Flexible and Salt Resistant Janus Absorbers by Electrosp Solar Desalination

Advanced Energy Materials 8, 1702884 DOI: 10.1002/aenm.201702884

Citation Report

#	Article	IF	CITATIONS
1	Two-Dimensional Flexible Bilayer Janus Membrane for Advanced Photothermal Water Desalination. ACS Energy Letters, 2018, 3, 1165-1171.	8.8	203
2	Emerging investigator series: the rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano, 2018, 5, 1078-1089.	2.2	269
3	Omnidirectional and effective salt-rejecting absorber with rationally designed nanoarchitecture for efficient and durable solar vapour generation. Journal of Materials Chemistry A, 2018, 6, 22976-22986.	5.2	48
4	Passive solar high-yield seawater desalination by modular and low-cost distillation. Nature Sustainability, 2018, 1, 763-772.	11.5	262
5	Synergistic Highâ€Rate Solar Steaming and Mercury Removal with MoS ₂ /C @ Polyurethane Composite Sponges. Advanced Energy Materials, 2018, 8, 1802108.	10.2	107
6	Evolutionary Photonics for Renewable Energy, Nanomedicine, and Advanced Material Engineering. Laser and Photonics Reviews, 2018, 12, 1700028.	4.4	8
7	Storage and Recycling of Interfacial Solar Steam Enthalpy. Joule, 2018, 2, 2477-2484.	11.7	205
8	Solar-driven interfacial evaporation. Nature Energy, 2018, 3, 1031-1041.	19.8	1,347
9	Flexible Fireâ€Resistant Photothermal Paper Comprising Ultralong Hydroxyapatite Nanowires and Carbon Nanotubes for Solar Energyâ€Driven Water Purification. Small, 2018, 14, e1803387.	5.2	136
10	Electrospinning based all-nano composite materials: Recent achievements and perspectives. Composites Communications, 2018, 10, 140-150.	3.3	64
11	Solar Evaporator with Controlled Salt Precipitation for Zero Liquid Discharge Desalination. Environmental Science & Technology, 2018, 52, 11822-11830.	4.6	249
12	Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. Journal of Materials Chemistry A, 2018, 6, 18839-18846.	5.2	208
13	Highly efficient solar steam generation by hybrid plasmonic structured TiN/mesoporous anodized alumina membrane. Journal of Materials Research, 2018, 33, 3857-3869.	1.2	19
14	A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Materials Horizons, 2018, 5, 1143-1150.	6.4	232
15	Hydrophobic W ₁₈ O ₄₉ mesocrystal on hydrophilic PTFE membrane as an efficient solar steam generation device under one sun. Journal of Materials Chemistry A, 2018, 6, 10939-10946.	5.2	94
16	CuS nanoflowers/semipermeable collodion membrane composite for high-efficiency solar vapor generation. Materials Today Energy, 2018, 9, 285-294.	2.5	60
17	Janus Membranes: Creating Asymmetry for Energy Efficiency. Advanced Materials, 2018, 30, e1801495.	11.1	193
18	Silk-based systems for highly efficient photothermal conversion under one sun: portability, flexibility, and durability. Journal of Materials Chemistry A, 2018, 6, 17212-17219.	5.2	120

#	Article	IF	CITATIONS
19	Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. Journal of Materials Chemistry A, 2018, 6, 12267-12274.	5.2	153
20	All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. Advanced Sustainable Systems, 2019, 3, 1800055.	2.7	78
21	Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy and Environmental Science, 2019, 12, 841-864.	15.6	1,235
22	A mechanically durable, sustained corrosion-resistant photothermal nanofiber membrane for highly efficient solar distillation. Journal of Materials Chemistry A, 2019, 7, 22296-22306.	5.2	60
23	Solar thermal utilizations revived by advanced solar evaporation. Current Opinion in Chemical Engineering, 2019, 25, 26-34.	3.8	26
24	Harnessing Solarâ€Driven Photothermal Effect toward the Water–Energy Nexus. Advanced Science, 2019, 6, 1900883.	5.6	188
25	Scalable fabrication of monolithic porous foam based on cross-linked aromatic polymers for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2019, 201, 110111.	3.0	80
26	Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17, 45-84.	2.3	70
27	Chitosan/reduced graphene oxide-modified spacer fabric as a salt-resistant solar absorber for efficient solar steam generation. Journal of Materials Chemistry A, 2019, 7, 18311-18317.	5.2	146
28	Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 2019, 1, 115-155.	5.0	301
29	Pathways and challenges for efficient solar-thermal desalination. Science Advances, 2019, 5, eaax0763.	4.7	311
30	A Hybrid Solar Absorber–Electrocatalytic Nâ€Đoped Carbon/Alloy/Semiconductor Electrode for Localized Photothermic Electrocatalysis. Advanced Materials, 2019, 31, e1903605.	11.1	43
31	Biomimetic MXene Textures with Enhanced Lightâ€ŧoâ€Heat Conversion for Solar Steam Generation and Wearable Thermal Management. Advanced Energy Materials, 2019, 9, 1901687.	10.2	210
32	Enhancing solar steam generation through manipulating the heterostructure of PVDF membranes with reduced reflection and conduction. Journal of Materials Chemistry A, 2019, 7, 17505-17515.	5.2	46
33	A water lily–inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Science Advances, 2019, 5, eaaw7013.	4.7	335
34	Vertically Aligned Janus MXene-Based Aerogels for Solar Desalination with High Efficiency and Salt Resistance. ACS Nano, 2019, 13, 13196-13207.	7.3	280
35	Ultra-robust carbon fibers for multi-media purification <i>via</i> solar-evaporation. Journal of Materials Chemistry A, 2019, 7, 586-593.	5.2	136
36	Sustainable Biochar-Based Solar Absorbers for High-Performance Solar-Driven Steam Generation and Water Purification. ACS Sustainable Chemistry and Engineering, 2019, 7, 19311-19320.	3.2	99

#	Article	IF	CITATIONS
37	High-efficiency solar steam generation based on blue brick-graphene inverted cone evaporator. Applied Thermal Engineering, 2019, 163, 114379.	3.0	42
38	Carbonized Treeâ€Like Furry Magnolia Fruitâ€Based Evaporator Replicating the Feat of Plant Transpiration. Global Challenges, 2019, 3, 1900040.	1.8	30
39	Flexible and Washable CNT-Embedded PAN Nonwoven Fabrics for Solar-Enabled Evaporation and Desalination of Seawater. ACS Applied Materials & Interfaces, 2019, 11, 35005-35014.	4.0	175
40	Osmotic Pumping and Salt Rejection by Polyelectrolyte Hydrogel for Continuous Solar Desalination. Advanced Energy Materials, 2019, 9, 1900552.	10.2	131
41	Programmable Interface Asymmetric Integration of Carbon Nanotubes and Gold Nanoparticles toward Flexible, Configurable, and Surfaceâ€Enhanced Raman Scattering Active Allâ€Inâ€One Solarâ€Driven Evaporators. Energy Technology, 2019, 7, 1900787.	1.8	11
42	Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A, 2019, 7, 24092-24123.	5.2	190
43	Solar absorption properties of embellished GZO/Cu Janus nanoparticles. Energy Procedia, 2019, 158, 345-350.	1.8	2
44	A photothermal reservoir for highly efficient solar steam generation without bulk water. Science Bulletin, 2019, 64, 1625-1633.	4.3	178
45	Fabrication of doped SmBaCo2O5+l̂´ double perovskites for enhanced solar-driven interfacial evaporation. Ceramics International, 2019, 45, 24903-24908.	2.3	20
46	A high-absorption and self-driven salt-resistant black gold nanoparticle-deposited sponge for highly efficient, salt-free, and long-term durable solar desalination. Journal of Materials Chemistry A, 2019, 7, 2581-2588.	5.2	103
47	Plasmon Ag-Promoted Solar–Thermal Conversion on Floating Carbon Cloth for Seawater Desalination and Sewage Disposal. ACS Applied Materials & Interfaces, 2019, 11, 7066-7073.	4.0	80
48	Novel onion-like graphene aerogel beads for efficient solar vapor generation under non-concentrated illumination. Journal of Materials Chemistry A, 2019, 7, 4400-4407.	5.2	62
49	An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator. Angewandte Chemie, 2019, 131, 12182-12186.	1.6	34
50	Damageâ€Free Solar Dewatering of Microâ€Algal Concentrates via Multifunctional Hierarchical Porous Graphene. Advanced Sustainable Systems, 2019, 3, 1900045.	2.7	3
51	Multifunctional molybdenum oxide for solar-driven water evaporation and charged dyes adsorption. Applied Surface Science, 2019, 491, 328-334.	3.1	38
52	Portable Lowâ€Pressure Solar Steamingâ€Collection Unisystem with Polypyrrole Origamis. Advanced Materials, 2019, 31, e1900720.	11.1	221
53	Highly Efficient Solar Steam Generation from Activated Carbon Fiber Cloth with Matching Water Supply and Durable Fouling Resistance. ACS Applied Energy Materials, 2019, 2, 4354-4361.	2.5	101
54	A Janus evaporator with low tortuosity for long-term solar desalination. Journal of Materials Chemistry A, 2019, 7, 15333-15340.	5.2	170

#	Article	IF	CITATIONS
55	Easily scaled-up photo-thermal membrane with structure-dependent auto-cleaning feature for high-efficient solar desalination. Journal of Membrane Science, 2019, 586, 222-230.	4.1	87
56	Nature-inspired salt resistant polypyrrole–wood for highly efficient solar steam generation. Sustainable Energy and Fuels, 2019, 3, 3000-3008.	2.5	100
57	An Interfacial Solar Heating Assisted Liquid Sorbent Atmospheric Water Generator. Angewandte Chemie - International Edition, 2019, 58, 12054-12058.	7.2	152
58	A new self-desalting solar evaporation system based on a vertically oriented porous polyacrylonitrile foam. Journal of Materials Chemistry A, 2019, 7, 14620-14628.	5.2	128
59	Membrane assembled from anti-fouling copper-zinc-tin-selenide nanocarambolas for solar-driven interfacial water evaporation. Chemical Engineering Journal, 2019, 373, 955-962.	6.6	87
60	Interfacial Solarâ€ŧoâ€Heat Conversion for Desalination. Advanced Energy Materials, 2019, 9, 1900310.	10.2	174
61	Porphyrin Covalent Organic Framework (POF)â€Based Interface Engineering for Solar Steam Generation. Advanced Materials Interfaces, 2019, 6, 1900254.	1.9	76
62	High-Efficiency Superheated Steam Generation for Portable Sterilization under Ambient Pressure and Low Solar Flux. ACS Applied Materials & Interfaces, 2019, 11, 18466-18474.	4.0	69
63	A Direct Solar Photoâ€Thermal Conversion of Methanol into Hydrogen. Energy Technology, 2019, 7, 1900299.	1.8	9
64	A Highâ€Performance Selfâ€Regenerating Solar Evaporator for Continuous Water Desalination. Advanced Materials, 2019, 31, e1900498.	11.1	638
65	Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy and Environmental Science, 2019, 12, 1840-1847.	15.6	403
66	The revival of thermal utilization from the Sun: interfacial solar vapor generation. National Science Review, 2019, 6, 562-578.	4.6	260
67	Flame-treated and fast-assembled foam system for direct solar steam generation and non-plugging high salinity desalination with self-cleaning effect. Applied Energy, 2019, 241, 652-659.	5.1	85
68	Self-floating nanostructured Ni–NiO _x /Ni foam for solar thermal water evaporation. Journal of Materials Chemistry A, 2019, 7, 8485-8490.	5.2	82
69	Multilayer Polypyrrole Nanosheets with Selfâ€Organized Surface Structures for Flexible and Efficient Solar–Thermal Energy Conversion. Advanced Materials, 2019, 31, e1807716.	11.1	341
70	Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy, 2019, 60, 841-849.	8.2	262
71	Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Materials Today Energy, 2019, 12, 277-296.	2.5	250
72	Femtosecond laser induced robust Ti foam based evaporator for efficient solar desalination. Journal of Materials Chemistry A, 2019, 7, 8361-8367.	5.2	42

