Liquefaction resistance of bio-cemented calcareous san

Soil Dynamics and Earthquake Engineering 107, 9-19 DOI: 10.1016/j.soildyn.2018.01.008

Citation Report

#	Article	IF	CITATIONS
1	Review on biological process of soil improvement in the mitigation of liquefaction in sandy soil. MATEC Web of Conferences, 2018, 250, 01017.	0.1	7
2	Investigating the Factors Affecting the Properties of Coral Sand Treated with Microbially Induced Calcite Precipitation. Advances in Civil Engineering, 2018, 2018, 1-6.	0.4	17
3	Dynamic properties and liquefaction behaviour of cohesive soil in northeast India under staged cyclic loading. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10, 958-967.	3.7	29
4	Centrifuge Model Testing of Liquefaction Mitigation via Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	56
5	Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	138
6	Research on Unconstrained Compressive Strength and Microstructure of Calcareous Sand with Curing Agent. Journal of Marine Science and Engineering, 2019, 7, 294.	1.2	11
7	Effect of Particle Shape on Strength and Stiffness of Biocemented Glass Beads. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2019, 145, .	1.5	112
8	Strength and Deformation Responses of Biocemented Sands Using a Temperature-Controlled Method. International Journal of Geomechanics, 2019, 19, .	1.3	67
9	Properties of biocemented, basalt-fibre-reinforced calcareous sand. Proceedings of the Institution of Civil Engineers: Ground Improvement, 2019, , 1-9.	0.7	8
10	Effect of relative density and biocementation on cyclic response of calcareous sand. Canadian Geotechnical Journal, 2019, 56, 1849-1862.	1.4	136
11	Dynamic shear modulus and damping of expanded polystyrene composite soils at low strains. Geosynthetics International, 2019, 26, 436-450.	1.5	17
12	Validation of a Bounding Surface Plasticity Model against the Experimental Response of (Bio-) Cemented Sands. , 2019, , .		3
13	Seepage control in sand using bioslurry. Construction and Building Materials, 2019, 212, 342-349.	3.2	42
14	Effect of Wood Fiber on the Strength of Calcareous Sand Rapidly Seeped by Colloidal Silica. MATEC Web of Conferences, 2019, 275, 03006.	0.1	3
15	Soil liquefaction mitigation in geotechnical engineering: An overview of recently developed methods. Soil Dynamics and Earthquake Engineering, 2019, 120, 273-291.	1.9	58
16	Experimental study on repair of fractured rock mass by microbial induction technology. Royal Society Open Science, 2019, 6, 191318.	1.1	11
17	Biocomposite Cement-Based Mortar. , 0, , .		0
18	Desert sand cemented by bio-magnesium ammonium phosphate cement and its microscopic properties. Construction and Building Materials, 2019, 200, 116-123.	3.2	20

#	Article	IF	CITATIONS
19	Protecting Heritage Structures Against Liquefaction: Recent Developments. Advances in Science, Technology and Innovation, 2019, , 507-509.	0.2	2
20	Strength, stiffness, and microstructure characteristics of biocemented calcareous sand. Canadian Geotechnical Journal, 2019, 56, 1502-1513.	1.4	148
21	Experimental study on the cyclic behavior of loose calcareous sand under linear stress paths. Marine Georesources and Geotechnology, 2020, 38, 277-290.	1.2	20
22	Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP). Engineering Geology, 2020, 264, 105389.	2.9	149
23	Review of the use of microorganisms in geotechnical engineering applications. SN Applied Sciences, 2020, 2, 1.	1.5	28
24	Performance evaluation of a MICP-treated calcareous sandy foundation using shake table tests. Soil Dynamics and Earthquake Engineering, 2020, 129, 105959.	1.9	48
25	Toe-Bearing Capacity of Precast Concrete Piles through Biogrouting Improvement. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	47
26	Cyclic Response of Loose Anisotropically Consolidated Calcareous Sand under Progressive Wave–Induced Elliptical Stress Paths. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	8
27	Bacterial-induced mineralization (BIM) for soil solidification and heavy metal stabilization: A critical review. Science of the Total Environment, 2020, 746, 140967.	3.9	82
28	Insights into the Current Trends in the Utilization of Bacteria for Microbially Induced Calcium Carbonate Precipitation. Materials, 2020, 13, 4993.	1.3	98
29	Dynamic soil properties of nanoparticles and bioenzyme treated soft clay. Soil Dynamics and Earthquake Engineering, 2020, 137, 106324.	1.9	14
30	Performance of soils enhanced with eco-friendly biopolymers in unconfined compression strength tests and fatigue loading tests. Construction and Building Materials, 2020, 263, 120039.	3.2	41
31	Closure to "Unconfined Compressive and Splitting Tensile Strength of Basalt Fiber–Reinforced Biocemented Sand―by Yang Xiao, Xiang He, T. Matthew Evans, Armin W. Stuedlein, and Hanlong Liu. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, 07020017.	1.5	0
32	Experimental Evidence of the Effectiveness and Applicability of Colloidal Nanosilica Grouting for Liquefaction Mitigation. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	24
33	Shaking Table Tests on Seismic Responses of Pile-soil-superstructure in Coral Sand. Journal of Earthquake Engineering, 2022, 26, 3461-3487.	1.4	16
34	Restraint of Particle Breakage by Biotreatment Method. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	109
35	Meter-Scale Biocementation Experiments to Advance Process Control and Reduce Impacts: Examining Spatial Control, Ammonium By-Product Removal, and Chemical Reductions. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2020, 146, .	1.5	37
36	Evaluation of the Anti-Erosion Characteristics of an MICP Coating on the Surface of Tabia. Journal of Materials in Civil Engineering, 2020, 32, .	1.3	15

