First results from the IllustrisTNG simulations: the stell clusters of galaxies

Monthly Notices of the Royal Astronomical Society 475, 648-675

DOI: 10.1093/mnras/stx3112

Citation Report

#	Article	IF	CITATIONS
1	The abundance, distribution, and physical nature of highly ionized oxygen O vi, O vii, and O viii in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2018, 477, 450-479.	1.6	133
2	The Impact of Environment on the Stellar Mass–Halo Mass Relation. Astrophysical Journal, 2018, 860, 2.	1.6	20
3	A Fundamental Test for Galaxy Formation Models: Matching the Lyman-α Absorption Profiles of Galactic Halos Over Three Decades in Distance. Astrophysical Journal, 2018, 859, 125.	1.6	20
4	A detection of the environmental dependence of the sizes and stellar haloes of massive central galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 480, 521-537.	1.6	27
5	The Mass and Absorption Column Densities of Galactic Gaseous Halos. II. The High Ionization State Ions. Astrophysical Journal, 2018, 862, 23.	1.6	12
6	First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	643
7	Connecting and dissecting galaxies' angular momenta and neutral gas in a hierarchical universe: cue Dark Sage. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5543-5559.	1.6	32
8	Localized massive halo properties in bahamas and MACSIS simulations: scalings, lognormality, and covariance. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2618-2632.	1.6	40
9	The fraction of dark matter within galaxies from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 1950-1975.	1.6	97
10	Statistical Properties of Paired Fixed Fields. Astrophysical Journal, 2018, 867, 137.	1.6	42
11	VEGAS: A VST Early-type Galaxy Survey. III. Mapping the Galaxy Structure, Interactions, and Intragroup Light in the NGC 5018 Group. Astrophysical Journal, 2018, 864, 149.	1.6	31
12	The Information Content in Cold Stellar Streams. Astrophysical Journal, 2018, 867, 101.	1.6	65
13	Supermassive black holes and their feedback effects in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4056-4072.	1.6	270
14	A-type stars in the Canada–France Imaging Survey I. The stellar halo of the Milky Way traced to large radius by blue horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5223-5235.	1.6	24
15	Ingredients for 21 cm Intensity Mapping. Astrophysical Journal, 2018, 866, 135.	1.6	139
16	Modeling the Atomic-to-molecular Transition in Cosmological Simulations of Galaxy Formation. Astrophysical Journal, Supplement Series, 2018, 238, 33.	3.0	71
17	Evolution of Starburst Galaxies in the Illustris Simulation. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	7
18	Baryon content in a sample of 91 galaxy clusters selected by the South Pole Telescope at 0.2Â <zâ<â1.25. 2018,="" 3072-3099.<="" 478,="" astronomical="" monthly="" notices="" of="" royal="" society,="" td="" the=""><td>1.6</td><td>70</td></zâ<â1.25.>	1.6	70

#	Article	IF	CITATIONS
19	Ring galaxies in the EAGLE hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2951-2969.	1.6	31
20	Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L16-L20.	1.2	75
21	Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 477, L35-L39.	1.2	21
22	BCG Mass Evolution in Cosmological Hydro-Simulations. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	38
23	Formation of a Malin 1 analogue in IllustrisTNG by stimulated accretion. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 480, L18-L22.	1.2	27
24	The FABLE simulations: a feedback model for galaxies, groups, and clusters. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5385-5412.	1.6	86
25	SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei. Astrophysical Journal, 2018, 856, 93.	1.6	31
26	The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2898-2915.	1.6	131
27	Gravitational Waves from Binary Mergers of Subsolar Mass Dark Black Holes. Physical Review Letters, 2018, 120, 241102.	2.9	57
28	Shattering of Cosmic Sheets due to Thermal Instabilities: A Formation Channel for Metal-free Lyman Limit Systems. Astrophysical Journal Letters, 2019, 881, L20.	3.0	22
29	The ultra-diffuse dwarf galaxies NGC 1052-DF2 and 1052-DF4 are in conflict with standard cosmology. Monthly Notices of the Royal Astronomical Society, 2019, 489, 2634-2651.	1.6	17
30	The Fornax3D project: Tracing the assembly history of the cluster from the kinematic and line-strength maps. Astronomy and Astrophysics, 2019, 627, A136.	2.1	49
31	The IllustrisTNG simulations: public data release. Computational Astrophysics and Cosmology, 2019, 6,	22.7	698
32	Simulating the effect of photoheating feedback during reionization. Monthly Notices of the Royal Astronomical Society, 2019, 488, 419-437.	1.6	23
33	Morphology and star formation in IllustrisTNG: the build-up of spheroids and discs. Monthly Notices of the Royal Astronomical Society, 2019, 487, 5416-5440.	1.6	109
34	The effects of dynamical substructure on Milky Way mass estimates from the high-velocity tail of the local stellar halo. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 487, L72-L76.	1.2	34
35	Realistic simulations of galaxy formation in f(R) modified gravity. Nature Astronomy, 2019, 3, 945-954.	4.2	32
36	Numerical convergence of simulations of galaxy formation: the abundance and internal structure of cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3663-3684.	1.6	53

	CITATION	Report	
#	Article	IF	Citations
37	Separate Universe simulations with IllustrisTNG: baryonic effects on power spectrum responses and higher-order statistics. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2079-2092.	1.6	39
38	A new method to quantify environment and model ram-pressure stripping in N-body simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4313-4331.	1.6	22
39	Detection of anti-correlation of hot and cold baryons in galaxy clusters. Nature Communications, 2019, 10, 2504.	5.8	38
40	New perspectives on the BOSS small-scale lensing discrepancy for the Planck Ĵ›CDM cosmology. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5771-5787.	1.6	28
41	Evolution of star formation rate–density relation over cosmic time in a simulated universe: the observed reversal reproduced. Monthly Notices of the Royal Astronomical Society, 2019, 489, 339-348.	1.6	20
42	Metallicity of stars formed throughout the cosmic history based on the observational properties of star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5300-5326.	1.6	50
43	First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3196-3233.	1.6	453
44	Origin of the galaxy H iÂsize–mass relation. Monthly Notices of the Royal Astronomical Society, 2019, 490, 96-113.	1.6	31
45	Revealing the galaxy–halo connection in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5693-5711.	1.6	59
46	SDSS-IV MaNGA: the inner density slopes of nearby galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2124-2138.	1.6	19
47	Simulating galaxy formation in f(R) modified gravity: matter, halo, and galaxy statistics. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2507-2520.	1.6	14
48	Spin evolution and feedback of supermassive black holes in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4133-4153.	1.6	36
49	Deep learning predictions of galaxy merger stage and the importance of observational realism. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5390-5413.	1.6	69
50	Early-type galaxy density profiles from IllustrisTNG – II. Evolutionary trend of the total density profile. Monthly Notices of the Royal Astronomical Society, 2019, 490, 5722-5738.	1.6	19
51	Mergers, starbursts, and quenching in the simba simulation. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2139-2154.	1.6	72
52	Identifying Kinematic Structures in Simulated Galaxies Using Unsupervised Machine Learning. Astrophysical Journal, 2019, 884, 129.	1.6	21
53	The Hubble Sequence at z â^1⁄4 0 in the IllustrisTNG simulation with deep learning. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1859-1879.	1.6	51
54	First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback. Monthly Notices of the Royal Astronomical Society, 2019, 490, 3234-3261.	1.6	510

#	Article	IF	CITATIONS
55	AGN-Driven Outflows in Dwarf Galaxies. Astrophysical Journal, 2019, 884, 54.	1.6	60
56	ALMACAL – VI. Molecular gas mass density across cosmic time via a blind search for intervening molecular absorbers. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1220-1230.	1.6	23
57	Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2629-2643.	1.6	23
58	Basilisk: Bayesian hierarchical inference of the galaxy–halo connection using satellite kinematics – I. Method and validation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4984-5013.	1.6	6
59	Dark Energy Survey Year 1 results: the effect of intracluster light on photometric redshifts for weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4389-4399.	1.6	7
60	A study of stellar orbit fractions: simulated IllustrisTNG galaxies compared to CALIFA observations. Monthly Notices of the Royal Astronomical Society, 2019, 489, 842-854.	1.6	19
61	Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3003-3013.	1.6	22
62	A Quantification of the Butterfly Effect in Cosmological Simulations and Implications for Galaxy Scaling Relations. Astrophysical Journal, 2019, 871, 21.	1.6	65
63	Galaxy Merger Fractions in Two Clusters at Using the Hubble Space Telescope. Astrophysical Journal, 2019, 874, 63.	1.6	22
64	Tidally induced bars in Illustris galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 483, 2721-2735.	1.6	58
65	No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4790-4804.	1.6	62
66	What shapes a galaxy? – unraveling the role of mass, environment, and star formation in forming galactic structure. Monthly Notices of the Royal Astronomical Society, 2019, 485, 666-696.	1.6	48
67	The TNG50 Simulation of the IllustrisTNG Project: Bridging the Gap Between Large Cosmological Volumes and Resolved Galaxies. , 2019, , 5-20.		0
68	On the Origin of Star–Gas Counterrotation in Low-mass Galaxies. Astrophysical Journal, 2019, 878, 143.	1.6	37
69	Atomic and molecular gas in IllustrisTNG galaxies at low redshift. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1529-1550.	1.6	67
70	The Impact of Environment on Late-time Evolution of the Stellar Mass–Halo Mass Relation. Astrophysical Journal, 2019, 878, 14.	1.6	10
71	ETHOS – an Effective Theory of Structure Formation: detecting dark matter interactions through the Lyman-α forest. Monthly Notices of the Royal Astronomical Society, 2019, 487, 522-536.	1.6	23
72	A Deep Learning Approach to Galaxy Cluster X-Ray Masses. Astrophysical Journal, 2019, 876, 82.	1.6	55

#	Article	IF	CITATIONS
73	Morphology-assisted galaxy mass-to-light predictions using deep learning. Astronomy and Astrophysics, 2019, 624, A102.	2.1	7
74	VEGAS: A VST Early-type GAlaxy Survey. IV. NGC 1533, IC 2038, and IC 2039: An Interacting Triplet in the Dorado Group. Astrophysical Journal, 2019, 874, 130.	1.6	18
75	Dark Energy Survey Year 1 Results: Detection of Intracluster Light at RedshiftÂâ^1⁄4Â0.25. Astrophysical Journal, 2019, 874, 165.	1.6	65
76	Extreme spheres: counts-in-cells for 21cm intensity mapping. Monthly Notices of the Royal Astronomical Society, 2019, 484, 269-281.	1.6	10
77	Baryons in the Cosmic Web of IllustrisTNG – I: gas in knots, filaments, sheets, and voids. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3766-3787.	1.6	120
78	Disruption of satellite galaxies in simulated groups and clusters: the roles of accretion time, baryons, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2019, 485, 2287-2311.	1.6	47
79	CHILES: HÂ <scp>i</scp> morphology and galaxy environment at <i>z</i> Â= 0.12 and <i>z</i> Â= 0.17. Month Notices of the Royal Astronomical Society, 2019, 484, 2234-2256.	^{nly} 1.6	23
80	The star formation activity of IllustrisTNG galaxies: main sequence, UVJ diagram, quenched fractions, and systematics. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4817-4840.	1.6	176
81	Jellyfish galaxies with the IllustrisTNG simulations – I. Gas-stripping phenomena in the full cosmological context. Monthly Notices of the Royal Astronomical Society, 2019, 483, 1042-1066.	1.6	102
82	A-type stars in the Canada–France Imaging Survey – II. Tracing the height of the disc at large distances with Blue Stragglers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3119-3126.	1.6	18
83	LoCuSS: scaling relations between galaxy cluster mass, gas, and stellar content. Monthly Notices of the Royal Astronomical Society, 2019, 484, 60-80.	1.6	33
84	Quantifying baryon effects on the matter power spectrum and the weak lensing shear correlation. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 020-020.	1.9	108
85	Atomic hydrogen in IllustrisTNG galaxies: the impact of environment parallelled with local 21-cm surveys. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5334-5354.	1.6	75
86	The SAMI Galaxy Survey: comparing 3D spectroscopic observations with galaxies from cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 484, 869-891.	1.6	67
87	Linking galaxy structural properties and star formation activity to black hole activity with IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2019, 484, 4413-4443.	1.6	59
88	A galaxy's accretion history unveiled from its integrated spectrum. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	15
89	New Constraints on Early-type Galaxy Assembly from Spectroscopic Metallicities of Globular Clusters in M87. Astrophysical Journal, 2019, 879, 45.	1.6	18
90	The Progenitors of Calcium-strong Transients. Astrophysical Journal, 2019, 887, 180.	1.6	32

ARTICLE IF CITATIONS # Stellar massâ€"halo mass relation for the brightest central galaxies of X-ray clusters since 2.1 21 91 $\langle i \rangle z \langle i \rangle \hat{a} \in \hat{a}^{1/4} \hat{a} \in 0.65$. Astronomy and Astrophysics, 2019, 631, A175. The Most Massive Galaxies with Large Depleted Cores: Structural Parameter Relations and Black Hole 1.6 19 Masses. Astrophysical Journal, 2019, 886, 80. Inferring Galactic Parameters from Chemical Abundances: A Multi-star Approach. Astrophysical 93 1.6 2 Journal, 2019, 887, 9. The buildup of strongly barred galaxies in the TNG100 simulation. Monthly Notices of the Royal 94 Astronomical Society, 0, , . High-redshift test of gravity using enhanced growth of small structures probed by the neutral 95 1.6 5 hydrogen distribution. Physical Review D, 2019, 100, . Intracluster light: a luminous tracer for dark matter in clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2838-2851. 1.6 66 Introducing <scp>romulusc </scp>: a cosmological simulation of a galaxy cluster with an 97 1.6 80 unprecedented resolution. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3336-3362. The optical morphologies of galaxies in the IllustrisTNG simulation: a comparison to Pan-STARRS 1.6 236 observations. Monthly Notices of the Royal Astronomical Society, 2019, 483, 4140-4159. The modified gravity light-cone simulation project – I. Statistics of matter and halo distributions. 99 1.6 26 Monthly Notices of the Royal Astronomical Society, 2019, 483, 790-805. Cosmological simulations of galaxy formation. Nature Reviews Physics, 2020, 2, 42-66. 11.9 The Milky Way's disc of classical satellite galaxies in light of Gaia DR2. Monthly Notices of the Royal 101 74 1.6 Astronomical Society, 2020, 491, 3042-3059. How feedback shapes galaxies: an analytic model. Monthly Notices of the Royal Astronomical Society, 1.6 2020, 491, 5083-5100 The growth of brightest cluster galaxies and intracluster light over the past 10 billion years. 103 1.6 38 Monthly Notices of the Royal Astronomical Society, 2020, 491, 3751-3759. Exploring the high-mass end of the stellar mass function of star-forming galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2020, 491, 3318-3335. 104 1.6 The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 105 1.6 94 4462-4480. Exploring extensions to the standard cosmological model and the impact of baryons on small scales. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3809-3829. Resolving small-scale cold circumgalactic gas in TNG50. Monthly Notices of the Royal Astronomical 107 1.6 100 Society, 2020, 498, 2391-2414. Galaxy And Mass Assembly (GAMA): a forensic SED reconstruction of the cosmic star formation history and metallicity evolution by galaxy type. Monthly Notices of the Royal Astronomical Society, 1.6 2020, 498, 5581-5603.

