Evolutionary history of the angiosperm flora of China

Nature 554, 234-238 DOI: 10.1038/nature25485

Citation Report

#	Article	IF	CITATIONS
2	A worldwide listing and biogeography of freshwater diatom genera: a phylogenetic perspective. Diatom Research, 2018, 33, 509-534.	0.5	40
3	Ancient east-west divergence, recent admixture, and multiple marginal refugia shape genetic structure of a widespread oak species (Quercus acutissima) in China. Tree Genetics and Genomes, 2018, 14, 1.	0.6	19
4	A hidden cradle of plant evolution in Permian tropical lowlands. Science, 2018, 362, 1414-1416.	6.0	61
5	Phylogeography of a west-Beringian endemic plant: An ancient seed of Stellaria jacutica Schischk. detected in permafrost deposits of the last interglacial. Review of Palaeobotany and Palynology, 2018, 259, 48-54.	0.8	4
6	Identifying long-term stable refugia for relict plant species in East Asia. Nature Communications, 2018, 9, 4488.	5.8	149
7	Pollination ecology in China from 1977 to 2017. Plant Diversity, 2018, 40, 172-180.	1.8	12
8	Choice between phylogram and chronogram can have a dramatic impact on the location of phylogenetic diversity hotspots. Journal of Biogeography, 2018, 45, 2190-2201.	1.4	14
9	Current progress and future prospects in phylofloristics. Plant Diversity, 2018, 40, 141-146.	1.8	11
10	Evolutionary history of the flora of Mexico: Dry forests cradles and museums of endemism. Journal of Systematics and Evolution, 2018, 56, 523-536.	1.6	91
11	Taxonomy in the Kunming Institute of Botany (KIB): Progress during the past decade (2008–2018) and perspectives on future development. Plant Diversity, 2018, 40, 147-157.	1.8	4
12	Evolutionary Hotspots of Seed Plants in Subtropical China: A Comparison With Species Diversity Hotspots of Woody Seed Plants. Frontiers in Genetics, 2018, 9, 333.	1.1	8
13	Towards an integrated research approach for urban forestry: The case of China. Urban Forestry and Urban Greening, 2019, 46, 126472.	2.3	12
14	Spatial Genetic Patterns and Distribution Dynamics of the Rare Oak Quercus chungii: Implications for Biodiversity Conservation in Southeast China. Forests, 2019, 10, 821.	0.9	10
15	Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai–Tibetan Plateau. Ecology and Evolution, 2019, 9, 9586-9596.	0.8	26
16	The composition of the middle Miocene (15†Ma) Namling paleoflora, South Central Tibet, in the context of other Tibetan and Himalayan Floras. Review of Palaeobotany and Palynology, 2019, 271, 104088.	0.8	11
17	Phylogeography and population genetic structure of flowering cherry speciesCerasus dielsianain subtropical China. Systematics and Biodiversity, 2019, 17, 622-633.	0.5	7
18	Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the United States of America, 2019, 116, 23192-23201.	3.3	85
19	Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 2019, 62, 1665-1701.	2.3	58

#	Article	IF	CITATIONS
20	Diversification rates have no effect on the convergent evolution of foraging strategies in the most speciose genus of bats, <i>Myotis</i> *. Evolution; International Journal of Organic Evolution, 2019, 73, 2263-2280.	1.1	40
21	Resequencing 545 ginkgo genomes across the world reveals the evolutionary history of the living fossil. Nature Communications, 2019, 10, 4201.	5.8	99
22	The East Asian World-System. World-systems Evolution and Global Futures, 2019, , .	0.1	5
23	Theoretical Overview. World-systems Evolution and Global Futures, 2019, , 1-59.	0.1	0
24	Using water and energy variation to explain the botanical richness pattern of Theaceae species in southern China. Acta Ecologica Sinica, 2019, 39, 467-472.	0.9	6
25	Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10874-10882.	3.3	115
26	Plant endemism in the Nepal Himalayas and phytogeographical implications. Plant Diversity, 2019, 41, 174-182.	1.8	16
27	Phylogenetic delineation of regional biota: A case study of the Chinese flora. Molecular Phylogenetics and Evolution, 2019, 135, 222-229.	1.2	39
28	Biases in assessing the evolutionary history of the angiosperm flora of China. Journal of Biogeography, 2019, 46, 1096-1099.	1.4	5
29	Plant taxonomic richness and phylogenetic diversity across different cities in China. Urban Forestry and Urban Greening, 2019, 39, 55-66.	2.3	20
30	Species delimitation in the East Asian species of the relict tree genus Zelkova (Ulmaceae): A complex history of diversification and admixture among species. Molecular Phylogenetics and Evolution, 2019, 134, 172-185.	1.2	11
31	Mountains as Evolutionary Arenas: Patterns, Emerging Approaches, Paradigm Shifts, and Their Implications for Plant Phylogeographic Research in the Tibeto-Himalayan Region. Frontiers in Plant Science, 2019, 10, 195.	1.7	94
32	Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC Plant Biology, 2019, 19, 543.	1.6	40
33	Human activities have opposing effects on distributions of narrow-ranged and widespread plant species in China. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26674-26681.	3.3	83
34	Biodiversity synthesis across the green branches of the tree of life. Nature Plants, 2019, 5, 11-13.	4.7	19
35	The Value of the Tree of Life. , 2019, , 75-116.		0
36	Testing multiple hypotheses for the high endemic plant diversity of the Tibetan Plateau. Global Ecology and Biogeography, 2019, 28, 131-144.	2.7	43
37	Mapping the genetic patterns of plants in the region of the Qinghai–Tibet Plateau: Implications for conservation strategies. Diversity and Distributions, 2019, 25, 310-324.	1.9	42

