Towards Kâ€Ion and Naâ€Ion Batteries as "Beyond

Chemical Record 18, 459-479 DOI: 10.1002/tcr.201700057

Citation Report

#	Article	IF	CITATIONS
1	Tin Oxides as a Negative Electrode Material for Potassium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 6865-6870.	2.5	45
2	Electrochemical Alloying of Lead in Potassium-Ion Batteries. ACS Omega, 2018, 3, 12195-12200.	1.6	31
4	CNT Interwoven Nitrogen and Oxygen Dualâ€Doped Porous Carbon Nanosheets as Freeâ€Standing Electrodes for Highâ€Performance Naâ€Se and Kâ€Se Flexible Batteries. Advanced Materials, 2018, 30, e1805234.	11.1	132
5	Cathode Materials for Potassium-Ion Batteries: Current Status and Perspective. Electrochemical Energy Reviews, 2018, 1, 625-658.	13.1	201
6	Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2018, 6, 16121-16129.	3.2	63
7	Potassium-ion Intercalation Mechanism in Layered Na2Mn3O7. ACS Applied Energy Materials, 0, , .	2.5	5
8	Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors. Nature Communications, 2018, 9, 3823.	5.8	190
9	Hard carbons issued from date palm as efficient anode materials for sodium-ion batteries. Carbon, 2018, 137, 165-173.	5.4	100
10	K3Sb4O10(BO3): A solid state K-ion conductor. Solid State Ionics, 2018, 324, 260-266.	1.3	19
11	Synthesis and Electrochemical Performance of C-Base-Centered Lepidocrocite-like Titanates for Na-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 3630-3635.	2.5	12
12	Review of electrical energy storage technologies, materials and systems: challenges and prospects for large-scale grid storage. Energy and Environmental Science, 2018, 11, 2696-2767.	15.6	1,467
13	Phosphorus Particles Embedded in Reduced Graphene Oxide Matrix to Enhance Capacity and Rate Capability for Capacitive Potassium″on Storage. Chemistry - A European Journal, 2018, 24, 13897-13902.	1.7	47
14	Highly concentrated electrolyte solutions for 4 V class potassium-ion batteries. Chemical Communications, 2018, 54, 8387-8390.	2.2	159
15	Progress of metal-phosphide electrodes for advanced sodium-ion batteries. Functional Materials Letters, 2018, 11, 1830001.	0.7	22
16	Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. Journal of Materials Chemistry A, 2018, 6, 16844-16848.	5.2	131
17	Electrochemistry and Solid‣tate Chemistry of NaMeO ₂ (Me = 3d Transition Metals). Advanced Energy Materials, 2018, 8, 1703415.	10.2	255
18	Development of covalent-bonded organic/carbon anode for sodium-ion battery. Journal of Mechanical Science and Technology, 2019, 33, 3865-3870.	0.7	7
19	Carbon Anodes for Nonaqueous Alkali Metalâ€lon Batteries and Their Thermal Safety Aspects. Advanced Energy Materials, 2019, 9, 1900550.	10.2	115

#	Article	IF	CITATIONS
20	Effect of Concentrated Diglyme-Based Electrolytes on the Electrochemical Performance of Potassium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 6051-6059.	2.5	44
21	Intercalation chemistry of graphite: alkali metal ions and beyond. Chemical Society Reviews, 2019, 48, 4655-4687.	18.7	534
22	Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochemistry Communications, 2019, 105, 106493.	2.3	21
23	Layered Sodium Manganese Oxide Na2Mn3O7 as an Insertion Host for Aqueous Zinc-ion Batteries. MRS Advances, 2019, 4, 2651-2657.	0.5	12
24	Understanding intercalation compounds for sodium-ion batteries and beyond. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20190020.	1.6	33
25	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie - International Edition, 2019, 58, 14202-14207.	7.2	81
26	Sodium―and Potassiumâ€Hydrate Melts Containing Asymmetric Imide Anions for Highâ€Voltage Aqueous Batteries. Angewandte Chemie, 2019, 131, 14340-14345.	1.6	18
27	Recent advances in understanding dendrite growth on alkali metal anodes. EnergyChem, 2019, 1, 100003.	10.1	146
28	Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New Journal of Chemistry, 2019, 43, 11618-11625.	1.4	48
29	A Layered Inorganic–Organic Open Framework Material as a 4 V Positive Electrode with Highâ€Rate Performance for Kâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1902528.	10.2	37
30	Mosaic Red Phosphorus/MoS ₂ Hybrid as an Anode to Boost Potassiumâ€ l on Storage. ChemElectroChem, 2019, 6, 4689-4695.	1.7	15
31	High Potassium Storage Capability of H ₂ V ₃ O ₈ in a Nonâ€Aqueous Electrolyte. ChemistrySelect, 2019, 4, 11711-11717.	0.7	11
32	Artificially coated NaFePO4 for aqueous rechargeable sodium-ion batteries. Journal of Alloys and Compounds, 2019, 784, 720-726.	2.8	35
33	KFeO2 with corner-shared FeO4 frameworks as a new type of cathode material in potassium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 3135-3143.	1.2	19
34	Systematic Study on Materials for Lithium-, Sodium-, and Potassium-Ion Batteries. Electrochemistry, 2019, 87, 312-320.	0.6	11
35	Structural Study of Carbon-Coated TiO ₂ Anatase Nanoparticles as High-Performance Anode Materials for Na-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 7142-7151.	2.5	18
36	Metal–Organic Framework-Derived Co ₃ O ₄ @MWCNTs Polyhedron as Cathode Material for a High-Performance Aluminum-Ion Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 16200-16208.	3.2	55
37	Utilizing an autogenously protective atmosphere to synthesize a Prussian white cathode with ultrahigh capacity-retention for potassium-ion batteries. Chemical Communications, 2019, 55, 12555-12558.	2.2	24

#	Article		CITATIONS
38	Salt-concentrated electrolytes for graphite anode in potassium ion battery. Solid State Ionics, 2019, 341, 115050.		33
39	Controllable nitrogen-doping of nanoporous carbons enabled by coordination frameworks. Journal of Materials Chemistry A, 2019, 7, 647-656.	5.2	43
40	Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 4913-4921.	5.2	160
41	Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode. Batteries, 2019, 5, 3.	2.1	56
42	Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage. Journal of Materials Chemistry A, 2019, 7, 1749-1755.	5.2	75
43	New KRb ₂ Sb ₄ BO ₁₃ and Rb ₃ Sb ₄ BO ₁₃ compounds prepared by Rb ⁺ /K ⁺ ion exchange from the K ₃ Sb ₄ BO ₁₃ ion conductor. CrystEngComm. 2019. 21. 594-601.	1.3	2
44	Alloy Anodes for Rechargeable Alkali-Metal Batteries: Progress and Challenge. , 2019, 1, 217-229.		135
45	Commercialization of Lithium Battery Technologies for Electric Vehicles. Advanced Energy Materials, 2019, 9, 1900161.	10.2	865
46	SnSb <i>vs.</i> Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. Journal of Materials Chemistry A, 2019, 7, 15262-15270.	5.2	50
47	Influence of KPF ₆ and KFSI on the Performance of Anode Materials for Potassium-Ion Batteries: A Case Study of MoS ₂ . ACS Applied Materials & Interfaces, 2019, 11, 22449-22456.	4.0	97
48	Ultrafine Co ₂ P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horizons, 2019, 4, 1394-1401.	4.1	96
49	A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 14309-14318.	5.2	157
50	Optimizing Micrometer-Sized Sn Powder Composite Electrodes for Sodium-Ion Batteries. Electrochemistry, 2019, 87, 70-77.	0.6	4
51	Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Science Advances, 2019, 5, eaav7412.	4.7	790
52	Building aqueous K-ion batteries for energy storage. Nature Energy, 2019, 4, 495-503.	19.8	630
53	Advanced Carbonâ€Based Anodes for Potassiumâ€ion Batteries. Advanced Energy Materials, 2019, 9, 1900343.	10.2	398
54	Polydiaminoanthraquinones with tunable redox properties as high performance organic cathodes for K-ion batteries. Chemical Communications, 2019, 55, 6054-6057.	2.2	31
55	Insights into the Function of Electrode and Electrolyte Materials in a Hybrid Lithium–Sodium Ion Cell. Journal of Physical Chemistry C, 2019, 123, 11508-11521.	1.5	16

#	Article		CITATIONS
56	Snapshot on Negative Electrode Materials for Potassium-Ion Batteries. Frontiers in Energy Research, 2019, 7, .	1.2	53
57	Potassium Metal as Reliable Reference Electrodes of Nonaqueous Potassium Cells. Journal of Physical Chemistry Letters, 2019, 10, 3296-3300.	2.1	93
58	Electron microscopy and its role in advanced lithium-ion battery research. Sustainable Energy and Fuels, 2019, 3, 1623-1646.	2.5	25
59	Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors. Journal of Materials Chemistry A, 2019, 7, 13810-13832.	5.2	312
60	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. Dalton Transactions, 2019, 48, 5417-5424.	1.6	8
61	Recent Research on Strategies to Improve Ion Conduction in Alkali Metalâ€Ion Batteries. Batteries and Supercaps, 2019, 2, 403-427.	2.4	32
62	On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 789, 1035-1045.	2.8	13
63	α-VPO ₄ : A Novel Many Monovalent Ion Intercalation Anode Material for Metal-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 12431-12440.	4.0	20
64	The potential application of black and blue phosphorene as cathode materials in rechargeable aluminum batteries: a first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 7021-7028.	1.3	24
65	Bituminous Coal as Lowâ€Cost Anode Materials for Sodiumâ€Ion and Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900005.	1.8	16
66	Potassium Ordering and Structural Phase Stability in Layered K _{<i>x</i>} CoO ₂ . ACS Applied Energy Materials, 2019, 2, 2629-2636.	2.5	29
67	Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochemistry Communications, 2019, 101, 68-72.	2.3	67
68	Red Phosphorus Potassiumâ€ion Battery Anodes. Advanced Science, 2019, 6, 1801354.	5.6	97
69	Density Functional Theory for Battery Materials. Energy and Environmental Materials, 2019, 2, 264-279.	7.3	186
70	ZnSxSe1-x/N-C (x = 0.24) hierarchical nanosphere with improved energy storage capability as sodium-ion battery anode. Journal of Alloys and Compounds, 2019, 771, 147-155.	2.8	20
71	Temperature dependent electrochemical performance of graphite anodes for K-ion and Li-ion batteries. Journal of Power Sources, 2019, 410-411, 124-131.	4.0	86
72	Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry. Materials Today, 2019, 23, 87-104.	8.3	537
73	Polyanionic Compounds for Potassiumâ€lon Batteries. Chemical Record, 2019, 19, 735-745.	2.9	102