ARTICLE IF CITATIONS Hierarchical Porous SWCNT Stringed Carbon Polyhedrons and PSS Threaded MOF Bilayer Membrane 5.2 89 73 for Efficient Solar Vapor Generation. Small, 2019, 15, e1900354. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under 74 139 sunlight. Desalination, 2019, 462, 29-38. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water 75 15.6 482 desalination. Energy and Environmental Science, 2019, 12, 1558-1567. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. 208 Journal of Materials Chemistry A, 2019, 7, 10446-10455. Metal-organic framework derived porous carbon of light trapping structures for efficient solar 77 3.0 88 steam generation. Solar Energy Materials and Solar Cells, 2019, 196, 36-42. Looking Beyond Energy Efficiency: An Applied Review of Water Desalination Technologies and an Introduction to Capillary-Driven Desalination. Water (Switzerland), 2019, 11, 696. 1.2 A bifunctional MoS₂-based solar evaporator for both efficient water evaporation and 79 5.2 105 clean freshwater collection. Journal of Materials Chemistry A, 2019, 7, 11177-11185. Differentiation of photon generation depended on electrospun configuration in Eu3+/Tb3+ doped 2.8 9 polyacrylonitrile nanofibers. Journal of Alloys and Compounds, 2019, 786, 1040-1050. Graphene oxide based materials for desalination. Carbon, 2019, 146, 320-328. 98 81 5.4 Challenges and Opportunities for Solar Evaporation. Joule, 2019, 3, 683-718. 11.7 Self-floating monodisperse microparticles with a nano-engineered surface composition and structure for highly efficient solar-driven water evaporation. Journal of Materials Chemistry A, 2019, 7, 83 5.2 39 6963-6971. Three-Dimensional Porous Solar-Driven Interfacial Evaporator for High-Efficiency Steam Generation 84 1.6 58 under Low Solar Flux. ACS Omega, 2019, 4, 3546-3555. Bioinspired Sootâ€Deposited Janus Fabrics for Sustainable Solar Steam Generation with Saltâ€Rejection. 85 1.8 73 Global Challenges, 2019, 3, 1800117. A nanopump for low-temperature and efficient solar water evaporation. Journal of Materials Chemistry A, 2019, 7, 24311-24319. 5.2 34 Tunable Water Delivery in Carbon-Coated Fabrics for High-Efficiency Solar Vapor Generation. ACS 87 4.0 36 Applied Materials & amp; Interfaces, 2019, 11, 46938-46946. Janus Poly(ionic liquid) Monolithic Photothermal Materials with Superior Salt-Rejection for Efficient Solar Steam Generation. ACS Applied Energy Materials, 2019, 2, 8862-8870. Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic 89 4.6 97 Bifunctional Structure for Solar Evaporation Enhancement. Small Methods, 2019, 3, 1800176. Multifunctional Organic–Inorganic Hybrid Aerogel for Selfâ€Cleaning, Heatâ€Insulating, and Highly Efficient Microwave Absorbing Material. Advanced Functional Materials, 2019, 29, 1807624.

#	Article	lF	CITATIONS
91	Superwetting Monolithic Hollowâ€Carbonâ€Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation. Advanced Energy Materials, 2019, 9, 1802158.	10.2	356
92	Enhanced solar steam generation using carbon nanotube membrane distillation device with heat localization. Applied Thermal Engineering, 2019, 149, 1255-1264.	3.0	94
93	Fastâ€Growing Field of Interfacial Solar Steam Generation: Evolutional Materials, Engineered Architectures, and Synergistic Applications. Solar Rrl, 2019, 3, 1800206.	3.1	132
94	Extremely high water-production created by a nanoink-stained PVA evaporator with embossment structure. Nano Energy, 2019, 55, 368-376.	8.2	86
95	Direct solar steam generation system for clean water production. Energy Storage Materials, 2019, 18, 429-446.	9.5	234
96	Highly efficient solar steam generation of low cost TiN/bio-carbon foam. Science China Materials, 2019, 62, 711-718.	3.5	55
97	A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation. Nano Energy, 2019, 56, 708-715.	8.2	349
98	Oxygenâ€Defected Molybdenum Oxides Hierarchical Nanostructure Constructed by Atomicâ€Level Thickness Nanosheets as an Efficient Absorber for Solar Steam Generation. Solar Rrl, 2019, 3, 1800277.	3.1	62
99	Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. Nanotechnology, 2019, 30, 015402.	1.3	59
100	N-doped graphene /carbon hybrid aerogels for efficient solar steam generation. Carbon, 2019, 142, 13-19.	5.4	146
101	Saltâ€Resistant Carbon Nanotubes/Polyvinyl Alcohol Hybrid Gels with Tunable Water Transport for Highâ€Efficiency and Longâ€Term Solar Steam Generation. Energy Technology, 2020, 8, 1900721.	1.8	46
102	A robust asymmetric porous SWCNT/Gelatin thin membrane with salt-resistant for efficient solar vapor generation. Applied Materials Today, 2020, 18, 100459.	2.3	24
103	Tailoring Aerogels and Related 3D Macroporous Monoliths for Interfacial Solar Vapor Generation. Advanced Functional Materials, 2020, 30, 1907234.	7.8	109
104	A simple and universal strategy to deposit Ag/polypyrrole on various substrates for enhanced interfacial solar evaporation and antibacterial activity. Chemical Engineering Journal, 2020, 384, 123379.	6.6	126
105	Laser-Synthesized Rutile TiO ₂ with Abundant Oxygen Vacancies for Enhanced Solar Water Evaporation. ACS Sustainable Chemistry and Engineering, 2020, 8, 1095-1101.	3.2	65
106	All-weather-available, continuous steam generation based on the synergistic photo-thermal and electro-thermal conversion by MXene-based aerogels. Materials Horizons, 2020, 7, 855-865.	6.4	153
107	Three-dimensional hierarchical CuxS-based evaporator for high-efficiency multifunctional solar distillation. Nano Energy, 2020, 69, 104465.	8.2	107
108	Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. Desalination, 2020, 478, 114288.	4.0	95

#	Article	IF	CITATIONS
109	Scalable porous Al foil/reduced graphene oxide/Mn3O4 composites for efficient fresh water generation. Materials Today Energy, 2020, 15, 100371.	2.5	18
110	Overcoming Salt Crystallization During Solar Desalination Based on Diatomite-Regulated Water Supply. ACS Sustainable Chemistry and Engineering, 2020, 8, 1548-1554.	3.2	31
111	Solar–Thermal Water Evaporation: A Review. ACS Energy Letters, 2020, 5, 437-456.	8.8	224
112	A 3D Hemispheric Steam Generator Based on An Organic–Inorganic Composite Light Absorber for Efficient Solar Evaporation and Desalination. Advanced Materials Interfaces, 2020, 7, 1901715.	1.9	45
113	Enhanced water yield of solar desalination by thermal concentrated multistage distiller. Desalination, 2020, 477, 114260.	4.0	61
114	Recent advances and challenges for solar-driven water evaporation system toward applications. Nano Energy, 2020, 68, 104324.	8.2	268
115	3D network structure and hydrophobic Ni-G-WO3-x solar-driven interfacial evaporator for highly efficient steam generation. Solar Energy Materials and Solar Cells, 2020, 217, 110593.	3.0	22
116	Accelerating solar desalination in brine through ion activated hierarchically porous polyion complex hydrogels. Materials Horizons, 2020, 7, 3187-3195.	6.4	99
117	Chinese ink enabled wood evaporator for continuous water desalination. Desalination, 2020, 496, 114727.	4.0	62
118	A photothermal and Fenton active MOF-based membrane for high-efficiency solar water evaporation and clean water production. Journal of Materials Chemistry A, 2020, 8, 22728-22735.	5.2	64
119	Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nature Sustainability, 2020, 3, 938-946.	11.5	139
120	Flexible Salt-Rejecting Photothermal Paper Based on Reduced Graphene Oxide and Hydroxyapatite Nanowires for High-Efficiency Solar Energy-Driven Vapor Generation and Stable Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32556-32565.	4.0	95
121	A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. Journal of Materials Chemistry A, 2020, 8, 16212-16217.	5.2	76
122	A yolk@shell superhydrophobic/superhydrophilic solar evaporator for efficient and stable desalination. Journal of Materials Chemistry A, 2020, 8, 14736-14745.	5.2	61
123	Cellular Structured CNTs@SiO ₂ Nanofibrous Aerogels with Vertically Aligned Vessels for Saltâ€Resistant Solar Desalination. Advanced Materials, 2020, 32, e1908269.	11.1	257
124	A Flexible Polymer Nanofiberâ€Gold Nanoparticle Composite Film for Solarâ€Thermal Seawater Desalination. Macromolecular Rapid Communications, 2020, 41, e2000390.	2.0	12
125	Janus Evaporators with Self-Recovering Hydrophobicity for Salt-Rejecting Interfacial Solar Desalination. ACS Nano, 2020, 14, 17419-17427.	7.3	150
126	A general method for selectively coating photothermal materials on 3D porous substrate surfaces towards cost-effective and highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 24703-24709.	5.2	65

#	Article	IF	CITATIONS
127	Recent advances in solar-driven evaporation systems. Journal of Materials Chemistry A, 2020, 8, 25571-25600.	5.2	77
128	Highly Efficient Solar Evaporator Based On a Hydrophobic Association Hydrogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 18114-18125.	3.2	42
129	Salt-Resistant Photothermal Materials Based on Monolithic Porous Ionic Polymers for Efficient Solar Steam Generation. ACS Applied Energy Materials, 2020, 3, 8746-8754.	2.5	32
131	A Novel Salt-Rejecting Linen Fabric-Based Solar Evaporator for Stable and Efficient Water Desalination under Highly Saline Water. ACS Sustainable Chemistry and Engineering, 2020, 8, 11845-11852.	3.2	65
132	Energy Matching for Boosting Water Evaporation in Direct Solar Steam Generation. Solar Rrl, 2020, 4, 2000341.	3.1	50
133	Recycling of Particulate Photoabsorbers for Highly Stable Solar Desalination Operation. ACS Applied Energy Materials, 2020, 3, 8295-8301.	2.5	9
134	Towards highly efficient solar-driven interfacial evaporation for desalination. Journal of Materials Chemistry A, 2020, 8, 17907-17937.	5.2	115
135	Ultra-black and self-cleaning all carbon nanotube hybrid films for efficient water desalination and purification. Carbon, 2020, 169, 134-141.	5.4	52
136	A MXeneâ€Based Hierarchical Design Enabling Highly Efficient and Stable Solarâ€Water Desalination with Good Salt Resistance. Advanced Functional Materials, 2020, 30, 2007110.	7.8	215
137	Omnidirectional, Broadband Light Absorption in a Hierarchical Nanoturf Membrane for an Advanced Solarâ€Vapor Generator. Advanced Functional Materials, 2020, 30, 2003862.	7.8	48
138	Artificial Trees Inspired by <i>Monstera</i> for Highly Efficient Solar Steam Generation in Both Normal and Weak Light Environments. Advanced Functional Materials, 2020, 30, 2005513.	7.8	95
139	Assembly of Janus complex with low-cost and salt rejection for solar-thermal water evaporation. Journal of Materials Science, 2020, 55, 15551-15561.	1.7	8
140	Preparation of efficient photothermal materials from waste coffee grounds for solar evaporation and water purification. Scientific Reports, 2020, 10, 12769.	1.6	26
141	Resilient biomass-derived hydrogel with tailored topography for highly efficient and long-term solar evaporation of high-salinity brine. Journal of Materials Chemistry A, 2020, 8, 22645-22656.	5.2	74
142	Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation. Nano Research, 2020, 13, 3048-3056.	5.8	163
143	The assembly of a polymer and metal nanoparticle coated glass capillary array for efficient solar desalination. Journal of Materials Chemistry A, 2020, 8, 25904-25912.	5.2	28
144	Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 51864-51872.	4.0	64
145	A self-regenerating air-laid paper wrapped ASA 3D cone-shaped Janus evaporator for efficient and stable solar desalination. Chemical Engineering Journal, 2020, 397, 125522.	6.6	73