#	Article	IF	CITATIONS
38	Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. ISME Journal, 2019, 13, 686-697.	4.4	76
39	Palaeoclimatic estimates for a latest Miocene-Pliocene flora from the Siwalik Group of Bhutan: Evidence for the development of the South Asian Monsoon in the eastern Himalaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 514, 326-335.	1.0	20
40	Priorities and conservation gaps across three biodiversity dimensions of rare and endangered plant species in China. Biological Conservation, 2019, 229, 30-37.	1.9	44
41	Land bridges in the Pleistocene contributed to flora assembly on the continental islands of South China: Insights from the evolutionary history of Quercus championii. Molecular Phylogenetics and Evolution, 2019, 132, 36-45.	1.2	33
42	Floristic composition and endemism pattern of vascular plants in Ethiopia and Eritrea. Journal of Systematics and Evolution, 2020, 58, 33-42.	1.6	12
43	Phylogenetic relationships and biogeographic history of the unique <i>Saxifraga</i> sect. <i>Irregulares</i> (Saxifragaceae) from eastern Asia. Journal of Systematics and Evolution, 2020, 58, 958-971.	1.6	12
44	A phylogenetic perspective on the evolutionary processes of floristic assemblages within a biodiversity hotspot in eastern Asia. Journal of Systematics and Evolution, 2020, 58, 413-422.	1.6	12
45	Seed germination schedule and environmental context shaped the population genetic structure of subtropical evergreen oaks on the Yun-Gui Plateau, Southwest China. Heredity, 2020, 124, 499-513.	1.2	10
46	Evolutionary history of a relict conifer, Pseudotaxus chienii (Taxaceae), in south-east China during the late Neogene: old lineage, young populations. Annals of Botany, 2020, 125, 105-117.	1.4	27
47	Determinants of the beta diversity of tree species in tropical forests: Implications for biodiversity conservation. Science of the Total Environment, 2020, 704, 135301.	3.9	13
48	Climate change jointly with migration ability affect future range shifts of dominant fir species in Southwest China. Diversity and Distributions, 2020, 26, 352-367.	1.9	39
49	Drivers of largeâ€scale geographical variation in sexual systems of woody plants. Global Ecology and Biogeography, 2020, 29, 546-557.	2.7	16
50	Urban growth and topographical factors shape patterns of spontaneous plant community diversity in a mountainous city in southwest China. Urban Forestry and Urban Greening, 2020, 55, 126814.	2.3	27
51	The evolution of autotomy in leafâ€footed bugs. Evolution; International Journal of Organic Evolution, 2020, 74, 897-910.	1.1	31
52	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
53	Reproductive strategies of animalâ€pollinated plants on high mountains: A review of studies from the "Third Pole― Journal of Systematics and Evolution, 2020, , .	1.6	7
54	Cenozoic evolution of the steppe-desert biome in Central Asia. Science Advances, 2020, 6, .	4.7	79
55	Cenozoic topography, monsoons and biodiversity conservation within the Tibetan Region: An evolving story. Plant Diversity, 2020, 42, 229-254.	1.8	76

#	Article	IF	CITATIONS
56	Asterid Phylogenomics/Phylotranscriptomics Uncover Morphological Evolutionary Histories and Support Phylogenetic Placement for Numerous Whole-Genome Duplications. Molecular Biology and Evolution, 2020, 37, 3188-3210.	3.5	82
57	Cenozoic aridification in Northwest China evidenced by paleovegetation evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 557, 109907.	1.0	15
58	A new Choerospondias (Anacardiaceae) endocarp from the middle Miocene of Southeast China and its paleoecological implications. Review of Palaeobotany and Palynology, 2020, 283, 104312.	0.8	13
59	Early Oligocene vegetation and climate of southwestern China inferred from palynology. Palaeogeography, Palaeoclimatology, Palaeoecology, 2020, 560, 109988.	1.0	24
60	Reproductive phenology and its drivers in a tropical rainforest national park in China: Implications for Hainan gibbon (Nomascus hainanus) conservation. Global Ecology and Conservation, 2020, 24, e01317.	1.0	10
61	Miocene Diversification and High-Altitude Adaptation of Parnassius Butterflies (Lepidoptera:) Tj ETQq1 1 0.78431 754.	4 rgBT /O\ 1.0	verlock 10 10
62	Functional traits: Adaption of ferns in forest. Journal of Systematics and Evolution, 2021, 59, 1040-1050.	1.6	8
63	Influence of habitat on the phylogenetic structure of Robinia pseudoacacia forests in the eastern Loess Plateau, China. Global Ecology and Conservation, 2020, 24, e01199.	1.0	3
64	Geographic patterns and environmental correlates of taxonomic and phylogenetic beta diversity for largeâ€scale angiosperm assemblages in China. Ecography, 2020, 43, 1706-1716.	2.1	48
65	Adaptive strategies and driving factors of a montane riparian tree: Trait-specific mechanisms across latitude. Science of the Total Environment, 2020, 749, 141578.	3.9	2
66	Macroâ€scale variation and environmental predictors of flowering and fruiting phenology in the Chinese angiosperm flora. Journal of Biogeography, 2020, 47, 2303-2314.	1.4	20
67	In memory of Professor Tang Yanâ€Cheng: New perspectives in systematic and evolutionary biology. Journal of Systematics and Evolution, 2020, 58, 527-532.	1.6	0
68	Spatial Patterns and Drivers of Angiosperm Sexual Systems in China Differ Between Woody and Herbaceous Species. Frontiers in Plant Science, 2020, 11, 1222.	1.7	4
69	The evolution of a tropical biodiversity hotspot. Science, 2020, 370, 1343-1348.	6.0	179
70	Genetic insights into the evolution of genera with the eastern Asia–eastern North America floristic disjunction: a transcriptomics analysis. American Journal of Botany, 2020, 107, 1736-1748.	0.8	6
71	Noise does not equal bias in assessing the evolutionary history of the angiosperm flora of China: A response to Qian (2019). Journal of Biogeography, 2020, 47, 2286-2291.	1.4	4
72	Taxonomy and biogeography ofDiapensia(Diapensiaceae) based on chloroplast genome data. Journal of Systematics and Evolution, 2020, 58, 696-709.	1.6	6
73	An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited. Journal of Systematics and Evolution, 2020, 58, 663-672.	1.6	31