#	Article	IF	CITATIONS
109	Galaxy and mass assembly: luminosity and stellar mass functions in GAMA groups. Monthly Notices of the Royal Astronomical Society, 2020, 499, 631-652.	1.6	11
110	Kinematic Decomposition of IllustrisTNG Disk Galaxies: Morphology and Relation with Morphological Structures. Astrophysical Journal, 2020, 895, 139.	1.6	22
111	Stellar property statistics of massive haloes from cosmological hydrodynamics simulations: common kernel shapes. Monthly Notices of the Royal Astronomical Society, 2020, 495, 686-704.	1.6	26
112	Can assembly bias explain the lensing amplitude of the BOSS CMASS sample in a Planck cosmology?. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5551-5564.	1.6	20
113	Modelling the tightest relation between galaxy properties and dark matter halo properties from hydrodynamical simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4453-4462.	1.6	3
114	The stellar mass assembly of low-redshift, massive, central galaxies in SDSS and the TNG300 simulation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4262-4275.	1.6	6
115	Surrogate modelling the Baryonic Universe – I. The colour of star formation. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2088-2104.	1.6	19
116	SDSS-IV MaNGA: stellar population correlates with stellar root-mean-square velocity Vrms gradients or total-density-profile slopes at fixed effective velocity dispersion Ïfe. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4820-4827.	1.6	6
117	Star-Forming Galaxies at Cosmic Noon. Annual Review of Astronomy and Astrophysics, 2020, 58, 661-725.	8.1	98
118	Decoupling the rotation of stars and gas – II. The link between black hole activityÂand simulated IFU kinematics in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4542-4547.	1.6	17
119	From stellar haloes to intracluster light: the physics of the Intra-Halo Stellar Component in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4314-4333.	1.6	26
120	Asymmetric drift of Andromeda analogues in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2870-2882.	1.6	6
121	The baryon content of groups and clusters of galaxies in the FABLE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2114-2137.	1.6	30
122	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	1.6	60
123	A deep learning view of the census of galaxy clusters in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5620-5628.	1.6	19
124	Stellar masses of giant clumps in CANDELS and simulated galaxies using machine learning. Monthly Notices of the Royal Astronomical Society, 2020, 499, 814-835.	1.6	27
125	Predictions for the angular dependence of gas mass flow rate and metallicity in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2462-2473.	1.6	58
126	The formation of ultradiffuse galaxies in clusters. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1848-1858.	1.6	68

#	Article	IF	Citations
127	The intracluster light as a tracer of the total matter density distribution: a view from simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1859-1864.	1.6	34
128	What does strong gravitational lensing? The mass and redshift distribution of high-magnification lenses. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3727-3739.	1.6	42
129	AMICO galaxy clusters in KiDS-DR3: galaxy population properties and their redshift dependence. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4303-4315.	1.6	7
130	The Alcock Paczynski test with voids in 21 cm intensity field. Monthly Notices of the Royal Astronomical Society, 2020, 499, 587-596.	1.6	4
131	The fate of disc galaxies in IllustrisTNG clusters. Monthly Notices of the Royal Astronomical Society, 2020, 496, 2673-2703.	1.6	53
132	Star cluster formation and cloud dispersal by radiative feedback: dependence on metallicity and compactness. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3830-3845.	1.6	36
133	Limitations to the â€~basic' HOD model and beyond. Monthly Notices of the Royal Astronomical Society, 2020, 493, 5506-5519.	1.6	60
134	Tidal evolution of galaxies in the most massive cluster of IllustrisTNG-100. Astronomy and Astrophysics, 2020, 638, A133.	2.1	29
135	Interacting galaxies in the IllustrisTNG simulations – II: star formation in the post-merger stage. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3716-3731.	1.6	53
136	A new model for including galactic winds in simulations of galaxy formation – I. Introducing the Physically Evolved Winds (PhEW) model. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2586-2604.	1.6	19
137	A redshift-dependent IRX–β dust attenuation relation for TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4773-4794.	1.6	21
138	The diversity and variability of star formation histories in models of galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 498, 430-463.	1.6	62
139	μ⋆ masses: weak-lensing calibration of the Dark Energy Survey Year 1 redMaPPer clusters using stellar masses. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5450-5467.	1.6	8
140	The impact of AGN feedback on the 1D power spectra from the Ly α forest using the Horizon-AGN suite of simulations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 1825-1840.	1.6	28
141	An EAGLE's view of ex situ galaxy growth. Monthly Notices of the Royal Astronomical Society, 2020, 497, 81-93.	1.6	45
142	Galaxy cold gas contents in modern cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 146-166.	1.6	71
143	The dual origin of the Galactic thick disc and halo from the gas-rich Gaia–Enceladus Sausage merger. Monthly Notices of the Royal Astronomical Society, 2020, 497, 1603-1618.	1.6	71
144	A tale of two populations: surviving and destroyed dwarf galaxies and the build-up of the MilkyÂWay's stellar halo. Monthly Notices of the Royal Astronomical Society, 2020, 497, 4459-4471.	1.6	40

#	Article	IF	CITATIONS
145	The physical drivers of the atomic hydrogen–halo mass relation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 44-67.	1.6	18
146	Baryonic effects on the matter bispectrum. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2887-2911.	1.6	30
147	Box/peanut-shaped bulges in action space. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3334-3350.	1.6	12
148	Ejective and preventative: the IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 768-792.	1.6	100
149	Tidally induced warps of spiral galaxies in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 498, 3535-3548.	1.6	18
150	Joint galaxy–galaxy lensing and clustering constraints on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2020, 498, 5804-5833.	1.6	11
151	Resolving shocks and filaments in galaxy formation simulations: effects on gas properties and star formation in the circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 499, 597-615.	1.6	29
152	Tensorial solution of the Poisson equation and the dark matter amount and distribution of UGC 8490 and UGC 9753. Monthly Notices of the Royal Astronomical Society, 2020, 499, 3381-3398.	1.6	0
153	Interacting galaxies in the IllustrisTNG simulations - I: Triggered star formation in a cosmological context. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4969-4985.	1.6	49
154	What has quenched the massive spiral galaxies?. Monthly Notices of the Royal Astronomical Society: Letters, 2020, 496, L116-L121.	1.2	10
155	Baryonic effects on CMB lensing and neutrino mass constraints. Physical Review D, 2020, 101, .	1.6	13
156	Investigating the growing population of massive quiescent galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4239-4260.	1.6	18
157	High-redshift <i>JWST</i> predictions from IllustrisTNG: II. Galaxy line and continuum spectral indices and dust attenuation curves. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4747-4768.	1.6	31
158	Direct Measurement of the H i-halo Mass Relation through Stacking. Astrophysical Journal, 2020, 894, 92.	1.6	30
159	ART2: a 3D parallel multiwavelength radiative transfer code for continuum and atomic and molecular lines. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1919-1935.	1.6	10
160	Early-type galaxy density profiles from IllustrisTNG – I. Galaxy correlations and the impact of baryons. Monthly Notices of the Royal Astronomical Society, 2020, 491, 5188-5215.	1.6	26
161	VEGAS: a VST Early-type GAlaxy Survey. Astronomy and Astrophysics, 2020, 635, A3.	2.1	22
162	X-ray signatures of black hole feedback: hot galactic atmospheres in IllustrisTNG and X-ray observations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 549-570.	1.6	44

		CITATION REPORT		
#	Article		IF	CITATIONS
163	The AREPO Public Code Release. Astrophysical Journal, Supplement Series, 2020, 248,	32.	3.0	196
164	A missing outskirts problem? Comparisons between stellar haloes in the Dragonfly Nea Survey and the TNG100 simulation. Monthly Notices of the Royal Astronomical Societ 4570-4604.	arby Galaxies y, 2020, 495,	1.6	31
165	A systematic search for galaxy proto-cluster cores at zÂâ^¼ 2. Monthly Notices of the Society, 2020, 496, 3169-3181.	Royal Astronomical	1.6	13
166	Barred Galaxies in the Illustris-1 and TNG100 Simulations: A Comparison Study. Astrop 2020, 895, 92.	hysical Journal,	1.6	23
167	One star, two stars, or both? Investigating metallicity-dependent models for gamma-raprogenitors with the IllustrisTNG simulation. Monthly Notices of the Royal Astronomic 2020, 495, 266-277.		1.6	8
168	Redshift evolution of the Fundamental Plane relation in the IllustrisTNG simulation. Mo of the Royal Astronomical Society, 2020, 492, 5930-5939.	onthly Notices	1.6	12
169	On the (Lack of) Evolution of the Stellar Mass Function of Massive Galaxies from zÂ=Â Astrophysical Journal, 2020, 892, 7.	.1.5 to 0.4.	1.6	22
170	Velocity Dispersions of Brightest Cluster Galaxies and Their Host Clusters. Astrophysic 2020, 891, 129.	al Journal,	1.6	22
171	Structure of Brightest Cluster Galaxies and Intracluster Light. Astrophysical Journal, Su Series, 2020, 247, 43.	pplement	3.0	48
172	Aging haloes: implications of the magnitude gap on conditional statistics of stellar and of massive haloes. Monthly Notices of the Royal Astronomical Society, 2020, 493, 136	l gas properties 51-1374.	1.6	13
173	Quiescent Galaxies 1.5 Billion Years after the Big Bang and Their Progenitors. Astrophy 2020, 889, 93.	vsical Journal,	1.6	117
174	Physical correlations of the scatter between galaxy mass, stellar content, and halo mas Notices of the Royal Astronomical Society, 2020, 493, 337-350.	ss. Monthly	1.6	22
175	Decoupling the rotation of stars and gas – I. The relationship with morphology and ł Monthly Notices of the Royal Astronomical Society, 2020, 492, 1869-1886.	1alo spin.	1.6	26
176	Rapid early coeval star formation and assembly of the most-massive galaxies in the Un Notices of the Royal Astronomical Society, 2020, 493, 4607-4621.	iverse. Monthly	1.6	28
177	High-redshift <i>JWST</i> predictions from IllustrisTNG: dust modelling and galaxy lun functions. Monthly Notices of the Royal Astronomical Society, 2020, 492, 5167-5201.	ninosity	1.6	99
178	Baryons in the Cosmic Web of IllustrisTNG – II. The connection among galaxies, halc formation time, and their location in the Cosmic Web. Monthly Notices of the Royal A Society, 2020, 491, 5747-5758.		1.6	27
179	Testing the accuracy of halo occupation distribution modelling using hydrodynamic sin Monthly Notices of the Royal Astronomical Society, 2020, 491, 5771-5788.	mulations.	1.6	24
180	Baryon-CDM isocurvature galaxy bias with IllustrisTNG. Journal of Cosmology and Astro Physics, 2020, 2020, 005-005.	oparticle	1.9	22

#	ARTICLE	IF	CITATIONS
181	Weak lensing reveals a tight connection between dark matter halo mass and the distribution of stellar mass in massive galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 492, 3685-3707.	1.6	24
182	Numerical convergence of hydrodynamical simulations of galaxy formation: the abundance and internal structure of galaxies and their cold dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2020, 493, 2926-2951.	1.6	24
183	The impact of wind scalings on stellar growth and the baryon cycle in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1-28.	1.6	6
184	The impact of the observed baryon distribution in haloes on the total matter power spectrum. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2285-2307.	1.6	44
185	Galaxy interactions in IllustrisTNG-100, I: The power and limitations of visual identification. Monthly Notices of the Royal Astronomical Society, 2020, 492, 2075-2094.	1.6	25
186	The relationship between black hole mass and galaxy properties: examining the black hole feedback model in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1888-1906.	1.6	127
187	The Formation History of Subhalos and the Evolution of Satellite Galaxies. Astrophysical Journal, 2020, 893, 139.	1.6	14
188	Properties of the simulated circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1461-1478.	1.6	30
189	Discrimination of heavy elements originating from PopÂIII stars in zÂ= 3 intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4387-4395.	1.6	4
190	Weak evolution of the mass–metallicity relation at cosmic dawn in the FirstLight simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 1988-1993.	1.6	14
191	Efficacy of early stellar feedback in low gas surface density environments. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2088-2103.	1.6	28
192	Capture rate of weakly interacting massive particles (WIMPs) in binary star systems. Monthly Notices of the Royal Astronomical Society, 2021, 503, 458-471.	1.6	1
193	Old and new major mergers in the SOSIMPLE galaxy, NGC 7135. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2296-2307.	1.6	6
194	Magnetogenesis around the first galaxies: the impact of different field seeding processes on galaxy formation. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5726-5744.	1.6	23
195	The Correlation between Black Hole Mass and Stellar Mass for Classical Bulges and the Cores of Ellipticals. Astrophysical Journal, 2021, 907, 6.	1.6	14
196	The TNG50 Simulation: Highly-Resolved Galaxies in a Large Cosmological Volume to the Present Day. , 2021, , 5-22.		0
197	Statistical modelling of the cosmological dispersion measure. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2615-2629.	1.6	23
198	Estimation of the Galaxy Quenching Rate in the Illustris Simulation. Astrophysical Journal, 2021, 906, 129.	1.6	3