#	Article	IF	Citations
146	Water Delivery Channel Design in Solar Evaporator for Efficient and Durable Water Evaporation with Salt Rejection. ACS Sustainable Chemistry and Engineering, 2020, 8, 7753-7761.	3.2	69
147	Airflow Enhanced Solar Evaporation Based on Janus Graphene Membranes with Stable Interfacial Floatability. ACS Applied Materials & Interfaces, 2020, 12, 25435-25443.	4.0	93
148	Doping AIE Photothermal Molecule into All-Fiber Aerogel with Self-Pumping Water Function for Efficiency Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 26033-26040.	4.0	85
149	Versatile coating with multifunctional performance for solar steam generation. Nano Energy, 2020, 74, 104886.	8.2	97
150	Double-layer cellulose hydrogel solar steam generation for high-efficiency desalination. Carbohydrate Polymers, 2020, 243, 116480.	5.1	100
151	A salt-rejecting anisotropic structure for efficient solar desalination <i>via</i> heat–mass flux decoupling. Journal of Materials Chemistry A, 2020, 8, 12089-12096.	5.2	27
152	Scalable, flexible and reusable graphene oxide-functionalized electrospun nanofibrous membrane for solar photothermal desalination. Desalination, 2020, 488, 114535.	4.0	71
153	Implementing Hybrid Energy Harvesting in 3D Spherical Evaporator for Solar Steam Generation and Synergic Water Purification. Solar Rrl, 2020, 4, 2000232.	3.1	84
154	Carbonized Bark by Laser Treatment for Efficient Solar-Driven Interface Evaporation. ACS Omega, 2020, 5, 13482-13488.	1.6	13
155	Corrugated Wood Fabricated Using Laser-Induced Graphitization for Salt-Resistant Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 30320-30327.	4.0	67
156	Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. International Journal of Molecular Sciences, 2020, 21, 4019.	1.8	51
157	Graphene and Rice-Straw-Fiber-Based 3D Photothermal Aerogels for Highly Efficient Solar Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 15279-15287.	4.0	284
158	Materials for solar-powered water evaporation. Nature Reviews Materials, 2020, 5, 388-401.	23.3	784
159	High-Performance Salt-Rejecting and Cost-Effective Superhydrophilic Porous Monolithic Polymer Foam for Solar Steam Generation. ACS Applied Materials & Interfaces, 2020, 12, 16308-16318.	4.0	144
160	Solar-driven interfacial desalination for simultaneous freshwater and salt generation. Desalination, 2020, 484, 114423.	4.0	121
161	Superhydrophilic porous carbon foam as a self-desalting monolithic solar steam generation device with high energy efficiency. Journal of Materials Chemistry A, 2020, 8, 9528-9535.	5.2	163
162	A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. Journal of Materials Chemistry A, 2020, 8, 10742-10746.	5.2	88
163	Structure Architecting for Saltâ€Rejecting Solar Interfacial Desalination to Achieve Highâ€Performance Evaporation With In Situ Energy Generation. Advanced Science, 2020, 7, 1903478.	5.6	224

#	Article	IF	CITATIONS
164	A salt-resistant Janus evaporator assembled from ultralong hydroxyapatite nanowires and nickel oxide for efficient and recyclable solar desalination. Nanoscale, 2020, 12, 6717-6728.	2.8	72
165	Modular Deformable Steam Electricity Cogeneration System with Photothermal, Water, and Electrochemical Tunable Multilayers. Advanced Functional Materials, 2020, 30, 2002867.	7.8	133
166	Facile Deflagration Synthesis of Hollow Carbon Nanospheres with Efficient Performance for Solar Water Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 35193-35200.	4.0	33
167	Electrically Conductive Carbon Aerogels with High Salt-Resistance for Efficient Solar-Driven Interfacial Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 32143-32153.	4.0	93
168	Solar-thermal conversion and steam generation: a review. Applied Thermal Engineering, 2020, 179, 115691.	3.0	95
169	Economical Salt-Resistant Superhydrophobic Photothermal Membrane for Highly Efficient and Stable Solar Desalination. ACS Applied Materials & Interfaces, 2020, 12, 35142-35151.	4.0	82
170	Facile Preparation of Three-Dimensional MoS ₂ Aerogels for Highly Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2020, 12, 32673-32680.	4.0	57
171	Temperature-difference-induced electricity during solar desalination with bilayer MXene-based monoliths. Nano Energy, 2020, 76, 105060.	8.2	37
172	A lotus leaf like vertical hierarchical solar vapor generator for stable and efficient evaporation of high-salinity brine. Chemical Engineering Journal, 2020, 401, 126108.	6.6	68
173	Flexible and Highly Efficient Bilayer Photothermal Paper for Water Desalination and Purification: Self-Floating, Rapid Water Transport, and Localized Heat. ACS Applied Materials & Interfaces, 2020, 12, 11204-11213.	4.0	63
174	Solar-driven steam generation on nitrogen-doped graphene in a 2D water path isolation system. Materials Research Express, 2020, 7, 015507.	0.8	10
175	Designing a bioinspired synthetic tree by unidirectional freezing for simultaneous solar steam generation and salt collection. EcoMat, 2020, 2, e12018.	6.8	65
176	Overcoming salt crystallization with ionic hydrogel for accelerating solar evaporation. Desalination, 2020, 482, 114385.	4.0	87
177	Photothermal hierarchical carbon nanotube/reduced graphene oxide microspherical aerogels with radially orientated microchannels for efficient cleanup of crude oil spills. Journal of Colloid and Interface Science, 2020, 570, 61-71.	5.0	83
178	Interfacial Solar Vapor Generation: Introducing Students to Experimental Procedures and Analysis for Efficiently Harvesting Energy and Generating Vapor at the Air–Water Interface. Journal of Chemical Education, 2020, 97, 1093-1100.	1.1	8
179	Structurally Ordered AgNPs@C ₃ N ₄ /GO Membranes toward Solar-Driven Freshwater Generation. ACS Sustainable Chemistry and Engineering, 2020, 8, 4362-4370.	3.2	39
180	In situ generation of carbonized polyaniline nanowires on thermally-treated and electrochemically-etched carbon fiber cloth for high efficient solar seawater desalination. Desalination, 2020, 481, 114303.	4.0	45
181	Solar-Driven Freshwater Generation from Seawater and Atmospheric Moisture Enabled by a Hydrophilic Photothermal Foam. ACS Applied Materials & Interfaces, 2020, 12, 10307-10316.	4.0	33

		CITATION REPORT		
#	Article		IF	CITATIONS
182	Asymmetric Surface Engineering for Janus Membranes. Advanced Materials Interfaces,	2020, 7, 1902064.	1.9	58
183	Efficient 3D-interfacial solar steam generation enabled by photothermal nanodiamond with optimized heat management. Applied Thermal Engineering, 2020, 171, 115059.	s paint-coat	3.0	32
184	Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desa Applied Energy Materials, 2020, 3, 2634-2642.	lination. ACS	2.5	73
185	Neoteric Conjugative Electrospinning towards Alloplastic Nanofiber Yarns Affording En Upconversion Luminescence and Tailored Magnetism. ChemNanoMat, 2020, 6, 298-30	hanced 07.	1.5	19
186	Interfacial solar evaporation for water production: from structure design to reliable per Molecular Systems Design and Engineering, 2020, 5, 419-432.	formance.	1.7	35
187	Multiple anisotropic conductions, up/down conversion luminescence and magnetism a 2D step-like Janus array film. Journal Physics D: Applied Physics, 2020, 53, 145301.	issembled into	1.3	2
188	Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-CO photothermal fiber membrane. Separation and Purification Technology, 2020, 239, 11		3.9	55
189	Solar-powered Janus membrane for one-step conversion of sewage to clean water. Che Engineering Journal, 2020, 387, 124131.	mical	6.6	70
190	MoS2@sponge with double layer structure for high-efficiency solar desalination. Desal 481, 114359.	ination, 2020,	4.0	62
191	Boosting solar steam generation by structure enhanced energy management. Science 65, 1380-1388.	Bulletin, 2020,	4.3	184
192	Tunable Graphene Systems for Water Desalination. ChemNanoMat, 2020, 6, 1028-104	18.	1.5	34
193	Latest development in salt removal from solar-driven interfacial saline water evaporato strategies and challenges. Water Research, 2020, 177, 115770.	rs: Advanced	5.3	131
194	Functional Janus-SiO ₂ Nanoparticles Prepared by a Novel "Cut the Go and Their Potential Application for Enhanced Oil Recovery. ACS Applied Materials &am 2020, 12, 24201-24208.		4.0	17
195	Ag/polypyrrole co-modified poly(ionic liquid)s hydrogels as efficient solar generators fo desalination. Materials Today Energy, 2020, 16, 100417.	r	2.5	44
196	Insights into the Photothermal Conversion of 2D MXene Nanomaterials: Synthesis, Me Applications. Advanced Functional Materials, 2020, 30, 2000712.	chanism, and	7.8	336
197	Laser-induced photothermal generation of flexible and salt-resistant monolithic bilayer for efficient solar desalination. Carbon, 2020, 164, 349-356.	membranes	5.4	51
198	Sprayâ€Coated Commercial PTFE Membrane from MoS ₂ /LaF _{3Absorber for Efficient Solar Steam Generation. Solar Rrl, 2020, 4, 2000126.}	>>/PDMS Ink as Solar	3.1	31
199	Electrospinningâ€Based Strategies for Battery Materials. Advanced Energy Materials, 2	.021, 11, 2000845.	10.2	169