#	Article	IF	CITATIONS
74	Graphite as a potassium ion battery anode in carbonate-based electrolyte and ether-based electrolyte. Journal of Power Sources, 2019, 409, 24-30.	4.0	203
75	Solvate Ionic Liquids for Li, Na, K, and Mg Batteries. Chemical Record, 2019, 19, 708-722.	2.9	42
76	Improving metallic lithium anode with NaPF6 additive in LiPF6-carbonate electrolyte. Journal of Energy Chemistry, 2020, 42, 1-4.	7.1	20
77	Metal Chalcogenides: Paving the Way for Highâ€Performance Sodium/Potassiumâ€Ion Batteries. Small Methods, 2020, 4, 1900563.	4.6	140
78	Constructing N-Doped porous carbon confined FeSb alloy nanocomposite with Fe-N-C coordination as a universal anode for advanced Na/K-ion batteries. Chemical Engineering Journal, 2020, 384, 123327.	6.6	60
79	Si and Geâ€Based Anode Materials for Liâ€; Naâ€; and Kâ€ion Batteries: A Perspective from Structure to Electrochemical Mechanism. Small, 2020, 16, e1905260.	5.2	133
80	Approaching Reactive KFePO ₄ Phase for Potassium Storage by Adopting an Advanced Design Strategy. Batteries and Supercaps, 2020, 3, 450-455.	2.4	25
81	Progress in electrolytes for beyond-lithium-ion batteries. Journal of Materials Science and Technology, 2020, 44, 237-257.	5.6	74
82	Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochimica Acta, 2020, 332, 135502.	2.6	29
83	Aqueous K-ion battery incorporating environment-friendly organic compound and Berlin green. Journal of Energy Chemistry, 2020, 48, 14-20.	7.1	49
84	High-Capacity Hard Carbon Synthesized from Macroporous Phenolic Resin for Sodium-Ion and Potassium-Ion Battery. ACS Applied Energy Materials, 2020, 3, 135-140.	2.5	113
85	Bismuth–Antimony Alloy Nanoparticle@Porous Carbon Nanosheet Composite Anode for High-Performance Potassium-Ion Batteries. ACS Nano, 2020, 14, 1018-1026.	7.3	176
86	Dendriteâ€Free Potassium Metal Anodes in a Carbonate Electrolyte. Advanced Materials, 2020, 32, e1906735.	11.1	107
87	The Advances of Metal Sulfides and In Situ Characterization Methods beyond Li Ion Batteries: Sodium, Potassium, and Aluminum Ion Batteries. Small Methods, 2020, 4, 1900648.	4.6	106
88	SnO ₂ as Advanced Anode of Alkaliâ€lon Batteries: Inhibiting Sn Coarsening by Crafting Robust Physical Barriers, Void Boundaries, and Heterophase Interfaces for Superior Electrochemical Reaction Reversibility. Advanced Energy Materials, 2020, 10, 1902657.	10.2	71
89	Facile Synthesis of Hierarchical Hollow CoP@C Composites with Superior Performance for Sodium and Potassium Storage. Angewandte Chemie - International Edition, 2020, 59, 5159-5164.	7.2	142
90	Electrochemical performance of reduced graphene oxide/carbon nanotube hybrid papers as binder-free anodes for potassium-ion batteries. Journal of Physics and Chemistry of Solids, 2020, 138, 109296.	1.9	26
91	Facile Synthesis of Hierarchical Hollow CoP@C Composites with Superior Performance for Sodium and Potassium Storage. Angewandte Chemie, 2020, 132, 5197-5202.	1.6	19

#	Article		CITATIONS
92	Potassium-ion intercalation in anti-NASICON-type iron molybdate Fe2(MoO4)3. Electrochemistry Communications, 2020, 110, 106617.	2.3	12
93	Dual anionic vacancies on carbon nanofiber threaded MoSSe arrays: A free-standing anode for high-performance potassium-ion storage. Energy Storage Materials, 2020, 27, 591-598.	9.5	69
94	Flexible Membrane Consisting of MoP Ultrafine Nanoparticles Highly Distributed Inside N and P Codoped Carbon Nanofibers as Highâ€Performance Anode for Potassiumâ€Ion Batteries. Small, 2020, 16, e1905301.	5.2	85
95	Exploits, advances and challenges benefiting beyond Li-ion battery technologies. Journal of Alloys and Compounds, 2020, 817, 153261.	2.8	144
96	Phenolic resin-based carbon microspheres for potassium ion storage. Applied Surface Science, 2020, 506, 144805.	3.1	10
97	Nanosheets assembled layered MoS2/MXene as high performance anode materials for potassium ion batteries. Journal of Power Sources, 2020, 449, 227481.	4.0	125
98	Spray-dried K3V(PO4)2/C composites as novel cathode materials for K-ion batteries with superior electrochemical performance. Journal of Power Sources, 2020, 480, 229057.	4.0	8
99	Outlook on K-Ion Batteries. CheM, 2020, 6, 2442-2460.	5.8	135
100	Self-supported carbon nanofibers as negative electrodes for K-ion batteries: Performance and mechanism. Electrochimica Acta, 2020, 362, 137125.	2.6	19
101	Rational design of vanadium chalcogenides for sodium-ion batteries. Journal of Power Sources, 2020, 478, 228769.	4.0	21
102	Reversible electrochemical potassium deintercalation from >4ÂV positive electrode material K6(VO)2(V2O3)2(PO4)4(P2O7). Solid State Ionics, 2020, 357, 115468.	1.3	8
103	Designing Advanced Vanadiumâ€Based Materials to Achieve Electrochemically Active Multielectron Reactions in Sodium/Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2002244.	10.2	79
104	Advances on Manganese-Oxide-Based Cathodes for Na-Ion Batteries. Energy & Fuels, 2020, 34, 13412-13426.	2.5	35
105	Intercalation materials for secondary batteries based on alkali metal exchange: developments and perspectives. Journal of Materials Chemistry A, 2020, 8, 16854-16883.	5.2	19
106	Advances in Organic Anode Materials for Na″K″on Rechargeable Batteries. ChemSusChem, 2020, 13, 4866-4884.	3.6	55
107	Hard carbons for sodium-ion batteries and beyond. Progress in Energy, 2020, 2, 042002.	4.6	130
108	BiSb@Bi2O3/SbOx encapsulated in porous carbon as anode materials for sodium/potassium-ion batteries with a high pseudocapacitive contribution. Journal of Colloid and Interface Science, 2020, 580, 429-438.	5.0	47
109	3D carbon framework-supported FeSe for high-performance potassium ion batteries. Sustainable Energy and Fuels, 2020, 4, 4807-4813.	2.5	18

#	Article		CITATIONS
110	Boosting potassium-storage performance <i>via</i> the functional design of a heterostructured Bi ₂ S ₃ @RGO composite. Nanoscale, 2020, 12, 24394-24402.	2.8	31
111	Cornâ€based Electrochemical Energy Storage Devices. Chemical Record, 2020, 20, 1163-1180.	2.9	32
113	Model-Based Design of Graphite-Compatible Electrolytes in Potassium-Ion Batteries. ACS Energy Letters, 2020, 5, 2651-2661.	8.8	88
114	Development of KPF ₆ /KFSA Binary-Salt Solutions for Long-Life and High-Voltage K-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 34873-34881.	4.0	62
115	Ion-Solvent Chemistry-Inspired Cation-Additive Strategy to Stabilize Electrolytes for Sodium-Metal Batteries. CheM, 2020, 6, 2242-2256.	5.8	116
116	Enhancing the Cycling Stability by Tuning the Chemical Bonding between Phosphorus and Carbon Nanotubes for Potassium-Ion Battery Anodes. ACS Applied Materials & Interfaces, 2020, 12, 37275-37284.	4.0	41
117	Multivalent Mg ²⁺ -, Zn ²⁺ -, and Ca ²⁺ -lon Intercalation Chemistry in a Disordered Layered Structure. ACS Applied Energy Materials, 2020, 3, 9143-9150.	2.5	8
118	KTiOPO4-structured electrode materials for metal-ion batteries: A review. Journal of Power Sources, 2020, 480, 228840.	4.0	38
119	A high-performance potassium metal battery using safe ionic liquid electrolyte. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27847-27853.	3.3	49
120	Electrochemical Study of Poly(2,6â€Anthraquinonyl Sulfide) as Cathode for Alkaliâ€Metalâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2002780.	10.2	60
121	Sodium-driven Rechargeable Batteries: An Effort towards Future Energy Storage. Chemistry Letters, 2020, 49, 1507-1516.	0.7	37
122	Effect of the thickness of single-walled carbon nanotube electrodes on the discharge properties of Li–air batteries. Journal of Electroanalytical Chemistry, 2020, 878, 114603.	1.9	9
123	Emerging Potassiumâ€ion Hybrid Capacitors. ChemSusChem, 2020, 13, 5837-5862.	3.6	65
124	Atomic Insights into the Fundamental Interactions in Lithium Battery Electrolytes. Accounts of Chemical Research, 2020, 53, 1992-2002.	7.6	171
125	Potassium–Oxygen Batteries: Significance, Challenges, and Prospects. Journal of Physical Chemistry Letters, 2020, 11, 7849-7856.	2.1	18
126	Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon. ACS Applied Energy Materials, 2020, 3, 9950-9962.	2.5	23
127	Potassium-Ion Batteries: Key to Future Large-Scale Energy Storage?. ACS Applied Energy Materials, 2020, 3, 9478-9492.	2.5	99
128	Defective phosphorene as an anode material for high-performance Li-, Na-, and K-ion batteries: a first-principles study. Nanoscale, 2020, 12, 20364-20373.	2.8	23

#	Article	IF	CITATIONS
129	Paving the Way toward Highly Efficient, High-Energy Potassium-Ion Batteries with Ionic Liquid Electrolytes. Chemistry of Materials, 2020, 32, 7653-7661.	3.2	58
130	Spectroscopic Insights into the Electrochemical Mechanism of Rechargeable Calcium/Sulfur Batteries. Chemistry of Materials, 2020, 32, 8266-8275.	3.2	29

Comparative Study of M[N(SO2F)(SO2CF3)] $\hat{a} \in [N-Butyl-N-methylpyrroridinium][N(SO2F)(SO2CF3)]$ (M = Li,) Tj ETOq0 0 0 rgBT /Overlapsi = 1.2

132	Class of Solid-like Electrolytes for Rechargeable Batteries Based on Metal–Organic Frameworks Infiltrated with Liquid Electrolytes. ACS Applied Materials & Interfaces, 2020, 12, 43824-43832.	4.0	25
133	Application of Ionic Liquid as K-Ion Electrolyte of Graphite//K ₂ Mn[Fe(CN) ₆] Cell. ACS Energy Letters, 2020, 5, 2849-2857.	8.8	51
134	Designing Potassium Battery Salts through a Solvent-in-Anion Concept for Concentrated Electrolytes and Mimicking Solvation Structures. Chemistry of Materials, 2020, 32, 10423-10434.	3.2	16
135	Effect of the electrolyte on K-metal batteries. Chemical Communications, 2020, 56, 14673-14676.	2.2	20
136	Investigation of alkali-ion (Li, Na and K) intercalation in manganese hexacyanoferrate KxMnFe(CN)6 as cathode material. Chemical Engineering Journal, 2020, 396, 125269.	6.6	44
137	Densified Metallic MoS ₂ /Graphene Enabling Fast Potassiumâ€ion Storage with Superior Gravimetric and Volumetric Capacities. Advanced Functional Materials, 2020, 30, 2001484.	7.8	82
138	Quantifying the cost effectiveness of non-aqueous potassium-ion batteries. Journal of Power Sources, 2020, 464, 228228.	4.0	25
140	Functionalized Naphthalene Diimides as Low ost Organic Cathodes for Potassium Batteries. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000005.	0.8	3
141	A Stable Conversion and Alloying Anode for Potassiumâ€lon Batteries: A Combined Strategy of Encapsulation and Confinement. Advanced Functional Materials, 2020, 30, 2001588.	7.8	104
142	Dealloyed Nanoporous Materials for Rechargeable Post‣ithium Batteries. ChemSusChem, 2020, 13, 3376-3390.	3.6	20
143	Structure-dependent sodium ion storage mechanism of cellulose nanocrystal-based carbon anodes for highly efficient and stable batteries. Journal of Power Sources, 2020, 468, 228371.	4.0	24
145	Biowaste Orange Peelâ€Derived Mesoporous Carbon as a Costâ€Effective Anode Material with Ultraâ€Stable Cyclability for Potassiumâ€Ion Batteries. Batteries and Supercaps, 2020, 3, 1099-1111.	2.4	21
146	Achieving superior high-capacity K-ion batteries with the C57 carbon monolayer anode by first-principles calculations. Applied Surface Science, 2020, 526, 146638.	3.1	12
147	Kinetics Study and Degradation Analysis through Raman Spectroscopy of Graphite as a Negative-Electrode Material for Potassium-Ion Batteries. Journal of Physical Chemistry C, 2020, 124, 13008-13016.	1.5	24
148	Emerging Potassium Metal Anodes: Perspectives on Control of the Electrochemical Interfaces. Accounts of Chemical Research, 2020, 53, 1161-1175.	7.6	105