#	Article	IF	Citations
199	Submillimetre galaxies in cosmological hydrodynamical simulations – an opportunity for constraining feedback models. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2922-2933.	1.6	20
200	The galaxy–halo connection of emission-line galaxies in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3599-3617.	1.6	33
201	Multi-Branch Attention Networks for Classifying Galaxy Clusters. , 2021, , .		3
202	A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1636-1645.	1.6	7
203	Counts-in-cells of subhaloes in the IllustrisTNG simulations: the role of baryonic physics. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5495-5507.	1.6	2
204	Debiased Galaxy Cluster Pressure Profiles from X-Ray Observations and Simulations. Astrophysical Journal, 2021, 908, 91.	1.6	5
205	Luminosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume. Astrophysical Journal, 2021, 908, 109.	1.6	40
206	The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Gigaparsec Scales. Astrophysical Journal, 2021, 908, 11.	1.6	40
207	κTNG: effect of baryonic processes on weak lensing with IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5593-5602.	1.6	14
208	Photometric Dissection of Intracluster Light and Its Correlations with Host Cluster Properties. Astrophysical Journal, Supplement Series, 2021, 252, 27.	3.0	30
209	Dark energy survey year 1 results: Constraining baryonic physics in the Universe. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6010-6031.	1.6	27
210	Hot and counter-rotating star-forming disc galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 503, 726-742.	1.6	11
211	MOSEL and IllustrisTNG: Massive Extended Galaxies at zÂ=Â2 Quench Later Than Normal-size Galaxies. Astrophysical Journal, 2021, 907, 95.	1.6	6
212	Supermassive black holes in cosmological simulations I: <i>M</i> BH â^' <i>M</i> â<† relation and black hole mass function. Monthly Notices of the Royal Astronomical Society, 2021, 503, 1940-1975.	1.6	63
213	Out of sight, out of mind? The impact of correlated clustering in substructure lensing. Monthly Notices of the Royal Astronomical Society, 2021, 502, 6064-6079.	1.6	10
214	Observing the Stellar Halo of Andromeda in Cosmological Simulations: The AURIGA2PANDAS Pipeline. Astrophysical Journal, 2021, 910, 92.	1.6	6
215	Cosmology with Galaxy Cluster Weak Lensing: Statistical Limits and Experimental Design. Astrophysical Journal, 2021, 910, 28.	1.6	9
216	The stellar halos of ETGs in the IllustrisTNG simulations. Astronomy and Astrophysics, 2021, 647, A95.	2.1	34

#	Article	IF	CITATIONS
217	Quantified diffuse light in compact groups of galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6059-6077.	1.6	16
218	How to empirically model star formation in dark matter haloes – I. Inferences about central galaxies from numerical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4865-4884.	1.6	6
219	Merging Things Together: Merger Pair Analysis from the IllustrisTNG Simulation Suite. Research Notes of the AAS, 2021, 5, 45.	0.3	1
220	Living with Neighbors. III. The Origin of the Spin–Orbit Alignment of Galaxy Pairs: A Neighbor versus the Large-scale Structure. Astrophysical Journal, 2021, 909, 34.	1.6	7
221	Where Binary Neutron Stars Merge: Predictions from IllustrisTNG. Astrophysical Journal, 2021, 909, 207.	1.6	4
222	Bar-like galaxies in IllustrisTNG. Astronomy and Astrophysics, 2021, 647, A143.	2.1	15
223	Power spectrum of intrinsic alignments of galaxies in IllustrisTNG. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 030.	1.9	15
224	The Buildup of the Intracluster Light of A85 as Seen by Subaru's Hyper Suprime-Cam. Astrophysical Journal, 2021, 910, 45.	1.6	27
225	Homogeneous vs Biased IGM: Impact on Reionization. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	0
226	The Dragonfly Wide Field Survey. II. Accurate Total Luminosities and Colors of Nearby Massive Galaxies and Implications for the Galaxy Stellar-mass Function. Astrophysical Journal, 2021, 909, 74.	1.6	7
227	Morphological evolution of supermassive black hole merger hosts and multimessenger signatures. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3629-3642.	1.6	10
228	SDSS-IV MaNGA: The Radial Profile of Enhanced Star Formation in Close Galaxy Pairs. Astrophysical Journal, 2021, 909, 120.	1.6	9
229	Studying galaxy cluster morphological metrics with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 503, 3394-3413.	1.6	5
230	Simultaneous modelling of matter power spectrum and bispectrum in the presence of baryons. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3596-3609.	1.6	23
231	Convolutional neural network identification of galaxy post-mergers in UNIONS using IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 504, 372-392.	1.6	36
232	Galaxy formation in the brane world I: overview and first results. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3867-3885.	1.6	19
233	Introducing piXedfit: A Spectral Energy Distribution Fitting Code Designed for Resolved Sources. Astrophysical Journal, Supplement Series, 2021, 254, 15.	3.0	21
234	The splashback boundary of haloes in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4649-4666.	1.6	24

#	Article	IF	CITATIONS
235	Interacting galaxies in the IllustrisTNG simulations – III. (The rarity of) quenching in post-merger galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1888-1901.	1.6	25
236	A flexible modelling of galaxy assembly bias. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5205-5220.	1.6	25
237	Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4024-4038.	1.6	10
238	Properties of the ionized CGM and IGM: tests for galaxy formation models from the Sunyaev–Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5131-5143.	1.6	20
239	The stellar mass function and evolution of the density profile of galaxy clusters from the Hydrangea simulations at 0 < <i>z</i> < 1.5. Monthly Notices of the Royal Astronomical Society, 2021, 504, 1999-2013.	1.6	10
240	Fountains and storms: the effects of AGN feedback and mergers on the evolution of the intracluster medium in the <scp>romulusc</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 3922-3937.	1.6	16
241	Learning effective physical laws for generating cosmological hydrodynamics with Lagrangian deep learning. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
242	Dark matter microhalos from simplified models. Physical Review D, 2021, 103, .	1.6	21
243	A novel approach to investigate chemical inhomogeneities in GRB host galaxies: the <i>Z</i> abs– <i>Z</i> emiss relation. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5992-6007.	1.6	5
244	The Thermal Sunyaev–Zel'dovich Effect from Massive, Quiescent 0.5 ≤ ≤1.5 Galaxies. Astrophysical Journal, 2021, 913, 88.	1.6	11
245	Scaling Properties of Galaxy Groups. Universe, 2021, 7, 139.	0.9	41
246	Responses of Halo Occupation Distributions: a new ingredient in the halo model & the impact on galaxy bias. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 069.	1.9	18
247	The morphology of star-forming gas and its alignment with galaxies and dark matter haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 65-87.	1.6	5
248	Measuring the Mass and Concentration of Dark Matter Halos from the Velocity Dispersion Profile of their Stars. Astrophysical Journal, 2021, 912, 114.	1.6	4
249	Deep Extragalactic VIsible Legacy Survey (DEVILS): SED fitting in the D10-COSMOS field and the evolution of the stellar mass function and SFR– <i>M</i> ⋆ relation. Monthly Notices of the Royal Astronomical Society, 2021, 505, 540-567.	1.6	60
250	The shape and scatter of the galaxy main sequence for massive galaxies at cosmic noon. Monthly Notices of the Royal Astronomical Society, 2021, 505, 947-962.	1.6	9
251	Assembly history of massive galaxies. Astronomy and Astrophysics, 2021, 649, A161.	2.1	4
252	Avoiding baryonic feedback effects on neutrino mass measurements from CMB lensing. Physical Review D, 2021, 103, .	1.6	9

	Сітаті	on Report	
#	Article	IF	CITATIONS
253	Revealing the Local Cosmic Web from Galaxies by Deep Learning. Astrophysical Journal, 2021, 913, 76.	1.6	13
254	Characterizing hydrostatic mass bias with <scp>mock-X</scp> . Monthly Notices of the Royal Astronomical Society, 2021, 506, 2533-2550.	1.6	22
255	Galaxy formation with L-GALAXIES: modelling the environmental dependency of galaxy evolution and comparing with observations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 492-514.	1.6	27
256	Rosella: a mock catalogue from the P-Millennium simulation. Monthly Notices of the Royal Astronomical Society, 2021, 505, 325-338.	1.6	8
257	Strongly lensed cluster substructures are not in tension with Ĵ›CDM. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1458-1463.	1.6	14
258	Morphological Types of DM Halos in Milky Way-like Galaxies in the TNG50 Simulation: Simple, Twisted, or Stretched. Astrophysical Journal, 2021, 913, 36.	1.6	15
259	Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies. Universe, 2021, 7, 209.	0.9	46
260	Anisotropic satellite galaxy quenching modulated by black hole activity. Nature, 2021, 594, 187-190.	13.7	27
261	Finding protoclusters to trace galaxy evolution – I. The finder and its performance. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3892-3906.	1.6	4
262	The MUSE Hubble Ultra Deep Field Survey. XVI. The angular momentum of low-mass star-forming galaxies: A cautionary tale and insights from TNG50. Astronomy and Astrophysics, 0, , .	2.1	9
263	Magnetization of the intergalactic medium in the IllustrisTNG simulations: the importance of extended, outflow-driven bubbles. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5038-5057.	1.6	22
264	Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5117-5128.	1.6	20
265	The Lopsided Distribution of Satellites of Isolated Central Galaxies. Astrophysical Journal, 2021, 914, 78.	1.6	5
266	Galaxy and mass assembly (GAMA): the clustering of galaxy groups. Monthly Notices of the Royal Astronomical Society, 2021, 506, 21-37.	1.6	5
267	Gas-phase metallicity gradients of TNG50 star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3024-3048.	1.6	40
268	Living with Neighbors. IV. Dissecting the Spin–Orbit Alignment of Dark Matter Halos: Interacting Neighbors and the Local Large-scale Structure. Astrophysical Journal, 2021, 914, 86.	1.6	3
269	The BINGO project. Astronomy and Astrophysics, 2022, 664, A19.	2.1	11
270	VEGAS: A VST Early-type GAlaxy Survey. Astronomy and Astrophysics, 2021, 651, A39.	2.1	18

#	Article	IF	CITATIONS
271	mirkwood: Fast and Accurate SED Modeling Using Machine Learning. Astrophysical Journal, 2021, 916, 43.	1.6	16
272	The physical origins and dominant emission mechanisms of Lyman alpha haloes: results from the TNG50 simulation in comparison to MUSE observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5129-5152.	1.6	38
273	The CAMELS Project: Cosmology and Astrophysics with Machine-learning Simulations. Astrophysical Journal, 2021, 915, 71.	1.6	113
274	Quenched fractions in the IllustrisTNG simulations: comparison with observations and other theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4760-4780.	1.6	66
275	Simulating cosmic structure formation with the <scp>gadget</scp> -4 code. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2871-2949.	1.6	130
276	The Outermost Edges of the Milky Way Halo from Galaxy Kinematics. Astrophysical Journal Letters, 2021, 915, L18.	3.0	6
277	Differences in galaxy colours are not just about the mass. Nature Astronomy, 2021, 5, 984-985.	4.2	1
278	Host galaxies of high-redshift quasars: SMBH growth and feedback. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1-26.	1.6	29
279	Towards robust determination of non-parametric morphologies in marginal astronomical data: resolving uncertainties with cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2021, 507, 886-903.	1.6	13
280	Brightest Cluster Galaxies and Intracluster Light: Their Mass Distribution in the Innermost Regions of Groups and Clusters. Astrophysical Journal, 2021, 915, 106.	1.6	9
281	Searching for the shadows of giants – II. The effect of local ionization on the LyÂα absorption signatures of protoclusters at redshift <i>z</i> â^1⁄4 2.4. Monthly Notices of the Royal Astronomical Society, 2021, 506, 6001-6013.	1.6	4
282	Mixing matters. Monthly Notices of the Royal Astronomical Society, 2021, 506, 2836-2852.	1.6	14
283	The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nature Astronomy, 2021, 5, 1069-1076.	4.2	33
284	The BACCO simulation project: a baryonification emulator with neural networks. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4070-4082.	1.6	40
285	Evolution of the galaxy stellar mass function: evidence for an increasing <i>M</i> * from <i>z</i> = 2 to the present day. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4933-4951.	1.6	19
286	The cold circumgalactic medium in emission: Mg <scp>ii</scp> haloes in TNG50. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4445-4463.	1.6	29
287	IQ Collaboratory. II. The Quiescent Fraction of Isolated, Low-mass Galaxies across Simulations and Observations. Astrophysical Journal, 2021, 915, 53.	1.6	19
288	<scp>shap</scp> ing the gas: understanding gas shapes in dark matter haloes with interpretable machine learning. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1468-1484.	1.6	16

#	Article	IF	CITATIONS
289	A high occurrence of nuclear star clusters in faint Coma galaxies, and the roles of mass and environment. Monthly Notices of the Royal Astronomical Society, 2021, 508, 986-998.	1.6	8
290	Inferring the Morphology of Stellar Distribution in TNG50: Twisted and Twisted-stretched Shapes. Astrophysical Journal, 2021, 918, 7.	1.6	9
291	Mapping accreted stars in early-type galaxies across the mass–size plane. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3089-3112.	1.6	13
292	Formation of massive disc galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3301-3311.	1.6	17
293	The continuous wavelet derived by smoothing function and its application in cosmology. Communications in Theoretical Physics, 2021, 73, 095402.	1.1	4
294	The role of ACN feedback in the structure, kinematics, and evolution of ETGs in Horizon simulations. Astronomy and Astrophysics, 2021, 652, A44.	2.1	5
295	Galaxy populations in haloes in high-density environments. Astronomy and Astrophysics, 2021, 654, A62.	2.1	2
296	A universal relation between the properties of supermassive black holes, galaxies, and dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4274-4293.	1.6	19
297	The abundance of satellites around Milky Way- and M31-like galaxies with the TNG50 simulation: a matter of diversity. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4211-4240.	1.6	41
298	Reconstructing <scp>H i</scp> power spectrum with minimal parameters using the dark matter distribution beyond haloes. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2937-2948.	1.6	1
299	On the Origin and Evolution of the Intra-Cluster Light: A Brief Review of the Most Recent Developments. Galaxies, 2021, 9, 60.	1.1	29
300	The emergence of passive galaxies in the early Universe. Astronomy and Astrophysics, 2021, 652, A30.	2.1	27
301	Galaxy bias from forward models: linear and second-order bias of IllustrisTNG galaxies. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 029.	1.9	31
302	Quenching, Mergers, and Age Profiles for z = 2 Galaxies in IllustrisTNG. Astrophysical Journal Letters, 2021, 916, L23.	3.0	8
303	Do galaxies die? Different views from simulations and observations in the local Universe. Monthly Notices of the Royal Astronomical Society, 2021, 506, 5108-5116.	1.6	11
304	Impact of gas-based seeding on supermassive black hole populations at <i>z</i> ≥ 7. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2012-2036.	1.6	5
305	An Optimal Estimator of Intrinsic Alignments for Star-forming Galaxies in IllustrisTNG Simulation. Astrophysical Journal, 2021, 917, 109.	1.6	10
306	An unexpected high concentration for the dark substructure in the gravitational lens SDSSJ0946+1006. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1662-1683.	1.6	22