#	Article	IF	CITATIONS
200	Sustainable Solar Evaporation from Solute Surface via Energy Downconversion. Global Challenges, 2021, 5, 2000077.	1.8	7
201	Efficient-heat-utilization 3D T-shaped porous sponge assists 2D photothermal films to achieve self-acting salt rejection and extra evaporation under high-concentration brine. Desalination, 2021, 499, 114806.	4.0	21
202	Facile and low-cost ceramic fiber-based carbon-carbon composite for solar evaporation. Science of the Total Environment, 2021, 759, 143546.	3.9	29
203	Salt Mitigation Strategies of Solarâ€Driven Interfacial Desalination. Advanced Functional Materials, 2021, 31, 2007855.	7.8	149
204	Surface self-assembled multi-layer MWCNTs-COOH/BN-PDA/CF for flexible and efficient solar steam generator. Journal of Cleaner Production, 2021, 279, 123626.	4.6	19
205	Magnetic MoS2 nanosheets as recyclable solar-absorbers for high-performance solar steam generation. Renewable Energy, 2021, 163, 146-153.	4.3	28
206	Solarâ€Driven Allâ€inâ€One Interfacial Water Evaporator Based on Electrostatic Flocking. Advanced Sustainable Systems, 2021, 5, .	2.7	16
207	Nanoenabled Photothermal Materials for Clean Water Production. Global Challenges, 2021, 5, 200055.	1.8	58
208	Porous evaporators with special wettability for low-grade heat-driven water desalination. Journal of Materials Chemistry A, 2021, 9, 702-726.	5.2	60
209	A janus solar evaporator with 2D water path for highly efficient salt-resisting solar steam generation. Solar Energy Materials and Solar Cells, 2021, 221, 110910.	3.0	62
210	A flexible and salt-rejecting electrospun film-based solar evaporator for economic, stable and efficient solar desalination and wastewater treatment. Chemosphere, 2021, 267, 128916.	4.2	38
211	Engineered two-dimensional nanomaterials: an emerging paradigm for water purification and monitoring. Materials Horizons, 2021, 8, 758-802.	6.4	92
212	Saltâ€Rejection Solar Absorbers Based on Porous Ionic Polymers Nanowires for Desalination. Macromolecular Rapid Communications, 2021, 42, 2000536.	2.0	28
213	Exceptional interfacial solar evaporation <i>via</i> heteromorphic PTFE/CNT hollow fiber arrays. Journal of Materials Chemistry A, 2021, 9, 390-399.	5.2	45
214	Superwetting monolithic hypercrosslinked polymers nanotubes with high salt-resistance for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2021, 221, 110913.	3.0	33
215	Simple Hierarchical Interface Design Strategy for Accelerating Solar Evaporation. Macromolecular Materials and Engineering, 2021, 306, 2000640.	1.7	18
216	Conjugated microporous polymers for near-infrared photothermal control of shape change. Science China Materials, 2021, 64, 430-439.	3.5	7
217	Solar-driven evaporators for water treatment: challenges and opportunities. Environmental Science: Water Research and Technology, 2021, 7, 24-39.	1.2	94

#	Article	IF	CITATIONS
218	A solution to break the salt barrier for high-rate sustainable solar desalination. Energy and Environmental Science, 2021, 14, 2451-2459.	15.6	87
219	A multi-functional photothermal-catalytic foam for cascade treatment of saline wastewater. Journal of Materials Chemistry A, 2021, 9, 16510-16521.	5.2	19
220	Architecting a Janus biomass carbon/sponge evaporator with salt-rejection and ease of floatation for sustainable solar-driven desalination. Environmental Science: Water Research and Technology, 2021, 7, 879-885.	1.2	19
221	Sustainable Solar Evaporation while Salt Accumulation. ACS Applied Materials & Interfaces, 2021, 13, 4935-4942.	4.0	46
222	Self-Assembled Hydrophobic/Hydrophilic Porphyrin-Ti ₃ C ₂ T <i>_x</i> MXene Janus Membrane for Dual-Functional Enabled Photothermal Desalination. ACS Applied Materials & Interfaces, 2021, 13, 3762-3770.	4.0	82
223	An all-in-one and scalable carbon fibre-based evaporator by using the weaving craft for high-efficiency and stable solar desalination. Journal of Materials Chemistry A, 2021, 9, 10945-10952.	5.2	45
224	Bioinspired structural and functional designs towards interfacial solar steam generation for clean water production. Materials Chemistry Frontiers, 2021, 5, 1510-1524.	3.2	42
225	Rational designs of interfacial-heating solar-thermal desalination devices: recent progress and remaining challenges. Journal of Materials Chemistry A, 2021, 9, 6612-6633.	5.2	51
226	A bioinspired solar evaporator for continuous and efficient desalination by salt dilution and secretion. Journal of Materials Chemistry A, 2021, 9, 17985-17993.	5.2	11
227	Scattering-mediated photothermal heating in plasmonic PES/Au membranes for heterogeneous catalysis. Materials Chemistry Frontiers, 2021, 5, 2425-2433.	3.2	4
228	Nano/microstructured materials for solar-driven interfacial evaporators towards water purification. Journal of Materials Chemistry A, 2021, 9, 13746-13769.	5.2	31
229	Graphene Oxide–Reduced Graphene Oxide Janus Membrane for Efficient Solar Generation of Water Vapor. ACS Applied Nano Materials, 2021, 4, 1916-1923.	2.4	20
230	A thermally insulated solar evaporator coupled with a passive condenser for freshwater collection. Journal of Materials Chemistry A, 2021, 9, 22428-22439.	5.2	16
231	Allâ€Cold Evaporation under One Sun with Zero Energy Loss by Using a Heatsink Inspired Solar Evaporator. Advanced Science, 2021, 8, 2002501.	5.6	225
232	Salt-resistant solar still based on hollow sphere porous ionic polymers for desalination. Microporous and Mesoporous Materials, 2021, 314, 110871.	2.2	10
233	Review of interface solar-driven steam generation systems: High-efficiency strategies, applications and challenges. Applied Energy, 2021, 283, 116361.	5.1	55
234	Efficient and antifouling interfacial solar desalination guided by a transient salt capacitance model. Cell Reports Physical Science, 2021, 2, 100330.	2.8	9
235	Designing aÂnext generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nature Communications, 2021, 12, 998.	5.8	136

#	Article	IF	CITATIONS
236	Novel Ramie Fabric-Based Draping Evaporator for Tunable Water Supply and Highly Efficient Solar Desalination. ACS Applied Materials & Interfaces, 2021, 13, 7200-7207.	4.0	37
238	Interfacial Super-Assembly of Ordered Mesoporous Silica–Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. ACS Applied Materials & Interfaces, 2021, 13, 8782-8793.	4.0	44
239	Magnetically Driven 3D Cellulose Film for Improved Energy Efficiency in Solar Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 7756-7765.	4.0	38
240	Interfacial Solar Vapor Generation: Materials and Structural Design. Accounts of Materials Research, 2021, 2, 198-209.	5.9	75
241	Porous wood-carbonized solar steam evaporator. Wood Science and Technology, 2021, 55, 625-637.	1.4	27
242	A Hollow and Compressible 3D Photothermal Evaporator for Highly Efficient Solar Steam Generation without Energy Loss. Solar Rrl, 2021, 5, 2100053.	3.1	127
243	Boosting solar steam generation by photothermal enhanced polydopamine/wood composites. Polymer, 2021, 217, 123464.	1.8	132
244	A high-efficiency salt-rejecting solar evaporator with optimized porous structure for continuous solar desalination. Applied Thermal Engineering, 2021, 187, 116515.	3.0	36
245	Janus membranes for membrane distillation: Recent advances and challenges. Advances in Colloid and Interface Science, 2021, 289, 102362.	7.0	97
246	Shape-Programmable Interfacial Solar Evaporator with Salt-Precipitation Monitoring Function. ACS Nano, 2021, 15, 5752-5761.	7.3	53
247	Interfacial Solar Distillation for Freshwater Production: Fate of Volatile and Semivolatile Organic Contaminants. Environmental Science & amp; Technology, 2021, 55, 6248-6256.	4.6	37
248	Integrated multifunctional device based on Bi2S3/Pd: Localized heat channeling for efficient photothermic vaporization and real-time health monitoring. Nano Energy, 2021, 82, 105700.	8.2	41
249	Self-contained Janus Aerogel with Antifouling and Salt-Rejecting Properties for Stable Solar Evaporation. ACS Applied Materials & amp; Interfaces, 2021, 13, 18829-18837.	4.0	86
250	Scalable and low-cost fabrication of hydrophobic PVDF/WS2 porous membrane for highly efficient solar steam generation. Journal of Colloid and Interface Science, 2021, 588, 369-377.	5.0	36
251	Fabrication of TPE/CNTs film at air/water interface for flexible and superhydrophobic wearable sensors. Chemical Engineering Journal, 2021, 409, 128199.	6.6	32
252	Continuous solar desalination based on restricted salt crystallization zone. Desalination, 2021, 501, 114911.	4.0	25
253	Hierarchically Designed Saltâ€Resistant Solar Evaporator Based on Donnan Effect for Stable and Highâ€Performance Brine Treatment. Advanced Functional Materials, 2021, 31, 2100025.	7.8	94
254	Porous TiNO solar-driven interfacial evaporator for high-efficiency seawater desalination. AIP Advances, 2021, 11, .	0.6	7

#	Article	IF	CITATIONS
255	Simultaneous Solar Steam and Electricity Generation from Synergistic Salinityâ€Temperature Gradient. Advanced Energy Materials, 2021, 11, 2100481.	10.2	42
256	Salt-resistant carbon dots modified solar steam system enhanced by chemical advection. Carbon, 2021, 176, 313-326.	5.4	68
257	Versatile Janus Composite Nonwoven Solar Absorbers with Salt Resistance for Efficient Wastewater Purification and Desalination. ACS Applied Materials & Interfaces, 2021, 13, 24945-24956.	4.0	49
258	Janus Photothermal Membrane as an Energy Generator and a Mass-Transfer Accelerator for High-Efficiency Solar-Driven Membrane Distillation. ACS Applied Materials & Interfaces, 2021, 13, 26861-26869.	4.0	37
259	Harvesting Solar Energy by Flowerlike Carbon Cloth Nanocomposites for Simultaneous Generation of Clean Water and Electricity. ACS Applied Materials & Interfaces, 2021, 13, 27129-27139.	4.0	71
260	Aligned Millineedle Arrays for Solar Power Seawater Desalination with Siteâ€Specific Salt Formation. Small, 2021, 17, e2101487.	5.2	36
261	A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation. Journal of Colloid and Interface Science, 2021, 592, 77-86.	5.0	62
262	Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. ACS Nano, 2021, 15, 12256-12266.	7.3	121
263	Carbon Materials for Solar Water Evaporation and Desalination. Small, 2021, 17, e2007176.	5.2	186
264	Novel oil-repellent photothermal materials based on copper foam for efficient solar steam generation. Solar Energy Materials and Solar Cells, 2021, 225, 111058.	3.0	25
265	Hollow Carbon Fiber Decorated by Nano Structure Surface for Highâ€Efficiency Water Steam Generation. Advanced Sustainable Systems, 2021, 5, 2100122.	2.7	14
266	Nanofiber based origami evaporator for multifunctional and omnidirectional solar steam generation. Carbon, 2021, 177, 199-206.	5.4	56
267	Dualâ€Zone Photothermal Evaporator for Antisalt Accumulation and Highly Efficient Solar Steam Generation. Advanced Functional Materials, 2021, 31, 2102618.	7.8	226
268	Interfacial solar vapor generation for desalination and brine treatment: Evaluating current strategies of solving scaling. Water Research, 2021, 198, 117135.	5.3	57
269	High-Performance Ultrafine Bubble Aeration on Janus Aluminum Foil Prepared by Laser Microfabrication. Langmuir, 2021, 37, 6947-6952.	1.6	9
270	Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy, 2021, 85, 105979.	8.2	88
271	Robust 3D Graphene/Cellulose Nanocrystals Hybrid Lamella Network for Stable and Highly Efficient Solar Desalination. Solar Rrl, 2021, 5, 2100317.	3.1	29
272	Sustainable self-cleaning evaporator for long-term solar desalination using gradient structure tailored hydrogel. Chemical Engineering Journal, 2021, 415, 128893.	6.6	80