ARTICLE

IF CITATIONS

149 Mineral-Inspired Materials: Synthetic Phosphate Analogues for Battery Applications. Minerals (Basel,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

150	Hollow carbon nanospheres: syntheses and applications for post lithium-ion batteries. Materials Chemistry Frontiers, 2020, 4, 2283-2306.	3.2	25
151	Electrochemical strain evolution in iron phosphate composite cathodes during lithium and sodium ion intercalation. Electrochimica Acta, 2020, 353, 136594.	2.6	14
152	Carbon Dots@rGO Paper as Freestanding and Flexible Potassiumâ€lon Batteries Anode. Advanced Science, 2020, 7, 2000470.	5.6	95
153	Anode materials for potassiumâ€ion batteries: Current status and prospects. , 2020, 2, 350-369.		73
154	The rise of aqueous rechargeable batteries with organic electrode materials. Journal of Materials Chemistry A, 2020, 8, 15479-15512.	5.2	90
155	Synergistically enhanced sodium/potassium ion storage performance of SnSb alloy particles confined in three-dimensional carbon framework. Ionics, 2020, 26, 5019-5028.	1.2	23
156	Joint crystallization of KCuAl[PO ₄] ₂ and K(Al,Zn) ₂ [(P,Si)O ₄] ₂ : crystal chemistry and mechanism of formation of phosphate-silicate epitaxial heterostructure. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 483-491.	0.5	5
158	Enabling reversible phase transition on K5/9Mn7/9Ti2/9O2 for high-performance potassium-ion batteries cathodes. Energy Storage Materials, 2020, 31, 20-26.	9.5	35
159	Enhanced Kinetics Harvested in Heteroatom Dualâ€Doped Graphitic Hollow Architectures toward High Rate Printable Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 2001161.	10.2	172
160	Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. Journal of Power Sources, 2020, 469, 228415.	4.0	57
161	Fast Charging Materials for High Power Applications. Advanced Energy Materials, 2020, 10, 2001128.	10.2	136
162	Potassiumâ€lon Storage in Celluloseâ€Derived Hard Carbon: The Role of Functional Groups. Batteries and Supercaps, 2020, 3, 953-960.	2.4	24
163	Pitchâ€Đerived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Advanced Materials, 2020, 32, e2000505.	11.1	216
164	Titanium-based potassium-ion battery positive electrode with extraordinarily high redox potential. Nature Communications, 2020, 11, 1484.	5.8	86
165	Electrochemical Energy Storage Electrodes via Citrus Fruits Derived Carbon: A Minireview. Chemical Record, 2020, 20, 820-830.	2.9	34
166	Potassiumâ \in sulfur batteries: Status and perspectives. EcoMat, 2020, 2, e12038.	6.8	41
167	A Mini-Review: MXene composites for sodium/potassium-ion batteries. Nanoscale, 2020, 12, 15993-16007.	2.8	102

		CITATION REPORT		
#	Article		IF	CITATIONS
168	The sounds of scienceâ \in "a symphony for many instruments and voices. Physica Scripta, 2020, 9	5,062501.	1.2	9
169	Ordering and Structural Transformations in Layered K _{<i>x</i>} CrO ₂ for Batteries. Chemistry of Materials, 2020, 32, 6392-6400.	r K-lon	3.2	13
170	Organic-based active electrode materials for potassium batteries: status and perspectives. Journa Materials Chemistry A, 2020, 8, 17296-17325.	al of	5.2	32
171	Atomic Insights into Aluminiumâ€lon Insertion in Defective Anatase for Batteries. Angewandte C International Edition, 2020, 59, 19247-19253.	ihemie -	7.2	22
172	Atomic Insights into Aluminiumâ€ion Insertion in Defective Anatase for Batteries. Angewandte C 2020, 132, 19409-19415.	:hemie,	1.6	1
173	Dipotassium terephthalate as promising potassium storing anode with DFT calculations. Materia Today Energy, 2020, 17, 100454.	ls	2.5	12
174	Potassium Single Cation Ionic Liquid Electrolyte for Potassium-Ion Batteries. Journal of Physical Chemistry B, 2020, 124, 6341-6347.		1.2	18
175	Recent progress and perspective on electrolytes for sodium/potassium-based devices. Energy Sto Materials, 2020, 31, 328-343.	brage	9.5	68
176	Hybrid Cathodes Composed of K3V2(PO4)3 and Carbon Materials with Boosted Charge Transfer K-Ion Batteries. Surfaces, 2020, 3, 1-10.	· for	1.0	9
177	Ni-Doped Layered Manganese Oxide as a Stable Cathode for Potassium-Ion Batteries. ACS Applie Materials & Interfaces, 2020, 12, 10490-10495.	d	4.0	44
178	Investigation of K-ion storage performances in a bismuth sulfide-carbon nanotube composite and RSC Advances, 2020, 10, 6536-6539.	ode.	1.7	4
179	The Cathode Choice for Commercialization of Sodiumâ€lon Batteries: Layered Transition Metal G versus Prussian Blue Analogs. Advanced Functional Materials, 2020, 30, 1909530.	Dxides	7.8	276
180	High Na ⁺ Mobility in rGO Wrapped High Aspect Ratio 1D SbSe Nano Structure Ren Better Electrochemical Na ⁺ Battery Performance. ChemPhysChem, 2020, 21, 814-8	ders 320.	1.0	13
181	Mechanism of Mg extraction from MgMn2O4 during acid digestion. Physical Chemistry Chemica Physics, 2020, 22, 4677-4684.	1	1.3	8
182	Research Development on K-Ion Batteries. Chemical Reviews, 2020, 120, 6358-6466.		23.0	804
183	High-stability monoclinic nickel hexacyanoferrate cathode materials for ultrafast aqueous sodiun ion battery. Chemical Engineering Journal, 2020, 388, 124228.	1	6.6	91
184	A highly-effective nitrogen-doped porous carbon sponge electrode for advanced K–Se batterie Inorganic Chemistry Frontiers, 2020, 7, 1182-1189.	s.	3.0	36
185	K _{0.83} V ₂ O ₅ : A New Layered Compound as a Stable Catho for Potassium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 9332-9340.	ode Material	4.0	43

#	Article	IF	Citations
186	Electrolyte-assisted dissolution-recrystallization mechanism towards high energy density and power density CF cathodes in potassium cell. Nano Energy, 2020, 70, 104552.	8.2	41
187	High Transference Number of Na Ion in Liquid-State Sulfolane Solvates of Sodium Bis(fluorosulfonyl)amide. Journal of Physical Chemistry C, 2020, 124, 4459-4469.	1.5	23
188	Nitrogen doping and graphitization tuning coupled hard carbon for superior potassium-ion storage. Journal of Energy Chemistry, 2020, 49, 327-334.	7.1	68
189	Composition and Architecture Design of Double‣helled Co _{0.85} Se _{1â^²} <i>_x</i> S <i>_x</i> Garbon/Graphene Hollow Polyhedron with Superior Alkali (Li, Na, K)â€ŧon Storage. Small, 2020, 16, e1905853.	5.2	44
190	Insights into the Storage Mechanism of Layered VS ₂ Cathode in Alkali Metalâ€lon Batteries. Advanced Energy Materials, 2020, 10, 1904118.	10.2	67
191	Intercalation pseudocapacitance of FeVO4·nH2O nanowires anode for high-energy and high-power sodium-ion capacitor. Nano Energy, 2020, 73, 104838.	8.2	48
192	Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 21651-21660.	4.0	26
193	Confining FeS in graphitized carbon with void space for high and stable electrochemical storage performance of Na + and K +. International Journal of Energy Research, 2020, 44, 6595-6607.	2.2	6
194	Mesoporous carbon nanosheet-assembled flowers towards superior potassium storage. Chinese Chemical Letters, 2021, 32, 1161-1164.	4.8	35
195	Gallium-based anodes for alkali metal ion batteries. Journal of Energy Chemistry, 2021, 55, 557-571.	7.1	27
196	Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021, 116, 100716.	16.0	30
197	Potassium-based electrochemical energy storage devices: Development status and future prospect. Energy Storage Materials, 2021, 34, 85-106.	9.5	61
198	Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Storage Materials, 2021, 34, 436-460.	9.5	61
199	Rational design of carbon materials as anodes for potassium-ion batteries. Energy Storage Materials, 2021, 34, 483-507.	9.5	130
200	Mildly-expanded graphite with adjustable interlayer distance as high-performance anode for potassium-ion batteries. Carbon, 2021, 172, 200-206.	5.4	63
201	Carbon materials for high-performance potassium-ion energy-storage devices. Chemical Engineering Journal, 2021, 407, 126991.	6.6	26
202	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie - International Edition, 2021, 60, 5114-5120.	7.2	169
203	MgOâ€Template Synthesis of Extremely High Capacity Hard Carbon for Naâ€Ion Battery. Angewandte Chemie, 2021, 133, 5174-5180.	1.6	11

#	Article	IF	CITATIONS
204	Perspective on the synergistic effect of chalcogenide multiphases in sodium-ion batteries. Materials Chemistry Frontiers, 2021, 5, 1694-1715.	3.2	22
205	An ultra-long life aqueous full K-ion battery. Journal of Materials Chemistry A, 2021, 9, 2822-2829.	5.2	29
206	Liquid Exfoliated SnP ₃ Nanosheets for Very High Areal Capacity Lithiumâ€lon Batteries. Advanced Energy Materials, 2021, 11, 2002364.	10.2	40
207	KTiOPO4: A long-life, high-rate and low-temperature-workable host for Na/K-ion batteries. Chemical Engineering Journal, 2021, 417, 128159.	6.6	14
208	Revealing sodium-ion diffusion in alluaudite-type Na4–2M1+(MoO4)3 (M = Mg, Zn, Cd) from 23Na MAS NMR and ab initio studies. Journal of Solid State Chemistry, 2021, 293, 121800.	1.4	5
209	Cu-doped NaCu0.05Fe0.45Co0.5O2 as promising cathode material for Na-ion batteries: synthesis and characterization. Journal of Solid State Electrochemistry, 2021, 25, 767-775.	1.2	11
210	Enhanced Potassium-Ion Storage of the 3D Carbon Superstructure by Manipulating the Nitrogen-Doped Species and Morphology. Nano-Micro Letters, 2021, 13, 1.	14.4	570
211	Hard Carbon Composite Electrodes for Sodiumâ€lon Batteries with Nanoâ€Zeolite and Carbon Black Additives. Batteries and Supercaps, 2021, 4, 163-172.	2.4	17
212	A phosphite-based layered framework as a novel positive electrode material for Na-ion batteries. Journal of Materials Chemistry A, 2021, 9, 5045-5052.	5.2	7
213	Carbon aerogels: Synthesis, properties, and applications. , 2021, , 739-781.		0
214	Electrolytes and Interphases in Potassium Ion Batteries. Advanced Materials, 2021, 33, e2003741.	11.1	181
215	Commercialisation of high energy density sodium-ion batteries: Faradion's journey and outlook. Journal of Materials Chemistry A, 2021, 9, 8279-8302.	5.2	113
216	Long-life Na-rich nickel hexacyanoferrate capable of working under stringent conditions. Journal of Materials Chemistry A, 2021, 9, 21228-21240.	5.2	21
217	A cobalt-based metal–organic framework and its derived material as sulfur hosts for aluminum–sulfur batteries with the chemical anchoring effect. Physical Chemistry Chemical Physics, 2021, 23, 10326-10334.	1.3	20
218	A vanadium-based oxide-phosphate-pyrophosphate framework as a 4 V electrode material for K-ion batteries. Chemical Science, 2021, 12, 12383-12390.	3.7	10
219	<i>In situ</i> dual growth of graphitic structures in biomass carbon to yield a potassium-ion battery anode with high initial coulombic efficiency. Journal of Materials Chemistry A, 2021, 9, 9191-9202.	5.2	28
220	Environmentally phase-controlled stratagem for open framework pyrophosphate anode materials in battery energy storage. Journal of Materials Chemistry C, O, , .	2.7	9
221	Quantifying the reaction mechanisms of a high-capacity CuP ₂ /C composite anode for potassium ion batteries. Journal of Materials Chemistry A, 2021, 9, 6274-6283.	5.2	19