#	Article	IF	CITATIONS
307	MAHGIC: a Model Adapter for the Halo–Galaxy Inter-Connection. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2510-2530.	1.6	6
308	INSPIRE: INvestigating Stellar Population In RElics. Astronomy and Astrophysics, 2021, 654, A136.	2.1	9
309	The cosmological dependence of halo and galaxy assembly bias. Monthly Notices of the Royal Astronomical Society, 2021, 507, 3412-3422.	1.6	13
310	Halo cluster shapes: insights from simulated galaxies and ICL with prospects for weak lensing applications. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1280-1295.	1.6	6
311	Galaxy and mass assembly (GAMA): The environmental impact on SFR and metallicity in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1817-1830.	1.6	3
312	Predictions for anisotropic X-ray signatures in the circumgalactic medium: imprints of supermassive black hole driven outflows. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1563-1581.	1.6	21
313	Galaxy assembly bias and large-scale distribution: a comparison between IllustrisTNG and a semi-analytic model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 698-718.	1.6	22
314	The cumulative star formation histories of dwarf galaxies with TNG50. I: environment-driven diversity and connection to quenching. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1652-1674.	1.6	32
315	The importance of mock observations in validating galaxy properties for cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3321-3336.	1.6	4
316	Velocity dispersion of brightest cluster galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5780-5795.	1.6	5
317	The two formation pathways of SO galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 508, 895-911.	1.6	24
318	On the influence of halo mass accretion history on galaxy properties and assembly bias. Monthly Notices of the Royal Astronomical Society, 2021, 508, 940-949.	1.6	19
319	A geostatistical analysis of multiscale metallicity variations in galaxies – I. Introduction and comparison of high-resolution metallicity maps to an analytical metal transport model. Monthly Notices of the Royal Astronomical Society, 2021, 508, 489-507.	1.6	11
320	The OBELISK simulation: Galaxies contribute more than AGN to H†I reionization of protoclusters. Astronomy and Astrophysics, 2021, 653, A154.	2.1	37
321	Calibration of bias and scatter involved in cluster mass measurements using optical weak gravitational lensing. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5671-5689.	1.6	15
322	ACN and star formation at cosmic noon: comparison of data to theoretical models. Monthly Notices of the Royal Astronomical Society, 2021, 508, 762-780.	1.6	5
323	Lopsided galactic bars. Astronomy and Astrophysics, 2021, 655, A97.	2.1	9
324	The mass and galaxy distribution around SZ-selected clusters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5758-5779.	1.6	20

#	Article	IF	CITATIONS
325	A flexible subhalo abundance matching model for galaxy clustering in redshift space. Monthly Notices of the Royal Astronomical Society, 2021, 508, 175-189.	1.6	26
326	Fast galaxy bars continue to challenge standard cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 508, 926-939.	1.6	36
327	Advances in constraining intrinsic alignment models with hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 637-664.	1.6	23
328	Quiescent ultra-diffuse galaxies in the field originating from backsplash orbits. Nature Astronomy, 2021, 5, 1255-1260.	4.2	32
329	Progenitor-mass-dependent yields amplify intrinsic scatter in dwarf-galaxy elemental abundance ratios. Monthly Notices of the Royal Astronomical Society, 2021, 508, 508-515.	1.6	6
330	ZFIRE: The Beginning of the End for Massive Galaxies at z â^¼ 2 and Why Environment Matters. Astrophysical Journal, 2021, 919, 57.	1.6	4
331	Cosmic metal density evolution in neutral gas: insights from observations and cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3535-3550.	1.6	16
332	Intergalactic Medium Dispersion Measures of Fast Radio Bursts Estimated from IllustrisTNG Simulation and Their Cosmological Applications. Astrophysical Journal, 2021, 906, 49.	1.6	26
333	The coherent motion of Cen A dwarf satellite galaxies remains a challenge for $\hat{\nu}CDM$ cosmology. Astronomy and Astrophysics, 2021, 645, L5.	2.1	34
334	An excess of globular clusters in Ultra-Diffuse Galaxies formed through tidal heating. Monthly Notices of the Royal Astronomical Society, 2021, 502, 398-406.	1.6	22
335	powderday: Dust Radiative Transfer for Galaxy Simulations. Astrophysical Journal, Supplement Series, 2021, 252, 12.	3.0	35
336	Comparing galaxy formation in the L-GALAXIES semi-analytical model and the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2021, 502, 1051-1069.	1.6	22
337	Dynamical modelling of the twisted galaxy PGC 046832. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4786-4805.	1.6	9
338	Impact of uncertainties in the halo velocity profile on direct detection of sub-GeV dark matter. Journal of High Energy Physics, 2020, 2020, 1.	1.6	3
339	Kinematics of the outer halo of M 87 as mapped by planetary nebulae. Astronomy and Astrophysics, 2018, 620, A111.	2.1	34
340	How galaxies populate haloes in very low-density environments. Astronomy and Astrophysics, 2020, 638, A60.	2.1	12
341	The GOGREEN Survey: A deep stellar mass function of cluster galaxies at 1.0Â<Â <i>z</i> Â<Â1.4 and the complex nature of satellite quenching. Astronomy and Astrophysics, 2020, 638, A112.	2.1	53
342	The Fornax Deep Survey with VST. Astronomy and Astrophysics, 2020, 639, A14.	2.1	42

#	Article	IF	CITATIONS
343	GOODS-ALMA: Optically dark ALMA galaxies shed light on a cluster in formation at <i>z</i> = 3.5. Astronomy and Astrophysics, 2020, 642, A155.	2.1	24
344	Towards a consistent framework of comparing galaxy mergers in observations and simulations. Astronomy and Astrophysics, 2020, 644, A87.	2.1	15
345	The stellar halos of ETGs in the IllustrisTNG simulations: The photometric and kinematic diversity of galaxies at large radii. Astronomy and Astrophysics, 2020, 641, A60.	2.1	33
346	The DIANOGA simulations of galaxy clusters: characterising star formation in protoclusters. Astronomy and Astrophysics, 2020, 642, A37.	2.1	34
347	Variations in shape among observed Lyman- <i>α</i> spectra due to intergalactic absorption. Astronomy and Astrophysics, 2020, 642, L16.	2.1	13
348	Discovery of molecular gas fueling galaxy growth in a protocluster at <i>z</i> = 1.7. Astronomy and Astrophysics, 2020, 641, L6.	2.1	17
349	A Virgo Environmental Survey Tracing Ionised Gas Emission (VESTIGE). Astronomy and Astrophysics, 2020, 644, A161.	2.1	15
350	Imprint of baryons and massive neutrinos on velocity statistics. Astronomy and Astrophysics, 2020, 644, A170.	2.1	5
351	An interesting case of the formation and evolution of a barred galaxy in the cosmological context. Astronomy and Astrophysics, 2020, 642, L12.	2.1	3
352	Can a conditioning on stellar mass explain the mutual information between morphology and environment?. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 039-039.	1.9	6
353	Galaxy bias and primordial non-Gaussianity: insights from galaxy formation simulations with IllustrisTNG. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 013-013.	1.9	32
354	The intrinsic SFRF and sSFRF of galaxies: comparing SDSS observation with IllustrisTNG simulation. Research in Astronomy and Astrophysics, 2020, 20, 195.	0.7	12
355	simba: the average properties of the circumgalactic medium of 2Â≤Â≤3 quasars are determined primarily by stellar feedback. Monthly Notices of the Royal Astronomical Society, 2020, 499, 2760-2784.	1.6	18
356	Quenched fractions in the IllustrisTNG simulations: the roles of AGN feedback, environment, and pre-processing. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4004-4024.	1.6	86
357	emerge – empirical constraints on the formation of passive galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4748-4767.	1.6	30
358	Interaction of a cold cloud with a hot wind: the regimes of cloud growth and destruction and the impact of magnetic fields. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4261-4281.	1.6	72
359	Clobal H i asymmetries in IllustrisTNG: a diversity of physical processes disturb the cold gas in galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5205-5219.	1.6	21
360	An efficient hybrid method to produce high-resolution large-volume dark matter simulations for semi-analytic models of reionization. Monthly Notices of the Royal Astronomical Society, 2020, 500, 493-505.	1.6	4

#	Article	IF	CITATIONS
361	Evaluating hydrodynamical simulations with green valley galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3685-3702.	1.6	11
362	First Light And Reionization Epoch Simulations (FLARES) – I. Environmental dependence of high-redshift galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2127-2145.	1.6	59
363	How biased are halo properties in cosmological simulations?. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3309-3328.	1.6	26
364	The kinematics and dark matter fractions of TNG50 galaxies at <i>z</i> = 2 from an observational perspective. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4597-4619.	1.6	17
365	On the phase-space structure of galaxy clusters from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3462-3480.	1.6	5
366	A comparative study of satellite galaxies in Milky Way-like galaxies from HSC, DECaLS, and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3776-3801.	1.6	22
367	The distinct stellar-to-halo mass relations of satellite and central galaxies: insights from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 3957-3975.	1.6	32
368	Stellar splashback: the edge of the intracluster light. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4181-4192.	1.6	22
369	Molecular hydrogen in IllustrisTNG galaxies: carefully comparing signatures of environment with local CO and SFR data. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3158-3178.	1.6	25
370	Is diffuse intracluster light a good tracer of the galaxy cluster matter distribution?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1300-1315.	1.6	24
371	Is there enough star formation in simulated protoclusters?. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1803-1822.	1.6	17
372	Evolution of the grain size distribution in Milky Way-like galaxies in post-processed IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1336-1351.	1.6	9
373	An off-centred bulge or a satellite? Hydrodynamical <i>N</i> -body simulations of the disc galaxy NGCÂ5474. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2091-2111.	1.6	6
374	First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	46
375	Extensions to models of the galaxy–halo connection. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1603-1620.	1.6	36
376	Correlations between supermassive black holes and hot gas atmospheres in IllustrisTNG and X-ray observations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 2210-2230.	1.6	22
377	The impact of modified gravity on the Sunyaev–Zeldovich effect. Monthly Notices of the Royal Astronomical Society, 2021, 501, 4565-4578.	1.6	22
378	Baryonic effects on the detectability of annihilation radiation from dark matter subhaloes around the Milky Way. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	17

#	Article	IF	CITATIONS
379	The ALMA Spectroscopic Survey in the HUDF: the Molecular Gas Content of Galaxies and Tensions with IllustrisTNG and the Santa Cruz SAM. Astrophysical Journal, 2019, 882, 137.	1.6	65
380	Mind the Gap: Is the Too Big to Fail Problem Resolved?. Astrophysical Journal, 2019, 885, 97.	1.6	8
381	X-Ray Properties of Radio-selected Dual Active Galactic Nuclei. Astrophysical Journal, 2019, 883, 50.	1.6	15
382	MOSEL Survey: Tracking the Growth of Massive Galaxies at 2Â<ÂzÂ<Â4 Using Kinematics and the IllustrisTNG Simulation. Astrophysical Journal, 2020, 893, 23.	1.6	5
383	Satellite Alignment. III. Satellite Galaxies' Spatial Distribution and Their Dependence on Redshift with a Novel Galaxy Finder. Astrophysical Journal, 2020, 893, 87.	1.6	4
384	Spectroscopic Constraints on the Buildup of Intracluster Light in the Coma Cluster. Astrophysical Journal, 2020, 894, 32.	1.6	12
385	The Angular Momentum of the Circumgalactic Medium in the TNG100 Simulation. Astrophysical Journal, 2020, 895, 17.	1.6	26
386	Correlations between Black Holes and Host Galaxies in the Illustris and IllustrisTNG Simulations. Astrophysical Journal, 2020, 895, 102.	1.6	24
387	Fitting the Nonlinear Matter Bispectrum by the Halofit Approach. Astrophysical Journal, 2020, 895, 113.	1.6	33
388	Testing the Fidelity of Simulations of Black Hole–Galaxy Coevolution at zÂâ^¼Â1.5 with Observations. Astrophysical Journal, 2020, 896, 159.	1.6	7
389	Selection of Massive Evolved Galaxies at 3 ≤ ≤.5 in the CANDELS Fields. Astrophysical Journal, 2020, 897, 44.	1.6	16
390	Toward an Understanding of the Massive Red Spiral Galaxy Formation. Astrophysical Journal, 2020, 897, 162.	1.6	17
391	Differential Rotation of the Halo Traced by K-giant Stars. Astrophysical Journal, 2020, 899, 110.	1.6	9
392	The Assembly History of M87 through Radial Variations in Chemical Abundances of Its Field Star and Globular Cluster Populations. Astrophysical Journal, 2020, 900, 95.	1.6	7
393	Dispersion Measures of Fast Radio Burst Host Galaxies Derived from IllustrisTNG Simulation. Astrophysical Journal, 2020, 900, 170.	1.6	27
394	Evidence from the H3 Survey That the Stellar Halo Is Entirely Comprised of Substructure. Astrophysical Journal, 2020, 901, 48.	1.6	204
395	Probing Dark Low-mass Halos and Primordial Black Holes with Frequency-dependent Gravitational Lensing Dispersions of Gravitational Waves. Astrophysical Journal, 2020, 901, 58.	1.6	37
396	On the Mass Distribution of the Intracluster Light in Galaxy Groups and Clusters. Astrophysical Journal, 2020, 901, 128.	1.6	13