#	Article	IF	CITATIONS
273	Design and Utilization of Infrared Light for Interfacial Solar Water Purification. ACS Energy Letters, 2021, 6, 2645-2657.	8.8	29
274	A design of bifunctional photothermal layer on polysulfone membrane with enclosed cellular-like structure for efficient solar steam generation. Chemical Engineering Journal, 2021, 415, 128798.	6.6	42
275	One-step ultrafast deflagration synthesis of N-doped WO2.9 nanorods for solar water evaporation. Applied Surface Science, 2021, 555, 149697.	3.1	20
276	Fe3O4/polyvinyl alcohol decorated delignified wood evaporator for continuous solar steam generation. Desalination, 2021, 507, 115024.	4.0	97
277	Tailoring Photophysical Properties of Diketopyrrolopyrrole Small Molecules with Electron-Withdrawing Moieties for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2021, 13, 38365-38374.	4.0	12
278	Salt-Resistive Photothermal Materials and Microstructures for Interfacial Solar Desalination. Frontiers in Energy Research, 2021, 9, .	1.2	6
279	Microgroove-Structured PDA/PEI/PPy@PI-MS Photothermal Aerogel with a Multilevel Water Transport Network for Highly Salt-Rejecting Solar-Driven Interfacial Evaporation. ACS Applied Materials & Interfaces, 2021, 13, 40531-40542.	4.0	52
280	Vertically symmetrical evaporator based on photothermal fabrics for efficient continuous desalination through inversion strategy. Desalination, 2021, 509, 115072.	4.0	34
281	Luminous efficacy enhancement for LED lamps using highly reflective quantum dot-based photoluminescent films. Optics Express, 2021, 29, 29007.	1.7	4
282	Conformal Microfluidicâ€Blowâ€Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO ₂ Reduction. Advanced Science, 2021, 8, e2101232.	5.6	68
283	Porous Janus materials with unique asymmetries and functionality. Materials Today, 2021, 51, 626-647.	8.3	113
284	Highly Saltâ€Resistant 3D Hydrogel Evaporator for Continuous Solar Desalination via Localized Crystallization. Advanced Functional Materials, 2021, 31, 2104380.	7.8	122
285	Cationic Photothermal Hydrogels with Bacteria-Inhibiting Capability for Freshwater Production via Solar-Driven Steam Generation. ACS Applied Materials & amp; Interfaces, 2021, 13, 37724-37733.	4.0	39
286	Dual-Functional Graphene Oxide-Based Photothermal Materials with Aligned Channels and Oleophobicity for Efficient Solar Steam Generation. Langmuir, 2021, 37, 10191-10199.	1.6	28
287	Lowâ€Cost, Unsinkable, and Highly Efficient Solar Evaporators Based on Coating MWCNTs on Nonwovens with Unidirectional Waterâ€Transfer. Advanced Science, 2021, 8, e2101727.	5.6	65
288	Rational Design of a High Performance and Robust Solar Evaporator via 3Dâ€Printing Technology. Advanced Materials, 2021, 33, e2102649.	11.1	43
289	Carbon nanomaterials treated by combination of oxidation and flash for highly efficient solar water evaporation. Chemosphere, 2021, 277, 130248.	4.2	30
290	A self-floating, salt-resistant 3D Janus radish-based evaporator for highly efficient solar desalination. Desalination, 2021, 510, 115093.	4.0	67

#	Article	IF	CITATIONS
291	Potential and challenges of improving solar still by micro/nano-particles and porous materials - A review. Journal of Cleaner Production, 2021, 311, 127432.	4.6	65
292	Enhancement in photothermal conversion property of polypyrrole-decorated polyurethane/zirconium carbide fibrous membrane. Materials Today Communications, 2021, 28, 102584.	0.9	8
293	Materials and structures engineering of sun-light absorbers for efficient direct solar steam generation. Solar Energy, 2021, 225, 747-772.	2.9	18
294	Increased Continuity of the PA6 Phase from the PS Matrix Induced by Migrating Janus Particles and Its Application in Thermal Conductivity. Industrial & Engineering Chemistry Research, 2021, 60, 13905-13913.	1.8	2
295	Aligned Attapulgite-based aerogels with excellent mechanical property for the highly efficient solar steam generation. Separation and Purification Technology, 2021, 271, 118869.	3.9	42
296	Laser-Induced Porous Graphene on a Polyimide Membrane with a Melamine Sponge Framework (PI@MS) for Long-Term Stable Steam Generation. ACS Applied Energy Materials, 2021, 4, 9766-9774.	2.5	12
297	Expanding the Conjugate Structure of Polymeric Carbon Nitride for Enhanced Light Absorption and Photothermal Conversion. Macromolecular Rapid Communications, 2021, 42, e2100502.	2.0	6
298	Enhancing solar steam generation using a highly thermally conductive evaporator support. Science Bulletin, 2021, 66, 2479-2488.	4.3	159
299	Porous Polydimethylsiloxane/Au Composites as Solarâ€Light Absorbers for Lightâ€Driven Thermoelectric Applications. Macromolecular Materials and Engineering, 2021, 306, 2100351.	1.7	7
300	Intensifying Solar Interfacial Heat Accumulation for Clean Water Generation Excluding Heavy Metal Ions and Oil Emulsions. Solar Rrl, 2021, 5, 2100427.	3.1	37
301	Biomass-based photothermal materials for interfacial solar steam generation: a review. Materials Today Energy, 2021, 21, 100716.	2.5	48
302	A self-floating electrospun nanofiber mat for continuously high-efficiency solar desalination. Chemosphere, 2021, 280, 130719.	4.2	29
303	Low-cost and facile hydrophilic amplification of raw corn straws for the applications of highly efficient interfacial solar steam generation. Materials Chemistry and Physics, 2021, 271, 124904.	2.0	27
304	A nature-inspired suspended solar evaporator for water desalination of high-salinity brines. Chemical Engineering Journal, 2021, 421, 129824.	6.6	47
305	Interfacial solar evaporator for clean water production and beyond: From design to application. Applied Energy, 2021, 299, 117317.	5.1	33
306	3D microflowers CuS/Sn2S3 heterostructure for highly efficient solar steam generation and water purification. Solar Energy Materials and Solar Cells, 2021, 232, 111377.	3.0	29
307	Magnetic recyclable self-floating solar light-driven WO2.72/Fe3O4 nanocomposites immobilized by Janus membrane for photocatalysis of inorganic and organic pollutants. Journal of Industrial and Engineering Chemistry, 2021, 102, 25-34.	2.9	31
308	Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chemical Engineering Journal, 2021, 421, 129822.	6.6	57

#	Article	IF	CITATIONS
309	A salt-free superhydrophilic metal-organic framework photothermal textile for portable and efficient solar evaporator. Solar Energy Materials and Solar Cells, 2021, 231, 111329.	3.0	23
310	Zwitterionic hydrogel coated superhydrophilic hierarchical antifouling floater enables unimpeded interfacial steam generation and multi-contamination resistance in complex conditions. Chemical Engineering Journal, 2021, 421, 130344.	6.6	48
311	A bio-inspired nanocomposite membrane with improved light-trapping and salt-rejecting performance for solar-driven interfacial evaporation applications. Nano Energy, 2021, 89, 106443.	8.2	75
312	Mussel-inspired photothermal synergetic system for clean water production using full-spectrum solar energy. Chemical Engineering Journal, 2021, 423, 129099.	6.6	78
313	Tailoring polypyrrole-based Janus aerogel for efficient and stable solar steam generation. Desalination, 2021, 516, 115228.	4.0	63
314	Lanthanide doped two dimensional heterostructure nanosheets with highly efficient harvest towards solar energy. Materials and Design, 2021, 210, 110023.	3.3	10
315	Green-solvent-processed amphiphobic polyurethane nanofiber membranes with mechanically stable hierarchical structures for seawater desalination by membrane distillation. Desalination, 2021, 516, 115223.	4.0	16
316	Superhydrophilic carbon nanofiber membrane with a hierarchically macro/meso porous structure for high performance solar steam generators. Desalination, 2021, 516, 115224.	4.0	56
317	Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems. Nano Energy, 2021, 89, 106468.	8.2	106
318	Carbonized cattle manure-based photothermal evaporator with hierarchically bimodal pores for solar desalination in high-salinity brines. Desalination, 2021, 520, 115345.	4.0	22
319	Metal-ceramic carbide integrated solar-driven evaporation device based on ZrC nanoparticles for water evaporation and desalination. Chemical Engineering Journal, 2022, 429, 132014.	6.6	20
320	Bioinspired design of electrospun nanofiber based aerogel for efficient and cost-effective solar vapor generation. Chemical Engineering Journal, 2022, 427, 131539.	6.6	51
321	Salt-resistant Schiff base cross-linked superelastic photothermal cellulose aerogels for long-term seawater desalination. Chemical Engineering Journal, 2022, 427, 131618.	6.6	78
323	Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy and Environmental Science, 2021, 14, 5347-5357.	15.6	133
324	Templating synthesis of natural cotton-based hierarchically structured carbon hollow microfibers for high-performance solar vapor generation. Journal of Materials Chemistry A, 2021, 9, 15346-15354.	5.2	24
325	Innovative salt-blocking technologies of photothermal materials in solar-driven interfacial desalination. Journal of Materials Chemistry A, 2021, 9, 16233-16254.	5.2	107
326	Salt-Rejecting Solar Interfacial Evaporation. Cell Reports Physical Science, 2021, 2, 100310.	2.8	76
327	Passive, high-efficiency thermally-localized solar desalination. Energy and Environmental Science, 2021, 14, 1771-1793.	15.6	142

#	Article	IF	CITATIONS
328	Ultraâ€Black Pinecone for Efficient Solar Steam Generation under Omnidirectional Illumination. Advanced Sustainable Systems, 2021, 5, 2000244.	2.7	16
329	Selfâ€Cleaning Integrative Aerogel for Stable Solarâ€Assisted Desalination. Global Challenges, 2021, 5, 2000063.	1.8	16
330	Advances in Solarâ€Ðriven Hygroscopic Water Harvesting. Global Challenges, 2021, 5, 2000085.	1.8	28
331	Building of multifunctional and hierarchical HxMoO3/PNIPAM hydrogel for high-efficiency solar vapor generation. Green Energy and Environment, 2022, 7, 1006-1013.	4.7	21
332	Free-standing reduced graphene oxide (rGO) membrane for salt-rejecting solar desalination via size effect. Nanophotonics, 2020, 9, 4601-4608.	2.9	33
333	Janus Poly(Vinylidene Fluoride) Membranes with Penetrative Pores for Photothermal Desalination. Research, 2020, 2020, 3241758.	2.8	42
334	Construction of Novel Biomassâ€Based Solar Evaporator with Asymmetric Dualâ€Layer Structure for Water Desalination. Advanced Sustainable Systems, 2022, 6, 2100274.	2.7	5
335	2D Ferrous Ion rosslinked Ti ₃ C ₂ T <i>_x</i> MXene Aerogel Evaporators for Efficient Solar Steam Generation. Advanced Sustainable Systems, 2021, 5, 2100263.	2.7	30
336	Polymeric materials for solar water purification. Journal of Polymer Science, 2021, 59, 3084-3099.	2.0	21
337	Renewable Water Harvesting by Amyloid Aerogels and Sun. Advanced Sustainable Systems, 2022, 6, 2100309.	2.7	13
338	Engineering a Copper@Polypyrrole Nanowire Network in the Near Field for Plasmon-Enhanced Solar Evaporation. ACS Nano, 2021, 15, 16376-16394.	7.3	39
339	Interfacial Solar Steam Generations: Materials, Structures and Applications. , 2018, , .		0
340	Non-noble metal based broadband photothermal absorbers for cost effective interfacial solar thermal conversion. Nanophotonics, 2020, 9, 1539-1546.	2.9	19
341	Titanium Nitride Nanodonuts Synthesized from Natural Ilmenite Ore as a Novel and Efficient Thermoplasmonic Material. Nanomaterials, 2021, 11, 76.	1.9	7
342	Orientational seawater transportation through Cu(TCNQ) nanorod arrays for efficient solar desalination and salt production. Desalination, 2022, 522, 115399.	4.0	18
343	Metal organic framework enabled wood evaporator for solar-driven water purification. Separation and Purification Technology, 2022, 281, 119912.	3.9	48
344	High-rate long-lasting solar desalination towards hypersaline brine enabled by introducing a siphon-drop mode. Chemical Engineering Journal, 2022, 430, 133043.	6.6	10
345	Enhancing stability of interfacial solar evaporator in high-salinity solutions by managing salt precipitation with Janus-based directional salt transfer structure. Desalination, 2022, 524, 115470.	4.0	19

