Replication confers \hat{I}^2 cell immaturity

Nature Communications 9, 485 DOI: 10.1038/s41467-018-02939-0

Citation Report

#	Article	IF	CITATIONS
1	Adrb2 controls glucose homeostasis by developmental regulation of pancreatic islet vasculature. ELife, 2018, 7, .	2.8	20
2	Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors. Stem Cell Reports, 2018, 11, 1551-1564.	2.3	94
3	The Impact of Pancreatic Beta Cell Heterogeneity on Type 1 Diabetes Pathogenesis. Current Diabetes Reports, 2018, 18, 112.	1.7	17
4	Recent advances in deriving human endodermal tissues from pluripotent stem cells. Current Opinion in Cell Biology, 2019, 61, 92-100.	2.6	14
5	Myc Is Required for Adaptive β-Cell Replication in Young Mice but Is Not Sufficient in One-Year-Old Mice Fed With a High-Fat Diet. Diabetes, 2019, 68, 1934-1949.	0.3	23
6	The Lysine Demethylase KDM5B Regulates Islet Function and Glucose Homeostasis. Journal of Diabetes Research, 2019, 2019, 1-15.	1.0	15
7	β-Cell Maturation and Identity in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 5417.	1.8	60
8	Pancreatic β-cell-specific deletion of insulin-degrading enzyme leads to dysregulated insulin secretion and β-cell functional immaturity. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E805-E819.	1.8	23
9	IAPP toxicity activates HIF1α/PFKFB3 signaling delaying β-cell loss at the expense of β-cell function. Nature Communications, 2019, 10, 2679.	5.8	55
10	Contribution of Oxidative Stress and Impaired Biogenesis of Pancreatic β-Cells to Type 2 Diabetes. Antioxidants and Redox Signaling, 2019, 31, 722-751.	2.5	50
11	Modelling the endocrine pancreas in health and disease. Nature Reviews Endocrinology, 2019, 15, 155-171.	4.3	71
12	Pancreatic \hat{I}^2 cell regeneration: to \hat{I}^2 or not to \hat{I}^2 . Current Opinion in Physiology, 2020, 14, 13-20.	0.9	15
13	Identification of a LIF-Responsive, Replication-Competent Subpopulation of Human \hat{I}^2 Cells. Cell Metabolism, 2020, 31, 327-338.e6.	7.2	17
14	LIN28B Impairs the Transition of hESC-Derived \hat{I}^2 Cells from the Juvenile to Adult State. Stem Cell Reports, 2020, 14, 9-20.	2.3	9
15	Diabetes Mellitus Is a Chronic Disease that Can Benefit from Therapy with Induced Pluripotent Stem Cells. International Journal of Molecular Sciences, 2020, 21, 8685.	1.8	13
16	TBK1 regulates regeneration of pancreatic Î ² -cells. Scientific Reports, 2020, 10, 19374.	1.6	3
17	The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn ²⁺ levels. Open Biology, 2020, 10, 200137.	1.5	5
18	Transcriptomic and Quantitative Proteomic Profiling Reveals Signaling Pathways Critical for Pancreatic Islet Maturation. Endocrinology, 2020, 161, .	1.4	10

CITATION REPORT

#	Article	IF	CITATIONS
19	Single-Cell Transcriptome Analysis Dissects the Replicating Process of Pancreatic Beta Cells in Partial Pancreatectomy Model. IScience, 2020, 23, 101774.	1.9	15
20	Spontaneous restoration of functional β ell mass in obese SM/J mice. Physiological Reports, 2020, 8, e14573.	0.7	5
21	Maternal hypothyroidism in mice influences glucose metabolism in adult offspring. Diabetologia, 2020, 63, 1822-1835.	2.9	11
22	Costus pictus D. Don leaf extract stimulates GLP-1 secretion from GLUTag L-cells and has cytoprotective effects in BRIN-BD11 β-cells. Journal of Ethnopharmacology, 2020, 260, 112970.	2.0	7
23	Identification of a small molecule that stimulates human β-cell proliferation and insulin secretion, and protects against cytotoxic stress in rat insulinoma cells. PLoS ONE, 2020, 15, e0224344.	1.1	18
24	Long-Term Liraglutide Administration Induces Pancreas Neogenesis in Adult T2DM Mice. Cell Transplantation, 2020, 29, 096368972092739.	1.2	6
25	The glucose-lowering effects of α-glucosidase inhibitor require a bile acid signal in mice. Diabetologia, 2020, 63, 1002-1016.	2.9	10
26	The RB gene family controls the maturation state of the EndoC-βH2 human pancreatic β-cells. Differentiation, 2020, 113, 1-9.	1.0	3
27	Two drugs converged in a pancreatic \hat{l}^2 cell. Science Translational Medicine, 2020, 12, .	5.8	7
28	Engineered Biomaterials for Enhanced Function of Insulinâ€5ecreting βâ€Cell Organoids. Advanced Functional Materials, 2020, 30, 2000134.	7.8	16
29	A Stem Cell Approach to Cure Type 1 Diabetes. Cold Spring Harbor Perspectives in Biology, 2021, 13, a035741.	2.3	42
30	Enhanced structure and function of human pluripotent stem cell-derived beta-cells cultured on extracellular matrix. Stem Cells Translational Medicine, 2021, 10, 492-505.	1.6	19
31	The many lives of Myc in the pancreatic \hat{l}^2 -cell. Journal of Biological Chemistry, 2021, 296, 100122.	1.6	16
32	Autosomal dominant diabetes associated with a novel ZYG11A mutation resulting in cell cycle arrest in beta-cells. Molecular and Cellular Endocrinology, 2021, 522, 111126.	1.6	3
33	Translational Factor eIF4G1 Regulates Glucose Homeostasis and Pancreatic Î ² -Cell Function. Diabetes, 2021, 70, 155-170.	0.3	10
34	Regulation of ATR-dependent DNA damage response by nitric oxide. Journal of Biological Chemistry, 2021, 296, 100388.	1.6	3
35	SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic \hat{l}^2 cells. Genes and Development, 2021, 35, 234-249.	2.7	26
36	CDK2 limits the highly energetic secretory program of mature β cells by restricting PEP cycle-dependent KATP channel closure. Cell Reports, 2021, 34, 108690.	2.9	8