#	Article	IF	CITATIONS
397	Radial Distributions of Dwarf Satellite Systems in the Local Volume. Astrophysical Journal, 2020, 902, 124.	1.6	34
398	Constraints on Circumgalactic Media from Sunyaev–Zel'dovich Effects and X-Ray Data. Astrophysical Journal, 2020, 903, 26.	1.6	6
399	Teaching Neural Networks to Generate Fast Sunyaev–Zel'dovich Maps. Astrophysical Journal, 2020, 902, 129.	1.6	14
400	Cosmological Insights into the Early Accretion of r-process-enhanced Stars. I. A Comprehensive Chemodynamical Analysis of LAMOST J1109+0754. Astrophysical Journal, 2020, 903, 88.	1.6	25
401	First Results from SMAUG: Uncovering the Origin of the Multiphase Circumgalactic Medium with a Comparative Analysis of Idealized and Cosmological Simulations. Astrophysical Journal, 2020, 903, 32.	1.6	38
402	Biases and Cosmic Variance in Molecular Gas Abundance Measurements at High Redshift. Astrophysical Journal, 2020, 904, 127.	1.6	12
403	The breakBRD Breakdown: Using IllustrisTNG to Track the Quenching of an Observationally Motivated Sample of Centrally Star-forming Galaxies. Astrophysical Journal, 2020, 903, 143.	1.6	2
404	Barred Galaxies in the IllustrisTNG Simulation. Astrophysical Journal, 2020, 904, 170.	1.6	27
405	Supermassive Black Hole Fueling in IllustrisTNG: Impact of Environment. Astrophysical Journal, 2020, 904, 150.	1.6	8
406	Mg ii and Fe ii Fluxes of Luminous Quasars at zÂâ^¼Â2.7 and the Evaluation of the Baldwin Effect in the Flux-to-abundance Conversion Method for Quasars. Astrophysical Journal, 2020, 904, 162.	1.6	10
407	An Extremely Massive Quiescent Galaxy at zÂ=Â3.493: Evidence of Insufficiently Rapid Quenching Mechanisms in Theoretical Models*. Astrophysical Journal Letters, 2020, 890, L1.	3.0	66
408	FOREVER22: galaxy formation in protocluster regions. Monthly Notices of the Royal Astronomical Society, 2021, 509, 4037-4057.	1.6	21
409	The spatial distribution deviation and the power suppression of baryons from dark matter. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1036-1047.	1.6	2
410	Bringing faint active galactic nuclei (AGNs) to light: a view from large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4816-4843.	1.6	8
411	Formation and evolution of binary neutron stars: mergers and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1557-1586.	1.6	17
412	X-ray bubbles in the circumgalactic medium of TNG50 Milky Way- and M31-like galaxies: signposts of supermassive black hole activity. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4667-4695.	1.6	36
413	Ultrahigh energy cosmic ray deflection by the intergalactic magnetic field. Physical Review D, 2021, 104, .	1.6	9
414	The Evolutionary Pathways of Disk-, Bulge-, and Halo-dominated Galaxies. Astrophysical Journal, 2021, 919, 135.	1.6	15

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
415	K-band Luminosity Functions of IllustrisTNG300-1 Galaxies. Research Notes of the AAS, 2021, 5, 224.	0.3	0
416	The Mass–Metallicity Relation at z â^¼ 1–2 and Its Dependence on the Star Formation Rate. Astrophysical Journal, 2021, 919, 143.	1.6	17
417	Galaxy Evolution in All Five CANDELS Fields and IllustrisTNG: Morphological, Structural, and the Major Merger Evolution to z â^1⁄4 3. Astrophysical Journal, 2021, 919, 139.	1.6	30
418	The Parameter-free Finger-of-God Model and Its Application to 21 cm Intensity Mapping. Astrophysical Journal, 2020, 895, 34.	1.6	2
419	Red Satellite Galaxies: The Best Tracers of Host-mass Distribution in the Illustris-TNG100 Simulation. Research Notes of the AAS, 2020, 4, 125.	0.3	1
420	The relaxation of galaxy clusters at redshift z = 0 in IllustrisTNG simulation. Research in Astronomy and Astrophysics, 2020, 20, 198.	0.7	0
421	Group-scale intrinsic galaxy alignments in the Illustris-TNG and MassiveBlack-II simulations. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5859-5872.	1.6	7
422	Baryonic imprints on DM haloes: population statistics from dwarf galaxies to galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3441-3461.	1.6	17
423	EXAMAG: Towards Exascale Simulations of the Magnetic Universe. Lecture Notes in Computational Science and Engineering, 2020, , 331-350.	0.1	0
424	The merger-driven evolution of massive early-type galaxies. Proceedings of the International Astronomical Union, 2019, 15, 62-66.	0.0	0
425	Quenched, bulge-dominated, but dynamically cold galaxies in IllustrisTNG and their real-world counterparts. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5062-5074.	1.6	2
426	Massive black hole evolution models confronting the n-Hz amplitude of the stochastic gravitational wave background. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3488-3503.	1.6	22
427	Stellar-mass Measurements in A133 with Magellan/IMACS. Astrophysical Journal, 2020, 892, 34.	1.6	1
428	Hyper Suprime-Cam Subaru Strategic Program: A Mass-dependent Slope of the Galaxy Sizeâ^'Mass Relation at z < 1. Astrophysical Journal, 2021, 921, 38.	1.6	38
429	Probabilistic model for dynamic galaxy decomposition. Monthly Notices of the Royal Astronomical Society, 2021, 509, 1764-1778.	1.6	4
430	From large-scale environment to CGM angular momentum to star forming activities – II. Quenched galaxies. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	12
431	The Impact of Baryonic Physics on the Abundance, Clustering, and Concentration of Halos. Astrophysical Journal, 2021, 921, 112.	1.6	16
432	From large-scale environment to CGM angular momentum to star-forming activities – I. Star-forming galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3148-3162.	1.6	17

#	Article	IF	CITATIONS
433	IllustrisTNG and S2COSMOS: possible conflicts in the evolution of neutral gas and dust. Monthly Notices of the Royal Astronomical Society, 2020, 500, 871-888.	1.6	3
434	Stellar and weak lensing profiles of massive galaxies in the Hyper-Suprime Cam survey and in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 500, 432-447.	1.6	15
435	Quenching and morphological evolution due to circumgalactic gas expulsion in a simulated galaxy with a controlled assembly history. Monthly Notices of the Royal Astronomical Society, 2020, 501, 236-253.	1.6	18
436	Tracking the orbit of unresolved subhaloes for semi-analytic models. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2900-2919.	1.6	7
437	Cosmic Evolution of Barred Galaxies up to z â^¼ 0.84. Astrophysical Journal, 2021, 922, 196.	1.6	12
438	[CII] line intensity mapping the epoch of reionization with the Prime-Cam on FYST. Astronomy and Astrophysics, 2022, 659, A12.	2.1	7
439	Detection of the Mass-dependent Dual Type Transition of Galaxy Spins in IllustrisTNG Simulations. Astrophysical Journal, 2021, 922, 6.	1.6	8
440	Past, Present, and Future of the Scaling Relations of Galaxies and Active Galactic Nuclei. Frontiers in Astronomy and Space Sciences, 2021, 8, .	1.1	15
441	Too dense to go through: the role of low-mass clusters in the pre-processing of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3210-3227.	1.6	13
442	A stringent upper limit on dark matter self-interaction cross-section from cluster strong lensing. Monthly Notices of the Royal Astronomical Society, 2021, 510, 54-81.	1.6	40
443	Cosmology from clustering, cosmic shear, CMB lensing, and cross correlations: combining Rubin observatory and Simons Observatory. Monthly Notices of the Royal Astronomical Society, 2021, 509, 5721-5736.	1.6	9
444	The Four Cosmic Tidal Web Elements from the β-skeleton. Astrophysical Journal, 2021, 922, 204.	1.6	1
445	Impact of gas spin and Lyman–Werner flux on black hole seed formation in cosmological simulations: implications for direct collapse. Monthly Notices of the Royal Astronomical Society, 2021, 510, 177-196.	1.6	3
446	Halo-model Analysis of the Clustering of Photometric Luminous Red Galaxies at 0.10 ≤ ≤.05 from the Subaru Hyper Suprime-Cam Survey. Astrophysical Journal, 2021, 922, 23.	1.6	8
447	Cosmological boost factor for dark matter annihilation at redshifts of z=10â^'100 using the power spectrum approach. Physical Review D, 2021, 104, .	1.6	2
448	The dust-continuum size of TNG50 galaxies at <i>z</i> Â= 1–5: a comparison with the distribution of stellar light, stars, dust, and H2. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3321-3334.	1.6	37
449	Relative effect of nodes and filaments of the cosmic web on the quenching of galaxies and the orientation of their spin. Astronomy and Astrophysics, 2022, 658, A113.	2.1	10
450	Systematic Errors Induced by the Elliptical Power-law model in Galaxy–Galaxy Strong Lens Modeling. Research in Astronomy and Astrophysics, 2022, 22, 025014.	0.7	9

#	Article	IF	CITATIONS
451	HSC-XXL: Baryon budget of the 136 XXL groups and clusters. Publication of the Astronomical Society of Japan, 2022, 74, 175-208.	1.0	17
452	The effect of selection $\hat{a} \in $ a tale of cluster mass measurement bias induced by correlation and projection. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 511, L30-L34.	1.2	4
453	The Structure of Multiphase Galactic Winds. Astrophysical Journal, 2022, 924, 82.	1.6	58
454	Relic galaxy analogues in TNG50 simulation: the formation pathways of surviving red nuggets in a cosmological simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 245-264.	1.6	8
455	High-redshift predictions from IllustrisTNG – III. Infrared luminosity functions, obscured star formation, and dust temperature of high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 510, 5560-5578.	1.6	26
456	Densified Pupil Spectrograph as High-precision Radial Velocimetry: From Direct Measurement of the Universe's Expansion History to Characterization of Nearby Habitable Planet Candidates. Astronomical Journal, 2022, 163, 63.	1.9	2
457	The Galaxy Replacement Technique (GRT): A New Approach to Study Tidal Stripping and Formation of Intracluster Light in a Cosmological Context. Astrophysical Journal, 2022, 925, 103.	1.6	5
458	The <scp>thesan</scp> project: properties of the intergalactic medium and its connection to reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4909-4933.	1.6	44
459	Account of the baryonic feedback effect in <i>γ</i> -ray measurements of intergalactic magnetic fields. Astronomy and Astrophysics, 2022, 660, A80.	2.1	6
460	The three hundred project: galaxy cluster mergers and their impact on the stellar component of brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2897-2913.	1.6	9
461	Co-evolution of massive black holes and their host galaxies at high redshift: discrepancies from six cosmological simulations and the key role of <i>JWST</i> . Monthly Notices of the Royal Astronomical Society, 2022, 511, 3751-3767.	1.6	27
462	Improved strong lensing modelling of galaxy clusters using the Fundamental Plane: Detailed mapping of the baryonic and dark matter mass distribution of Abell S1063. Astronomy and Astrophysics, 2022, 659, A24.	2.1	12
463	Dynamics of intermediate-mass black holes wandering in the milky way galaxy using the illustris TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2229-2238.	1.6	9
464	Baryonic feedback biases on fundamental physics from lensed CMB power spectra. Physical Review D, 2022, 105, .	1.6	11
465	Mass of the dynamically hot inner stellar halo predicts the ancient accreted stellar mass. Astronomy and Astrophysics, 2022, 660, A20.	2.1	15
466	Mock catalogues of emission-line galaxies based on the local mass density in dark-matter only simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 1131-1140.	1.6	1
467	Predictions for local PNG bias in the galaxy power spectrum and bispectrum and the consequences for f _{NL} constraints. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 033.	1.9	28
468	Quenching time-scales in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6126-6142.	1.6	9

#	Article	IF	CITATIONS
469	A Hydro-particle-mesh Code for Efficient and Rapid Simulations of the Intracluster Medium. Astrophysical Journal, 2022, 925, 134.	1.6	1
470	Intrinsic alignments in IllustrisTNG and their implications for weak lensing: Tidal shearing and tidal torquing mechanisms put to the test. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2049-2072.	1.6	6
471	Connecting galaxy evolution in clusters with their radial profiles and phase space distribution: results from the IllustrisTNG hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2022, 512, 4378-4393.	1.6	11
472	First Light And Reionisation Epoch Simulations (FLARES) – III. The properties of massive dusty galaxies at cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4999-5017.	1.6	19
473	Galaxy luminosity function pipeline for cosmology and astrophysics. Physical Review D, 2022, 105, .	1.6	17
474	SDSS-IV MaNGA: spatial resolved properties of kinematically misaligned galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4685-4696.	1.6	9
475	The galaxy–halo size relation of low-mass galaxies in FIRE. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3967-3985.	1.6	13
476	Emulation of baryonic effects on the matter power spectrum and constraints from galaxy cluster data. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 046.	1.9	30
477	On the quenching of star formation in observed and simulated central galaxies: evidence for the role of integrated AGN feedback. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1052-1090.	1.6	45
478	Probing cosmology and gastrophysics with fast radio bursts:Âcross-correlations of dark matter haloes and cosmic dispersion measures. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1730-1750.	1.6	8
479	Universality of the halo mass function in modified gravity cosmologies. Physical Review D, 2022, 105, .	1.6	5
480	The Fornax Deep Survey with the VST. Astronomy and Astrophysics, 2022, 662, A43.	2.1	16
481	First Results from SMAUG: Insights into Star Formation Conditions from Spatially Resolved ISM Properties in TNG50. Astrophysical Journal, 2022, 926, 139.	1.6	3
482	Probing Hot Gas Components of the Circumgalactic Medium in Cosmological Simulations with the Thermal Sunyaev–Zel'dovich Effect. Astrophysical Journal, 2022, 926, 179.	1.6	9
483	Local Group timing argument and virial theorem mass estimators from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 6193-6204.	1.6	9
484	The ALMA-ALPINE [CII] survey. Astronomy and Astrophysics, 2022, 664, A73.	2.1	6
485	Emulating Sunyaev–Zeldovich images of galaxy clusters using autoencoders. Monthly Notices of the Royal Astronomical Society, 2022, 513, 333-344.	1.6	5
486	The evolution of the barred galaxy population in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5339-5357.	1.6	26

#	Article	IF	CITATIONS
487	Scatter in the satellite galaxy SHMR: fitting functions, scaling relations,Âand physical processes from the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6021-6037.	1.6	4
488	Host galaxies and electromagnetic counterparts to binary neutron star mergers across the cosmic time: detectability of GW170817-like events. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2654-2668.	1.6	13
489	An Intensity Mapping Constraint on the CO-galaxy Cross-power Spectrum at Redshift â^1⁄43. Astrophysical Journal, 2022, 927, 161.	1.6	14
490	Quenching of Massive Disk Galaxies in the IllustrisTNG Simulation. Astrophysical Journal, 2022, 928, 100.	1.6	9
491	The Intra-Group Baryons in the LEO I Pair From the VST Early-Type GAlaxy Survey. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	12
492	Fast radio bursts as probes of feedback from active galactic nuclei. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 512, L49-L53.	1.2	1
493	The Observed Evolution of the Stellar Mass–Halo Mass Relation for Brightest Central Galaxies. Astrophysical Journal, 2022, 928, 28.	1.6	11
494	Galactic angular momentum in the IllustrisTNG simulation – I. Connection to morphology, halo spin, and black hole mass. Monthly Notices of the Royal Astronomical Society, 2022, 512, 5978-5994.	1.6	21
495	The <scp>thesan</scp> project: Lyman-α emission and transmission during the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3243-3265.	1.6	36
496	Formation and fate of low-metallicity stars in TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3602-3615.	1.6	4
497	High and low Sérsic index bulges in Milky Way- and M31-like galaxies: origin and connection to the bar with TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 512, 2537-2555.	1.6	9
498	Limits on non-canonical heating and turbulence in the intergalactic medium from the low redshift Lyman α forest. Monthly Notices of the Royal Astronomical Society, 2022, 513, 864-885.	1.6	9
499	How Do the Galaxy Stellar Spins Acquire a Peculiar Tidal Connection?. Astrophysical Journal, 2022, 927, 29.	1.6	3
500	The impact of galaxy selection on the splashback boundaries of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 513, 835-852.	1.6	8
501	The Transition Region between Brightest Cluster Galaxies and Intracluster Light in Galaxy Groups and Clusters. Astrophysical Journal, 2022, 928, 99.	1.6	9
502	Illustrating galaxy–halo connection in the DESI era with <scp>illustrisTNG</scp> . Monthly Notices of the Royal Astronomical Society, 2022, 512, 5793-5811.	1.6	18
503	The LEGA-C and SAMI galaxy surveys: quiescent stellar populations and the mass–size plane across 6 Gyr. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3828-3845.	1.6	15
504	Cold Gas in Massive Galaxies as a Critical Test of Black Hole Feedback Models. Astrophysical Journal, 2022, 927, 189.	1.6	3