#	ARTICLE	IF	CITATIONS
346	Highly efficient solar vapour generation via self-floating three-dimensional Ti2O3-based aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 128031.	2.3	19
347	Forest-like Laser-Induced Graphene Film with Ultrahigh Solar Energy Utilization Efficiency. ACS Nano, 2021, 15, 19490-19502.	7.3	90
348	Scalable Carbon Black Enhanced Nanofiber Network Films for Highâ€Efficiency Solar Steam Generation. Advanced Materials Interfaces, 2021, 8, 2101160.	1.9	14
349	One-step electrospinning membranes with gradual-transition wettability gradient for directional fluid transport. Journal of Membrane Science, 2022, 644, 120091.	4.1	12
350	Applications of bio-derived/bio-inspired materials in the field of interfacial solar steam generation. Nano Research, 2022, 15, 3122-3142.	5.8	19
351	Design of a Separated Solar Interfacial Evaporation System for Simultaneous Water and Salt Collection. ACS Applied Materials & Interfaces, 2021, 13, 59518-59526.	4.0	26
352	Nature Inspired MXene-Decorated 3D Honeycomb-Fabric Architectures Toward Efficient Water Desalination and Salt Harvesting. Nano-Micro Letters, 2022, 14, 10.	14.4	104
353	Solar-driven interfacial evaporation toward clean water production: burgeoning materials, concepts and technologies. Journal of Materials Chemistry A, 2021, 9, 27121-27139.	5.2	63
354	Photothermal Diatomite/Carbon Nanotube Combined Aerogel for Highâ€Efficiency Solar Steam Generation and Wastewater Purification. Solar Rrl, 2022, 6, .	3.1	9
355	A robust and renewable solar steam generator for high concentration dye wastewater purification. Journal of Materials Chemistry A, 2022, 10, 3436-3442.	5.2	21
356	All-in-one polymer sponge composite 3D evaporators for simultaneous high-flux solar-thermal desalination and electricity generation. Nano Energy, 2022, 93, 106882.	8.2	87
357	Recent advances and challenges of emerging solar-driven steam and the contribution of photocatalytic effect. Chemical Engineering Journal, 2022, 431, 134024.	6.6	85
358	Polyelectrolyte-based photothermal hydrogel with low evaporation enthalpy for solar-driven salt-tolerant desalination. Chemical Engineering Journal, 2022, 431, 134224.	6.6	82
359	Flexible 2D@3D Janus evaporators for high-performance and continuous solar desalination. Desalination, 2022, 525, 115483.	4.0	39
360	Bio-inspired hierarchically porous membrane with superhydrophobic antifouling surface for solar-driven dehumidifying system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 636, 128168.	2.3	5
361	Hydrophobic and porous carbon nanofiber membrane for high performance solar-driven interfacial evaporation with excellent salt resistance. Journal of Colloid and Interface Science, 2022, 612, 66-75.	5.0	35
362	Hierarchically structured evaporator with integrated water supply and evaporation layers to retard salt accumulation. International Journal of Heat and Mass Transfer, 2022, 185, 122447.	2.5	19
363	Alkaline earth metals doped VO2 nanoparticles for enhanced interfacial solar steam generation. Materials Research Bulletin, 2022, 149, 111705.	2.7	19

#	Article	IF	CITATIONS
364	A Stable Bilayer Polypyrroleâ€Sorghum Straw Evaporator for Efficient Solar Steam Generation and Desalination. Advanced Sustainable Systems, 2022, 6, 2100342.	2.7	13
365	Tailoring the Salt Transport Flux of Solar Evaporators for a Highly Effective Salt-Resistant Desalination with High Productivity. ACS Nano, 2022, 16, 2511-2520.	7.3	64
366	A bioinspired 3D solar evaporator with balanced water supply and evaporation for highly efficient photothermal steam generation. Journal of Materials Chemistry A, 2022, 10, 2856-2866.	5.2	61
367	Scalable Fabrication of Conjugated Microporous Polymer Sponges for Efficient Solar Steam Generation. ACS Applied Materials & Interfaces, 2022, 14, 4522-4531.	4.0	55
368	Seitenspezifische Funktionalisierung von Janusfasern aus rekombinanter Spinnenseide. Angewandte Chemie, 0, , .	1.6	0
369	Hyperstable and compressible plant fibers/chitosan aerogel as portable solar evaporator. Solar Energy, 2022, 231, 828-836.	2.9	17
370	An integrated solar absorber with salt-resistant and oleophobic based on PVDF composite membrane for solar steam generation. Materials Today Energy, 2022, 25, 100959.	2.5	6
371	Upscaling 3D Engineered Trees for Off-Grid Desalination. Environmental Science & Technology, 2022, 56, 1289-1299.	4.6	26
372	Site‧pecific Functionalization of Recombinant Spider Silk Janus Fibers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
373	Solar Selective Absorber for Emerging Sustainable Applications. Advanced Energy and Sustainability Research, 2022, 3, .	2.8	34
374	Plasmonic Metal Nanoparticle Loading to Enhance the Photothermal Conversion of Carbon Fibers. Journal of Physical Chemistry C, 2022, 126, 2454-2462.	1.5	23
375	Super hydrophilic 3D porous PDA@ carbonized sponge for high evaporation of seawater desalination. Materials Letters, 2022, 313, 131827.	1.3	0
376	Discarded-leaves derived biochar for highly efficient solar water evaporation and clean water production: The crucial roles of graphitized carbon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 639, 128337.	2.3	16
377	Rattan-based solar evaporator with natural hierarchical and gradient pore structure for synergetic salt resistance and stable freshwater generation. Separation and Purification Technology, 2022, 286, 120412.	3.9	13
378	Hierarchically structured bilayer Aerogel-based Salt-resistant solar interfacial evaporator for highly efficient seawater desalination. Separation and Purification Technology, 2022, 287, 120534.	3.9	37
379	A lotus-inspired 3D biomimetic design toward an advanced solar steam evaporator with ultrahigh efficiency and remarkable stability. Materials Horizons, 2022, 9, 1232-1242.	6.4	36
380	The High Flux of Superhydrophilic-Superhydrophobic Janus Membrane of cPVA-PVDF/PMMA/GO by Layer-by-Layer Electrospinning for High Efficiency Oil-Water Separation. Polymers, 2022, 14, 621.	2.0	20
381	Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery. Small, 2022, 18, e2107156.	5.2	48

#	Article	IF	CITATIONS
382	Multishelled CuO/Cu2O induced fast photo-vapour generation for drinking water. Nano Research, 2022, 15, 4117-4123.	5.8	13
383	Integrated Water and Thermal Managements in Bioinspired Hierarchical MXene Aerogels for Highly Efficient Solarâ€Powered Water Evaporation. Advanced Functional Materials, 2022, 32, .	7.8	94
384	<scp>Magneticâ€controllable</scp> Janus fibrous membranes with <scp>windâ€resistant</scp> floatability for <scp>airflowâ€enhanced</scp> solar evaporation. Journal of Polymer Science, 2022, 60, 2309-2317.	2.0	7
385	Localized interfacial activation effect within interconnected porous photothermal matrix to promote solar-driven water evaporation. Journal of Materials Chemistry A, 2022, 10, 10548-10556.	5.2	13
386	Solar-driven simultaneous desalination and power generation enabled by graphene oxide nanoribbon papers. Journal of Materials Chemistry A, 2022, 10, 9184-9194.	5.2	17
387	One-step biosynthesis of a bilayered graphene oxide embedded bacterial nanocellulose hydrogel for versatile photothermal membrane applications. Environmental Science: Nano, 2022, 9, 1639-1650.	2.2	3
388	Bifunctional <i>in situ</i> polymerized nanocomposites for convective solar desalination and enhanced photo-thermoelectric power generation. Environmental Science: Nano, 2022, 9, 1685-1698.	2.2	22
389	Fibrous Aerogels for Solar Vapor Generation. Frontiers in Chemistry, 2022, 10, 843070.	1.8	5
390	Facile fabrication of polydopamine nanosphere-decorated fabric for solar steam generation. Textile Reseach Journal, 2022, 92, 3451-3461.	1.1	2
391	Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 2022, 13, 849.	5.8	101
392	Mechanical response of surface wettability of Janus porous membrane and its application in oil–water separation. Nanotechnology, 2022, 33, 245704.	1.3	2
393	A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. Nanomaterials, 2022, 12, 859.	1.9	14
394	Costâ€Effective Fabrication of Microâ€Nanostructured Superhydrophobic Polyethylene/Graphene Foam with Selfâ€Floating, Optical Trapping, Acid…Alkali Resistance for Efficient Photothermal Deicing and Interfacial Evaporation. Small, 2022, 18, e2200175.	5.2	54
395	Porous polyvinyl alcohol/biochar hydrogel induced high yield solar steam generation and sustainable desalination. Journal of Environmental Chemical Engineering, 2022, 10, 107690.	3.3	18
396	Janus Co@C/NCNT photothermal membrane with multiple optical absorption for highly efficient solar water evaporation and wastewater purification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 128960.	2.3	17
397	Smart Janus membrane for on-demand separation of oil, bacteria, dye, and metal ions from complex wastewater. Chemical Engineering Science, 2022, 253, 117586.	1.9	22
398	Flexible MXene-based Janus porous fibrous membranes for sustainable solar-driven desalination and emulsions separation. Journal of Cleaner Production, 2022, 347, 131324.	4.6	45
399	Constructing of 3D porous composite materials of NiAl/CNTs for highly efficient solar steam generation. Solar Energy Materials and Solar Cells, 2022, 240, 111722.	3.0	20

