, Functional Elements, Tunability, and Coding. Applied Mechanics Reviews, 2022, 74, .	4.5	49
63	Independent Flexural Wave Frequency Conversion by a Linear Active Metalayer. Physical Review Letters, 2022, 128, .	2.9	13
64	Elastic Metagratings with Simultaneous Modulation of Reflected and Transmitted Waves. Crystals, 2022, 12, 901.	1.0	7
65	High-efficiency wavefront manipulation in thin plates using elastic metasurfaces beyond the generalized Snell's law. Mechanical Systems and Signal Processing, 2022, 179, 109391.	4.4	17
66	Elastic Metagratings with Simultaneous Highly Efficient Control over Longitudinal and Transverse Waves for Multiple Functionalities. Physical Review Applied, 2022, 18, .	1.5	9
67	Metasurfaces design for tuning of flexural wave and SH wave. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	2
68	Uni-modal retroreflection in multi-modal elastic wave fields. International Journal of Mechanical Sciences, 2022, 232, 107655.	3.6	13
69	Tunable piezoelectric metasurface for manipulating multi-mode guided waves in plate. Engineering Structures, 2022, 270, 114917.	2.6	11
70	Compact and efficient elastic metasurface based on mass-stiffness relation for manipulation of flexural waves. Journal of Sound and Vibration, 2022, 541, 117291.	2.1	4
71	Vibration Resonance and Dynamic Characteristics of Pillared Phononic Crystals and Acoustic Metamaterials. , 2022, , .		0
72	Total conversion between the longitudinal and transverse waves by ultrathin elastic metamaterials with anisotropic resonances. Applied Physics Express, 2022, 15, 117001.	1.1	5

CITATION REPORT

0

#	Article	IF	CITATIONS
73	Anomalous mode-converting reflection of elastic waves using strip-type metagratings. Mechanical Systems and Signal Processing, 2023, 186, 109867.	4.4	8
74	Design of metasurfaces in 3D for omnidirectional band gaps: The scalar wave case. Extreme Mechanics Letters, 2022, , 101922.	2.0	0
75	Flexural wave splitting via elastic metagratings based on high-order diffraction theory. Applied Acoustics, 2023, 202, 109170.	1.7	8
76	The energy focusing of reflected flexural waves via two adjacent phase-modulation-based lenses. Energy, 2022, , 126523.	4.5	0
77	High-frequency topological corner and edge states in elastic honeycomb plates. International Journal of Mechanical Sciences, 2023, 246, 108141.	3.6	13
78	Mode-Selective Elastic Metasurfaces. Physical Review Applied, 2023, 19, .	1.5	5
79	Lamb waves manipulation by piezoelectric metasurface with tunable diffraction orders. Frontiers in Physics, 0, 10, .	1.0	2
80	Design and Manufacturing of the Multi-Layered Metamaterial Plate with Interfacial Crack-like Voids and Experimental-Theoretical Study of the Guided Wave Propagation. Acoustics, 2023, 5, 122-135.	0.8	5
81	Elastic twisting metamaterial for perfect longitudinal-torsional wave mode conversion. Applied Mathematics and Mechanics (English Edition), 2023, 44, 515-524.	1.9	1
82	A novel method for sub-wavelength focusing of flexural waves. International Journal of Mechanical Sciences, 2023, 248, 108206.	3.6	3
83	On the generalized Snell's law for the design of elastic metasurfaces. Journal of Applied Physics, 2023, 133, .	1.1	1
84	Fluid-like elastic metasurface. Applied Physics Letters, 2023, 122, .	1.5	4

88 Fundamentals of Elastic Waves in 2D Elastic Media. , 2023, , 247-293.