#	Article	IF	CITATIONS
222	Storage mechanism of K in hydrogen-substituted graphdiyne as a superior anode. Journal of Materials Chemistry A, 2021, 9, 12320-12330.	5.2	4
223	Effect of Particle Size and Anion Vacancy on Electrochemical Potassium Ion Insertion into Potassium Manganese Hexacyanoferrates. ChemSusChem, 2021, 14, 1166-1175.	3.6	31
224	Recent advances in ferromagnetic metal sulfides and selenides as anodes for sodium- and potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 9506-9534.	5.2	78
225	Phase evolution of electrochemically potassium intercalated graphite. Journal of Materials Chemistry A, 2021, 9, 11187-11200.	5.2	27
226	Progress and perspective of metal phosphide/carbon heterostructure anodes for rechargeable ion batteries. Journal of Materials Chemistry A, 2021, 9, 11879-11907.	5.2	102
227	Building carbon cloth-based dendrite-free potassium metal anodes for potassium metal pouch cells. Journal of Materials Chemistry A, 2021, 9, 23046-23054.	5.2	27
228	Recent Advances in Rechargeable Batteries with Prussian Blue Analogs Nanoarchitectonics. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1877-1893.	1.9	16
229	Highly Conductive Ionic Liquid Electrolytes for Potassium-Ion Batteries. Journal of Chemical & Engineering Data, 2021, 66, 1081-1088.	1.0	17
230	Structure and Transport of Solvent Ligated Octahedral Mg-Ion in an Aqueous Battery Electrolyte. Journal of Chemical & Engineering Data, 2021, 66, 1543-1554.	1.0	4
231	Development of Metal and Metal-Based Composites Anode Materials for Potassium-Ion Batteries. Transactions of Tianjin University, 2021, 27, 248-268.	3.3	13
232	Reversible potassium storage in ultrafine CF : A superior cathode material for potassium batteries and its mechanism. Journal of Energy Chemistry, 2021, 53, 347-353.	7.1	16
233	Ultrahigh "Relative Energy Density―and Mass Loading of Carbon Cloth Anodes for K-Ion Batteries. CCS Chemistry, 2021, 3, 791-799.	4.6	71
234	CoPSe: A New Ternary Anode Material for Stable and Highâ€Rate Sodium/Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2007262.	11.1	133
235	Metal–Organic Frameworks and Their Derivatives: Designing Principles and Advances toward Advanced Cathode Materials for Alkali Metal Ion Batteries. Small, 2021, 17, e2006424.	5.2	55
236	²³ Na Solid‣tate NMR Analyses for Naâ€Ion Batteries and Materials. Batteries and Supercaps, 2021, 4, 1267-1278.	2.4	12
237	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	8.3	51
238	Effect of 3D Metal on Electrochemical Properties of Sodium Intercalation Cathode P2-NaxMe1/3Mn2/3O2 (M = Co, Ni, or Fe). Journal of Chemistry, 2021, 2021, 1-9.	0.9	2
239	Theory prediction of PC3 monolayer as a promising anode material in potassium-ion batteries. lonics, 2021, 27, 2465-2471.	1.2	7

	CITATION	Report	
#	Article	IF	CITATIONS
240	Effect of the external metal on the electrochemical behavior of M3[Co(CN)6]2 (M: Co, Ni, Cu, Zn), towards their use as anodes in potassium ion batteries. Electrochimica Acta, 2021, 371, 137828.	2.6	16
241	Microstructureâ€Đependent K ⁺ Storage in Porous Hard Carbon. Small, 2021, 17, e2100397.	5.2	42
242	Stabilization of High-Energy Cathode Materials of Metal-Ion Batteries: Control Strategies and Synthesis Protocols. Energy & amp; Fuels, 2021, 35, 7511-7527.	2.5	11
243	UiO-66 Metal–Organic Framework as an Anode for a Potassium-Ion Battery: Quantum Mechanical Analysis. Journal of Physical Chemistry C, 2021, 125, 9679-9687.	1.5	21
244	Ca ₂ C MXene monolayer as a superior anode for metal-ion batteries. 2D Materials, 2021, 8, 035015.	2.0	44
245	Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nature Communications, 2021, 12, 2167.	5.8	153
246	Reduced graphene oxide thin layer induced lattice distortion in high crystalline MnO2 nanowires for high-performance sodium- and potassium-ion batteries and capacitors. Carbon, 2021, 174, 556-566.	5.4	52
247	Dielectric relaxations and ion transport study of NaCMC:NaNO3 solid polymer electrolyte films. Ionics, 2021, 27, 2509-2525.	1.2	25
248	Reversible potassium-ion intercalation into graphite electrodes in glyoxal-based electrolytes. Electrochemistry Communications, 2021, 125, 107001.	2.3	5
249	Energy storage mechanisms of anode materials for potassium ion batteries. Materials Today Energy, 2021, 21, 100747.	2.5	38
251	Highly Potassiophilic Carbon Nanofiber Paper Derived from Bacterial Cellulose Enables Ultra-Stable Dendrite-Free Potassium Metal Anodes. ACS Applied Materials & Interfaces, 2021, 13, 17629-17638.	4.0	27
252	Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy. ACS Applied Materials & Interfaces, 2021, 13, 18838-18848.	4.0	21
253	Crystal, interfacial and morphological control of electrode materials for nonaqueous potassium-ion batteries. Nano Today, 2021, 37, 101074.	6.2	30
254	In situ visualizing the interplay between the separator and potassium dendrite growth by synchrotron X-ray tomography. Nano Energy, 2021, 83, 105841.	8.2	13
255	A comprehensive review on recent advances of polyanionic cathode materials in Naâ€ion batteries for cost effective energy storage applications. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e400.	1.9	20
256	Semi-liquid anode for dendrite-free K-ion and Na-ion batteries. Chemical Engineering Journal, 2021, 412, 128597.	6.6	11
257	Coordinatively and Spatially Coconfining High-Loading Atomic Sb in Sulfur-Rich 2D Carbon Matrix for Fast K ⁺ Diffusion and Storage. , 2021, 3, 790-798.		10
258	Fly Ash Carbon Anodes for Alkali Metal-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2021, 13, 26421-26430.	4.0	22

#	Article	IF	CITATIONS
259	Tailoring MOF-derived porous carbon nanorods confined red phosphorous for superior potassium-ion storage. Nano Energy, 2021, 83, 105797.	8.2	44
260	Machine Learning Screening of Metal-Ion Battery Electrode Materials. ACS Applied Materials & Interfaces, 2021, 13, 53355-53362.	4.0	42
261	Mechanism of Na-Ion Conduction in the Highly Efficient Layered Battery Material Na ₂ Mn ₃ O ₇ . ACS Applied Energy Materials, 2021, 4, 6040-6054.	2.5	13
262	The roles of electrolyte chemistry in hard carbon anode for potassium-ion batteries. Chemical Engineering Journal, 2022, 427, 130972.	6.6	36
263	Comprehensive Insights into Electrolytes and Solid Electrolyte Interfaces in Potassium-Ion Batteries. Energy Storage Materials, 2021, 38, 30-49.	9.5	72
264	An Orthorhombic Modification of KCoPO ₄ Stabilized under Hydrothermal Conditions: Crystal Chemistry and Magnetic Behavior. Inorganic Chemistry, 2021, 60, 9461-9470.	1.9	5
265	Cathode strategies to improve the performance of zincâ€ion batteries. Electrochemical Science Advances, 2022, 2, e2100090.	1.2	14
266	Advanced Graphene Materials for Sodium/Potassium/Aluminum-Ion Batteries. , 2021, 3, 1221-1237.		34
267	WS2 anode in Na and K-ion battery: Effect of upper cut-off potential on electrochemical performance. Electrochimica Acta, 2021, 383, 138339.	2.6	18
268	Superior potassium storage behavior of hard carbon facilitated by ether-based electrolyte. Carbon, 2021, 179, 60-67.	5.4	17
269	Activating Both Basal Plane and Edge Sites of Layered Cobalt Oxides for Boosted Water Oxidation. Advanced Functional Materials, 2021, 31, 2103569.	7.8	28
270	Adsorption of K lons on Single-Layer GeC for Potential Anode of K lon Batteries. Nanomaterials, 2021, 11, 1900.	1.9	6
272	Highâ€Performance Cathode Materials for Potassiumâ€lon Batteries: Structural Design and Electrochemical Properties. Advanced Materials, 2021, 33, e2100409.	11.1	48
273	Engineered nitrogen-doped hollow carbon nanospheres adhered by carbon nanotubes for capacitive potassium-ion storage. Applied Surface Science, 2021, 557, 149833.	3.1	6
274	High-performance carbon by amorphization and prepotassiation for potassium-ion battery anodes. Carbon, 2021, 181, 290-299.	5.4	15
275	The impact of alkaliâ€ion intercalation on redox chemistry and mechanical deformations: Case study on intercalation of Li, Na, and K ions into FePO ₄ cathode. Electrochemical Science Advances, 2022, 2, e2100106.	1.2	7
276	Shape matters: SnP0.94 teardrop nanorods with boosted performance for potassium ion storage. Chemical Engineering Journal, 2021, 417, 128552.	6.6	35
277	Recent advances in emerging nonaqueous K-ion batteries: from mechanistic insights to practical applications. Energy Storage Materials, 2021, 39, 305-346.	9.5	27