#	Article	IF	CITATIONS
400	Lignin hydrogel-based solar-driven evaporator for cost-effective and highly efficient water purification. Desalination, 2022, 531, 115706.	4.0	27
401	Ultralight electrospun fiber foam with tunable lamellar macropores for efficient interfacial evaporation. Journal of Environmental Chemical Engineering, 2022, 10, 107522.	3.3	11
402	A review of nanofiber membranes for solar interface evaporation. Desalination, 2022, 531, 115686.	4.0	38
403	Advanced 2D–2D heterostructures of transition metal dichalcogenides and nitrogen-rich nitrides for solar water generation. Nano Energy, 2022, 98, 107192.	8.2	30
404	Highly stable gold nanolayer membrane for efficient solar water evaporation under a harsh environment. Chemosphere, 2022, 299, 134394.	4.2	7
405	Honeycomb-structured fabric with enhanced photothermal management and site-specific salt crystallization enables sustainable solar steam generation. Journal of Colloid and Interface Science, 2022, 619, 322-330.	5.0	17
406	Melamine/Silicone Hybrid Sponges with Controllable Microstructure and Wettability for Efficient Solar-Driven Interfacial Desalination. ACS Applied Materials & Interfaces, 2022, 14, 2360-2368.	4.0	35
407	SiO ₂ /MXene/Poly(tetrafluoroethylene)-Based Janus Membranes as Solar Absorbers for Solar Steam Generation. ACS Applied Nano Materials, 2021, 4, 14274-14284.	2.4	25
408	Biomimetic hydrophilic foam with micro/nano-scale porous hydrophobic surface for highly efficient solar-driven vapor generation. Science China Materials, 2022, 65, 1057-1067.	3.5	16
409	Silicate based solar evaporator with self-cleaning and corrosion resistant properties for durable seawater desalination. Sustainable Materials and Technologies, 2021, 30, e00362.	1.7	6
410	Inâ€Situ Selfâ€Assembled ZnO Foam Based on Graphene‣ike Ultrathin Nanosheets. Advanced Materials Interfaces, 2022, 9, .	1.9	1
411	Advances and challenges of broadband solar absorbers for efficient solar steam generation. Environmental Science: Nano, 2022, 9, 2264-2296.	2.2	20
412	Engineering a superhydrophilic TiC/C absorber with multiscale pore network for stable and efficient solar evaporation of high-salinity brine. Materials Today Energy, 2022, 26, 101009.	2.5	4
413	Freeze-casting multicomponent aerogel membrane with controllable asymmetric multilayer configuration for high flux gravity-driven separation of oil-water emulsion. Separation and Purification Technology, 2022, 293, 121087.	3.9	6
414	Chemical treatment of biomass wastes as carbon dot carriers for solar-driven water purification. Journal of Colloid and Interface Science, 2022, 621, 33-40.	5.0	18
415	Integrating a Self-Floating Janus TPC@CB Sponge for Efficient Solar-Driven Interfacial Water Evaporation. ACS Applied Materials & amp; Interfaces, 2022, 14, 19409-19418.	4.0	37
416	Coral-like hierarchically nanostructured membrane with high free volume for salt-free solar-enabled water purification. Materials Today Physics, 2022, 25, 100715.	2.9	2
417	Synergistic effect of reduced graphene oxide and carbon black as hybrid light absorber for efficient and antifouling texture-based solar steam generator. Solar Energy, 2022, 238, 226-237.	2.9	8

#	Article	IF	CITATIONS
418	Avantâ€Garde Solar–Thermal Nanostructures: Nascent Strategy into Effective Photothermal Desalination. Solar Rrl, 2022, 6, .	3.1	13
419	CNT/polyimide fiber-based 3D photothermal aerogel for high-efficiency and long-lasting seawater desalination. Desalination, 2022, 535, 115836.	4.0	23
420	Direct laser writing carbonization of polyimide films enabled multilayer structures for the use in interfacial solar-driven water evaporation. Journal of Materials Chemistry A, 2022, 10, 12692-12701.	5.2	7
421	Utilization of Block Copolymers to Understand Water Vaporization Enthalpy Reduction in Uniform Pores. Macromolecules, 2022, 55, 4803-4811.	2.2	5
422	High-Efficiency Electro/Solar-Driven Wearable Heater Tailored by Superelastic Hollow-Porous Polypyrrole/Polyurethane/Zirconium Carbide Fibers for Personal Cold Protection. ACS Applied Materials & Interfaces, 2022, 14, 24820-24831.	4.0	9
423	The preparation of transition-metal-carbides membrane and its promising application in solar steam generation. Chemical Physics Letters, 2022, 801, 139712.	1.2	3
424	Janus 3D solar crystallizer enabling an eco-friendly zero liquid discharge of high-salinity concentrated seawater with antiscalant. Desalination, 2022, 537, 115862.	4.0	15
425	Fabrication of Monopile Polymer Foams via Rotating Gas Foaming: Hybrid Applications in Solarâ€Powered Interfacial Evaporation and Water Remediation. Solar Rrl, 2022, 6, .	3.1	14
426	Solar-driven purification of highly polluted saline wastewater into clean water by carbonized lotus seedpod. Separation and Purification Technology, 2022, 296, 121401.	3.9	9
427	Interfacial solar evaporator synergistic phase change energy storage for all-day steam generation. Journal of Materials Chemistry A, 2022, 10, 15485-15496.	5.2	38
428	Microwave expanded graphite felt coated with sulfonated polystyrene as light absorber and selfâ€floating in photothermal water desalination. International Journal of Energy Research, 2022, 46, 15639-15653.	2.2	3
429	Recent progress in solar photothermal steam technology for water purification and energy utilization. Chemical Engineering Journal, 2022, 448, 137603.	6.6	53
430	Umbrella evaporator for continuous solar vapor generation and salt harvesting from seawater. Cell Reports Physical Science, 2022, 3, 100940.	2.8	8
431	Three-Dimensional Artificial Transpiration Structure Based on 1T/2H-MoS ₂ /Activated Carbon Fiber Cloth for Solar Steam Generation. ACS Applied Materials & Interfaces, 2022, 14, 29788-29796.	4.0	18
432	MXene-based flexible and washable photothermal fabrics for efficiently continuous solar-driven evaporation and desalination of seawater. Renewable Energy, 2022, 195, 407-415.	4.3	36
433	Flexible solar absorber using hydrophile/hydrophobe amphipathic Janus nanofiber as building unit for efficient vapor generation. Separation and Purification Technology, 2022, 297, 121526.	3.9	11
434	The advent of thermoplasmonic membrane distillation. Chemical Society Reviews, 2022, 51, 6087-6125.	18.7	56
435	Advanced solar desalination on superwetting surfaces. Journal of Materials Chemistry A, 2022, 10, 19348-19366.	5.2	9

#	Article	IF	CITATIONS
436	Breathâ€Figure Selfâ€Assembled Lowâ€Cost Janus Fabrics for Highly Efficient and Stable Solar Desalination. Advanced Functional Materials, 2022, 32, .	7.8	80
437	Towards highly salt-rejecting solar interfacial evaporation: Photothermal materials selection, structural designs, and energy management. , 2022, 1, e9120014.		49
438	Materials design and system structures of solar steam evaporators. Environmental Progress and Sustainable Energy, 2023, 42, .	1.3	5
439	Enhanced Contactless Salt-Collecting Solar Desalination. ACS Applied Materials & Interfaces, 2022, 14, 34151-34158.	4.0	13
440	Sandwich-type absorber for synergistically enhanced solar water evaporation and photocatalysis. Journal of Environmental Chemical Engineering, 2022, 10, 108173.	3.3	8
441	1T/2H MoS2 nanoflowers embedded in porous PDMS sponge with high salt-resistance for efficient and durable solar desalination. Desalination, 2022, 539, 115943.	4.0	20
442	Wettability Controlled Surface for Energy Conversion. Small, 2022, 18, .	5.2	17
443	N-Doped Graphene Aerogels Decorated by MoS ₂ Nanoflowers for Steam Generation under Low Solar Flux. ACS Applied Nano Materials, 2022, 5, 10237-10247.	2.4	6
444	A reconfigurable and magnetically responsive assembly for dynamic solar steam generation. Nature Communications, 2022, 13, .	5.8	52
445	In situ polymerization of pyrrole on elastic wood for high efficiency seawater desalination and oily water purification. Journal of Materials Science, 2022, 57, 16317-16332.	1.7	9
446	Janus Biopolymer Sponge with Porous Structure Based on Water Hyacinth Petiole for Efficient Solar Steam Generation. International Journal of Molecular Sciences, 2022, 23, 9185.	1.8	8
447	A Multiscale Porous 3Dâ€Fabric Evaporator with Vertically Aligned Yarns Enables Ultraâ€Efficient and Continuous Water Desalination. Advanced Functional Materials, 2022, 32, .	7.8	43
448	Notched nanoring wideband absorber for total solar energy harvesting. Solar Energy, 2022, 243, 153-162.	2.9	15
449	Single-shot production of Janus graphene thin film for solar steam generation with 94.5% efficiency. Carbon, 2022, 199, 469-478.	5.4	12
450	PBAT/MXene monolithic solar vapor generator with high efficiency on seawater evaporation and swage purification. Desalination, 2022, 541, 116015.	4.0	8
451	Meniscus inspired flexible superhydrophobic coating with remarkable erosion resistance for pipeline gas transmission. Chemical Engineering Journal, 2023, 451, 138573.	6.6	14
452	A review on evaporation improvement of solar still desalination using porous material. International Communications in Heat and Mass Transfer, 2022, 138, 106387.	2.9	32
453	Interfacial solar evaporation based on Janus films: An effective strategy to improve salt tolerance and antifouling performance. Desalination, 2022, 543, 116085.	4.0	28

#	Article	IF	Citations
454	Graphite/SnSe hybrid-embedded monolithic foams with hierarchical and bimodal pores for high performance solar desalination membranes with spontaneous salt rejection. Separation and Purification Technology, 2022, 302, 122166.	3.9	3
455	Interfacial solar evaporation toward efficient recovery of clean water and concentration of nutrients from urine with polypyrrole-based photothermal conversion films. Resources, Conservation and Recycling, 2023, 188, 106645.	5.3	12
456	Application of solar energy in modular drinking water treatment. , 2022, , 319-334.		0
457	A self-descaling Janus nanofibrous evaporator enabled by a "moving interface―for durable solar-driven desalination of hypersaline water. Journal of Materials Chemistry A, 2022, 10, 20856-20865.	5.2	23
458	3D printed electrospun nanofiber-based pyramid-shaped solar vapor generator with hierarchical porous structure for efficient desalination. Chemical Engineering Journal, 2023, 452, 139402.	6.6	15
459	Stable and Salt-Resistant Janus Evaporator Based on Cellulose Composite Aerogels from Waste Cotton Fabric. ACS Applied Materials & amp; Interfaces, 2022, 14, 41114-41121.	4.0	17
460	Fast Capture, Collection, and Targeted Transfer of Underwater Gas Bubbles Using Janus-Faced Carbon Cloth Prepared by a Novel and Simple Strategy. ACS Applied Materials & Interfaces, 2022, 14, 45013-45024.	4.0	8
461	Interfacial Photothermal Heat Accumulation for Simultaneous Salt Rejection and Freshwater Generation; an Efficient Solar Energy Harvester. Nanomaterials, 2022, 12, 3206.	1.9	9
462	From Materials to Devices: Rationally Designing Solar Steam System for Advanced Applications. Small Methods, 2022, 6, .	4.6	17
463	Strong tough hydrogel solar evaporator with wood skeleton construction enabling ultraâ€durable brine desalination. EcoMat, 2023, 5, .	6.8	23
464	Interfacial solar steam generation by wood-based devices to produce drinking water: a review. Environmental Chemistry Letters, 2023, 21, 285-318.	8.3	28
465	Minireview on Solar Desalination and Hydropower Generation by Water Evaporation: Recent Challenges and Perspectives in Materials Science. Energy & Fuels, 2022, 36, 11443-11456.	2.5	5
466	One-step construction of P(AM-DMDAAC)/GO aerogel evaporator with Janus wettability for stable solar-driven desalination. Separation and Purification Technology, 2022, 303, 122285.	3.9	14
467	An optical concentrator coupled multistage solar steam generation system for solar thermal-latent heat cascade utilization and water desalination: Performance and economic benefit analysis. Separation and Purification Technology, 2022, 303, 122191.	3.9	6
468	An integrated solar evaporator with multilevel hierarchy and multifunctional properties for efficient and salt fouling-resistant desalination. Journal of Materials Chemistry A, 2022, 10, 24373-24380.	5.2	8
469	A Waveâ€Driven Piezoelectrical Film for Interfacial Steam Generation: Beyond the Limitation of Hydrogel. Advanced Science, 2022, 9, .	5.6	11
470	Engineering Metal–Phenolic Networks for Solar Desalination with Directional Salt Crystallization. Advanced Materials, 2023, 35, .	11.1	40
471	Real-time and in situ monitoring of evaporation rate and salt precipitation during interfacial solar evaporation. Nano Energy, 2022, 104, 107961.	8.2	4