CITATION REPORT

#	Article	IF	CITATIONS
37	Cell Cycle Regulation of the Pdx1 Transcription Factor in Developing Pancreas and Insulin-Producing β-Cells. Diabetes, 2021, 70, 903-916.	0.3	10
38	Human Pluripotent Stem Cells to Model Islet Defects in Diabetes. Frontiers in Endocrinology, 2021, 12, 642152.	1.5	24
40	Reduced replication fork speed promotes pancreatic endocrine differentiation and controls graft size. JCI Insight, 2021, 6, .	2.3	22
41	The hepatokine fetuin-A disrupts functional maturation of pancreatic beta cells. Diabetologia, 2021, 64, 1358-1374.	2.9	14
42	Islet Regeneration: Endogenous and Exogenous Approaches. International Journal of Molecular Sciences, 2021, 22, 3306.	1.8	12
44	Cellulose-based scaffolds enhance pseudoislets formation and functionality. Biofabrication, 2021, 13, 035044.	3.7	13
45	In vivo screen identifies a SIK inhibitor that induces β cell proliferation through a transient UPR. Nature Metabolism, 2021, 3, 682-700.	5.1	18
46	DNA Methylation Patterning and the Regulation of Beta Cell Homeostasis. Frontiers in Endocrinology, 2021, 12, 651258.	1.5	27
47	Single-cell transcriptome analysis defines heterogeneity of the murine pancreatic ductal tree. ELife, 2021, 10, .	2.8	23
48	Islet Epigenetic Impacts on $\hat{l}^2 \hat{a} \in \mathbb{C}$ ell Identity and Function. , 2021, 11, 1961-1978.		0
49	Decreased KATP Channel Activity Contributes to the Low Glucose Threshold for Insulin Secretion of Rat Neonatal Islets. Endocrinology, 2021, 162, .	1.4	14
50	Transcriptional mechanisms of pancreatic β-cell maturation and functional adaptation. Trends in Endocrinology and Metabolism, 2021, 32, 474-487.	3.1	23
51	CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. American Journal of Physiology - Cell Physiology, 2021, 321, C201-C213.	2.1	13
52	Debates in Pancreatic Beta Cell Biology: Proliferation Versus Progenitor Differentiation and Transdifferentiation in Restoring β Cell Mass. Frontiers in Endocrinology, 2021, 12, 722250.	1.5	17
53	DYRK1A Kinase Inhibitors Promote \hat{I}^2 -Cell Survival and Insulin Homeostasis. Cells, 2021, 10, 2263.	1.8	8
54	Endoplasmic Reticulum Stress Induced Proliferation Remains Intact in Aging Mouse β-Cells. Frontiers in Endocrinology, 2021, 12, 734079.	1.5	4
55	Cross-talk among MEN1, p53 and Notch regulates the proliferation of pancreatic neuroendocrine tumor cells by modulating INSM1 expression and subcellular localization. Neoplasia, 2021, 23, 979-992.	2.3	13
56	SetD7 (Set7/9) is a novel target of PPARÎ ³ that promotes the adaptive pancreatic Î ² -cell glycemic response. Journal of Biological Chemistry, 2021, 297, 101250.	1.6	4