#	Article	IF	CITATIONS
38	Resistivity characteristics during horizontal-layered electrolysis desaturation of calcareous sand. Engineering Geology, 2020, 279, 105899.	2.9	6
39	Unconfined Compressive Strength Testing of Bio-cemented Weak Soils: A Comparative Upscale Laboratory Testing. Arabian Journal for Science and Engineering, 2020, 45, 8145-8157.	1.7	25
40	Bio-precipitation of CaCO ₃ for soil improvement: A Review. IOP Conference Series: Materials Science and Engineering, 2020, 800, 012037.	0.3	7
41	Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial. Frontiers of Structural and Civil Engineering, 2020, 14, 599-608.	1.2	7
42	Comparative Study on Seismic Response of Pile Group Foundation in Coral Sand and Fujian Sand. Journal of Marine Science and Engineering, 2020, 8, 189.	1.2	19
43	Effect of particle shape on the liquefaction resistance of calcareous sands. Soil Dynamics and Earthquake Engineering, 2020, 137, 106302.	1.9	65
44	Feasibility Study on Liquefaction Mitigation of Fraser River Sediments by Microbial Induced Desaturation and Precipitation (MIDP). , 2020, , .		7
45	Liquefaction resistance of Fraser River sand improved by a microbially-induced cementation. Soil Dynamics and Earthquake Engineering, 2020, 131, 106034.	1.9	45
46	Influence of different fiber types on properties of biocemented calcareous sand. Arabian Journal of Geosciences, 2020, 13, 1.	0.6	19
47	Preliminary study on repairing tabia cracks by using microbially induced carbonate precipitation. Construction and Building Materials, 2020, 248, 118611.	3.2	39
48	Bio-mediated calcium carbonate precipitation and its effect on the shear behaviour of calcareous sand. Acta Geotechnica, 2021, 16, 1377-1389.	2.9	47
49	Dynamic properties of polyurethane foam adhesive-reinforced gravels. Science China Technological Sciences, 2021, 64, 535-547.	2.0	20
50	Interface Shear Behavior between MICP-Treated Calcareous Sand and Steel. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	32
51	Compression behavior of MICP-treated sand with various gradations. Acta Geotechnica, 2021, 16, 1391-1400.	2.9	70
52	Study on fractal characteristics of pores of NAS reinforced by MICP under the control of electric field. Construction and Building Materials, 2021, 271, 121540.	3.2	7
53	Evaluation of the particle breakage of calcareous sand based on the detailed probability of grain survival: An application of repeated low-energy impacts. Soil Dynamics and Earthquake Engineering, 2021, 141, 106497.	1.9	18
54	Strength and Deformation Characteristics of Calcareous Sands Improved by PFA. KSCE Journal of Civil Engineering, 2021, 25, 60-69.	0.9	9
55	Biocarbonation of reactive magnesia for soil improvement. Acta Geotechnica, 2021, 16, 1113-1125.	2.9	27