		CITATION REPORT		
#	Article		IF	Citations
74	Dramatic impact of metric choice on biogeographical regionalization. Plant Diversity, 2	.020, 42, 67-73.	1.8	7
75	Phylogenetic patterns of shrub communities along the longitudinal and latitudinal grad northeastern Qinghai–Tibetan Plateau. Journal of Mountain Science, 2020, 17, 1106	lients on the -1114.	0.8	4
76	A new species of Drynaria (Polypodiaceae) from the late Miocene of Yunnan, Southwes implications on the genus evolution. Palaeobiodiversity and Palaeoenvironments, 2020	st China and), 100, 939-949.	0.6	3
77	High plant species richness and stable climate lead to richer but phylogenetically and for clustered avifaunas. Journal of Biogeography, 2020, 47, 1945-1954.	unctionally	1.4	10
78	Contrasting Floristic Diversity of the Hengduan Mountains, the Himalayas and the Qing Plateau Sensu Stricto in China. Frontiers in Ecology and Evolution, 2020, 8, .	ghai-Tibet	1.1	33
79	Out of Tibet: Genomic Perspectives on the Evolutionary History of Extant Pikas. Molect and Evolution, 2020, 37, 1577-1592.	ular Biology	3.5	39
80	Biodiversity conservation in China: A review of recent studies and practices. Environme and Ecotechnology, 2020, 2, 100025.	ntal Science	6.7	61
81	Recent accelerated diversification in rosids occurred outside the tropics. Nature Comm 2020, 11, 3333.	unications,	5.8	43
82	Leaf size of woody dicots predicts ecosystem primary productivity. Ecology Letters, 20	20, 23, 1003-1013.	3.0	41
83	Phylogenetic conservatism and biogeographic affinity influence woody plant species ri relationships in eastern Eurasia. Ecography, 2020, 43, 1027-1040.	chness–climate	2.1	13
84	Involucre fossils of Carpinus, a northern temperate element, from the Miocene of Chin evolution of its species diversity in East Asia. Plant Diversity, 2020, 42, 155-167.	a and the	1.8	7
85	Plastome phylogenomics of the East Asian endemic genus Dobinea. Plant Diversity, 20	21, 43, 35-42.	1.8	5
86	First fossil record of an East Asian endemic genus Sladenia (Sladeniaceae) from its mod Implications for floristic evolution and conservation biology. Journal of Systematics and 2021, 59, 216-226.	lern range: I Evolution,	1.6	2
87	Phylogenetic relatedness of woody angiosperm assemblages and its environmental def along a subtropical elevational gradient in China. Plant Diversity, 2021, 43, 111-116.	terminants	1.8	22
88	Is the age of plant communities predicted by the age, stability and soil composition of landscapes? An investigation of OCBILs. Biological Journal of the Linnean Society, 2021	the underlying I, 133, 297-316.	0.7	7
89	Plastome phylogenomics of <i>Cephalotaxus</i> (Cephalotaxaceae) and allied genera. Botany, 2021, 127, 697-708.	Annals of	1.4	14
90	Genomic signals reveal past evolutionary dynamics of Quercus schottkyana and its res climate change. Journal of Systematics and Evolution, 2021, 59, 985.	ponse to future	1.6	4
91	Two centuries of distribution data: detection of areas of endemism for the Brazilian an Cladistics, 2021, 37, 442-458.	giosperms.	1.5	13

