High-Efficiency and Stable Organic Solar Cells Enabled

ACS Applied Materials & amp; Interfaces 10, 5682-5692 DOI: 10.1021/acsami.7b15240

Citation Report

#	Article	IF	CITATIONS
1	Incorporating Trialkylsilylethynyl-Substituted Head-to-Head Bithiophene Unit into Copolymers for Efficient Non-Fullerene Organic Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 7271-7280.	8.0	9
2	Role of Central Metal Ions in 8â€Hydroxyquinolineâ€Doped ZnO Interfacial Layers for Improving the Performance of Polymer Solar Cells. Advanced Materials Interfaces, 2018, 5, 1801172.	3.7	15
3	Urea-Doped ZnO Films as the Electron Transport Layer for High Efficiency Inverted Polymer Solar Cells. Frontiers in Chemistry, 2018, 6, 398.	3.6	12
4	Improved fullerene-free polymer solar cells using a rationally designed binary mixed solution of an electron extracting layer. Materials Chemistry Frontiers, 2018, 2, 1876-1883.	5.9	10
5	Roll-to-Roll Slot-Die-Printed Polymer Solar Cells by Self-Assembly. ACS Applied Materials & Interfaces, 2018, 10, 22485-22494.	8.0	27
6	Enhanced efficiency in perovskite solar cells by eliminating the electron contact barrier between the metal electrode and electron transport layer. Journal of Materials Chemistry A, 2019, 7, 1349-1355.	10.3	32
7	Reconsideration of the gallium nitride: Dual functionality as an electron transporter and transparent conductor for recyclable polymer solar cell substrate applications. Solar Energy Materials and Solar Cells, 2019, 200, 109971.	6.2	0
8	Efficient Polymeric Donor for Both Visible and Near-Infrared-Absorbing Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 4284-4291.	5.1	6
9	Reducing Burnâ€In Loss of Organic Photovoltaics by a Robust Electronâ€Transporting Layer. Advanced Materials Interfaces, 2019, 6, 1900213.	3.7	4
10	Stability of Nonfullerene Organic Solar Cells: from Builtâ€in Potential and Interfacial Passivation Perspectives. Advanced Energy Materials, 2019, 9, 1900157.	19.5	105
11	Intermolecular n-Doping Nonconjugated Polymer Cathode Interfacial Materials for Organic Solar Cells. ACS Applied Energy Materials, 2019, 2, 2238-2245.	5.1	15
12	Image-force effects on energy level alignment at electron transport material/cathode interfaces. Journal of Materials Chemistry C, 2020, 8, 173-179.	5.5	11
13	Improved Morphology and Interfacial Contact of PBDB-T:N2200-Based All-Polymer Solar Cells by Using the Solvent Additive <i>p</i> -Anisaldehyde. ACS Applied Energy Materials, 2020, 3, 358-365.	5.1	11
14	A facile strategy for enhanced performance of inverted organic solar cells based on low-temperature solution-processed SnO2 electron transport layer. Organic Electronics, 2020, 78, 105555.	2.6	23
15	Broadening the light absorption range via PBDB-T to improve the power conversion efficiency in ternary organic solar cells. Organic Electronics, 2020, 78, 105587.	2.6	9
16	Poly[2,7-(9,9-dihexylfluorene)]-block-poly[2-(dimethylamino)ethylmethacrylate] as resilient cathode interlayers in polymer solar cells: the effect of block ratios. Journal of Power Sources, 2020, 449, 227474.	7.8	5
17	Performance and Stability of Organic Solar Cells Bearing Nitrogen Containing Electron Extraction Layers. Energy Technology, 2020, 8, 2000117.	3.8	2
18	Builtâ€In Potential and Operational Stability of Nonfullerene Organic Solar Cells. Energy Technology, 2020, 8, 2000245.	3.8	8

#	Article	IF	CITATIONS
19	Improved performance of small molecule organic solar cells by incorporation of a glancing angle deposited donor layer. Scientific Reports, 2020, 10, 5766.	3.3	5
20	Modification of Hole Transport Layers for Fabricating High Performance Nonâ€fullerene Polymer Solar Cells. Chinese Journal of Chemistry, 2020, 38, 817-822.	4.9	12
21	Progress in Stability of Organic Solar Cells. Advanced Science, 2020, 7, 1903259.	11.2	308
22	High-Efficiency and Stable Organic Solar Cells with Stacked LiF and Organic Electrolytes as Cathode Interface Layers. ACS Applied Energy Materials, 2021, 4, 4489-4497.	5.1	4
23	Easy-processing saccharin doped ZnO electron extraction layer in efficient polymer solar cells. Solar Energy, 2021, 220, 706-712.	6.1	3
24	Backbone Engineering with Fluoroarene to Mitigate Morphological Disorder for High-Performance Polymer Solar Cells. ACS Applied Polymer Materials, 2021, 3, 5216-5223.	4.4	3
25	Copolymers based on trialkylsilylethynyl-phenyl substituted benzodithiophene building blocks for efficient organic solar cells. New Journal of Chemistry, 2021, 45, 19818-19825.	2.8	3
26	Recent Progress and Challenges toward Highly Stable Nonfullerene Acceptorâ€Based Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2003002.	19.5	146
27	Recent Progress in Advanced Organic Photovoltaics: Emerging Techniques and Materials. ChemSusChem, 2022, 15, .	6.8	15
28	Significant Stability Improvement of Fullerene Organic Photovoltaics via ZnO Film Modification through the Intermittent Spray Pyrolysis Technique. ACS Applied Energy Materials, 2022, 5, 4390-4403.	5.1	1
29	Peryleneâ€diimideâ€based cathode interlayer materials for high performance organic solar cells. SusMat, 2022, 2, 243-263.	14.9	38
31	Fabricating binary cathode interface layer by effective molecular electrostatic potential and interfacial dipole to optimize electron transport and improve organic solar cell. Chemical Engineering Journal, 2022, 446, 137209.	12.7	16
32	PTB7 and PTB7-Th as universal polymers to evaluate materials development aspects of organic solar cells including interfacial layers, new fullerenes, and non-fullerene electron acceptors. Synthetic Metals, 2022, 287, 117088.	3.9	6
33	High-performance non-fullerene acceptor inverted organic photovoltaics incorporating solution processed doped metal oxide hole selective contact. Applied Physics Letters, 2022, 120, 233301.	3.3	4
34	Semicrystalline Cathode Interlayer Based on Morphology Control Additives Using Nonconjugated Smallâ€Molecule Zwitterions for Efficient Organic Solar Cells. Solar Rrl, 2022, 6, .	5.8	3
35	Efficient D1:D2:A ternary all-polymer solar cell with optimized photoactive layer morphology realized by compatible two polymer donor. Optical Materials, 2024, 147, 114735.	3.6	3
36	Recent progress of hybrid cathode interface layer for organic solar cells. Journal of Energy Chemistry, 2024, 91, 383-406.	12.9	0

CITATION REPORT