C			DEDO	
C	IIAI	ION	KEPO	ואי

#	Article	IF	CITATIONS
57	The Transcriptome and Epigenome Reveal Novel Changes in Transcription Regulation During Pancreatic Rat Islet Maturation. Endocrinology, 2021, 162, .	1.4	4
58	Butyrate Protects Pancreatic Beta Cells from Cytokine-Induced Dysfunction. International Journal of Molecular Sciences, 2021, 22, 10427.	1.8	19
59	Pancreatic β-Cell Development and Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040741.	2.3	4
60	The miR-200–Zeb1 axis regulates key aspects of β-cell function and survival inÂvivo. Molecular Metabolism, 2021, 53, 101267.	3.0	9
61	Enhancing Acsl4 in absence of mTORC2/Rictor drove β-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2021, 1867, 166261.	1.8	4
64	Modulation of Insulin Sensitivity by Insulin-Degrading Enzyme. Biomedicines, 2021, 9, 86.	1.4	35
65	Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genomics and Bioinformatics, 2020, 2, Iqaa097.	1.5	15
68	The supply chain of human pancreatic β cell lines. Journal of Clinical Investigation, 2019, 129, 3511-3520.	3.9	35
69	Islet-specific Prmt5 excision leads to reduced insulin expression and glucose intolerance in mice. Journal of Endocrinology, 2020, 244, 41-52.	1.2	6
75	Relationships between type 2 diabetes, cell dysfunction, and redox signaling: A metaâ€analysis of singleâ€cell gene expression of human pancreatic α―and βâ€cells. Journal of Diabetes, 2022, 14, 34-51.	0.8	6
79	Stem Cells: A Renewable Source of Pancreatic \hat{I}^2 -Cells and Future for Diabetes Treatment. , 2021, , 185-202.		5
80	Mitogen Synergy: An Emerging Route to Boosting Human Beta Cell Proliferation. Frontiers in Cell and Developmental Biology, 2021, 9, 734597.	1.8	8
81	MYCL-mediated reprogramming expands pancreatic insulin-producing cells. Nature Metabolism, 2022, 4, 254-268.	5.1	7
82	Mechanisms Underlying the Expansion and Functional Maturation of β-Cells in Newborns: Impact of the Nutritional Environment. International Journal of Molecular Sciences, 2022, 23, 2096.	1.8	6
83	Phosphatases are predicted to govern prolactin-mediated JAK–STAT signaling in pancreatic beta cells. Integrative Biology (United Kingdom), 2022, 14, 37-48.	0.6	1
84	Dysregulation of β-Cell Proliferation in Diabetes: Possibilities of Combination Therapy in the Development of a Comprehensive Treatment. Biomedicines, 2022, 10, 472.	1.4	7
85	XBP1 maintains beta cell identity, represses beta-to-alpha cell transdifferentiation and protects against diabetic beta cell failure during metabolic stress in mice. Diabetologia, 2022, 65, 984-996.	2.9	25
86	Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nature Biotechnology, 2022, 40, 1042-1055.	9.4	135

CITATION REPORT

#	Article	IF	CITATIONS
87	Lessons from neonatal β-cell epigenomic for diabetes prevention and treatment. Trends in Endocrinology and Metabolism, 2022, 33, 378-389.	3.1	5
88	Pan-AMPK activator O304 prevents gene expression changes and remobilisation of histone marks in islets of diet-induced obese mice. Scientific Reports, 2021, 11, 24410.	1.6	6
89	Polycomb Repressive Complexes: Shaping Pancreatic Beta-Cell Destiny in Development and Metabolic Disease. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	3
90	NR5A2/LRH-1 regulates the PTGS2-PGE2-PTGER1 pathway contributing to pancreatic islet survival and function. IScience, 2022, 25, 104345.	1.9	9
92	Heterogeneous Development of β-Cell Populations in Diabetes-Resistant and -Susceptible Mice. Diabetes, 2022, 71, 1962-1978.	0.3	3
93	Evaluation of the Effects of Harmine on β-cell Function and Proliferation in Standardized Human Islets Using 3D High-Content Confocal Imaging and Automated Analysis. Frontiers in Endocrinology, 0, 13, .	1.5	10
94	Maladaptive positive feedback production of ChREBPβ underlies glucotoxic β-cell failure. Nature Communications, 2022, 13, .	5.8	9
95	Đ"ĐµĐ¼2ĐµÑ€ÑƒĐ²Đ°Đ½Đ½Nĩ•Ñ–Đ½ÑÑƒĐ»Ñ–Đ½2Đ½N€Đ¾ĐÑƒĐºNƒÑŽÑ‡Đ,Ñ ĐºĐ»Ñ–Ñ,Đ,Đ½ Đ·Ñ–	ÑÑ,о∄2бÑ	ſĨ€Ð¾Đ²E
96	Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. Npj Regenerative Medicine, 2022, 7, .	2.5	1
97	Milk Exosomal microRNAs: Postnatal Promoters of β Cell Proliferation but Potential Inducers of β Cell De-Differentiation in Adult Life. International Journal of Molecular Sciences, 2022, 23, 11503.	1.8	8
99	T3 and glucose increase expression of phosphoenolpyruvate carboxykinase (PCK1) leading to increased β-cell proliferation. Molecular Metabolism, 2022, 66, 101646.	3.0	3
101	Spontaneously evolved progenitor niches escape Yap oncogene addiction in advanced pancreatic ductal adenocarcinomas. Nature Communications, 2023, 14, .	5.8	1
102	Glucocorticoid-mediated induction of ZBTB16 affects insulin secretion in human islets and EndoC-Î ² H1 Î ² -cells. IScience, 2023, 26, 106555.	1.9	0
111	Stammzellen: Eine erneuerbare Quelle für β-Zellen der Bauchspeicheldrüse und die Zukunft der Diabetesbehandlung. , 2023, , 205-224.		0