#	Article	IF	CITATIONS
278	Scaling-up the Production Process of Lithium Nickel Manganese Cobalt Oxide (NMC). Materials Science Forum, 0, 1044, 15-23.	0.3	1
279	Beyond-carbon materials for potassium ion energy-storage devices. Renewable and Sustainable Energy Reviews, 2021, 146, 111161.	8.2	12
280	Green Synthesis of Nanomaterials. Nanomaterials, 2021, 11, 2130.	1.9	88
281	Ultralong Cycle Life Organic Cathode Enabled by Etherâ€Based Electrolytes for Sodiumâ€ion Batteries. Advanced Energy Materials, 2021, 11, 2101972.	10.2	37
282	Electrolyte Effect on a Polyanionic Organic Anode for Pure Organic K-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 38315-38324.	4.0	17
283	Review on recent progress in <scp>Manganeseâ€based</scp> anode materials for <scp>sodiumâ€ion</scp> batteries. International Journal of Energy Research, 2022, 46, 667-683.	2.2	13
284	1,3,2-Dioxathiolane 2,2-Dioxide as an Electrolyte Additive for K-Metal Cells. ACS Energy Letters, 2021, 6, 3643-3649.	8.8	23
285	Weyl semimetal orthorhombic Td-WTe ₂ as an electrode material for sodium- and potassium-ion batteries. Nanotechnology, 2021, 32, 505402.	1.3	12
286	Semi-coherent cation-rich Mn-Cu oxides heterostructures as cathode for novel aqueous potassium dual-ion energy storage devices. Journal of Colloid and Interface Science, 2021, 597, 75-83.	5.0	3
287	Growth Mechanism of Micro/Nano Metal Dendrites and Cumulative Strategies for Countering Its Impacts in Metal Ion Batteries: A Review. Nanomaterials, 2021, 11, 2476.	1.9	33
288	Guiding Uniform Sodium Deposition through Host Modification for Sodium Metal Batteries. Batteries and Supercaps, 2022, 5, .	2.4	16
289	Liquid Alloying Na–K for Sodium Metal Anodes. Journal of Physical Chemistry Letters, 2021, 12, 9321-9327.	2.1	9
290	Electrochemical mechanism and effects of Fe doping and grinding process on the microstructural and electrochemical properties of Na2Co1-xFexSiO4 cathode material for sodium-ion batteries. Electrochimica Acta, 2021, 391, 138935.	2.6	3
291	<i>In Situ</i> Probing Potassium-Ion Intercalation-Induced Amorphization in Crystalline Iron Phosphate Cathode Materials. Nano Letters, 2021, 21, 7579-7586.	4.5	20
292	Radial Pores in Nitrogen/Oxygen Dualâ€Doped Carbon Nanospheres Anode Boost Highâ€Power and Ultrastable Potassiumâ€Ion Batteries. Advanced Functional Materials, 2021, 31, 2107246.	7.8	112
293	Elucidating cycling rate-dependent electrochemical strains in sodium iron phosphate cathodes for Na-ion batteries. Journal of Power Sources, 2021, 507, 230297.	4.0	14
294	Potassium iodide as a low-cost cathode material for efficient potassium-ion storage. Energy Storage Materials, 2021, 41, 798-804.	9.5	3
295	Recent advancements in development of different cathode materials for rechargeable lithium ion batteries. Journal of Energy Storage, 2021, 43, 103112.	3.9	32

#	Article	IF	CITATIONS
296	Improvement in potassium ion batteries electrodes: Recent developments and efficient approaches. Journal of Energy Chemistry, 2021, 62, 307-337.	7.1	73
297	New insights into carbon-based and MXene anodes for Na and K-ion storage: A review. Journal of Energy Chemistry, 2021, 62, 660-691.	7.1	56
298	Beyond flexible-Li-ion battery systems for soft electronics. Energy Storage Materials, 2021, 42, 773-785.	9.5	33
299	Strong oxidation induced quinone-rich dopamine polymerization onto porous carbons as ultrahigh-capacity organic cathode for sodium-ion batteries. Energy Storage Materials, 2021, 43, 120-129.	9.5	26
300	Spray drying derived wrinkled pea-shaped carbon-matrixed KVP2O7 as a cathode material for potassium-ion batteries. Journal of Alloys and Compounds, 2021, 884, 161126.	2.8	8
301	Anion effect on Li/Na/K hybrid electrolytes for Graphite//NCA (LiNi0.8Co0.15Al0.05O2) Li-ion batteries. Journal of Energy Chemistry, 2022, 64, 451-462.	7.1	8
302	In situ formation of few-layered MoS2@N-doped carbon network as high performance anode materials for sodium-ion batteries. Applied Surface Science, 2022, 571, 151307.	3.1	27
303	11,11,12,12-tetracyano-9,10-anthraquinonedimethane as a high potential and sustainable cathode for organic potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 607, 1173-1179.	5.0	7
304	Boosting sodium-ion battery performance using an antimony nanoparticle self-embedded in a 3D nitrogen-doped carbon framework anode. Chemical Engineering Journal, 2022, 429, 132359.	6.6	31
305	Na-iyon Pillerin Anotlarında Karbon Nanoyapılarının Kullanımı Üzerine Bir Derleme. Journal of Polytechnic, 0, , .	0.4	0
306	Copper phosphide as a promising anode material for potassium-ion batteries. Journal of Materials Chemistry A, 2021, 9, 8378-8385.	5.2	16
307	Exploring the effect of interlayer distance of expanded graphite for sodium ion storage using first principles calculations. Physical Chemistry Chemical Physics, 2021, 23, 3063-3070.	1.3	21
308	Potassium-ion batteries: outlook on present and future technologies. Energy and Environmental Science, 2021, 14, 2186-2243.	15.6	402
309	Advanced cathodes for potassium-ion batteries with layered transition metal oxides: a review. Journal of Materials Chemistry A, 2021, 9, 8221-8247.	5.2	37
310	Impact of Mg and Ti doping in O3 type NaNi _{1/2} Mn _{1/2} O ₂ on reversibility and phase transition during electrochemical Na intercalation. Journal of Materials Chemistry A, 2021, 9, 12830-12844.	5.2	32
311	Blowing Iron Chalcogenides into Two-Dimensional Flaky Hybrids with Superior Cyclability and Rate Capability for Potassium-Ion Batteries. ACS Nano, 2021, 15, 2506-2519.	7.3	79
313	Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Advanced Functional Materials, 2020, 30, 1909486.	7.8	570
314	Achieving Highâ€Performance Metal Phosphide Anode for Potassium Ion Batteries via Concentrated Electrolyte Chemistry. Advanced Energy Materials, 2021, 11, 2003346.	10.2	62

#	Article	IF	CITATIONS
315	Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Materials, 2020, 30, 206-227.	9.5	95
316	Recent progress of electrode materials cooperated with potassium bis(fluorosulfonyl)imide–containing electrolyte for K-ion batteries. Materials Today Advances, 2020, 6, 100035.	2.5	13
317	Sulfur-Rich Graphene Nanoboxes with Ultra-High Potassiation Capacity at Fast Charge: Storage Mechanisms and Device Performance. ACS Nano, 2021, 15, 1652-1665.	7.3	132
318	From Lithium to Sodium and Potassium Batteries. , 2019, , 181-219.		1
319	A metal–organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors. Journal of Materials Chemistry A, 2020, 8, 16302-16311.	5.2	40
320	Origins of irreversible capacity loss in hard carbon negative electrodes for potassium-ion batteries. Journal of Chemical Physics, 2020, 152, 194704.	1.2	23
321	Energetics and cathode voltages of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Li</mml:mi> <mml:mi>Molivines (<mml:math) (xmlns:mml="http://www.w3.org/1998/Math</td><td>><mml:ms
/MathML" 0="" 10="" 497="" 50="" :<="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>ub><mml:mi ><318ml:mrow</mml:mi </td></mml:math)></mml:mi></mml:mrow></mml:math 	ub> <mml:mi ><318ml:mrow</mml:mi 	
322	Electrochemical Redox Processes Involved in Carbon-Coated KVPO ₄ F for High Voltage K-Ion Batteries Revealed by XPS Analysis. Journal of the Electrochemical Society, 2020, 167, 130527.	1.3	15
323	Electrochemistry and Solid-State Chemistry of Layered Oxides for Li-, Na-, and K-Ion Batteries. Electrochemistry, 2020, 88, 507-514.	0.6	12
324	Insights into Metal/Metalloid-Based Alloying Anodes for Potassium Ion Batteries. , 2021, 3, 1572-1598.		25
325	Recent Progress and Perspectives on Alloying Anodes for Potassiumâ€lon Batteries. ChemNanoMat, 2021, 7, 1291-1308.	1.5	7
326	Ternary Ionogel Electrolytes Enable Quasiâ€Solidâ€State Potassium Dualâ€Ion Intercalation Batteries. Advanced Energy and Sustainability Research, 2022, 3, 2100122.	2.8	6
327	Spatial and Temporal Analysis of Sodium-Ion Batteries. ACS Energy Letters, 2021, 6, 4023-4054.	8.8	62
328	Prediction of Metal Ion Binding Sites of Transmembrane Proteins. Computational and Mathematical Methods in Medicine, 2021, 2021, 1-11.	0.7	6
329	Recent Advances in Heterostructured Carbon Materials as Anodes for Sodiumâ€lon Batteries. Small Structures, 2021, 2, .	6.9	80
330	Spent asphalt-derived mesoporous carbon for high-performance Li/Na/K-ion storage. Journal of Power Sources, 2021, 514, 230593.	4.0	12
331	3.ãfŠãf^ãfªã,¦ãfã,฿,ªãf³é›»æ±ãҌӑ,^ã³ã,«ãfªã,¦ãfã,฿,ªãf³é›»æ±ç‴有機電解液ã®ç"ç©¶å‹•å'. Den	ri bag aku,	2 0 19, 87, 20

333	Non-aqueous Al-ion batteries: cathode materials and corresponding underlying ion storage mechanisms. Rare Metals, 2022, 41, 762-774.	3.6	14
-----	--	-----	----

#	ARTICLE Construction of three-dimensional nitrogen doped porous carbon flake electrodes for advanced	IF	CITATIONS
334 335	potassium-ion hybrid capacitors. Journal of Colloid and Interface Science, 2022, 606, 1940-1949. Anthracite-derived carbon as superior anode for lithium/potassium-ion batteries. Chemical	1.9	23
336	Graphene/Phosphorene nano-heterostructure as a potential anode material for (K/Na)-ion batteries: Insights from DFT and AIMD. Computational Materials Science, 2022, 202, 110936.	1.4	23
338	Role of the Solvation Shell Structure and Dynamics on Kâ€lon and Liâ€lon Transport in Mixed Carbonate Electrolytes. Batteries and Supercaps, 0, , .	2.4	3
339	Multifunctional Separator Allows Stable Cycling of Potassium Metal Anodes and of Potassium Metal Batteries. Advanced Materials, 2022, 34, e2105855.	11.1	45
340	Charge Storage Behavior of Carbon Nanoparticles toward Alkali Metal Ions at Fast-Charging Rates. ACS Applied Energy Materials, 0, , .	2.5	2
341	V5S8 nanoparticles anchored on carbon nanofibers for fast and durable sodium and potassium ion storage. Journal of Electroanalytical Chemistry, 2021, 903, 115841.	1.9	9
342	Recent progress in quantum dots based nanocomposite electrodes for rechargeable monovalent metal-ion and lithium metal batteries. Journal of Materials Chemistry A, 2022, 10, 508-553.	5.2	12
343	Opportunities in Na/K [hexacyanoferrate] frameworks for sustainable non-aqueous Na ⁺ /K ⁺ batteries. Sustainable Energy and Fuels, 2022, 6, 550-595.	2.5	6
344	Water intercalation strategy to fabricate low-potential and dense grapheme film anode for high energy density K-ion batteries. Electrochimica Acta, 2021, 403, 139626.	2.6	0
345	Impact of the Salt Anion on K Metal Reactivity in EC/DEC Studied Using GC and XPS Analysis. ACS Applied Materials & Interfaces, 2021, 13, 57505-57513.	4.0	23
346	Theoretical study of SnS2 encapsulated in Graphene as a promising anode material for Kâ^ion batteries. Journal of Physics Condensed Matter, 2021, , .	0.7	0
347	A review on carbon nanomaterials for <scp>Kâ€ion</scp> battery anode: Progress and perspectives. International Journal of Energy Research, 2022, 46, 4033-4070.	2.2	9
348	An interface-free integrative graphitic carbon network film with defective and S/O-Codoped hollow units for voltage-stable, Ultra-fast and long-life potassium ion storage. Chemical Engineering Journal, 2022, 431, 133736.	6.6	6
349	High-performance solid-solution potassium-ion intercalation mechanism of multilayered turbostratic graphene nanosheets. Journal of Energy Chemistry, 2022, 67, 814-823.	7.1	13
350	Potassium-ion batteries using KFSI/DME electrolytes: Implications of cation solvation on the K+-graphite (co-)intercalation mechanism. Energy Storage Materials, 2022, 45, 291-300.	9.5	28
351	Review—Pseudocapacitive Energy Storage Materials from HÃ g g-Phase Compounds to High-Entropy Ceramics. Journal of the Electrochemical Society, 2021, 168, 120521.	1.3	12
352	A comparative overview of carbon anodes for nonaqueous alkali metal-ion batteries. Journal of Materials Chemistry A, 2021, 9, 27140-27169.	5.2	25