#	Article	IF	CITATIONS
505	The Triangulum Extended (TREX) Survey: The Stellar Disk Dynamics of M33 as a Function of Stellar Age. Astronomical Journal, 2022, 163, 166.	1.9	7
506	The faint light in groups and clusters of galaxies. Nature Astronomy, 2022, 6, 308-316.	4.2	32
507	Ultraviolet to far infrared self-consistent analysis of the stellar populations of massive starburst galaxies at intermediate redshifts. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1175-1197.	1.6	1
508	The ASTRID simulation: galaxy formation and reionization. Monthly Notices of the Royal Astronomical Society, 2022, 512, 3703-3716.	1.6	43
509	Finding Universal Relations in Subhalo Properties with Artificial Intelligence. Astrophysical Journal, 2022, 927, 85.	1.6	21
510	The CAMELS Multifield Data Set: Learning the Universe's Fundamental Parameters with Artificial Intelligence. Astrophysical Journal, Supplement Series, 2022, 259, 61.	3.0	30
511	Lopsided galactic disks in IllustrisTNG. Astronomy and Astrophysics, 2022, 662, A53.	2.1	7
512	Polynomial expansion of the star formation history in galaxies. Astronomy and Astrophysics, 2022, 662, A1.	2.1	3
513	Is A2261 a Fossil Galaxy Cluster in a Transitional Dynamical State?. Astrophysical Journal, 2022, 928, 170.	1.6	2
514	The large-scale distribution of ionized metals in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2021, 510, 399-412.	1.6	6
515	How cosmological merger histories shape the diversity of stellar haloes. Monthly Notices of the Royal Astronomical Society, 2022, 510, 4208-4224.	1.6	14
516	On the Co-orbitation of Satellite Galaxies along the Great Plane of Andromeda: NGC 147, NGC 185, and Expectations from Cosmological Simulations. Astrophysical Journal, 2021, 923, 42.	1.6	11
517	Introducing the <scp>thesan</scp> project: radiation-magnetohydrodynamic simulations of the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 511, 4005-4030.	1.6	88
518	A Comparison of Circumgalactic Mg ii Absorption between the TNG50 Simulation and the MEGAFLOW Survey. Astrophysical Journal, 2021, 923, 56.	1.6	12
519	Drivers of asymmetry in synthetic H <scp>i</scp> emission-line profiles of galaxies in the <scp>eagle</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2022, 510, 3408-3429.	1.6	7
520	<scp>L-Galaxies 2020</scp> : the formation and chemical evolution of stellar haloes in Milky Way analogues and galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 510, 1945-1963.	1.6	1
521	The combined and respective roles of imaging and stellar kinematics in identifying galaxy merger remnants. Monthly Notices of the Royal Astronomical Society, 2022, 511, 100-119.	1.6	21
522	Multi-scale feedback and feeding in the closest radio galaxy Centaurus A. Nature Astronomy, 2022, 6, 109-120.	4.2	16

		_		
CITAT	ION .	Dr		DT
CITAT	IUN	IX F.	РО	K I

#	Article	IF	CITATIONS
523	Thermal Instabilities and Shattering in the High-redshift WHIM: Convergence Criteria and Implications for Low-metallicity Strong H i Absorbers. Astrophysical Journal, 2021, 923, 115.	1.6	16
524	The dark matter haloes of HI selected galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2585-2599.	1.6	4
525	RELICS: ICL Analysis of the z = 0.566 Merging Cluster WHL J013719.8–08284. Astrophysical Journal, 2021, 922, 268.	1.6	7
526	Galaxy velocity bias in cosmological simulations: towards per cent-level calibration. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2980-2997.	1.6	12
527	Preparing for low surface brightness science with the Vera C. Rubin Observatory: Characterization of tidal features from mock images. Monthly Notices of the Royal Astronomical Society, 2022, 513, 1459-1487.	1.6	19
528	A systematic search for galaxy protocluster cores at the transition epoch of their star formation activity. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3252-3272.	1.6	5
529	Apostle–Auriga: effects of different subgrid models on the baryon cycle around Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3113-3138.	1.6	12
530	On the environmental influence of groups and clusters of galaxies beyond the virial radius: Galactic conformity at few Mpc scales. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2271-2284.	1.6	12
531	A Rich Satellite Population of the NGC 4437 Group and Implications of a Magnitude Gap for Galaxy Group Assembly History. Astrophysical Journal, 2022, 929, 36.	1.6	2
532	Percent-level constraints on baryonic feedback with spectral distortion measurements. Physical Review D, 2022, 105, .	1.6	6
533	On the detectability of massive black hole merger events by Laser Interferometry Space Antenna. Monthly Notices of the Royal Astronomical Society, 2022, 512, 6007-6020.	1.6	4
534	From Naked Spheroids to Disky Galaxies: How Do Massive Disk Galaxies Shape Their Morphology?. Astrophysical Journal, 2022, 929, 121.	1.6	18
535	Cosmology with One Galaxy?. Astrophysical Journal, 2022, 929, 132.	1.6	10
536	Dust SEDs in Milky Way-like galaxies in the IllustrisTNG simulations based on the evolution of grain size distribution. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
537	3D intrinsic shapes of quiescent galaxies in observations and simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 4814-4832.	1.6	6
538	<scp>forge</scp> : the <i>f</i> (<i>R</i>)-gravity cosmic emulator project – I. Introduction and matter power spectrum emulator. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4161-4175.	1.6	14
539	North Ecliptic Pole merging galaxy catalogue. Astronomy and Astrophysics, 2022, 661, A52.	2.1	12
540	COSMOS2020: Cosmic evolution of the stellar-to-halo mass relation for central and satellite galaxies up to <i>z</i> â^¼â€" 5. Astronomy and Astrophysics, 2022, 664, A61.	2.1	24

#	Article	IF	CITATIONS
541	Newcomers and suburbanites can drive the evolution of the size-stellar mass relation of early type galaxies in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	3
542	Estimating transient rates from cosmological simulations and BPASS. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1315-1334.	1.6	25
543	The Fornax3D project: Discovery of ancient massive merger events in the Fornax cluster galaxies NGC 1380 and NGC 1427. Astronomy and Astrophysics, 2022, 664, A115.	2.1	14
544	The environmental dependence of the stellar and gas-phase mass–metallicity relation at 2 < <i>z</i> < 4. Astronomy and Astrophysics, 2022, 664, A75.	2.1	8
545	Radial distributions of globular clusters trace their host dark matter halo: insights from the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3925-3945.	1.6	13
546	Mock HUBS observations of hot gas with IllustrisTNG. Experimental Astronomy, 2022, 53, 1053-1074.	1.6	4
547	Substructure in the stellar halo near the Sun. Astronomy and Astrophysics, 2022, 665, A58.	2.1	14
548	A disturbing FABLE of mergers, feedback, turbulence, and mass biases in simulated galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 514, 313-328.	1.6	11
549	Realistic galaxy images and improved robustness in machine learning tasks from generative modelling. Monthly Notices of the Royal Astronomical Society, 2022, 515, 652-677.	1.6	7
550	Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2936-2957.	1.6	31
551	Characterizing Protoclusters and Protogroups at z â^¼ 2.5 Using Lyα Tomography. Astrophysical Journal, 2022, 930, 109.	1.6	9
552	The local PNG bias of neutral Hydrogen, H ₁ . Journal of Cosmology and Astroparticle Physics, 2022, 2022, 057.	1.9	8
553	Quantum cosmological backreactions. I. Cosmological space adiabatic perturbation theory. Physical Review D, 2022, 105, .	1.6	4
554	Building the biggest galaxies. Astronomy and Geophysics, 2022, 63, 3.36-3.39.	0.1	0
555	Ram pressure stripping in high-density environments. Astronomy and Astrophysics Review, 2022, 30, .	9.1	102
556	Disc instability and bar formation: view from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1006-1020.	1.6	11
557	The Redshift Evolution of the Binary Black Hole Merger Rate: A Weighty Matter. Astrophysical Journal, 2022, 931, 17.	1.6	56
558	Mimicking the halo–galaxy connection using machine learning. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2463-2478.	1.6	13

#	Article	IF	CITATIONS
559	Intrinsic alignments of bulges and discs. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1021-1033.	1.6	7
560	The importance of black hole repositioning for galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 167-184.	1.6	17
561	Coevolution of Brightest Cluster Galaxies and Their Host Clusters in IllustrisTNG. Astrophysical Journal, 2022, 931, 31.	1.6	2
562	A Simulation-driven Deep Learning Approach for Separating Mergers and Star-forming Galaxies: The Formation Histories of Clumpy Galaxies in All of the CANDELS Fields. Astrophysical Journal, 2022, 931, 34.	1.6	7
563	<scp>The Three Hundred</scp> project: The <scp>gizmo-simba</scp> run. Monthly Notices of the Royal Astronomical Society, 2022, 514, 977-996.	1.6	31
564	Early-type galaxy density profiles from IllustrisTNG – III. Effects on outer kinematic structure. Monthly Notices of the Royal Astronomical Society, 2022, 513, 6134-6151.	1.6	3
565	Star formation characteristics of CNN-identified post-mergers in the Ultraviolet Near Infrared Optical Northern Survey (UNIONS). Monthly Notices of the Royal Astronomical Society, 2022, 514, 3294-3307.	1.6	17
566	The black hole population in low-mass galaxies in large-scale cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4912-4931.	1.6	11
567	The formation of low surface brightness galaxies in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5840-5852.	1.6	8
568	Massive central galaxies of galaxy groups in the <scp>Romulus</scp> simulations: an overview of galaxy properties at <i>z</i> Â= 0. Monthly Notices of the Royal Astronomical Society, 2022, 515, 22-47.	1.6	11
569	Modelling galaxy clustering in redshift space with a Lagrangian bias formalism and <i>N</i> -body simulations. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3993-4007.	1.6	9
570	Priors on Lagrangian bias parameters from galaxy formation modelling. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5443-5456.	1.6	11
571	Fornax3D project: Assembly history of massive early-type galaxies in the Fornax cluster from deep imaging and integral field spectroscopy. Astronomy and Astrophysics, 2022, 663, A135.	2.1	3
572	The formation of the first quasars: the black hole seeds, accretion, and feedback models. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5583-5606.	1.6	10
573	The <scp>thesan</scp> project: predictions for multitracer line intensity mapping in the epoch of reionization. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3857-3878.	1.6	31
574	Predicting the thermal Sunyaev–Zel'dovich field using modular and equivariant set-based neural networks. Machine Learning: Science and Technology, 2022, 3, 035002.	2.4	3
575	A general framework to test gravity using galaxy clusters – VI. Realistic galaxy formation simulations to study clusters in modified gravity. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3349-3365.	1.6	4
576	Exploring the effect of baryons on the radial distribution of satellite galaxies with GAMA and IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4676-4695.	1.6	2

#	Article	IF	CITATIONS
577	The scatter in the galaxy–halo connection: a machine learning analysis. Monthly Notices of the Royal Astronomical Society, 2022, 514, 4026-4045.	1.6	14
578	iMaNGA: mock MaNGA galaxies based on IllustrisTNG and MaStar SSPs – I. Construction and analysis of the mock data cubes. Monthly Notices of the Royal Astronomical Society, 2022, 515, 320-338.	1.6	14
579	KLLR: A Scale-dependent, Multivariate Model Class for Regression Analysis. Astrophysical Journal, 2022, 931, 166.	1.6	8
580	Morphological decomposition of TNG50 galaxies: methodology and catalogue. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1524-1543.	1.6	12
581	Realistic synthetic integral field spectroscopy with RealSim-IFS. Monthly Notices of the Royal Astronomical Society, 2022, 514, 2821-2838.	1.6	9
582	Stellar Halos from the The Dragonfly Edge-on Galaxies Survey. Astrophysical Journal, 2022, 932, 44.	1.6	7
583	On the formation of massive quiescent galaxies with diverse morphologies in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 213-228.	1.6	16
584	Merger histories of brightest group galaxies from MUSE stellar kinematics. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1104-1121.	1.6	7
585	Mapping â€~out-of-the-box' the properties of the baryons in massive halos. Astronomy and Astrophysics, 2022, 663, L6.	2.1	9
586	The Distribution of Satellite Galaxies in the IllustrisTNG100 Simulation. Astrophysical Journal, 2022, 933, 161.	1.6	5
587	The outer stellar mass of massive galaxies: a simple tracer of halo mass with scatter comparable to richness and reduced projection effects. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4722-4752.	1.6	5
588	The Low-redshift Lyα Forest as a Constraint for Models of AGN Feedback. Astrophysical Journal Letters, 2022, 933, L46.	3.0	8
589	Intrinsic Shapes of Brightest Cluster Galaxies. Astrophysical Journal, 2022, 933, 215.	1.6	4
590	SDSS-IV MaNGA: Cannibalism Caught in the Act—On the Frequency of Occurrence of Multiple Cores in Brightest Cluster Galaxies. Astrophysical Journal, 2022, 933, 61.	1.6	2
591	Massive Black Hole Binaries from the TNG50-3 Simulation. I. Coalescence and LISA Detection Rates. Astrophysical Journal, 2022, 933, 104.	1.6	11
592	A stochastic model to reproduce the star formation history of individual galaxies in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3249-3269.	1.6	3
593	Stringent Ïf8 constraints from small-scale galaxy clustering using a hybrid MCMCÂ+Âemulator framework. Monthly Notices of the Royal Astronomical Society, 2022, 515, 871-896.	1.6	32
594	Detectability of wandering intermediate-mass black holes in the Milky Way galaxy from radio to x-rays. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2110-2120.	1.6	7