#	Article	IF	Citations
472	A novel, flexible porous nanofibrous hydrogel interfacial solar evaporator for highly efficient seawater and wastewater purification. Chemosphere, 2022, 309, 136818.	4.2	10
473	Magnetically recyclable 3D water evaporator for desalination and purification of oil-contaminated seawater. Desalination, 2023, 546, 116187.	4.0	14
474	Bio-inspired salt-fouling resistant graphene evaporators for solar desalination of hypersaline brines. Desalination, 2023, 546, 116197.	4.0	10
475	An anti-salt accumulation 2.5D arch solar-driven evaporator based on Marangoni effect for seawater desalination. Chemical Engineering Journal, 2023, 454, 140286.	6.6	9
476	Advances in shape memory polymers: Remote actuation, multi-stimuli control, 4D printing and prospective applications. Materials Science and Engineering Reports, 2022, 151, 100702.	14.8	34
477	Superelastic 3D Assembled Clay/Graphene Aerogels for Continuous Solar Desalination and Oil/Organic Solvent Absorption. Advanced Science, 2022, 9, .	5.6	21
478	Hofmeister Effectâ€Enhanced Hydration Chemistry of Hydrogel for Highâ€Efficiency Solarâ€Driven Interfacial Desalination. Advanced Materials, 2023, 35, .	11.1	57
479	Three-dimensional open architecture enabling salt-rejection solar evaporators with boosted water production efficiency. Nature Communications, 2022, 13, .	5.8	41
480	A thermos-inspired double structural design for efficient and sustainable solar-driven water purification. Journal of Environmental Chemical Engineering, 2023, 11, 109085.	3.3	1
481	Micro-macro-capillaries fabric-based evaporator for eliminating salt accumulation and highly efficient solar steam generation. Separation and Purification Technology, 2023, 308, 122852.	3.9	16
482	Advances in electrospun nanofibrous membrane sensors for ion detection. RSC Advances, 2022, 12, 34866-34891.	1.7	5
483	HRP-catalyzed grafting of MXene@PGA to silk fibers for visualization of dual-driven heating smart textile. International Journal of Biological Macromolecules, 2023, 226, 1141-1153.	3.6	14
484	Double-Layer MWCNTs@HPPS Photothermal Paper for Water Purification with Strong Acid-Alkali Corrosion Resistance. Membranes, 2022, 12, 1208.	1.4	1
485	Degradable and Recyclable Solar Desalination Membranes Based on Naturally Occurring Building Blocks. Chemistry of Materials, 2022, 34, 10399-10408.	3.2	20
486	Two dimensional (2D) materials and biomaterials for water desalination; structure, properties, and recent advances. Environmental Research, 2023, 219, 114998.	3.7	26
487	A Janus and superhydrophilic design for stable and efficient high-salinity brine solar interfacial desalination. Chemical Engineering Journal, 2023, 455, 140777.	6.6	10
488	Synergistic enhanced solar-driven water purification and CO2 reduction via photothermal catalytic membrane distillation. Separation and Purification Technology, 2023, 309, 123003.	3.9	11
489	Broadband absorption of electrospun scaffold-assisted self-assembled metal nanostructures for solar-powered water evaporation. Organic Electronics, 2022, , 106727.	1.4	1

#	Article	IF	CITATIONS
490	Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano Energy, 2023, 108, 108115.	8.2	28
491	Janus porous membranes with asymmetric wettability and self-floating properties for solar desalination. Journal of Polymer Research, 2023, 30, .	1.2	1
492	Processing Nomex Nanofibers by Ionic Solution Blow-Spinning for Efficient High-Temperature Exhausts Treatment. Advanced Fiber Materials, 2023, 5, 497-513.	7.9	6
493	Water bridge solar evaporator with salt-resistance and heat localization for efficient desalination. Journal of Materials Chemistry A, 2023, 11, 3118-3125.	5.2	12
494	Vertically π-extended strong acceptor unit boosting near-infrared photothermal conversion of conjugated polymers toward highly efficient solar-driven water evaporation. Journal of Materials Chemistry A, 2023, 11, 2933-2946.	5.2	12
495	Wormlike Perovskite Oxide Coupled with Phaseâ€Change Material for Allâ€Weather Solar Evaporation and Thermal Storage Applications. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	30
496	Solar-thermo-radiative evaporator for continuous steam generation and salt harvesting. Solar Energy, 2023, 250, 347-354.	2.9	8
497	Improved Photoâ€Excited Carriers Transportation of WS ₂ â€Oâ€Dopedâ€Graphene Heterostructures for Solar Steam Generation. Small, 2023, 19, .	5.2	8
498	Review of the progress of solar-driven interfacial water evaporation (SIWE) toward a practical approach. Energy Advances, 2023, 2, 574-605.	1.4	3
499	用于é«~性èf½å≇€~³èf½ç•Œé¢è',å\$çš,,织物äºë"™å&&æ°´å‡èf¶. Science China Materials, 2023, 66, 2852-	28 6. 2.	2
500	A 3D Corncob-based interfacial solar evaporator enhanced by environment energy with salt-rejecting and anti-corrosion for seawater distillation. Solar Energy, 2023, 252, 39-49.	2.9	19
501	Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review. Chemical Engineering Journal, 2023, 460, 141716.	6.6	17
502	Carbon nanotubes@fly ash Janus composite membrane prepared from fly ash and waste plastics for efficient solar membrane distillation. Journal of Membrane Science, 2023, 672, 121463.	4.1	6
503	CNT-based gel-coated cotton fabrics for constructing symmetrical evaporator with up/down inversion property for efficient continuous solar desalination. Desalination, 2023, 554, 116494.	4.0	12
504	Antibacterial smart absorbent pad with Janus structure for meat preservation. Food Packaging and Shelf Life, 2023, 37, 101066.	3.3	9
505	All-in-one solar-driven evaporator for high-performance water desalination and synchronous volatile organic compound degradation. Desalination, 2023, 555, 116536.	4.0	10
506	Architecting Janus hydrogel-fabric coupled evaporator for eliminating salt accumulation and highly efficient solar-driven brine desalination. Desalination, 2023, 556, 116567.	4.0	15
507	Continuous vapor generation for thermal-desalination applications using a thermosyphon based heat localization strategy. Desalination, 2023, 555, 116492.	4.0	1

#	Article	IF	CITATIONS
508	All-weather photothermal-electrothermal integrated system for efficient solar steam generation. Chemical Engineering Journal, 2023, 458, 141520.	6.6	14
509	Resource recovery from textile wastewater: Dye, salt, and water regeneration using solar-driven interfacial evaporation. Journal of Cleaner Production, 2023, 391, 136148.	4.6	10
510	Facile formation of Ag nanoworms based Janus nanofiber composites for efficient solar steam generation. Composites Communications, 2023, 38, 101516.	3.3	4
511	MXene-decorated flexible Al ₂ O ₃ /TiO ₂ nanofibrous mats with self-adaptive stress dispersion towards multifunctional desalination. Journal of Materials Chemistry A, 2023, 11, 7422-7431.	5.2	7
512	Phaseâ€Separated Polyzwitterionic Hydrogels with Tunable Spongeâ€Like Structures for Stable Solar Steam Generation. Advanced Functional Materials, 2023, 33, .	7.8	28
513	Recent advances in interfacial solar vapor generation: clean water production and beyond. Journal of Materials Chemistry A, 2023, 11, 5978-6015.	5.2	19
514	Smart Strategies for Light and Thermal Management in Highâ€Efficiency Solar Steam Generation. Solar Rrl, 2023, 7, .	3.1	11
515	Ionâ€Transfer Engineering via Janus Hydrogels Enables Ultrahigh Performance and Saltâ€Resistant Solar Desalination. Advanced Materials, 2023, 35, .	11.1	30
516	Dual-hydrophilic Janus evaporator for Long-term and efficient Bimode solar evaporation. Chemical Engineering Journal, 2023, 461, 141954.	6.6	12
517	A dual-functional device based on CB/PVDF@BFP for solar-driven water purification and water-induced electricity generation. Journal of Materials Chemistry A, 2023, 11, 8110-8118.	5.2	6
518	Backswimmer-inspired intelligent diving devices for water and wave-energy exploitation in the ocean. Matter, 2023, 6, 1249-1264.	5.0	5
519	Inkâ€Stained Chalk: A Lowâ€Cost 3D Evaporator for Efficient and Stable Solar Desalination. Solar Rrl, 2023, 7, .	3.1	4
520	Toward multitasking solar desalination: a Janus and scalable paper evaporator with light trapping, heat confinement, salt resistance, and pollutant degradation. Journal of Materials Chemistry A, 2023, 11, 10287-10296.	5.2	4
521	Bioinspired Nanofibrous Aerogel with Vertically Aligned Channels for Efficient Water Purification and Saltâ€Rejecting Solar Desalination. Advanced Functional Materials, 2023, 33, .	7.8	38
522	Fibrous Aerogels with Tunable Superwettability for High-Performance Solar-Driven Interfacial Evaporation. Nano-Micro Letters, 2023, 15, .	14.4	28
523	Aspects of Polymeric-Based Membranes in the Water Treatment Field: An Interim Structural Analysis. Water (Switzerland), 2023, 15, 1114.	1.2	2
524	Recent advances in carbonâ€based materials for solarâ€driven interfacial photothermal conversion water evaporation: Assemblies, structures, applications, and prospective. , 2023, 5, .		28
525	Biomass-Printed Hybrid Solar Evaporator Derived from Bio-polluted Invasive Species, a Potential Step toward Carbon Neutrality. ACS Applied Materials & Interfaces, 2023, 15, 16607-16620.	4.0	8

		CITATION REPORT		
#	Article		IF	Citations
526	Patterned Hybrid Wettability Surfaces for Fog Harvesting. Langmuir, 2023, 39, 4642-4	650.	1.6	6
527	Modeling and Analysis of Contactless Solar Evaporation for Scalable Application. Appli (Switzerland), 2023, 13, 4052.	ed Sciences	1.3	0
528	Eco-friendly and recyclable evaporator based on discarded cigarette filters for high-effi stable solar desalination. Cellulose, 2023, 30, 3745-3756.	ciency and	2.4	2
529	Patterned nanofibrous membrane via hot-pressing for enhanced solar thermal evapora Chemistry and Physics, 2023, 302, 127727.	tion. Materials	2.0	3
530	Electrospinning Technique Meets Solar Energy: Electrospun Nanofiber-Based Evaporat Solar Steam Generation. Advanced Fiber Materials, 2023, 5, 1318-1348.	on Systems for	7.9	19
531	Engineered Wood: Sustainable Technologies and Applications. Annual Review of Mate 2023, 53, 195-223.	rials Research,	4.3	3
532	Can solar energy help ZLD technologies to reduce their environmental footprint? - A Re Energy Materials and Solar Cells, 2023, 256, 112334.	eview. Solar	3.0	1
533	Strontium-Cobaltite-Based Perovskite (SrCoO3) for Solar-Driven Interfacial Evaporation Clean Water Generation. Nanomaterials, 2023, 13, 1420.	n Systems for	1.9	2
554	Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chemical Reviews, 2 6891-6952.	023, 123,	23.0	137
579	Liquid interfaces: an emerging platform for energy conversion and harvesting. Journal o Chemistry A, 2023, 11, 21009-21028.	of Materials	5.2	2
580	Advances in photothermal regulation strategies: from efficient solar heating to daytim cooling. Chemical Society Reviews, 2023, 52, 7389-7460.	e passive	18.7	9
625	From seawater to hydrogen via direct photocatalytic vapor splitting: A review on devic system integration. Frontiers in Energy, 0, , .	e design and	1.2	0