#	Article	IF	CITATIONS
56	The Potential Use of Biopolymers as a Sustainable Alternative for Liquefaction Mitigation—A Review. Lecture Notes in Civil Engineering, 2021, , 25-34.	0.3	3
57	State of the Art Review of Emerging and Biogeotechnical Methods for Liquefaction Mitigation in Sands. Journal of Hazardous, Toxic, and Radioactive Waste, 2021, 25, .	1.2	42
58	Evaluation of Biostimulation Efficacy on the Reinforcement of Calcareous Sand. Journal of Testing and Evaluation, 2021, 49, 4181-4200.	0.4	3
59	Effects of Different Types of Fibers on the Physical and Mechanical Properties of MICP-Treated Calcareous Sand. Materials, 2021, 14, 268.	1.3	28
61	Homogeneity and mechanical behaviors of sands improved by a temperature-controlled one-phase MICP method. Acta Geotechnica, 2021, 16, 1417-1427.	2.9	58
62	Mitigation of Dust Emissions of Silty Sand Induced by Wind Erosion Using Natural Soybean Biomaterial. International Journal of Civil Engineering, 2021, 19, 595-606.	0.9	10
63	Effects of gradation and grain crushing on the liquefaction resistance of calcareous sand. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7, 1.	1.3	15
64	Experimental study of the mechanical behavior of calcareous sand under repeated loading-unloading. Bulletin of Engineering Geology and the Environment, 2021, 80, 3097-3113.	1.6	31
65	Coupling simulation of microbially induced carbonate precipitation and bacterial growth using reaction–diffusion and homogenisation systems. Acta Geotechnica, 2021, 16, 1315-1330.	2.9	12
66	Dynamic shear modulus and damping of cemented and uncemented lightweight expanded clay aggregate (LECA) at low strains. Soil Dynamics and Earthquake Engineering, 2021, 142, 106555.	1.9	4
67	One-Phase EICP Biotreatment of Sand Exposed to Various Environmental Conditions. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	34
68	Crackling noise and bio-cementation. Engineering Fracture Mechanics, 2021, 247, 107675.	2.0	16
69	Effect of waste rubber particles on the shear behaviour of bio-cemented calcareous sand. Acta Geotechnica, 2021, 16, 1429-1439.	2.9	18
70	Crackling noise and avalanches in minerals. Physics and Chemistry of Minerals, 2021, 48, 1.	0.3	14
71	Kinetic biomineralization through microfluidic chip tests. Acta Geotechnica, 2021, 16, 3229-3237.	2.9	37
72	A review on qualitative interaction among the parameters affecting ureolytic microbial-induced calcite precipitation. Environmental Earth Sciences, 2021, 80, 1.	1.3	8
73	Effect of freeze-thaw cycles on engineering properties of biocemented sand under different treatment conditions. Engineering Geology, 2021, 284, 106022.	2.9	57
74	Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth-Science Reviews, 2021, 216, 103586.	4.0	124