#	Article	IF	CITATIONS
92	Patterns of phylogenetic beta diversity measured at deep evolutionary histories across geographical and ecological spaces for angiosperms in China. Journal of Biogeography, 2021, 48, 773-784.	1.4	19
93	The topographic evolution of the Tibetan Region as revealed by palaeontology. Palaeobiodiversity and Palaeoenvironments, 2021, 101, 213-243.	0.6	29
94	Geographical patterns in phylogenetic diversity of Chinese woody plants and its application for conservation planning. Diversity and Distributions, 2021, 27, 179-194.	1.9	21
95	Macroevolutionary patterns in European vegetation. Journal of Vegetation Science, 2021, 32, .	1.1	14
96	Species richness and phylogenetic diversity of different growth forms of angiosperms across a biodiversity hotspot in the horn of Africa. Journal of Systematics and Evolution, 2021, 59, 141-150.	1.6	7
97	Congruent spatial patterns of species richness and phylogenetic diversity in karst flora: Case study of <i>Primulina</i> (Gesneriaceae). Journal of Systematics and Evolution, 2021, 59, 251-261.	1.6	15
98	Potential distributions of seven sympatric sclerophyllous oak species in Southwest China depend on climatic, non-climatic, and independent spatial drivers. Annals of Forest Science, 2021, 78, 1.	0.8	6
99	Phylogenetic structure of European forest vegetation. Journal of Biogeography, 2021, 48, 903-916.	1.4	8
100	Relationship between gross primary productivity and plant species richness at geographical scales: evidence from protected area data in China. Environmental Earth Sciences, 2021, 80, 1.	1.3	5
101	The global significance of biodiversity science in China: an overview. National Science Review, 2021, 8, nwab032.	4.6	68
102	First occurrence of Camptotheca fruits from late Miocene of southwestern China. Historical Biology, 0, , 1-8.	0.7	1
103	Regional disparity in extinction risk: Comparison of disjunct plant genera between eastern Asia and eastern North America. Global Change Biology, 2021, 27, 1904-1914.	4.2	8
104	The Effects of Multi-Scale Climate Variability on Biodiversity Patterns of Chinese Evergreen Broad-Leaved Woody Plants: Growth Form Matters. Frontiers in Ecology and Evolution, 2021, 8, .	1.1	3
105	Integrating hotspots for endemic, threatened and rare species supports the identification of priority areas for vascular plants in SW China. Forest Ecology and Management, 2021, 484, 118952.	1.4	15
106	A taxonomic and phylogenetic perspective on plant community assembly along an elevational gradient in subtropical forests. Journal of Plant Ecology, 2021, 14, 702-716.	1.2	14
107	Mountains act as museums and cradles for hemipteran insects in China: Evidence from patterns of richness and phylogenetic structure. Global Ecology and Biogeography, 2021, 30, 1070-1085.	2.7	22
108	Effects of Climate, Plant Height, and Evolutionary Age on Geographical Patterns of Fruit Type. Frontiers in Plant Science, 2021, 12, 604272.	1.7	4
109	Ormosia (Fabaceae: Faboideae) from the Miocene of southeastern China support historical expansion of the tropical genus in East Asia. Historical Biology, 2021, 33, 3561-3578.	0.7	7

#	Article	IF	CITATIONS
110	Southeast Asia as One of World's Primary Sources of Biotic Recolonization Following Anthropocene Extinctions. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	1
111	The mid-Miocene Zhangpu biota reveals an outstandingly rich rainforest biome in East Asia. Science Advances, 2021, 7, .	4.7	51
112	Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere. AoB PLANTS, 2021, 13, plab018.	1.2	8
113	Demographic history and local adaptation of <i>Myripnois dioica</i> (Asteraceae) provide insight on plant evolution in northern China flora. Ecology and Evolution, 2021, 11, 8000-8013.	0.8	8
114	Clarifying Recent Adaptive Diversification of the Chrysanthemum-Group on the Basis of an Updated Multilocus Phylogeny of Subtribe Artemisiinae (Asteraceae: Anthemideae). Frontiers in Plant Science, 2021, 12, 648026.	1.7	12
115	Current patterns of plant diversity and phylogenetic structure on the Kunlun Mountains. Plant Diversity, 2022, 44, 30-38.	1.8	3
116	Effects of Tibetan Plateau Growth, Paratethys Sea Retreat and Global Cooling on the East Asian Climate by the Early Miocene. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009655.	1.0	17
117	Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae. Molecular Plant, 2021, 14, 748-773.	3.9	86
118	Phylogenetic conservatism of fruit development time in Chinese angiosperms and the phylogenetic and climatic correlates. Global Ecology and Conservation, 2021, 27, e01543.	1.0	3
119	Should we be concerned about incomplete taxon sampling when assessing the evolutionary history of regional biotas?. Journal of Biogeography, 2021, 48, 2387-2390.	1.4	6
120	Biodiversity at the global scale: the synthesis continues. American Journal of Botany, 2021, 108, 912-924.	0.8	12
121	The annual rhythmic differentiation of Populus davidiana growth–climate response under a warming climate in The Greater Hinggan Mountains. Global Ecology and Conservation, 2021, 27, e01549.	1.0	2
123	Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China. BMC Microbiology, 2021, 21, 206.	1.3	13
124	Spatiotemporal maintenance of flora in the Himalaya biodiversity hotspot: Current knowledge and future perspectives. Ecology and Evolution, 2021, 11, 10794-10812.	0.8	38
125	Niche overlap and divergence times support niche conservatism in eastern Asia–eastern North America disjunct plants. Global Ecology and Biogeography, 2021, 30, 1990-2003.	2.7	13
126	Patterns and drivers of phylogenetic structure of pteridophytes in China. Clobal Ecology and Biogeography, 2021, 30, 1835-1846.	2.7	19
127	Plastomeâ€based phylogeny improves community phylogenetics of subtropical forests in China. Molecular Ecology Resources, 2022, 22, 319-333.	2.2	6
128	A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily. Journal of Systematics and Evolution, 2021, 59, 897-914.	1.6	41