ARTICLE IF CITATIONS Electrode materials for K-ion batteries., 2023, , 83-127. 353 3 Comparing the Solid Electrolyte Interphases on Graphite Electrodes in K and Li Half Cells. ACS Applied 354 2.5 Energy Materials, 2022, 5, 1136-1148. Binary silicon-based thin-film anodes for lithium-ion batteries: A review. Journal of Power Sources, 355 4.0 9 2022, 520, 230871. Interfaces in all solid state Li-metal batteries: A review on instabilities, stabilization strategies, and 356 scalability. Energy Storage Materials, 2022, 45, 969-1001. Synergistically enhanced electrochemical performance using nitrogen, phosphorus and sulfur 357 tri-doped hollow carbon for advanced potassium ion storage device. Chemical Engineering Journal, 6.6 21 2022, 431, 133986. Dual sulfur-doped sites boost potassium storage in carbon nanosheets derived from low-cost sulfonate. Chemical Engineering Journal, 2022, 431, 134207. 6.6 First-Principles Plane-Wave-Based Exploration of Cathode and Anode Materials for Li- and Na-Ion 359 3.2 9 Batteries Involving Complex Nitrogen-Based Anions. Chemistry of Materials, 2022, 34, 652-668. The road to potassium-ion batteries., 2022, , 265-307. 360 361 Beyond Li-lon Batteries: Future of Sustainable Large Scale Energy Storage System., 2022, , . 0 Carbon nanotubes-based anode materials for potassium ion batteries: A review. Journal of 1.9 Electroanalytical Chemistry, 2022, 907, 116051. Elevating cyclability of an advanced KVPO4F cathode via multi-component coating strategy for 363 6.6 11 high-performance potassium-ion batteries. Chemical Engineering Journal, 2022, 433, 134634. Recent advances in "water in salt―electrolytes for aqueous rechargeable monovalent-ion (Li+, Na+,) Tj ETQq1 1 0.784314 rgBT 364 Performance and reaction mechanisms of tin compounds as high-capacity negative electrodes of 365 2.6 4 lithium and sodium ion batteries. Materials Advances, 2022, 3, 2793-2799. Potassium Cobalt Pyrophosphate as a Nonprecious Bifunctional Electrocatalyst for Zinc–Air 4.0 Batteries. ACS Applied Materials & amp; Interfaces, 2022, 14, 8992-9001. First-Principles Study on Cathode Properties of Li2MTiO4 and Na2MTiO4 (M = V, Cr, Mn, Fe, Co, Ni). 367 0.7 0 Journal of the Physical Society of Japan, 2022, 91, . Investigation of the potassiumâ€ion storage mechanism of nickel selenide materials and rational design of nickel $\langle scp \rangle$ selenide $\hat{e} \in \langle scp \rangle$ yolk \hat{e} shell structure for enhancing electrochemical properties. 2.2 International Journal of Energy Research, 2022, 46, 5800-5810. A Novel High Pseudo-Capacitive Contribution Anode in K-Ion Battery: Porous Tinbo4/C Nanofibers. 369 0.4 0 SSRN Electronic Journal, 0, , . Ultra-stable potassium storage and hybrid mechanism of perovskite fluoride KFeF₃/rGO. 370 2.8 Nanoscale, 2022, 14, 5347-5355.

#	Article	IF	CITATIONS
371	Development of Nonaqueous Electrolytes for High-Voltage K-Ion Batteries. Bulletin of the Chemical Society of Japan, 2022, 95, 569-581.	2.0	14
373	Manganese-Based Tunnel-Type Cathode Materials for Secondary Li-Ion and K-Ion Batteries. Inorganic Chemistry, 2022, 61, 3959-3969.	1.9	3
374	Electrolyte formulation strategies for potassium $\hat{a} \in b$ ased batteries. Exploration, 2022, 2, .	5.4	18
375	Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassiumâ€lon Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects. Advanced Energy Materials, 2022, 12, .	10.2	19
376	Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal–Sulfur and Selenium Batteries. Chemical Reviews, 2022, 122, 8053-8125.	23.0	132
377	Poly(ethylene oxide)-Based Electrolytes for Solid-State Potassium Metal Batteries with a Prussian Blue Positive Electrode. ACS Applied Polymer Materials, 2022, 4, 2734-2746.	2.0	13
378	Tracking Passivation and Cation Flux at Incipient Solidâ€Electrolyte Interphases on Multiâ€Layer Graphene using High Resolution Scanning Electrochemical Microscopy. ChemElectroChem, 2022, 9, .	1.7	18
379	Designing a durable high-rate K0.45Ni0.1Fe0.1Mn0.8O2 cathode for K-ion batteries: A joint study of theory and experiment. Science China Materials, 2022, 65, 1741-1750.	3.5	3
380	Multiphase layered transition metal oxide positive electrodes for sodium ion batteries. Energy Science and Engineering, 2022, 10, 1672-1705.	1.9	20
381	Sodium-Storage Performance of K ⁺ -Intercalated Na _{<i>x</i>} Cu _{0.2} Mn _{0.8} O ₂ . ACS Applied Energy Materials, 2022, 5, 2758-2767.	2.5	4
382	<scp>Threeâ€Dimensional</scp> Hierarchical Ternary Nanostructures Bismuth/Polypyrrole/ <scp>CNTs</scp> for High Performance <scp>Potassiumâ€Ion</scp> Battery Anodes. Chinese Journal of Chemistry, 2022, 40, 1585-1591.	2.6	7
383	Nickel tetrathiooxalate as a cathode material for potassium batteries. Mendeleev Communications, 2022, 32, 226-227.	0.6	1
384	Challenges and Perspectives of Organic Multivalent Metalâ€lon Batteries. Advanced Materials, 2022, 34, e2200662.	11.1	46
385	First-principles study on haeckelite hexagonal monolayer with high specific capacity for sodium-ion battery. Solid State Ionics, 2022, 378, 115898.	1.3	7
386	Glyoxal-based electrolytes for potassium-ion batteries. Energy Storage Materials, 2022, 47, 534-541.	9.5	11
387	Confining MoSe ₂ Nanosheets into N-Doped Hollow Porous Carbon Microspheres for Fast-Charged and Long-Life Potassium-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13, 59882-59891.	4.0	18
388	Recent Advances in Synthesis and Applications of Singleâ€Atom Catalysts for Rechargeable Batteries. Chemical Record, 2022, 22, .	2.9	14
389	Recent Developments and Challenges of Vanadium Oxides (V _{<i>x</i>} O _{<i>y</i>}) Cathodes for Aqueous Zincâ€ion Batteries. Chemical Record, 2022, 22, e202100275.	2.9	20

щ		IF	CITATIONS
#	In Situ Fabrication of Cuprous Selenide Electrode via Selenization of Copper Current Collector for	IF	CHATIONS
390	Highâ€Efficiency Potassiumâ€ion and Sodiumâ€ion Storage. Advanced Science, 2022, 9, e2104630.	5.6	19
391	Sodium-Conducting Ionic Liquid Electrolytes: Electrochemical Stability Investigation. Applied Sciences (Switzerland), 2022, 12, 4174.	1.3	6
392	Optimized Cycle and Safety Performance of Lithium–Metal Batteries with the Sustainedâ€Release Effect of Nano CaCO ₃ . Advanced Energy Materials, 2022, 12, .	10.2	22
393	Electrolyte effect on the electroactuation behavior of multilayer polypyrrole films intercalated with TFSiâ°', ClO4â°', NO3â'' anions in lithium and potassium based electrolyte solutions. Journal of Molecular Structure, 2022, , 133057.	1.8	0
394	Ethynyl Functionalized Porphyrin Complex as a New Cathode for Organic Alkali Metal Batteries with Excellent Cycling Stability. SSRN Electronic Journal, 0, , .	0.4	0
395	Organic electrolyte design for practical potassium-ion batteries. Journal of Materials Chemistry A, 2022, 10, 19090-19106.	5.2	30
396	Recent progress and prospective on layered anode materials for potassium-ion batteries. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 1037-1052.	2.4	4
397	Recent Advances in Layered Metalâ€Oxide Cathodes for Application in Potassiumâ€lon Batteries. Advanced Science, 2022, 9, e2105882.	5.6	35
398	Na3Zr2(SiO4)2PO4 NASICON-type solid electrolyte: Influence of milling duration on microstructure and ionic conductivity mechanism. Ceramics International, 2022, 48, 22106-22113.	2.3	13
399	Unlocking New Redox Activity in Alluaudite Cathodes through Compositional Design. Chemistry of Materials, 2022, 34, 4088-4103.	3.2	5
400	Probing the Electrode–Electrolyte Interface of a Model K-Ion Battery Electrode─The Origin of Rate Capability Discrepancy between Aqueous and Non-Aqueous Electrolytes. ACS Applied Materials & Interfaces, 2022, 14, 20835-20847.	4.0	4
401	Ionic Liquid Electrolytes for Next-generation Electrochemical Energy Devices. EnergyChem, 2022, 4, 100075.	10.1	25
402	Chemically Binding Vanadium Sulfide in Carbon Carriers to Boost Reaction Kinetics for Potassium Storage. ACS Applied Materials & Interfaces, 2022, 14, 22389-22397.	4.0	9
403	Designing carbon anodes for advanced potassium-ion batteries: Materials, modifications, and mechanisms. , 2022, 1, 100057.		39
404	Structure-activity relationship: Understanding implications of cavity design for potassium-ion storage. Chemical Engineering Journal, 2022, 445, 136715.	6.6	7
405	Dual stabilization in potassium Prussian blue and cathode/electrolyte interface enables advanced potassium-ion full-cells. Journal of Colloid and Interface Science, 2022, 623, 1-8.	5.0	15
406	Applying Classical, <i>Ab Initio</i> , and Machine-Learning Molecular Dynamics Simulations to the Liquid Electrolyte for Rechargeable Batteries. Chemical Reviews, 2022, 122, 10970-11021.	23.0	138
407	Active material and interphase structures governing performance in sodium and potassium ion batteries. Chemical Science, 2022, 13, 6121-6158.	3.7	41