#	Article	IF	CITATIONS
595	The Time Domain Spectroscopic Survey: Changing-look Quasar Candidates from Multi-epoch Spectroscopy in SDSS-IV. Astrophysical Journal, 2022, 933, 180.	1.6	19
596	Introducing EMP- <i>Pathfinder</i> : modelling the simultaneous formation and evolution of stellar clusters in their host galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3144-3180.	1.6	15
597	Concordance between Observations and Simulations in the Evolution of the Mass Relation between Supermassive Black Holes and Their Host Galaxies. Astrophysical Journal, 2022, 933, 132.	1.6	6
598	The Exploration of Local VolumE Satellites (ELVES) Survey: A Nearly Volume-limited Sample of Nearby Dwarf Satellite Systems. Astrophysical Journal, 2022, 933, 47.	1.6	47
599	Revision of Faraday rotation measure constraints on the primordial magnetic field using the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5673-5681.	1.6	2
600	Milky Way-like galaxies: stellar population properties of dynamically defined discs, bulges and stellar haloes. Monthly Notices of the Royal Astronomical Society, 2022, 516, 197-215.	1.6	3
601	DeepAdversaries: examining the robustness of deep learning models for galaxy morphology classification. Machine Learning: Science and Technology, 2022, 3, 035007.	2.4	9
602	Continuous Wavelet Analysis of Matter Clustering Using the Gaussian-derived Wavelet. Astrophysical Journal, 2022, 934, 77.	1.6	6
603	Reaching for the Edge I: probing the outskirts of massive galaxies with HSC, DECaLS, SDSS, and Dragonfly. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5335-5357.	1.6	9
604	Simultaneous Dependence of Matter Clustering on Scale and Environment. Astrophysical Journal, 2022, 934, 112.	1.6	3
605	Redshift and stellar mass dependence of intrinsic shapes of disc-dominated galaxies from COSMOS observations below <i>z</i> Â= 1.0. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3603-3631.	1.6	1
606	The impact of galactic feedback on the shapes of dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2022, 515, 2681-2697.	1.6	11
607	Spatial Distribution of Dark Matter in and Around Galaxy Clusters Traced by Galaxies, Gas, and Intracluster Stars in a Simulated Universe. Astrophysical Journal, 2022, 934, 43.	1.6	1
608	UV to submillimetre luminosity functions of TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3728-3749.	1.6	9
609	The GLASS-JWST Early Release Science Program. I. Survey Design and Release Plans. Astrophysical Journal, 2022, 935, 110.	1.6	121
610	Intervelocity of galaxy pairs in $\hat{\mathbf{b}}$ CDM. Astronomy and Astrophysics, 2022, 664, L6.	2.1	2
611	How baryons affect haloes and large-scale structure: a unified picture from the <scp>Simba</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2022, 516, 883-906.	1.6	22
612	Mesoscopic energy ranking constraints in the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 279-297.	1.6	О

#	Article	IF	CITATIONS
613	Warped Disk Galaxies. I. Linking U-type Warps in Groups/Clusters to Jellyfish Galaxies. Astrophysical Journal, 2022, 935, 48.	1.6	3
614	The formation of early-type galaxies through monolithic collapse of gas clouds in Milgromian gravity. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1081-1093.	1.6	10
615	Synthesizing Stellar Populations in South Pole Telescope Galaxy Clusters. I. Ages of Quiescent Member Galaxies at 0.3 < z < 1.4. Astrophysical Journal, 2022, 934, 177.	1.6	9
616	Three-point intrinsic alignments of dark matter haloes in the IllustrisTNG simulation. Monthly Notices of the Royal Astronomical Society, 2022, 516, 1829-1845.	1.6	4
617	Galaxies and haloes on graph neural networks: Deep generative modelling scalar and vector quantities for intrinsic alignment. Monthly Notices of the Royal Astronomical Society, 2022, 516, 2406-2419.	1.6	2
618	AGN accretion and black hole growth across compact and extended galaxy evolution phases. Monthly Notices of the Royal Astronomical Society, 2022, 515, 4860-4889.	1.6	8
619	Galaxy formation in the Santa Cruz semi-analytic model compared with IllustrisTNG – I. Galaxy scaling relations, dispersions, and residuals at <i>z</i> = 0. Monthly Notices of the Royal Astronomical Society, 2022, 517, 6091-6111.	1.6	10
620	The GOGREEN survey: constraining the satellite quenching time-scale in massive clusters at <i>z</i> ≳ 1. Monthly Notices of the Royal Astronomical Society, 2022, 515, 5479-5494.	1.6	4
621	Probing the <i>z</i> â‰ ³ 6 quasars in a universe with IllustrisTNG physics: impact of gas-based black hole seeding models. Monthly Notices of the Royal Astronomical Society, 2022, 516, 138-157.	1.6	6
622	The eROSITA Final Equatorial Depth Survey (eFEDS). Astronomy and Astrophysics, 2022, 666, A156.	2.1	19
623	The Missing Satellite Problem outside of the Local Group. II. Statistical Properties of Satellites of Milky Way–like Galaxies. Astrophysical Journal, 2022, 936, 38.	1.6	9
624	Chemical abundances in the outskirts of nearby galaxy groups measured with joint <i>Suzaku</i> and <i>Chandra</i> observations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3068-3081.	1.6	7
625	Accreted or Not Accreted? The Fraction of Accreted Mass in Galaxies from the Magneticum Simulations and Observations. Astrophysical Journal, 2022, 935, 37.	1.6	10
626	Clash of Titans: A MUSE dynamical study of the extreme cluster merger SPT-CL J0307-6225. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4355-4378.	1.6	1
627	An exploration of the properties of cluster profiles for the thermal and kinetic Sunyaev–Zel'dovich effects. Monthly Notices of the Royal Astronomical Society, 2022, 517, 420-436.	1.6	4
628	Understanding the relation between thermal Sunyaev–Zeldovich decrement and halo mass using the <scp>simba</scp> and TNG simulations. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4084-4096.	1.6	11
629	Inferring galaxy dark halo properties from visible matter with machine learning. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3924-3943.	1.6	8
630	A multisimulation study of relativistic SZ temperature scalings in galaxy clusters and groups. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5303-5324.	1.6	7

#	Article	IF	CITATIONS
631	Deep learning-based super-resolution and de-noising for XMM-newton images. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4054-4069.	1.6	6
632	Merger Effects on the Spin and Shape Alignments of Galaxy Stellar, Cold Gas, Hot Gas, and Dark Matter Components. Astrophysical Journal, 2022, 936, 119.	1.6	5
633	Reorientation Rates of Structural and Kinematic Axes in Simulated Massive Galaxies and the Origins of Prolate Rotation. Astrophysical Journal, 2022, 937, 38.	1.6	1
634	The merger fraction of post-starburst galaxies in UNIONS. Monthly Notices of the Royal Astronomical Society, 2022, 516, 4354-4372.	1.6	16
635	Testing the key role of the stellar mass–halo mass relation in galaxy merger rates and morphologies via DECODE, a novel Discrete statistical sEmi-empiriCal mODEl. Monthly Notices of the Royal Astronomical Society, 2022, 516, 3206-3233.	1.6	2
636	The origin and properties of red spirals: Insights from cosmological simulations. Astronomy and Astrophysics, 2022, 667, A27.	2.1	2
637	The Origin of the Relation Between Stellar Angular Momentum and Stellar Mass in Nearby Disk-dominated Galaxies. Astrophysical Journal Letters, 2022, 937, L18.	3.0	2
638	The chemical enrichment in the early Universe as probed by <i>JWST</i> via direct metallicity measurements at <i>z</i> â ¹ ⁄4 8. Monthly Notices of the Royal Astronomical Society, 2022, 518, 425-438.	1.6	96
639	The merger and assembly histories of Milky Way- and M31-like galaxies with TNG50: disc survival through mergers. Monthly Notices of the Royal Astronomical Society, 2022, 516, 5404-5427.	1.6	19
640	IllustrisTNG Snapshots for 10 Gyr of Dynamical Evolution of Brightest Cluster Galaxies and Their Host Clusters. Astrophysical Journal, 2022, 938, 3.	1.6	3
641	Modelling globular clusters in the TNG50 simulation: predictions from dwarfs to giant galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2453-2470.	1.6	3
642	Simulations of black hole fueling in isolated and merging galaxies with an explicit, multiphase ISM. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4752-4767.	1.6	5
643	<scp>Trinity</scp> I: self-consistently modelling the dark matter halo–galaxy–supermassive black hole connection from <i>z</i> Â= 0–10. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2123-2163.	1.6	19
644	Constraining the Fluctuating Gunn–Peterson Approximation using Lyα Forest Tomography at z = 2. Astrophysical Journal, 2022, 938, 123.	1.6	3
645	The survival of stellar discs in Fornax-like environments, from TNG50 to real galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 517, 5992-6003.	1.6	4
646	On the Convergence of the Milky Way and M31 Kinematics from Cosmological Simulations. Astrophysical Journal, 2022, 939, 16.	1.6	1
647	Star formation quenching in the infall region around galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2022, 517, 4515-4528.	1.6	4
648	DEVILS: cosmic evolution of SED-derived metallicities and their connection to star formation histories. Monthly Notices of the Royal Astronomical Society, 2022, 517, 6035-6059.	1.6	11

#	Article	IF	CITATIONS
649	Empirical Dust Attenuation Model Leads to More Realistic UVJ Diagram for TNG100 Galaxies. Astrophysical Journal, 2022, 939, 29.	1.6	1
650	The contribution of <i>in situ</i> and <i>ex situ</i> star formation in early-type galaxies: MaNGA versus IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5651-5670.	1.6	9
651	An intergalactic medium temperature from a giant radio galaxy. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
652	Mining the Information Content of Member Galaxies in Halo Mass Modeling. Astrophysical Journal, 2022, 939, 10.	1.6	1
653	The Stellar Halo of the Galaxy is Tilted and Doubly Broken. Astronomical Journal, 2022, 164, 249.	1.9	19
654	ERGO-ML I: inferring the assembly histories of IllustrisTNG galaxies from integral observable properties via invertible neural networks. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2199-2223.	1.6	9
655	Constraining the Origin of Stellar Binary Black Hole Mergers by Detections of Their Lensed Host Galaxies and Gravitational Wave Signals. Astrophysical Journal, 2022, 940, 17.	1.6	6
656	The main sequence of star-forming galaxies across cosmic times. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1526-1544.	1.6	43
657	The Velocity Dispersion Function for Massive Quiescent and Star-forming Galaxies at 0.6 < z ≤1.0. Astrophysical Journal, 2022, 939, 90.	1.6	4
658	Tidally induced velocity gradients in the Milky Way dwarf spheroidal satellites. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3083-3094.	1.6	6
659	Super DIOS Project for Exploring "Dark Baryon― Journal of Low Temperature Physics, 0, , .	0.6	1
660	Modeling Redshift-space Clustering with Abundance Matching. Astrophysical Journal, 2022, 940, 13.	1.6	2
661	Has JWST Already Falsified Dark-matter-driven Galaxy Formation?. Astrophysical Journal Letters, 2022, 939, L31.	3.0	31
662	z â^1⁄4 2–9 Galaxies Magnified by the Hubble Frontier Field Clusters. II. Luminosity Functions and Constraints on a Faint-end Turnover. Astrophysical Journal, 2022, 940, 55.	1.6	32
663	Morphological signatures of mergers in the TNG50 simulation and the Kilo-Degree Survey: the merger fraction from dwarfs to Milky Way-like galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4920-4937.	1.6	11
664	First light and reionization epoch simulations (FLARES) V: the redshift frontier. Monthly Notices of the Royal Astronomical Society, 2022, 519, 3118-3128.	1.6	26
665	AGN Feedback in Groups and Clusters of Galaxies. , 2022, , 1-66.		3
666	Study on the Relationship between the Number Distribution of Satellite Galaxies and the Properties of Central Galaxies. Chinese Astronomy and Astrophysics, 2022, 46, 405-425.	0.1	0

#	Article	IF	CITATIONS
667	Mesh-free hydrodynamics in <scp>pkdgrav3</scp> for galaxy formation simulations. Monthly Notices of the Royal Astronomical Society, 2022, 519, 300-317.	1.6	3
668	How to interpret measurements of diffuse light in stacked observations of groups and clusters of galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3685-3701.	1.6	2
669	Predicting sub-millimetre flux densities from global galaxy properties. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5522-5535.	1.6	10
670	Mock galaxy surveys for <i>HST</i> and <i>JWST</i> from the IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 6318-6324.	1.6	4
671	Galaxy And Mass Assembly (GAMA): extended intragroup light in a group at <i>z</i> Â=Â0.2 from deep Hyper Suprime-Cam images. Monthly Notices of the Royal Astronomical Society, 2022, 518, 1195-1213.	1.6	8
672	Modelling the galaxy–halo connection with semi-recurrent neural networks. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5670-5692.	1.6	4
673	Simulated Bars May Be Shorter but Are Not Slower Than Those Observed: TNG50 versus MaNGA. Astrophysical Journal, 2022, 940, 61.	1.6	13
674	GOGREEN: A critical assessment of environmental trends in cosmological hydrodynamical simulations at <i>z</i> Ââ‰^ 1. Monthly Notices of the Royal Astronomical Society, 2022, 518, 4782-4800.	1.6	6
675	Massive quiescent galaxies at <i>z</i> â^¼ 3: A comparison of selection, stellar population, and structural properties with simulation predictions. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5953-5975.	1.6	11
676	The galaxy size to halo spin relation of disc galaxies in cosmological hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5253-5259.	1.6	4
677	A Direct Measurement of Galaxy Major and Minor Merger Rates and Stellar Mass Accretion Histories at Z < 3 Using Galaxy Pairs in the REFINE Survey. Astrophysical Journal, 2022, 940, 168.	1.6	9
678	The physical origin of galactic conformity: from theory to observation. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1913-1930.	1.6	6
679	A New Era of Intracluster Light Studies with JWST. Astrophysical Journal Letters, 2022, 940, L51.	3.0	15
680	The Uchuu-UniverseMachine dataset: Galaxies in and around Clusters. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
681	Comparing weak lensing peak counts in baryonic correction models to hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2022, 519, 573-584.	1.6	2
682	Hidden depths in the local Universe: The Stellar Stream Legacy Survey. Astronomy and Astrophysics, 2023, 671, A141.	2.1	13
683	Unravelling the interplay between SIDM and baryons in MW haloes: defining where baryons dictate heat transfer. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5623-5636.	1.6	5
684	DS+: A method for the identification of cluster substructures. Astronomy and Astrophysics, 0, , .	2.1	1

