Temperature, Crystalline Phase and Influence of Substr Light Sintering of Copper Sulfide Nanoparticle Thin Film

Scientific Reports 8, 2201 DOI: 10.1038/s41598-018-20621-9

Citation Report

#	Article	IF	CITATIONS
1	Rapid Pulsed Light Sintering of Silver Nanowires on Woven Polyester for personal thermal management with enhanced performance, durability and cost-effectiveness. Scientific Reports, 2018, 8, 17159.	1.6	24
2	Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks. Nanotechnology, 2018, 29, 505205.	1.3	25
3	Intense pulsed light sintering of thick conductive wires on elastomeric dark substrate for hybrid 3D printing applications. Smart Materials and Structures, 2018, 27, 115007.	1.8	17
4	Towards out-of-chamber damage-free fabrication of highly conductive nanoparticle-based circuits inside 3D printed thermally sensitive polymers. Additive Manufacturing, 2019, 30, 100886.	1.7	13
5	Chemical epitaxy of a new orthorhombic phase of Cu2â^'xS on GaAs. CrystEngComm, 2019, 21, 6063-6071. Light energy induced sintering of Cu <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.3</td><td>5</td></mml:math>	1.3	5
6	display="inline" id="d1e80" altimg="si2.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> ZnSnS <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e88" altimg="si3.svg"><mml:msub><mml:mrow< td=""><td>1.9</td><td>6</td></mml:mrow<></mml:msub></mml:math 	1.9	6
7	/> 4 nanocrystal-based film Intense Pulsed Light unprinting for reducing life-cycle stages in recycling of coated printing paper. Journal of Cleaner Production, 2019, 232, 274-284.	4.6	6
8	Pulsed light as an emerging technology to cause disruption for food and adjacent industries – Quo vadis?. Trends in Food Science and Technology, 2019, 88, 316-332.	7.8	78
9	Scalable Forming and Flash Light Sintering of Polymer-Supported Interconnects for Surface-Conformal Electronics. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	1.3	19
10	Tuning electronic and photocatalytic properties in pulsed light synthesis of Cu2ZnSnS4 films from CuS-ZnS-SnS nanoparticles. Materials Research Bulletin, 2020, 122, 110645.	2.7	15
11	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	8.3	110
12	Understanding the role of Nanomorphology on Resistance Evolution in the Hybrid Form-Fuse Process for Conformal Electronics. Journal of Manufacturing Processes, 2020, 58, 1088-1102.	2.8	12
13	Nanoparticle circuits inside elastomers for flexible electronics: High conductivity under cyclic deformation. Manufacturing Letters, 2020, 26, 37-41.	1.1	3
14	In-Situ Chemical Synthesis, Microstructural, Morphological and Charge Transport Studies of Polypyrrole-CuS Hybrid Nanocomposites. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 437-445.	1.9	9
15	Eco-friendly Strategies for the Material and Fabrication of Wearable Sensors. International Journal of Precision Engineering and Manufacturing - Green Technology, 2021, 8, 1323-1346.	2.7	35
16	Inkjet Printing of Perovskites for Breaking Performance–Temperature Tradeoffs in Fabricâ€Based Thermistors. Advanced Functional Materials, 2021, 31, .	7.8	15
17	Room Temperature Wafer-Scale Synthesis of Highly Transparent, Conductive CuS Nanosheet Films via a Simple Sulfur Adsorption-Corrosion Method. ACS Applied Materials & Interfaces, 2021, 13, 4244-4252.	4.0	19
18	UV Flash Sintering of Aerosol Jet Printed Silver Conductors for Microwave Circuit Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2021, 11, 342-350.	1.4	3

CITATION REPORT

#	Article	IF	CITATIONS
19	MXene materials based printed flexible devices for healthcare, biomedical and energy storage applications. Materials Today, 2021, 43, 99-131.	8.3	107
20	Inkjet Printing and In-Situ Crystallization of Biopigments for Eco-Friendly and Energy-Efficient Fabric Coloration. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 941-953.	2.7	4
21	Optimizing the Surface Characteristics of La _{0.6} Sr _{0.4} CoO _{3â^îî} Perovskite Oxide by Rapid Flash Sintering Technology for Easy Fabrication and Fast Reaction Kinetics in Alkaline Medium. Energy & Fuels, 2020, 34, 16838-16846.	2.5	16
22	Gamma-ray attenuation properties and fast neutron removal cross-section of Cu2CdSn3S8 and binary sulfide compounds (Cu/Cd/Sn S) using phy-X/PSD software. Radiation Physics and Chemistry, 2022, 193, 109989.	1.4	8
23	Thermal stability and decomposition mechanism of synthetic covellite samples. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10951-10963.	2.0	2
24	High-performance silver nanowires transparent conductive electrodes fabricated using manufacturing-ready high-speed photonic sinterization solutions. Scientific Reports, 2021, 11, 24156.	1.6	10
25	Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in Cus. SSRN Electronic Journal, 0, , .	0.4	0
26	Deep Dive into Lattice Dynamics and Phonon Anharmonicity for Intrinsically Low Thermal Expansion Coefficient in CuS. ChemNanoMat, 2022, 8, .	1.5	3
27	Post-treatment for Printed Electronics. , 2022, , 290-326.		0
28	Photonic sintering of copper for rapid processing of thick film conducting circuits on FTO coated glass. Scientific Reports, 2023, 13, .	1.6	3