#	Article	IF	CITATIONS
129	New early oligocene zircon U-Pb dates for the â€~Miocene' Wenshan Basin, Yunnan, China: Biodiversity and paleoenvironment. Earth and Planetary Science Letters, 2021, 565, 116929.	1.8	29
130	Influence of elevation on bioregionalisation: A case study of the Sinoâ€Himalayan flora. Journal of Biogeography, 2021, 48, 2578-2587.	1.4	4
131	Diversity, species richness distribution and centers of endemism of Lycianthes (Capsiceae, Solanaceae) in Mexico. Phytotaxa, 2021, 514, 39-60.	0.1	2
132	Effects of climate and topography on the diversity anomaly of plants disjunctly distributed in eastern Asia and eastern North America. Global Ecology and Biogeography, 2021, 30, 2029-2042.	2.7	4
133	Responses of an endemic species (Roscoea humeana) in the Hengduan Mountains to climate change. Diversity and Distributions, 2021, 27, 2231.	1.9	8
134	Potential risks to endemic conifer montane forests under climate change: integrative approach for conservation prioritization in southwestern China. Landscape Ecology, 2021, 36, 3137-3151.	1.9	11
135	Evolutionary history and climate conditions constrain the flower colours of woody plants in China. Journal of Plant Ecology, 2022, 15, 196-207.	1.2	4
136	Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Global Ecology and Biogeography, 2021, 30, 2164-2177.	2.7	48
137	Population dynamics linked to glacial cycles in <i>Cercis chuniana</i> F. P. Metcalf (Fabaceae) endemic to the montane regions of subtropical China. Evolutionary Applications, 2021, 14, 2647-2663.	1.5	4
138	Integrating multiple indices of geobiodiversity reveals a series of regional species-rich areas worthy of conservation in the region of the Qinghai-Tibet Plateau. Biological Conservation, 2021, 261, 109238.	1.9	12
139	Conservation of woody species in China under future climate and landâ€cover changes. Journal of Applied Ecology, 2022, 59, 141-152.	1.9	22
140	Patterns of species and phylogenetic diversity in Picea purpurea forests under different levels of disturbance on the northeastern Qinghai-Tibetan Plateau. Global Ecology and Conservation, 2021, 30, e01779.	1.0	1
141	Geographic patterns and climate correlates of the deviation between phylogenetic and taxonomic diversity for angiosperms in China. Biological Conservation, 2021, 262, 109291.	1.9	6
142	Phylogeny, origin, and dispersal of Dubyaea (Asteraceae) based on Hyb-Seq data. Molecular Phylogenetics and Evolution, 2021, 164, 107289.	1.2	4
143	Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 2021, 130, 108049.	2.6	13
144	An updated phylogenetic and biogeographic analysis based on genome skimming data reveals convergent evolution of shrubby habit in Clematis in the Pliocene and Pleistocene. Molecular Phylogenetics and Evolution, 2021, 164, 107259.	1.2	5
145	iAnalysis V1.0: An Interactive Analysis Service System. , 2021, , .		0
146	Orographic evolution of northern Tibet shaped vegetation and plant diversity in eastern Asia. Science Advances, 2021, 7, .	4.7	66

#	Article	IF	CITATIONS
147	Spatial patterns and conservation of genetic and phylogenetic diversity of wildlife in China. Science Advances, 2021, 7, .	4.7	47
148	Efficient Methods for Dating Evolutionary Divergences. , 2020, , 197-219.		14
149	Climate and plant community diversity in space and time. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4464-4470.	3.3	113
151	More endemic birds occur in regions with stable climate, more plant species and high altitudinal range in China. Avian Research, 2020, 11, .	0.5	9
152	Historical and contemporary climate legacy of the large-scale distributional patterns of plant richness across different taxonomic levels: An assessment of protected areas in China. Botanical Sciences, 2019, 97, 323-335.	0.3	2
153	The chloroplast genomes of four Bupleurum (Apiaceae) species endemic to Southwestern China, a diversity center of the genus, as well as their evolutionary implications and phylogenetic inferences. BMC Genomics, 2021, 22, 714.	1.2	17
154	Impact of climate change on plant species richness across drylands in China: From past to present and into the future. Ecological Indicators, 2021, 132, 108288.	2.6	16
156	Cryptic diversity in the subgenus <i>Oxyphortica</i> (Diptera, Drosophilidae, <i>Stegana</i>). PeerJ, 2021, 9, e12347.	0.9	2
157	In Memory of Professor Yan-Cheng Tang—A Brief Biography and Academic Contributions. Harvard Papers in Botany, 2020, 25, .	0.1	0
158	Ecological and evolutionary constraints on regional avifauna of passerines in China. Environmental Epigenetics, 2021, 67, 431-440.	0.9	0
159	Temporal and spatial comparisons of angiosperm diversity between eastern Asia and North America. National Science Review, 2022, 9, .	4.6	13
160	Effective characteristics on designing the information system of medicinal plants from users' perspective. Journal of Education and Health Promotion, 2020, 9, 245.	0.3	4
161	Continental diatom biodiversity discovery and description in China: 1848 through 2019. PhytoKeys, 2020, 160, 45-97.	0.4	7
163	The effects of evolutionary and environmental variance on estimates of phylogenetic diversity in temperate forest plots. Journal of Plant Ecology, 2021, 14, 96-107.	1.2	2
164	Historical Dynamics of Semi-Humid Evergreen Forests in the Southeast Himalaya Biodiversity Hotspot: A Case Study of the Quercus franchetii Complex (Fagaceae). Frontiers in Plant Science, 2021, 12, 774232.	1.7	4
165	Evolution of Rosaceae Plastomes Highlights Unique Cerasus Diversification and Independent Origins of Fruiting Cherry. Frontiers in Plant Science, 2021, 12, 736053.	1.7	10
166	Spatial phylogenetics of the Chinese angiosperm flora provides insights into endemism and conservation. Journal of Integrative Plant Biology, 2022, 64, 105-117.	4.1	17
167	Annual first record rate of naturalised non-native plants in China driven by intentional introductions. Biological Invasions, 2022, 24, 603-606.	1.2	1