#	Article	IF	CITATIONS
408	Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries. Energy Storage Materials, 2022, 50, 473-494.	9.5	35
409	Intercalation-Deposition Mechanism Induced by Aligned Carbon Fiber Toward Dendrite-Free Metallic Potassium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
410	High-performance, three-dimensional and porous K3V2(PO4)3/C cathode material for potassium-ion batteries. Ionics, 2022, 28, 3817-3831.	1.2	6
411	Mechanisms for selfâ€ŧemplating design of micro/nanostructures toward efficient energy storage. Exploration, 2022, 2, .	5.4	11
412	Monolithic carbon electrodes: Synthesis, pore control and electrochemistry. , 2022, 1, 34-49.		0
413	Toward Long‣ife Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes. Chemical Record, 2022, 22, .	2.9	17
414	A review of tin selenide-based electrodes for rechargeable batteries and supercapacitors. Journal of Energy Storage, 2022, 52, 104966.	3.9	17
415	A novel high pseudo-capacitive contribution anode in K-ion battery: Porous TiNbO4/C nanofibers. Journal of Power Sources, 2022, 541, 231635.	4.0	5
416	An ultrasonication-aided self-assembly strategy toward a PTCDA/RGO film cathode for organic K-ion full batteries. Chemical Communications, 2022, 58, 8348-8351.	2.2	9
417	Trash to treasure: recycling discarded agarose gel for practical Na/K-ion batteries. Journal of Materials Chemistry A, 2022, 10, 15026-15035.	5.2	7
419	Toward Emerging Sodiumâ€Based Energy Storage Technologies: From Performance to Sustainability. Advanced Energy Materials, 2022, 12, .	10.2	33
420	First-principle study of highly controllable boron-doped graphene (BC ₂₀) as a high-capacity anode for potassium-ion batteries. Materials Research Express, 2022, 9, 065604.	0.8	2
421	Layered Oxide Cathodes Promoted by Crystal Regulation Strategies for Potassiumâ€lon Batteries. Chemistry - A European Journal, 2022, 28, .	1.7	4
422	Intercalation-deposition mechanism induced by aligned carbon fiber toward dendrite-free metallic potassium batteries. Energy Storage Materials, 2022, 51, 122-129.	9.5	17
423	Plant-derived hard carbon as anode for sodium-ion batteries: A comprehensive review to guide interdisciplinary research. Chemical Engineering Journal, 2022, 447, 137468.	6.6	63
424	Materials, electrodes and electrolytes advances for next-generation lithium-based anode-free batteries. Oxford Open Materials Science, 2022, 2, .	0.5	5
425	A Single Potassium-Ion Conducting Metal–Organic Framework. ACS Applied Energy Materials, 2022, 5, 8573-8580.	2.5	6
426	å±,状KxMnO2基钾离åç"µæ±æ£æžææ−™çš"ç"究现状åŠå'展趋势. Scientia Sinica Chimica, 2022, , .	0.2	0

#	Article	IF	CITATIONS
427	Recent Advances of Pore Structure in Disordered Carbons for Sodium Storage: A Mini Review. Chemical Record, 2022, 22, .	2.9	9
428	Synergistic effect of nanometerization and uniform amorphous carbon coating on FeSe2 sodium ion battery anode materials. Journal of Materials Science: Materials in Electronics, 2022, 33, 16728-16739.	1.1	2
429	2022 Roadmap on aqueous batteries. JPhys Energy, 2022, 4, 041501.	2.3	8
430	Bioâ€Based Solid Electrolytes Bearing Cyclic Carbonates for Solidâ€State Lithium Metal Batteries. ChemSusChem, 2022, 15, .	3.6	9
431	Chemical cross-linking and mechanically reinforced carbon network constructed by graphene boosts potassium ion storage. Nano Research, 2022, 15, 9019-9025.	5.8	9
432	Highly Dispersed Antimony–Bismuth Alloy Encapsulated in Carbon Nanofibers for Ultrastable K-Ion Batteries. Journal of Physical Chemistry Letters, 2022, 13, 6587-6596.	2.1	7
433	High Conductivity in a Fluorine-Free K-Ion Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 9009-9019.	2.5	9
434	Alloyâ€Type Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie, 2022, 134, .	1.6	2
435	Cyclic-anion salt for high-voltage stable potassium-metal batteries. National Science Review, 2022, 9, .	4.6	123
436	Alloyâ€Type Anodes for Highâ€Performance Rechargeable Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	61
437	Ion Substitution Strategy of Manganeseâ€Based Layered Oxide Cathodes for Advanced and Lowâ€Cost Sodium Ion Batteries. Chemical Record, 2022, 22, .	2.9	18
438	Designing a Bimodal BaTiO ₃ Artificial Layer to Boost the Dielectric Effect toward Highly Reversible Dendrite-Free Zn Metal Anodes. ACS Applied Materials & Interfaces, 2022, 14, 35613-35622.	4.0	12
439	Universal Synthesis of Transitionâ€Metal Phosphide/Carbon Hybrid Nanosheets for Stable Sodium Ion Storage and Fullâ€Cell Application. ChemElectroChem, 2022, 9, .	1.7	3
440	Recent advances and promise of zinc-ion energy storage devices based on MXenes. Journal of Materials Science, 2022, 57, 13817-13844.	1.7	5
441	Anti-CO2 strategies for extending Zinc-Air Batteries' Lifetime: A review. Chemical Engineering Journal, 2022, 450, 138207.	6.6	16
442	The Structural Changes and Sodium Storage of Carbon Phase in the Cobalt Sulfides/Carbon Composites. SSRN Electronic Journal, 0, , .	0.4	0
443	Porous Amorphous Silicon Hollow Nanoboxes Coated with Reduced Graphene Oxide as Stable Anodes for Sodium-Ion Batteries. ACS Omega, 2022, 7, 30208-30214.	1.6	4
444	Ethynyl functionalized porphyrin complex as a new cathode for organic alkali metal batteries with excellent cycling stability. Chemical Engineering Journal, 2023, 451, 138734.	6.6	9

#	Article	IF	CITATIONS
445	Porous Structures Formed by Fluorine-Doped Reduced Graphene Oxide Sheets as High-Performance Anodes for Potassium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 11317-11327.	2.5	1
446	High-capacity potassium ion storage mechanisms in a soft carbon revealed by solid-state NMR spectroscopy. Rare Metals, 2022, 41, 3752-3761.	3.6	9
447	Elucidation of the sodium kinetics in layered P-type oxide cathodes. Science China Chemistry, 2022, 65, 2005-2014.	4.2	14
448	An account on the deep eutectic solvents-based electrolytes for rechargeable batteries and supercapacitors. Sustainable Materials and Technologies, 2022, 33, e00477.	1.7	10
449	Research progress in anode materials based on multiple potassium storage mechanisms. Sustainable Materials and Technologies, 2022, 33, e00480.	1.7	0
450	First principle study of benzoquinone based microporous conjugated polymers as cathode materials for high-performance magnesium ion batteries. Computational Materials Science, 2022, 214, 111757.	1.4	4
451	Exploration of bifunctional Vanadium-based Metal-Organic framework with double active centers for Potassium-ion batteries. Journal of Colloid and Interface Science, 2022, 628, 556-565.	5.0	6
452	Metal-Ion Batteries. Encyclopedia, 2022, 2, 1611-1623.	2.4	3
453	Rigid-spring-network in P2-type binary Na layered oxides for stable oxygen redox. Energy Storage Materials, 2022, 53, 340-351.	9.5	10
454	Potassium-Enriched Graphite for Use as Stable Hybrid Anodes in High-Efficiency Potassium Batteries. SSRN Electronic Journal, 0, , .	0.4	0
455	Transition metal oxides as a cathode for indispensable Na-ion batteries. RSC Advances, 2022, 12, 23284-23310.	1.7	33
456	High-Rate Soft Carbon Anode in Potassium Ion Batteries:The Role of Chemical Structures of Pitches. SSRN Electronic Journal, 0, , .	0.4	0
457	Theoretical Research of two-dimensional germanether in sodium-ion battery. Wuli Xuebao/Acta Physica Sinica, 2022, .	0.2	0
458	Engineering current collectors for advanced alkali metal anodes: A review and perspective. EcoMat, 2023, 5, .	6.8	18
459	Solid state thin electrolyte to overcome transparency-capacity dilemma of transparent supercapacitor. Scientific Reports, 2022, 12, .	1.6	2
460	Grid scale energy storage: The alkali-ion battery systems of choice. Current Opinion in Electrochemistry, 2022, 36, 101130.	2.5	4
461	Promoting Fast Na Ion Transport at Low Temperatures for Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 40985-40991.	4.0	6
462	Towards cost-efficient and scalable fabrication of SbSn/SP@C electrode for sodium-ion batteries. MRS Communications, 2022, 12, 937-943.	0.8	3

#	Article	IF	CITATIONS
463	Mxene Ti3C2 generated TiO2 nanoparticles in situ and uniformly embedded in rGO sheets as high stable anodes for potassium ion batteries. Journal of Alloys and Compounds, 2023, 930, 167414.	2.8	13
464	CoZn Nanoparticles@Hollow Carbon Tubes Enabled High-Performance Potassium Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 45364-45372.	4.0	13
465	Constructing an <i>In Situ</i> Polymer Electrolyte and a Na-Rich Artificial SEI Layer toward Practical Solid-State Na Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 45382-45391.	4.0	13
466	Advances and challenges in multiscale characterizations and analyses for battery materials. Journal of Materials Research, 0, , .	1.2	2
467	Mineral inspired electrode materials for metal-ion batteries. , 2022, , .		0
468	A Surface Modification Strategy Towards Reversible Na-ion Intercalation on Graphitic Carbon Using Fluorinated Few-Layer Graphene. Journal of the Electrochemical Society, 2022, 169, 106522.	1.3	7
469	Progress and Prospects of Emerging Potassium–Sulfur Batteries. Advanced Energy Materials, 2022, 12,	10.2	11
470	Controlled Nitrogen Doping in Crumpled Graphene for Improved Alkali Metalâ€ l on Storage under Lowâ€Temperature Conditions. Advanced Functional Materials, 2023, 33, .	7.8	11
471	Carbon-based flexible electrodes for electrochemical potassium storage devices. New Carbon Materials, 2022, 37, 852-874.	2.9	10
472	Electrochemical performance of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>KTiOAsO</mml:mi><mml:mn>4<!--<br-->(KTA) in potassium-ion batteries from density-functional theory. Physical Review Materials, 2022, 6, .</mml:mn></mml:msub></mml:math 	nn ol ønn>«	k/n 2 ml:msub
473	A Fastâ€Charging and Highâ€Temperature Allâ€Organic Rechargeable Potassium Battery. Advanced Science, 2022, 9, .	5.6	8
474	Concave Engineering of Hollow Carbon Spheres toward Advanced Anode Material for Sodium/Potassiumâ€lon Batteries. Advanced Energy Materials, 2022, 12, .	10.2	34
475	V ₂ O ₅ as a versatile electrode material for postlithium energy storage systems. , 2023, 2, .		7
476	First-principles investigation of phase stability in layered <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Na</mml:mi><mml:r Physical Review Materials, 2022, 6, .</mml:r </mml:msub></mml:mrow></mml:math 	nix ∞.9 /mm	l:mi>
477	Potassium-enriched graphite for use as stable hybrid anodes in high-efficiency potassium batteries. Carbon, 2023, 201, 1030-1037.	5.4	10
478	A Novel Dual-Ion Capacitive Deionization System Design with Ultrahigh Desalination Performance. Polymers, 2022, 14, 4776.	2.0	1
479	Recent Advances on High apacity Sodium Manganeseâ€Based Oxide Cathodes for Sodiumâ€ion Batteries. Chemistry - A European Journal, 2023, 29, .	1.7	3
480	Self-Discharge Mechanism of High-Voltage KVPO ₄ F for K-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 14913-14921.	2.5	6