#	Article	IF	CITATIONS
75	Hybrid technique to produce bio-bricks using enzyme-induced carbonate precipitation (EICP) and sodium alginate biopolymer. Construction and Building Materials, 2021, 284, 122846.	3.2	17
76	MICP Treatment to Mitigate Soil Liquefaction-Induced Building Settlements. , 2021, , .		1
77	Bentonite-assisted microbial-induced carbonate precipitation for coarse soil improvement. Bulletin of Engineering Geology and the Environment, 2021, 80, 5623-5632.	1.6	15
78	Geotechnical Engineering Properties of Soils Solidified by Microbially Induced CaCO3 Precipitation (MICP). Advances in Civil Engineering, 2021, 2021, 1-21.	0.4	10
79	SWCC of Calcareous Silty Sand Under Different Fines Contents and dry Densities. Frontiers in Environmental Science, 2021, 9, .	1.5	15
80	Microbial Mineralization and Carbonation Consolidation of Dredger Fill and Its Mechanical Properties. Journal of Materials in Civil Engineering, 2021, 33, .	1.3	10
81	Impacts of organic matter and loading methods on one-dimensional compression behavior of calcareous sand. Marine Georesources and Geotechnology, 2022, 40, 1046-1059.	1.2	5
82	Dynamic Properties of Biopolymer-Treated Loose Silty Sand Evaluated by Cyclic Triaxial Test. Journal of Testing and Evaluation, 2022, 50, 315-331.	0.4	2
83	Cyclic strength of loose anisotropically-consolidated calcareous sand under standing waves and assessment using the unified cyclic stress ratio. Engineering Geology, 2021, 289, 106171.	2.9	7
84	Chemical stabilization of calcareous sand by polyurethane foam adhesive. Construction and Building Materials, 2021, 295, 123609.	3.2	19
85	Experimental and Analytical Study on Geomechanical Behavior of Biocemented Sand. International Journal of Geomechanics, 2021, 21, .	1.3	15
86	A bounding surface plasticity model for cemented sand under monotonic and cyclic loading. Geotechnique, 2023, 73, 44-61.	2.2	11
87	A unified constitutive model for cemented/non-cemented soils under monotonic and cyclic loading. Acta Geotechnica, 0, , 1.	2.9	8
88	Experimental Study on Sand Stabilization Using Bio-Cementation with Wastepaper Fiber Integration. Materials, 2021, 14, 5164.	1.3	10
89	Cyclic Behavior of Calcareous Sand from the South China Sea. Journal of Marine Science and Engineering, 2021, 9, 1014.	1.2	10
90	Mitigating the impact of the static and cyclic loading on loose coastal saturated sands utilizing a waterproof and super-fast curing polymer. Soil Dynamics and Earthquake Engineering, 2021, 148, 106838.	1.9	2
91	Liquefaction and post-liquefaction resistance of sand reinforced with recycled geofibre. Geotextiles and Geomembranes, 2022, 50, 69-81.	2.3	13
92	Thermal Conductivity of Biocemented Graded Sands. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	30

#	Article	IF	CITATIONS
93	Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: biocementation and process optimization via artificial intelligence approaches. Environmental Science and Pollution Research, 2022, 29, 13767-13781.	2.7	15
94	Recent development in biogeotechnology and its engineering applications. Frontiers of Structural and Civil Engineering, 2021, 15, 1073-1096.	1.2	13
95	Numerical simulations on seismic response of soil-pile-superstructure in coral sand. Ocean Engineering, 2021, 239, 109808.	1.9	13
96	Bio-mediated method for improving surface erosion resistance of clayey soils. Engineering Geology, 2021, 293, 106295.	2.9	33
97	Liquefaction Resistance of Biocemented Loess Soil. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	27
98	Liquefaction Modeling for Biocemented Calcareous Sand. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	45
99	Micromechanical Properties of Biocemented Shale Soils Analyzed Using Nanoindentation Test. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2021, 147, .	1.5	15
100	Hybrid bacteria mediated cemented sand: Microcharacterization, permeability, strength, shear wave velocity, stress-strain, and durability. International Journal of Damage Mechanics, 2021, 30, 618-645.	2.4	17
101	Rock-like behavior of biocemented sand treated under non-sterile environment and various treatment conditions. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 705-705.	3.7	45
102	Effectiveness of the anti-erosion of an MICP coating on the surfaces of ancient clay roof tiles. Construction and Building Materials, 2020, 243, 118202.	3.2	50
103	Three-Dimensional Frequency-Domain Green's Functions of a Finite Fluid-Saturated Soil Layer Underlain by Rigid Bedrock to Interior Loadings. International Journal of Geomechanics, 2022, 22, .	1.3	21
105	Laboratory Tests on Mitigation of Soil Liquefaction Using Microbial Induced Desaturation and Precipitation. Geotechnical Testing Journal, 2021, 44, 520-534.	0.5	15
106	A Micromechanical-Based Investigation on the Frictional Behaviour of Artificially Bonded Analogue Sedimentary Rock with Calcium Carbonate. Pure and Applied Geophysics, 2021, 178, 4461-4486.	0.8	6
107	Cyclic behavior of bio-cemented soils using relatively large grains. Japanese Geotechnical Society Special Publication, 2021, 9, 324-328.	0.2	0
108	Pore Pressure Increase and Evaluation in Saturated Sand Based on In Situ Liquefaction Tests. Journal of Testing and Evaluation, 2021, 49, 20180612.	0.4	0
109	Comparison of Nanomaterials with Other Unconventional Materials Used as Additives for Soil Improvement in the Context of Sustainable Development: A Review. Nanomaterials, 2021, 11, 15.	1.9	16
110	Effect of Light Biocementation on the Liquefaction Triggering and Post-Triggering Behavior of Loose Sands. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2022, 148, .	1.5	26
111	Mechanical Performance of Biotreated Sandy Road Bases. Journal of Performance of Constructed Facilities, 2022, 36, .	1.0	21