		CITATION REPORT		
#	Article		IF	CITATIONS
168	Evolutionary assembly of the Arctic flora. Global Ecology and Biogeography, 2022, 31,	396-404.	2.7	5
169	Distribution patterns and industry planning of commonly used traditional Chinese med China. Plant Diversity, 2022, 44, 255-261.	licinal plants in	1.8	13
170	Diversity patterns and conservation gaps of Magnoliaceae species in China. Science of Environment, 2022, 813, 152665.	the Total	3.9	11
171	The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes, 2	2022, 13, 230.	1.0	16
172	Current biogeographical roles of the Kunlun Mountains. Ecology and Evolution, 2022,	12, e8493.	0.8	6
173	Distribution of Therapeutic Efficacy of Ranunculales Plants Used by Ethnic Minorities o Phylogenetic Tree of Chinese Species. Evidence-based Complementary and Alternative 2022, 1-10.	n the Medicine, 2022,	0.5	7
174	Plant speciation in the Quaternary. Plant Ecology and Diversity, 2021, 14, 105-142.		1.0	26
175	Tibetan Plateau Made Central Asian Drylands Move Northward, Concentrate in Narrow Bands, and Increase in Intensity During the Cenozoic. Geophysical Research Letters, 20	Latitudinal)22, 49, .	1.5	2
176	Phylotranscriptomics reveals the evolutionary history of subtropical East Asian white p insights into gymnosperm diversification. Molecular Phylogenetics and Evolution, 2022	ines: further 2, 168, 107403.	1.2	12
177	Influence of phylogenetic scale on the relationships of taxonomic and phylogenetic tur environment for angiosperms in China. Ecology and Evolution, 2022, 12, e8544.	novers with	0.8	4
178	Widespread homogenization of plant communities in the Anthropocene. Nature Comr 12, 6983.	nunications, 2021,	5.8	57
179	Wuling Mountains Function as a Corridor for Woody Plant Species Exchange Between Southern Central China. Frontiers in Ecology and Evolution, 2022, 10, .	Northern and	1.1	0
180	Extremely high diversity and endemism of chlorotypes in <i>Wikstroemia monnula</i> (Thymelaeaceae) shed light on the effects of habitat heterogeneity on intraspecific diff southeast China. Journal of Systematics and Evolution, 2023, 61, 399-413.	Hance erentiation in	1.6	2
181	Relative Importance of Ecological, Evolutionary and Anthropogenic Pressures on Extinc Chinese Angiosperm Genera. Frontiers in Ecology and Evolution, 2022, 10, .	tion Risk in	1.1	1
182	Reassessment of the Phylogeny and Systematics of Chinese Parnassia (Celastraceae): . Investigation Using Whole Plastomes and Nuclear Ribosomal DNA. Frontiers in Plant So 855944.	A Thorough cience, 2022, 13,	1.7	1
183	Evaluating Potentials of Species Rich Taxonomic Groups in Cosmetics and Dermatolog and Dispersion of Skin Efficacy of Asteraceae and Ranunculales Plants on the Species F Tree. Current Pharmaceutical Biotechnology, 2023, 24, 279-298.	y: Clustering hylogenetic	0.9	5
184	Variation and adaptation in leaf sulfur content across China. Journal of Plant Ecology, 2 743-755.	2022, 15,	1.2	6
185	Fossil Capsular Valves of <i>Koelreuteria</i> (Sapindaceae) from the Eocene of Central and Their Biogeographic Implications. International Journal of Plant Sciences, 2022, 18	Tibetan Plateau 3, 307-319.	0.6	6