#	ARTICLE	IF	Citations
481	Research progress of manganese-based layered oxides as cathode materials for potassium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 927, 116971.	1.9	0
482	Selection and Dimensioning of Energy Storage Systems for Standalone Communities: A Review. Energies, 2022, 15, 8631.	1.6	1
483	Boosting Reversibility of Conversion/Alloying Reactions for Sulfur-Rich Antimony-Based Sulfides with Extraordinary Potassium Storage Performance. , 2022, 4, 2604-2612.		5
484	From Na2FePO4F/CNT to NaKFePO4F/CNT as advanced cathode material for K-ion batteries. Journal of Power Sources, 2023, 555, 232410.	4.0	2
485	Advances in Fine Structure Optimizations of Layered Transitionâ€Metal Oxide Cathodes for Potassiumâ€ion Batteries. Advanced Energy Materials, 2023, 13, .	10.2	16
486	High-rate soft carbon anode in potassium ion batteries: The role of chemical structures of pitches. Carbon, 2023, 203, 211-220.	5.4	11
487	Construction of a LiVO ₃ /C core–shell structure for high-rate lithium storage. New Journal of Chemistry, 2023, 47, 1508-1516.	1.4	3
488	Nitrogen-doped meso-macroporous carbon from waste asphalt as high-performance anode materials for alkali-ion batteries. Sustainable Materials and Technologies, 2023, 35, e00535.	1.7	0
489	Binder Chemistry Dependent Electrolyte Reduction in Potassiumâ€lon Batteries: A Successive, Two‣tep Reduction Way. Advanced Energy Materials, 2023, 13, .	10.2	14
490	Application of P2-Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ Electrode to All-Solid-State 3 V Sodium(-Ion) Polymer Batteries. Journal of Physical Chemistry C, 2022, 126, 20226-20234.	1.5	5
491	Vanadium Oxide–Conducting Polymers Composite Cathodes for Aqueous Zinc-Ion Batteries: Interfacial Design and Enhancement of Electrochemical Performance. Energies, 2022, 15, 8966.	1.6	4
492	Borate-Based Compounds as Mixed Polyanion Cathode Materials for Advanced Batteries. Molecules, 2022, 27, 8047.	1.7	5
493	Template-free synthesis of hollow carbon-based nanostructures from MOFs for rechargeable battery applications. Science China Chemistry, 2023, 66, 65-77.	4.2	16
494	Integrating molybdenum sulfide selenide-based cathode with C-O-Mo heterointerface design and atomic engineering for superior aqueous Zn-ion batteries. Nano Research, 2023, 16, 4933-4940.	5.8	10
495	Recent Advances in Electrolytes for Potassiumâ€ion Batteries. Advanced Functional Materials, 2023, 33, .	7.8	44
496	Recent Advances in Polymers for Potassium Ion Batteries. Polymers, 2022, 14, 5538.	2.0	5
497	NiCo2S4 nanoparticles anchored in the 3D interpenetrating framework composed of GNs and CNTs toward enhanced sodium storage performance. Electrochimica Acta, 2023, 441, 141760.	2.6	1
498	Caramelization as a Key Stage for the Preparation of Monolithic Hard Carbon with Advanced Performance in Sodium-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 181-190.	2.5	4

#	Article	IF	CITATIONS
499	Advances and challenges in tuning the reversibility & cyclability of room temperature sodium–sulfur and potassium–sulfur batteries with catalytic materials. Materials Today Energy, 2023, 32, 101228.	2.5	7
500	Biomass-Derived Electroactive Carbons with Application in Green Electrochemical Technologies. ACS Symposium Series, 0, , 129-164.	0.5	0
501	Recent Advances on Challenges and Strategies of Manganese Dioxide Cathodes for Aqueous Zincâ€lon Batteries. Energy and Environmental Materials, 2023, 6, .	7.3	28
502	A Review of the Structural Design of Anode Materials in Sodium-Ion Batteries Based on MXenes and Their Composites. Batteries, 2023, 9, 48.	2.1	4
503	Regulating the interfacial chemistry enables fast-kinetics hard carbon anodes for potassium ion batteries. Journal of Power Sources, 2023, 557, 232592.	4.0	6
504	Symmetric Cells as an Analytical Tool for Battery Research: Assembly, Operation, and Data Analysis Strategies. Journal of the Electrochemical Society, 2023, 170, 020521.	1.3	6
505	Coral-like porous microspheres comprising polydopamine-derived N-doped C-coated MoSe2 nanosheets composited with graphitic carbon as anodes for high-rate sodium- and potassium-ion batteries. Chemical Engineering Journal, 2023, 456, 141118.	6.6	20
506	The structural changes and sodium storage in the carbon phase of cobalt sulfide/carbon composites. New Journal of Chemistry, 2023, 47, 4095-4102.	1.4	1
507	Insight into the Anchoring Effect of Twoâ€Dimensional TiX ₂ (X = S, Se) Materials for Sodium–Sulfur Batteries: A Firstâ€Principles Study. Advanced Theory and Simulations, 2023, 6, .	1.3	1
508	Optimization of tannin-derived hard carbon spheres for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2023, 11, 4365-4383.	5.2	2
509	Influence of Potassium Metal‣upport Interactions on Dendrite Growth. Angewandte Chemie, 2023, 135,	1.6	2
510	La ₂ O ₃ Filler's Stabilization of Residual Solvent in Polymer Electrolyte for Advanced Solidâ€State Lithiumâ€Metal Batteries. Small Science, 2023, 3, .	5.8	7
511	2023 roadmap for potassium-ion batteries. JPhys Energy, 2023, 5, 021502.	2.3	15
512	MXene/carbon composites for electrochemical energy storage and conversion. Materials Today Sustainability, 2023, 22, 100350.	1.9	12
513	Phosphate-based gel polymer electrolyte enabling remarkably long cycling stable sodium storage in a wide-operating-temperature. Chemical Engineering Journal, 2023, 465, 142796.	6.6	8
514	Battery innovation and the Circular Economy: What are patents revealing?. Renewable Energy, 2023, 209, 516-532.	4.3	4
515	Development of electrode materials for flexible potassium-ion batteries. Composites Part B: Engineering, 2023, 258, 110712.	5.9	8
516	From lithium to potassium: Comparison of cations in poly(ethylene oxide)-based block copolymer electrolytes for solid-state alkali metal batteries. Electrochimica Acta, 2023, 454, 142421.	2.6	4

#	Article	IF	CITATIONS
517	Diglyme-based gel polymer electrolytes for K-ion capacitors. Energy Storage Materials, 2023, 56, 342-350.	9.5	6
518	Epoxy phenol novolac resin: A novel precursor to construct high performance hard carbon anode toward enhanced sodium-ion batteries. Carbon, 2023, 205, 353-364.	5.4	25
519	Wide-voltage-window amphiphilic supramolecule excluded-volume electrolytes for ultra-durable full-cell aqueous potassium-lon batteries. Chemical Engineering Journal, 2023, 459, 141623.	6.6	11
520	Recent progress of Mn-based NASICON-type sodium ion cathodes. Energy Storage Materials, 2023, 57, 69-80.	9.5	16
521	Nanometer-thin ZrO ₂ Coating for NiO on MWCNTs as Anode for Improved Performance of Sodium-Ion Batteries. ACS Applied Nano Materials, 2023, 6, 2507-2516.	2.4	7
522	Regulating Na Occupation in P2â€Type Layered Oxide Cathode for All limate Sodiumâ€lon Batteries. Advanced Energy Materials, 2023, 13, .	10.2	18
523	Group IV elemental 2D materials beyond graphene used as electrodes for alkali-ion batteries. Materials Chemistry Frontiers, 2023, 7, 1312-1320.	3.2	6
524	Recent Advances in Potassiumâ€ion Batteries: From Material Design to Electrolyte Engineering. Advanced Materials Technologies, 2023, 8, .	3.0	9
525	Guest Ionâ€Dependent Reaction Mechanisms of New Pseudocapacitive Mg ₃ V ₄ (PO ₄) ₆ /Carbon Composite as Negative Electrode for Monovalentâ€ion Batteries. Advanced Science, 2023, 10, .	5.6	3
526	Hard Carbon–Sulfide Solid Electrolyte Interface in All-Solid-State Sodium Batteries. Electrochemistry, 2023, 91, 037009-037009.	0.6	1
527	From Waste Biomass to Hard Carbon Anodes: Predicting the Relationship between Biomass Processing Parameters and Performance of Hard Carbons in Sodium-Ion Batteries. Processes, 2023, 11, 764.	1.3	3
528	Transferring state of health estimation neural networks for different battery chemistries and charging protocols using renormalization and transfer learning. , 2023, 1, 100013.		1
529	Influence of Potassium Metalâ€6upport Interactions on Dendrite Growth. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
530	Toward Highly Reliable Potassiumâ€lon Half and Full Coin Cells. Batteries and Supercaps, 2023, 6, .	2.4	4
531	State-of-art progress and perspectives on alloy-type anode materials for potassium-ion batteries. Materials Chemistry Frontiers, 2023, 7, 3011-3036.	3.2	9
532	Zn Microbatteries Explore Ways for Integrations in Intelligent Systems. Small, 2023, 19, .	5.2	7
533	Understanding the Highly Reversible Potassium Storage of Hollow Ternary (Bi-Sb) ₂ S ₃ @N-C Nanocube. ACS Nano, 2023, 17, 6754-6769.	7.3	13
534	Metalâ€Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. Chemical Record, 2023, 23, .	2.9	4

			_
#	ARTICLE	IF	CITATIONS
535	Solid–Electrolyte Interface Formation: Hard Carbon Rods from Waste Firefighter Suits. Energy Technology, 2023, 11, .	1.8	12
536	Electrolyte Solvation Structure Manipulation and Synthetic Optimization for Enhanced Potassium Storage of Tin Phosphide/Carbon Alloy-Based Electrode. Metals, 2023, 13, 658.	1.0	2
537	Vanadium oxide - poly(3,4-ethylenedioxythiophene) cathodes for zinc-ion batteries: effect of synthesis temperature. Journal of Electrochemical Science and Engineering, 0, , .	1.6	0
538	Regulating the Wettability of Hard Carbon through Open Mesochannels for Enhanced K ⁺ Storage. Small, 2023, 19, .	5.2	6
539	Promising anode materials for alkali metal ion batteries: a case study on cobalt anti-MXenes. Physical Chemistry Chemical Physics, 2023, 25, 11789-11804.	1.3	1
540	Engineering a manganese-based oxide heterostructure cathode for high-performance aqueous potassium-ion storage. Materials Advances, 0, , .	2.6	1
541	Investigation of the AlB2 intermetallic phases effect on Al–Zn–B alloys' electrochemical performance in Al–air battery anodes. Applied Physics A: Materials Science and Processing, 2023, 129, .	1.1	2
542	A Multifunctional Coating on Sulfur-Containing Carbon-Based Anode for High-Performance Sodium-Ion Batteries. Molecules, 2023, 28, 3335.	1.7	1
543	Research progress on vanadium oxides for potassium-ion batteries. Journal of Semiconductors, 2023, 44, 041701.	2.0	14
544	Constructing high K+ concentration layer to expedite K+ intercalation in graphite: towards superior rate capability without trading off power density of potassium-ion batteries. Materials Today Energy, 2023, 34, 101315.	2.5	0
545	Synergistically Improving the Stability and Operating Potential of Organic Cathodes for Sodiumâ€lon Battery. Batteries and Supercaps, 2023, 6, .	2.4	5
550	Emerging post-lithium batteries: Opportunities in Indonesia. AIP Conference Proceedings, 2023, , .	0.3	0
556	Covalent Organic Frameworks as Model Materials for Fundamental and Mechanistic Understanding of Organic Battery Design Principles. Journal of the American Chemical Society, 2023, 145, 13494-13513.	6.6	22
570	K ₃ MnO ₄ : A New Cathode Material for K-Ion Batteries. ACS Applied Energy Materials, 2023, 6, 7785-7789.	2.5	2
572	Materials for Electrochemical Energy Storage: Introduction. Green Energy and Technology, 2023, , 1-13.	0.4	0
592	Tungsten chalcogenides as anodes for potassium-ion batteries. Tungsten, 0, , .	2.0	1
622	Advancements in Cathode Materials for Potassium-Ion Batteries:Current Landscape, Obstacles, and Prospects. Energy Advances, 0, , .	1.4	1
624	Advances in Bismuth-Based Anodes for Potassium-Ion Batteries. Journal of Materials Chemistry A, O, , .	5.2	1

#	Article	IF	CITATIONS
640	Advanced Electrochemical Energy Sources for Electric and Hybrid Vehicles. Green Energy and Technology, 2024, , 195-218.	0.4	0
647	Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries. Nano-Micro Letters, 2024, 16, .	14.4	1
653	Graphene-Based Metal-Ion Batteries. Engineering Materials, 2024, , 91-107.	0.3	0