#	Article	IF	CITATIONS
112	An Improved Soft Soil Reinforcement Method with Micp Based on Biochar Induced Nucleation Technology. SSRN Electronic Journal, 0, , .	0.4	0
113	DEM analysis of cyclic liquefaction behaviour of cemented sand. Computers and Geotechnics, 2022, 142, 104572.	2.3	5
114	Construction of Water Pond Using Bioslurry-Induced Biocementation. Journal of Materials in Civil Engineering, 2022, 34, .	1.3	13
115	Effects of Microbially Induced Carbonate Precipitation on Diffuse Double Layer and Particle Fabric of Oil Sands Fine Tailings. Canadian Journal of Civil Engineering, 0, , .	0.7	0
116	Direct Shear Creep Characteristics of Sand Treated with Microbial-Induced Calcite Precipitation. International Journal of Civil Engineering, 2022, 20, 763-777.	0.9	33
117	Laboratory study on geotechnical characteristics of marine coral clay. Journal of Central South University, 2022, 29, 572-581.	1.2	9
118	Controlling pore-scale processes to tame subsurface biomineralization. Reviews in Environmental Science and Biotechnology, 2022, 21, 27-52.	3.9	8
119	Cost-Effective Optimization of Bacterial Urease Activity Using a Hybrid Method Based on Response Surface Methodology and Artificial Neural Networks. Environmental Processes, 2022, 9, 1.	1.7	4
120	Effect of different fibers on small-strain dynamic properties of microbially induced calcite precipitation–fiber combined reinforced calcareous sand. Construction and Building Materials, 2022, 322, 126343.	3.2	15
121	Effects of cement content and curing period on geotechnical properties of cement-treated calcareous sands. Transportation Geotechnics, 2022, 33, 100732.	2.0	8
122	Evolution of Particle Shape Produced by Sand Breakage. International Journal of Geomechanics, 2022, 22, .	1.3	26
123	Kaolin-nucleation-based biotreated calcareous sand through unsaturated percolation method. Acta Geotechnica, 2022, 17, 3181-3193.	2.9	20
124	Particle size and confining-pressure effects of shear characteristics of coral sand: an experimental study. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	24
125	Liquefaction Resistance of Biotreated Sand Before and After Exposing to Weathering Conditions. Indian Geotechnical Journal, 2022, 52, 328-340.	0.7	15
126	Recent progress on crushing-strength-energy dissipation of coarse granular soil and biocementation at contacts. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2022, 52, 999-1021.	0.3	1
127	An Experimental Study of Using Biopolymer for Liquefaction Mitigation of Silty Sand—A Sustainable Alternative. Springer Transactions in Civil and Environmental Engineering, 2022, , 297-308.	0.3	0
128	Denitrification-based MICP for cementation of soil: treatment process and mechanical performance. Acta Geotechnica, 2022, 17, 3799-3815.	2.9	13
129	Improvement of Coral Sand With MICP Using Various Calcium Sources in Sea Water Environment. Frontiers in Physics, 2022, 10, .	1.0	12