#	Article	IF	CITATIONS
186	Out of Asia: Intercontinental dispersals after the Eocene-Oligocene transition shaped the zoogeography of Limenitidinae butterflies (Lepidoptera: Nymphalidae). Molecular Phylogenetics and Evolution, 2022, 170, 107444.	1.2	4
187	Long-term floristic and climatic stability of northern Indochina: Evidence from the Oligocene Ha Long flora, Vietnam. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 593, 110930.	1.0	7
192	Diversification in the Rosales is influenced by dispersal, geographic range size, and preâ€existing species richness. American Journal of Botany, 2022, , .	0.8	2
193	Developing long-term conservation priority planning for medicinal plants in China by combining conservation status with diversity hotspot analyses and climate change prediction. BMC Biology, 2022, 20, 89.	1.7	16
194	Geographic patterns and climatic correlates of deep evolutionary legacies for angiosperm assemblages in China. Journal of Systematics and Evolution, 2023, 61, 563-571.	1.6	1
195	Phylogeny and Biogeographic History of Parnassius Butterflies (Papilionidae: Parnassiinae) Reveal Their Origin and Deep Diversification in West China. Insects, 2022, 13, 406.	1.0	7
196	Biogeography and Diversification of the Tropical and Subtropical Asian Genus Gastrochilus (Orchidaceae, Aeridinae). Diversity, 2022, 14, 396.	0.7	4
197	Tracing the Evolution of Plant Diversity in Southwestern China. Diversity, 2022, 14, 434.	0.7	3
198	The early Oligocene establishment of modern topography and plant diversity on the southeastern margin of the Tibetan Plateau. Global and Planetary Change, 2022, 214, 103856.	1.6	18
199	Humanâ€Climate Coupled Changes in Vegetation Community Complexity of China Since 1980s. Earth's Future, 2022, 10, .	2.4	4
200	Integration of hotspot identification, gap analysis, and niche modeling supports the conservation of Chinese threatened higher plants. Journal of Systematics and Evolution, 2023, 61, 682-697.	1.6	4
201	The Darwinian shortfall in plants: phylogenetic knowledge is driven by range size. Ecography, 2022, 2022, .	2.1	13
202	Assessing conservation priorities of threatened medicinal plants in China: A new comprehensive phylogenetic scoring system. Journal of Systematics and Evolution, 2023, 61, 709-718.	1.6	3
203	Are invasive species a phylogenetically clustered subset of naturalized species in regional floras? A case study for flowering plants in China. Diversity and Distributions, 2022, 28, 2084-2093.	1.9	9
204	Phylogenetic structure of alien and native species in regional plant assemblages across China: Testing niche conservatism hypothesis versus niche convergence hypothesis. Global Ecology and Biogeography, 2022, 31, 1864-1876.	2.7	12
205	New insights into the formation of biodiversity hotspots of the Kenyan flora. Diversity and Distributions, 2022, 28, 2696-2711.	1.9	5
206	Biogeographic patterns of polyploid species for the angiosperm flora in China. Journal of Systematics and Evolution, 2023, 61, 776-789.	1.6	2
207	The sage genome provides insight into the evolutionary dynamics of diterpene biosynthesis gene cluster in plants. Cell Reports, 2022, 40, 111236.	2.9	26

#	Article	IF	CITATIONS
208	The Mexican flora as a case study in systematics: a meta-analysis of GenBank accessions. Botanical Sciences, 0, 100, .	0.3	1
209	A comprehensive evaluation of flowering plant diversity and conservation priority for national park planning in China. Fundamental Research, 2023, 3, 939-950.	1.6	11
210	Phylogenomics AND biogeography of Castanea (chestnut) and Hamamelis (witch-hazel) – Choosing between RAD-seq and Hyb-Seq approaches. Molecular Phylogenetics and Evolution, 2022, 176, 107592.	1.2	7
211	Plastome structure, phylogenomics, and divergence times of tribe Cinnamomeae (Lauraceae). BMC Genomics, 2022, 23, .	1.2	7
212	Latitudinal gradients of α- and β-diversity of aquatic plant communities across eastern China: Helophytes and hydrophytes show inconsistent patterns. Ecological Indicators, 2022, 144, 109457.	2.6	2
213	Comparative multi-locus assessment of modern Asian newts (<i>Cynops</i> ,) Tj ETQq1 1 0.784314 rgE suggests a shared biogeographic history. Zoological Research, 2022, 43, 706-718.	3T /Overlo 0.9	ck 10 Tf 50 3
214	Genomic Data Reveals Profound Genetic Structure and Multiple Glacial Refugia in Lonicera oblata (Caprifoliaceae), a Threatened Montane Shrub Endemic to North China. Frontiers in Plant Science, 0, 13, .	1.7	5
215	Comparative evolutionary history of two closely related desert plant, <i>Convolvulus tragacanthoide</i> and <i>Convolvulus gortschakovii</i> (Convolvulaceae) from northwest China. Ecology and Evolution, 2022, 12, .	0.8	0
216	Spatial Patterns and Determinants of Endemic Taxa Richness in the Genus Viburnum (Adoxaceae) in China. Diversity, 2022, 14, 744.	0.7	1
217	Achieving carbon neutrality in China: Spectral clustering analysis of plant diversity. Frontiers in Environmental Science, 0, 10, .	1.5	0
218	A distinctive Eocene Asian monsoon and modern biodiversity resulted from the rise of eastern Tibet. Science Bulletin, 2022, 67, 2245-2258.	4.3	21
219	Phylogenetic diversity of eastern Asia–eastern North America disjunct plants is mainly associated with divergence time. Plant Diversity, 2023, 45, 27-35.	1.8	1
220	Diversification of East Asian subtropical evergreen broadleaved forests over the last 8 million years. Ecology and Evolution, 2022, 12, .	0.8	6
221	Endemic medicinal plant distribution correlated with stable climate, precipitation, and cultural diversity. Plant Diversity, 2023, 45, 479-484.	1.8	5
222	Effects of nonâ€native species on phylogenetic dispersion of freshwater fish communities in North America. Diversity and Distributions, 2023, 29, 143-156.	1.9	2
223	Distinct effects of Tibetan Plateau growth and global cooling on the eastern and central Asian climates during the Cenozoic. Global and Planetary Change, 2022, 218, 103969.	1.6	5
224	Landscape and evolutionary dynamics of Helitron transposons in plant genomes as well as construction of online database HelDB. Journal of Systematics and Evolution, 2023, 61, 919-931.	1.6	1
225	Extinction risk of Chinese angiosperms varies between woody and herbaceous species. Diversity and Distributions, 2023, 29, 232-243.	1.9	3