#	Article	IF	CITATIONS
685	The origin of stars in the inner 500 parsecs in TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5202-5235.	1.6	5
686	The circumgalactic medium of Milky Way-like galaxies in the TNG50 simulation – I: halo gas properties and the role of SMBH feedback. Monthly Notices of the Royal Astronomical Society, 2022, 518, 5754-5777.	1.6	18
687	Interacting galaxies in the IllustrisTNG simulations â^' IV: enhanced supermassive black hole accretion rates in post-merger galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4966-4981.	1.6	15
688	The interconnection between galaxy mergers, AGN activity, and rapid quenching of star formation in simulated post-merger galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2119-2137.	1.6	6
689	Formation of a barred galaxy in a major merger: The role of AGN feedback. Astronomy and Astrophysics, 2022, 668, L3.	2.1	2
690	Early-type dwarf galaxies in the local universe. Evidence of <i>ex situ</i> growth. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 520, L5-L10.	1.2	0
691	The Correlation Between Black Hole Accretion and Star Formation Rate Based on IllustrisTNG100-1. Journal of Physics: Conference Series, 2022, 2386, 012077.	0.3	0
692	Kinematics of the diffuse intragroup and intracluster light in groups and clusters of galaxies in the local universe within 100ÂMpc distance. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	8
693	Probabilistic mass-mapping with neural score estimation. Astronomy and Astrophysics, 2023, 672, A51.	2.1	6
694	Effects of dust sources on dust attenuation properties in IllustrisTNG galaxies at <i>z</i> â^¼ 7. Monthly Notices of the Royal Astronomical Society, 2022, 519, 2475-2485.	1.6	3
695	Where are the extremely metal-poor stars in the Milky Way and Andromeda? Expectations from TNG50. Monthly Notices of the Royal Astronomical Society, 2022, 519, 483-496.	1.6	6
696	Gas-phase metallicity break radii of star-forming galaxies in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4716-4734.	1.6	5
697	Clustering of emission line galaxies with IllustrisTNG – I. Fundamental properties and halo occupation distribution. Monthly Notices of the Royal Astronomical Society, 2022, 519, 1771-1791.	1.6	2
698	Quenching in cosmic sheets: tracing the impact of large-scale structure collapse on the evolution of dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2692-2708.	1.6	8
699	Conditional H i Mass Functions and the H i-to-halo Mass Relation in the Local Universe. Astrophysical Journal, 2022, 941, 48.	1.6	7
700	Colour gradients of low-redshift galaxies in the DESI Legacy Imaging Survey. Monthly Notices of the Royal Astronomical Society, 2022, 518, 3999-4023.	1.6	2
701	Intracluster light is already abundant at redshift beyond unity. Nature, 2023, 613, 37-41.	13.7	12
702	Globular cluster metallicity distributions in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5384-5401.	1.6	3

#	Article	IF	CITATIONS
703	Identifying Galaxy Mergers in Simulated CEERS NIRCam Images Using Random Forests. Astrophysical Journal, 2023, 942, 54.	1.6	8
704	Shock-induced Stripping of the Satellite Interstellar and Circumgalactic Medium in IllustrisTNG Clusters at Z â^1⁄4 0. Astrophysical Journal, 2023, 942, 44.	1.6	1
705	There and back again: Understanding the critical properties of backsplash galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 520, 649-667.	1.6	7
706	Ageing and quenching through the ageing diagram: predictions from simulations and observational constraints. Monthly Notices of the Royal Astronomical Society, 2023, 520, 193-209.	1.6	7
707	Offset between X-ray and optical centers in clusters of galaxies: Connecting eROSITA data with simulations. Astronomy and Astrophysics, 2023, 671, A57.	2.1	6
708	The contribution of magnetized galactic outflows to extragalactic Faraday rotation. Monthly Notices of the Royal Astronomical Society, 2023, 519, 4030-4035.	1.6	2
709	Does the virial mass drive the intra-cluster light?. Astronomy and Astrophysics, 2023, 670, L20.	2.1	8
710	Effects of baryonic feedback on the cosmic web. Physical Review D, 2023, 107, .	1.6	4
711	Applying unsupervised learning to resolve evolutionary histories and explore the galaxy-halo connection in IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	0
712	The impact of spurious collisional heating on the morphological evolution of simulated galactic discs. Monthly Notices of the Royal Astronomical Society, 2023, 519, 5942-5961.	1.6	12
713	AGNs in post-mergers from the ultraviolet near infrared optical northern survey. Monthly Notices of the Royal Astronomical Society, 2023, 519, 6149-6161.	1.6	5
714	The <scp>thesan</scp> project: ionizing escape fractions of reionization-era galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2757-2780.	1.6	15
715	Determining satellite infall times using machine learning. Monthly Notices of the Royal Astronomical Society, 2023, 520, 1704-1720.	1.6	3
716	Relating galaxies across different redshift to study galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2023, 520, 1774-1788.	1.6	4
717	The internal metallicity distributions of simulated galaxies from EAGLE, Illustris, and IllustrisTNG at <i>z</i> Â=Â1.8–4 as probed by gamma-ray burst hosts. Monthly Notices of the Royal Astronomical Society, 2023, 520, 879-896.	1.6	2
718	Consistent and simultaneous modelling of galaxy clustering and galaxy–galaxy lensing with subhalo abundance matching. Monthly Notices of the Royal Astronomical Society, 2023, 520, 489-502.	1.6	9
719	The quasi-adiabatic relaxation of haloes in the IllustrisTNG and EAGLE cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2023, 520, 2867-2886.	1.6	2
720	The relationship between galaxy and halo sizes in the Illustris and IllustrisTNG simulations. Monthly Notices of the Royal Astronomical Society, 2023, 520, 1630-1641.	1.6	0

#	Article	IF	CITATIONS
721	A comparison of the baryonic Tully–Fisher relation in MaNGA and IllustrisTNG. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3895-3908.	1.6	5
722	MaNGA galaxy properties – II. A detailed comparison of observed and simulated spiral galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1208-1227.	1.6	2
723	A new framework for understanding the evolution of early-type galaxies. Astronomy and Astrophysics, 2023, 674, A156.	2.1	2
724	Baryonic Effects on Lagrangian Clustering and Angular Momentum Reconstruction. Astrophysical Journal, 2023, 943, 128.	1.6	1
725	The Formation of the Brightest Cluster Galaxy and Intracluster Light in Cosmological N-body Simulations with the Galaxy Replacement Technique. Astrophysical Journal, 2023, 943, 148.	1.6	6
726	The bacco simulation project: bacco hybrid Lagrangian bias expansion model in redshift space. Monthly Notices of the Royal Astronomical Society, 2023, 520, 3725-3741.	1.6	7
727	Can Cosmological Simulations Reproduce the Spectroscopically Confirmed Galaxies Seen at z ≥ 10?. Astrophysical Journal Letters, 2023, 943, L28.	3.0	11
728	Probing the Earliest Phases in the Formation of Massive Galaxies with Simulated HST+JWST Imaging Data from Illustris. Astrophysical Journal, 2023, 944, 3.	1.6	1
729	Understanding the high-mass binary black hole population from stable mass transfer and super-Eddington accretion in <scp>bpass</scp> . Monthly Notices of the Royal Astronomical Society, 2023, 520, 5724-5745.	1.6	17
730	Active galactic nuclei jets simulated with smoothed particle hydrodynamics. Monthly Notices of the Royal Astronomical Society, 2023, 520, 5090-5109.	1.6	3
731	Calibrating Cosmological Simulations with Implicit Likelihood Inference Using Galaxy Growth Observables. Astrophysical Journal, 2023, 944, 67.	1.6	6
732	Galaxy Populations in Groups and Clusters: Evidence for a Characteristic Stellar Mass Scale at M _{â^—} â^1⁄4 10 ^{9.5} M _⊙ . Astrophysical Journal, 2023, 944, 75.	1.6	1
733	The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate. Astrophysical Journal, 2023, 944, 108.	1.6	10
734	Unveiling hidden active nuclei in MaNGA star-forming galaxies with He <scp>ii</scp> λ4686 line emission Monthly Notices of the Royal Astronomical Society, 2023, 521, 1264-1276.	¹ 1.6	5
735	Late growth of early-type galaxies in low-z massive clusters. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1221-1232.	1.6	1
736	The diversity of rotation curves of simulated galaxies with cusps and cores. Monthly Notices of the Royal Astronomical Society, 2023, 521, 1316-1336.	1.6	9
737	A Photometric Survey of Globular Cluster Systems in Brightest Cluster Galaxies. Astrophysical Journal, Supplement Series, 2023, 265, 9.	3.0	3
738	The growth of brightest cluster galaxies in the TNG300 simulation: dissecting the contributions from mergers and <i>in situ</i> star formation. Monthly Notices of the Royal Astronomical Society, 2023, 521, 800-817.	1.6	5

	Ο ΓΙΤΑΤΙΟΝ Ι	CITATION REPORT	
#	Article	IF	Citations
739	A New Stellar Mass Proxy for Subhalo Abundance Matching. Astrophysical Journal, 2023, 944, 207.	1.6	2
740	Radius-dependent Spin Transition of Dark Matter Halos. Astrophysical Journal, 2023, 945, 13.	1.6	4
741	Investigation of neutral hydrogen distribution and neutral hydrogen halo mass relation based on IllustrisTNG50. Journal of Physics: Conference Series, 2023, 2441, 012028.	0.3	0
742	Differences among IllustrisTNG series and a Brief Comparison with the Illustris Project. Journal of Physics: Conference Series, 2023, 2441, 012027.	0.3	0
743	Efficient Long-range Active Galactic Nuclei (AGNs) Feedback Affects the Low-redshift Lyα Forest. Astrophysical Journal Letters, 2023, 945, L17.	3.0	8
744	The bar rotation rate as a diagnostic of dark matter content in the centre of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 521, 2227-2238.	1.6	5
745	Testing the Radio-selection Method of Dual Active Galactic Nuclei in the Stripe 82 Field. Astrophysical Journal, 2023, 945, 73.	1.6	2
746	The Differential Assembly History of the Centers and Outskirts of Main-sequence Galaxies at z â^¼ 2.3. Astrophysical Journal, 2023, 945, 97.	1.6	4
747	MaNGIA: 10 000 mock galaxies for stellar population analysis. Astronomy and Astrophysics, 2023, 673, A23.	2.1	10
748	Color Gradients and Half-mass Radii of Galaxies Out to z = 2 in the CANDELS/3D-HST Fields: Further Evidence for Important Differences in the Evolution of Mass-weighted and Light-weighted Sizes. Astrophysical Journal, 2023, 945, 155.	1.6	10
749	Augmenting astrophysical scaling relations with machine learning: Application to reducing the Sunyaev–Zeldovich flux–mass scatter. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	5
750	Ionizing photon production and escape fractions during cosmic reionization in the TNG50 simulation. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3077-3097.	1.6	3
751	The <scp>thesan</scp> project: Lyman-α emitter luminosity function calibration. Monthly Notices of the Royal Astronomical Society, 2023, 521, 4356-4374.	1.6	1
752	The connection between the escape of ionizing radiation and galaxy properties at <i>z</i> â^1⁄4 3 in the Keck Lyman continuum spectroscopic survey. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3247-3259.	1.6	5
753	The Effect of colliding galaxies on star formation rates based on IllustrisTNG. , 0, 38, 30-36.		0
754	The atomic-to-molecular hydrogen transition in the TNG50 simulation: Using realistic UV fields to create spatially resolved H <scp>i</scp> maps. Monthly Notices of the Royal Astronomical Society, 2023, 521, 5645-5668.	1.6	6
755	<scp>Rhapsody-C</scp> simulations – anisotropic thermal conduction, black hole physics, and the robustness of massive galaxy cluster scaling relations. Monthly Notices of the Royal Astronomical Society, 2023, 522, 721-749.	1.6	2
756	CEERS Key Paper. III. The Diversity of Galaxy Structure and Morphology at $z = 3\hat{a} \in 9$ with JWST. Astrophysical Journal Letters, 2023, 946, L15.	3.0	28

#	Article	IF	CITATIONS
757	Expectations of the Size Evolution of Massive Galaxies at 3 ≤ ≤ from the TNG50 Simulation: The CEERS/JWST View. Astrophysical Journal, 2023, 946, 71.	1.6	15
758	<tt>ZFIRE</tt> – The gas inflow inequality for satellite galaxies in cluster and field haloes at <i>z</i> = 2. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1556-1568.	1.6	1
759	DeepAstroUDA: semi-supervised universal domain adaptation for cross-survey galaxy morphology classification and anomaly detection. Machine Learning: Science and Technology, 2023, 4, 025013.	2.4	5
760	The CAMELS Project: Public Data Release. Astrophysical Journal, Supplement Series, 2023, 265, 54.	3.0	14
761	Modelling the cosmological Lyman–Werner background radiation field in the early Universe. Monthly Notices of the Royal Astronomical Society, 2023, 522, 330-349.	1.6	5
762	Off-centre supermassive black holes in bright central galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 522, 948-955.	1.6	5
763	Origin and evolution of ultradiffuse galaxies in different environments. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1033-1048.	1.6	9
764	Dark against Luminous Matter around Isolated Central Galaxies: A Comparative Study between Modern Surveys and IllustrisTNG. Astrophysical Journal, 2023, 947, 19.	1.6	1
765	The first quiescent galaxies in TNG300. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3138-3144.	1.6	5
766	Lopsided Satellite Distributions around Isolated Host Galaxies in a Ĵ›CDM Universe. Astrophysical Journal, 2023, 947, 56.	1.6	2
767	The circumgalactic medium of Milky Way-like galaxies in the TNG50 simulation – II. Cold, dense gas clouds and high-velocity cloud analogs. Monthly Notices of the Royal Astronomical Society, 2023, 522, 1535-1555.	1.6	11
768	Dissect two-halo galactic conformity effect for central galaxies: the dependence of star formation activities on the large-scale environment. Monthly Notices of the Royal Astronomical Society, 2023, 523, 1268-1279.	1.6	2
769	Late-formed haloes prefer to host quiescent central galaxies – I. Observational results. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3188-3200.	1.6	4
770	Resonant scattering of the O <scp>vii</scp> X-ray emission line in the circumgalactic medium of TNG50 galaxies. Monthly Notices of the Royal Astronomical Society, 2023, 522, 3665-3678.	1.6	4

AGN Feedback in Groups and Clusters of Galaxies. , 2024, , 4895-4960.