#	Article	IF	CITATIONS
130	Crushing strength of artificial single-particle considering the effect of particle morphology. Acta Geotechnica, 0, , 1.	2.9	2
131	Shear characteristics of calcareous gravelly sand considering particle breakage. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	10
132	Coupling effect of biocementation-fiber reinforcement on mechanical behavior of calcareous sand for ocean engineering. Bulletin of Engineering Geology and the Environment, 2022, 81, 1.	1.6	14
133	Enzyme-Induced Carbonate Precipitation for the Protection of Earthen Dikes and Embankments Under Surface Runoff: Laboratory Investigations. Journal of Ocean University of China, 2022, 21, 306-314.	0.6	9
134	Ecofriendly improvement of coastal calcareous sandy slope using recycled shredded coconut coir (RSC) and bio-cement. Acta Geotechnica, 2022, 17, 5375-5389.	2.9	7
135	Biocementation of soils of different surface chemistries via enzyme induced carbonate precipitation (EICP): An integrated laboratory and molecular dynamics study. Biophysical Chemistry, 2022, 284, 106793.	1.5	3
136	Prediction of dynamic pore water pressure for calcareous sand mixed with fine-grained soil under cyclic loading. Soil Dynamics and Earthquake Engineering, 2022, 157, 107276.	1.9	7
137	Large-scale spatial characterization and liquefaction resistance of sand by hybrid bacteria induced biocementation. Engineering Geology, 2022, 302, 106635.	2.9	24
138	Erosion of Biotreated Field-Scale Slopes under Rainfalls. Journal of Performance of Constructed Facilities, 2022, 36, .	1.0	15
139	Influence of bacterial suspension type on the strength of biocemented sand. Canadian Geotechnical Journal, 2022, 59, 2014-2021.	1.4	13
140	Effect of particle size and particle distribution pattern on dynamic behavior of cemented calcareous sand. Marine Georesources and Geotechnology, 2023, 41, 412-424.	1.2	2
141	Bio-cementation of loose sand using Staphylococcus sp. IR-103: a field study. Arabian Journal of Geosciences, 2022, 15, 1.	0.6	1
142	Fracturing and Ultimate State of Binary Carbonate Sands. International Journal of Geomechanics, 2022, 22, .	1.3	7
143	Microstructural Evolution alongside the Strength Degradation of Soft Marine Soil under Cyclic Loading. International Journal of Geomechanics, 2022, 22, .	1.3	2
144	Experimental and numerical modeling on liquefaction resistance of geotextile reinforced sand. Soil Dynamics and Earthquake Engineering, 2022, 159, 107345.	1.9	10
145	Mechanical properties of biocement formed by microbially induced carbonate precipitation. Acta Geotechnica, 2022, 17, 4905-4919.	2.9	12
146	Re-liquefaction resistance of lightly cemented sands. Canadian Geotechnical Journal, 2022, 59, 2085-2101.	1.4	3
147	Insight into the mechanism of microbially induced carbonate precipitation treatment of bio-improved calcareous sand particles. Acta Geotechnica, 2023, 18, 985-999.	2.9	7

#	Article	IF	CITATIONS
148	Microbially/CO2-derived CaCO3 cement strengthens calcareous sands and its cementation mechanism. Clean Technologies and Environmental Policy, 2022, 24, 2773-2785.	2.1	2
149	Mechanical response of a cemented soil over a wide range of porosities and cement contents. Proceedings of the Institution of Civil Engineers: Ground Improvement, 0, , 1-11.	0.7	3
150	Breakage and Morphology of Sands in Drained Shearing. International Journal of Geomechanics, 2022, 22, .	1.3	10
151	Effects of activated carbon on liquefaction resistance of calcareous sand treated with microbially induced calcium carbonate precipitation. Soil Dynamics and Earthquake Engineering, 2022, 161, 107419.	1.9	44
152	Shear Strength and Dilatancy of Calcareous Sand in the South China Sea. China Ocean Engineering, 0, ,	0.6	0
153	Experimental investigation on mechanical behavior of sands treated by enzyme-induced calcium carbonate precipitation with assistance of sisal-fiber nucleation. Frontiers in Earth Science, 0, 10, .	0.8	1
154	Microfabric evolution of coral sand foundations during seismic liquefaction using 3D images. Soil Dynamics and Earthquake Engineering, 2022, 162, 107445.	1.9	8
155	Electricity-reaction–diffusion system for microbially induced carbonate precipitation. Soils and Foundations, 2022, 62, 101217.	1.3	3
156	Review of Strength Improvements of Biocemented Soils. International Journal of Geomechanics, 2022, 22, .	1.3	34
157	Framework and Demonstration of Constitutive Model Calibration for Liquefaction Simulation of Densified Sand. Geotechnical, Geological and Earthquake Engineering, 2022, , 1725-1736.	0.1	0
158	In-Situ Liquefaction Testing of a Medium Dense Sand Deposit and Comparison to Case History- and Laboratory-Based Cyclic Stress and Strain Evaluations. Geotechnical, Geological and Earthquake Engineering, 2022, , 545-564.	0.1	0
159	Capturing the Turning Hook of Stress-Dilatancy Curve of Crushable Calcareous Sand. Journal of Marine Science and Engineering, 2022, 10, 1269.	1.2	1
160	Mitigation of Karst Soil Erosion by Optimizing a Biostimulation Strategy to Induce Mineralization. Journal of Testing and Evaluation, 2023, 51, 918-944.	0.4	0
161	Study on calcareous sand treated by MICP in different NaCl concentrations. European Journal of Environmental and Civil Engineering, 2023, 27, 3137-3156.	1.0	5
162	Experimental study on the cyclic behavior of silty sands reinforced by disposal of shredded facemask. Transportation Geotechnics, 2022, 37, 100871.	2.0	4
163	Tunnel stability analysis of coral reef limestone stratum in ocean engineering. Ocean Engineering, 2022, 265, 112636.	1.9	10
164	Removal Behavior of Heavy Metals from Aqueous Solutions via Microbially Induced Carbonate Precipitation Driven by Acclimatized Sporosarcina pasteurii. Applied Sciences (Switzerland), 2022, 12, 9958.	1.3	3
165	Experimental Study on the Influence of Different Factors on the Mechanical Properties of a Soil–Rock Mixture Solidified by Micro-Organisms. Materials, 2022, 15, 7394.	1.3	1