#	Article	IF	CITATIONS
226	Climatic niche divergence explains angiosperm diversification across clades in China. Journal of Systematics and Evolution, 0, , .	1.6	0
227	Diversity and conservation of endemic true bugs for four family groups in China. Diversity and Distributions, 2022, 28, 2824-2837.	1.9	3
228	Centres of neo- and paleo-endemism for Chinese woody flora and their environmental features. Biological Conservation, 2022, 276, 109817.	1.9	9
229	Monsoon intensification in East Asia triggered the evolution of its flora. Frontiers in Plant Science, 0, 13, .	1.7	5
230	Mammalian diversification bursts and biotic turnovers are synchronous with Cenozoic geoclimatic events in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	8
231	Interplay of Ecological Opportunities and Functional Traits Drives the Evolution and Diversification of Millettiod Legumes (Fabaceae). Genes, 2022, 13, 2220.	1.0	0
232	Plant community phylogeny responses to protections and its main drivers in boreal forests, China: General pattern and implications. Science of the Total Environment, 2023, 864, 161151.	3.9	1
233	Patterns of phylogenetic relatedness of non-native plants across the introduction–naturalization–invasion continuum in China. Plant Diversity, 2023, 45, 169-176.	1.8	11
234	Geographic patterns and environmental correlates of taxonomic and phylogenetic diversity of aquatic plants in China. Journal of Systematics and Evolution, 2023, 61, 979-989.	1.6	1
235	Geographic patterns of taxonomic and phylogenetic β-diversity of aquatic angiosperms in China. Plant Diversity, 2023, 45, 177-184.	1.8	13
236	Preserving the woody plant tree of life in China under future climate and land-cover changes. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, .	1.2	2
237	The origins of climateâ€diversity relationships and richness patterns in Chinese plants. Ecology and Evolution, 2022, 12, .	0.8	0
238	Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. Science China Life Sciences, 2023, 66, 1134-1150.	2.3	10
239	Conservation of rare and endangered plant species in China. IScience, 2023, 26, 106008.	1.9	6
240	TiP-Leaf: a dataset of leaf traits across vegetation types on the Tibetan Plateau. Earth System Science Data, 2023, 15, 25-39.	3.7	2
241	Molecular mechanisms of adaptive evolution in wild animals and plants. Science China Life Sciences, 2023, 66, 453-495.	2.3	22
242	Species invasion and phylogenetic relatedness of vascular plants on the Qinghai-Tibet Plateau, the roof of the world. Plant Diversity, 2023, , .	1.8	4
244	Autumn phenology of tree species in China is associated more with climate than with spring phenology and phylogeny. Frontiers in Plant Science, 0, 14, .	1.7	1

#	Article	IF	CITATIONS
245	<scp>DNA</scp> barcoding of Chinese snakes reveals hidden diversity and conservation needs. Molecular Ecology Resources, 2023, 23, 1124-1141.	2.2	2
246	The growth of the Tibetan Plateau shaped hydrologic cycle and ecosystem in eastern Asia: Progress and perspectives. Chinese Science Bulletin, 2023, 68, 1567-1579.	0.4	2
247	Diversity and conservation of higher plants in Northwest Yunnan-Southeast Tibet. Global Ecology and Conservation, 2023, 42, e02396.	1.0	0
248	Differentiation of Asian summer precipitation induced by the mountain building of the Tibetan Plateau and Central Asian Orogenic Belt. Palaeogeography, Palaeoclimatology, Palaeoecology, 2023, 619, 111547.	1.0	0
249	Identifying gaps in the ex situ conservation of native plant diversity in China. Biological Conservation, 2023, 282, 110044.	1.9	1
250	Latitudinal gradients of angiosperm plant diversity and phylogenetic structure in China's nature reserves. Global Ecology and Conservation, 2023, 42, e02403.	1.0	2
251	Transitional areas of vegetation as biodiversity hotspots evidenced by multifaceted biodiversity analysis of a dominant group in Chinese evergreen broad-leaved forests. Ecological Indicators, 2023, 147, 110001.	2.6	6
252	Distribution pattern of terrestrial vascular plants and their conservation in Qinghai-Tibet Plateau. Scientia Sinica Vitae, 2023, 53, 1133-1145.	0.1	1
253	Intercontinental comparison of phylogenetic relatedness in introduced plants at the transition from naturalization to invasion: A case study on the floras of South Africa and China. Plant Diversity, 2023,	1.8	3
254	Exceptionally wellâ€preserved seed cones of a new fossil species of hemlock, <i>Tsuga weichangensis</i> sp. nov. (Pinaceae), from the Lower Miocene of Hebei Province, North China. Journal of Systematics and Evolution, 2024, 62, 164-180.	1.6	1
255	Species inventories from different data sources "shaping―slightly different avifauna diversity patterns. Frontiers in Ecology and Evolution, 0, 11, .	1.1	0
256	Distribution and conservation of near threatened plants in China. Plant Diversity, 2023, 45, 272-283.	1.8	0
257	Optimized Plant Diversity and Carbon Storage for Priority Protection Areas in China. Forests, 2023, 14, 621.	0.9	2
258	Geo-Environmental Models of In-Situ Leaching Sandstone-Type Uranium Deposits in North China: A Review and Perspective. Water (Switzerland), 2023, 15, 1244.	1.2	4
259	Uncovering the determinants of biodiversity hotspots in China: Evidence from the drivers of multiple diversity metrics on insect assemblages and implications for conservation. Science of the Total Environment, 2023, 880, 163287.	3.9	6
260	Clobal beta-diversity of angiosperm trees is shaped by Quaternary climate change. Science Advances, 2023, 9, .	4.7	5