ARTICLE IF CITATIONS # Comparative Study on Liquefaction Behavior of Calcareous Sand and Siliceous Sand Under Simple 1.4 4 166 Shear Loading. Journal of Earthquake Engineering, 2023, 27, 3471-3489. Improving the sustainable management of mining tailings through microbially induced calcite 1.8 precipitation: A review. Minerals Engineering, 2022, 189, 107855. Effect of Fines Content in Silt-Sand Mixtures with Different Saturations on Microbial-Induced 168 1.0 0 Calcium Carbonate Precipitation. Geomicrobiology Journal, 0, , 1-11. Effects of calcium sources and magnesium ions on the mechanical behavior of MICP-treated calcareous sand: experimental evidence and precipitated crystal insights. Acta Geotechnica, 2023, 18, 2703-2717. Use of polyethylene terephthalate fibres for mitigating the liquefaction-induced failures. Geotextiles 170 2.3 6 and Geomembranes, 2023, 51, 245-258. $Mechanical \ Properties \ and \ Microscopic \ Mechanism \ of \ Cement-Stabilized \ Calcareous \ Sand \ Improved \ with \ a \ Nano-MgO \ Additive. \ International \ Journal \ of \ Geomechanics, \ 2023, \ 23, \ .$ 171 1.3 The Spatial Distribution of Microbially Induced Carbonate Precipitation in Sand Column with 172 1.3 2 Different Grouting Strategies. Journal of Materials in Civil Engineering, 2023, 35, . Effects of carbonate distribution pattern on the mechanical behaviour of bio-cemented sands: A DEM 2.3 study. Computers and Geotechnics, 2023, 154, 105152. Numerical analysis of seismic response of rectangular underground structure in coral sand. 174 3.4 2 Underground Space (China), 2023, 9, 155-172. Microbially induced carbonate precipitation for improving the internal stability of silty sand slopes under seepage conditions. Acta Geotechnica, 2023, 18, 2719-2732. Mechanical Properties and Engineering Applications of Special Soilsâ€"Dynamic Shear Modulus and Damping of MICP-Treated Calcareous Sand at Low Strains. Applied Sciences (Switzerland), 2022, 12, 176 1.3 1 12175. Effects of initial static shear stress on cyclic behaviour of sand stabilised with colloidal silica. Acta Geotechnica, 2023, 18, 2389-2409. 3D DEM modeling of biocemented sand with fines as cementing agents. International Journal for 178 1.7 37 Numerical and Analytical Methods in Geomechanics, 2023, 47, 212-240. Influence of Freezing–Thawing Cycles on Biotreated Sand Using MICP. Lecture Notes in Civil Engineering, 2023, , 383-389. 179 0.3 Effect of pH on soil improvement using one-phase-low-pH MICP or EICP biocementation method. Acta 180 2.9 9 Geotechnica, 2023, 18, 3259-3272. Liquefaction evaluation method of coral sand: Case study on the ports in Indonesia. Frontiers in Earth Science, 0, 10, . Undrained cyclic behaviors of fiber-reinforced calcareous sand under multidirectional simple shear 182 2.9 7 stress path. Acta Geotechnica, 2023, 18, 2929-2943. Fracture of Interparticle MICP Bonds under Compression. International Journal of Geomechanics, 1.3 2023, 23, .

#	Article	IF	CITATIONS
185	Comparison between MICP-Based Bio-Cementation Versus Traditional Portland Cementation for Oil-Contaminated Soil Stabilisation. Sustainability, 2023, 15, 434.	1.6	5
186	On the In Situ Cyclic Resistance of Natural Sand and Silt Deposits. Journal of Geotechnical and Geoenvironmental Engineering - ASCE, 2023, 149, .	1.5	4
187	Coupling effect of fiber reinforcement and MICP stabilization on the tensile behavior of calcareous sand. Engineering Geology, 2023, 317, 107090.	2.9	7
188	Effect of MICP-recycled shredded coconut coir (RSC) reinforcement on the mechanical behavior of calcareous sand for coastal engineering. Applied Ocean Research, 2023, 135, 103564.	1.8	5
189	Influence of spatial distribution of fine sand layers on the mechanical behavior of coral reef sand. Soil Dynamics and Earthquake Engineering, 2023, 169, 107897.	1.9	4
190	Production of biocement using steel slag. Construction and Building Materials, 2023, 383, 131365.	3.2	6
191	Investigation of the effect of microbial-induced calcite precipitation treatment on bio-cemented calcareous sands using discrete element method. Computers and Geotechnics, 2023, 158, 105365.	2.3	3
192	Coupled Effect of Cementation Solution, Curing Period, Molding Water Content, and Compactive Effort on Strength Performance of Biotreated Lateritic Soil for Municipal Solid Waste Containment Application. Journal of Hazardous, Toxic, and Radioactive Waste, 2023, 27, .	1.2	0
193	Improving the spatial control of soil biocementation using indigenous microorganisms: Column experiments and reactive transport modeling. Engineering Geology, 2023, 318, 107104.	2.9	3
194	A discrete element simulation considering calcite crystal shape to investigate the mechanical behaviors of bio-cemented sands. Construction and Building Materials, 2023, 368, 130398.	3.2	2
195	Experimental and Numerical Study on Dynamic Response of Underground Structure in Coral Sand Under Earthquakes. Journal of Earthquake Engineering, 2024, 28, 62-84.	1.4	1
197	Assessment of strength and low-strain shear modulus of bio-cemented sand considering MICP treatment. Environmental Earth Sciences, 2023, 82, .	1.3	4
198	Comparative Study of the Effects of Natural and Synthetic Fibers on the Mechanical Properties of Sand Treated with Enzyme-Induced Calcium Carbonate Precipitation. Journal of Materials in Civil Engineering, 2023, 35, .	1.3	0
199	Mechanical behaviors of coral sand and relationship between particle breakage and plastic work. Engineering Geology, 2023, 316, 107063.	2.9	10
200	Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand. Journal of Rock Mechanics and Geotechnical Engineering, 2024, 16, 291-302.	3.7	4
201	Enhancing the seismic performance of piles in liquefiable soils by slag powder. Case Studies in Construction Materials, 2023, 18, e01995.	0.8	1
202	Mitigation of soil liquefaction using microbial technology: An overview. , 2023, 1, 100005.		18
203	Applications of microbial-induced carbonate precipitation: A state-of-the-art review. , 2023, 1, 100008.		25

~			~			
Cľ	ΓΑΤ	ION	R	FP	O	RT

#	Article	IF	CITATIONS
204	The Undrained Shear Behavior of Clean Coral Silt and Coral Silt-Sand Mixtures. Journal of Testing and Evaluation, 2023, 51, 3596-3611.	0.4	1
205	Mechanical Properties and Constitutive Model of Calcareous Sand Strengthened by MICP. Journal of Marine Science and Engineering, 2023, 11, 819.	1.2	3
249	In situ microbially induced Ca-alginate polymeric sealant in calcareous sand and potential engineering applications. Acta Geotechnica, 0, , .	2.9	0
260	Seepage Control in Sand Using Bio-Gelation Method. , 2024, , .		0
261	DEM Simulations of the Seismic Response of Tunnels Embedded in Granular Deposits. , 2024, , .		0