Understanding Catalytic Activity Trends in the Oxygen

Chemical Reviews 118, 2302-2312

DOI: 10.1021/acs.chemrev.7b00488

Citation Report

#	Article	IF	CITATIONS
5	Single Metal Atoms Anchored in Twoâ€Ðimensional Materials: Bifunctional Catalysts for Fuel Cell Applications. ChemCatChem, 2018, 10, 3034-3039.	3.7	50
6	First-Principles Investigation of the Formation of Pt Nanorafts on a Mo ₂ C Support and Their Catalytic Activity for Oxygen Reduction Reaction. Journal of Physical Chemistry Letters, 2018, 9, 2229-2234.	4.6	29
7	Ultrathin Cobalt Oxide Overlayer Promotes Catalytic Activity of Cobalt Nitride for the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 4783-4791.	3.1	46
8	Computational predictive design for metal-decorated-graphene size-specific subnanometer to nanometer ORR catalysts. Catalysis Today, 2018, 312, 105-117.	4.4	13
9	Simple preparation of carbon–bimetal oxide nanospinels for high-performance bifunctional oxygen electrocatalysts. New Journal of Chemistry, 2018, 42, 20156-20162.	2.8	8
10	Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy and Environmental Science, 2018, 11, 3375-3379.	30.8	528
12	Combining Experiment and Theory To Unravel the Mechanism of Two-Electron Oxygen Reduction at a Selective and Active Co-catalyst. ACS Catalysis, 2018, 8, 11940-11951.	11.2	45
13	Exploring the Effect of Gold Support on the Oxygen Reduction Reaction Activity of Metal Porphycenes. ChemCatChem, 2018, 10, 5505-5510.	3.7	6
14	Silicon-Doped Nitrogen-Coordinated Graphene as Electrocatalyst for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 27233-27240.	3.1	59
15	First-principles computational approach for innovative design of highly functional electrocatalysts in fuel cells. Current Opinion in Electrochemistry, 2018, 12, 225-232.	4.8	4
16	Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catalysis, 2018, 8, 12004-12014.	11.2	42
17	Favorable Core/Shell Interface within Co ₂ P/Pt Nanorods for Oxygen Reduction Electrocatalysis. Nano Letters, 2018, 18, 7870-7875.	9.1	68
18	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	3.1	68
19	DFT Study of the Oxygen Reduction Reaction on Carbon-Coated Iron and Iron Carbide. ACS Catalysis, 2018, 8, 10521-10529.	11.2	46
20	Origins of high onset overpotential of oxygen reduction reaction at Pt-based electrocatalysts: A mini review. Electrochemistry Communications, 2018, 96, 71-76.	4.7	50
21	Engineering the Interface of Carbon Electrocatalysts at the Triple Point for Enhanced Oxygen Reduction Reaction. Chemistry - A European Journal, 2018, 24, 18374-18384.	3.3	45
22	Recent Advances on Electrocatalysts for PEM and AEM Fuel Cells. , 2018, , 51-89.		1
23	Trimetallic (Co/Ni/Cu) Hydroxyphosphate Nanosheet Array as Efficient and Durable Electrocatalyst for Oxygen Evolution Reaction. ACS Sustainable Chemistry and Engineering, 2018, 6, 16859-16866.	6.7	22

#	Article	IF	CITATIONS
24	Zoom in Catalyst/Ionomer Interface in Polymer Electrolyte Membrane Fuel Cell Electrodes: Impact of Catalyst/Ionomer Dispersion Media/Solvent. ACS Applied Materials & Interfaces, 2018, 10, 38125-38133.	8.0	47
25	Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nature Catalysis, 2018, 1, 935-945.	34.4	1,075
26	Design of a Three-Dimensional Interconnected Hierarchical Micro–Mesoporous Structure of Graphene as Support Material for Spinel NiCo ₂ O ₄ Electrocatalysts toward Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2018, 122, 27469-27476.	3.1	51
27	One-Nanometer-Thick PtNiRh Trimetallic Nanowires with Enhanced Oxygen Reduction Electrocatalysis in Acid Media: Integrating Multiple Advantages into One Catalyst. Journal of the American Chemical Society, 2018, 140, 16159-16167.	13.7	160
28	Interplay between Covalent and Noncovalent Interactions in Electrocatalysis. Journal of Physical Chemistry C, 2018, 122, 26910-26921.	3.1	21
29	ZIF-derived carbons as highly efficient and stable ORR catalyst. Nanotechnology, 2018, 29, 485402.	2.6	16
30	Emerging Materials in Heterogeneous Electrocatalysis Involving Oxygen for Energy Harvesting. ACS Applied Materials & Interfaces, 2018, 10, 33737-33767.	8.0	52
31	Towards <i>operando</i> computational modeling in heterogeneous catalysis. Chemical Society Reviews, 2018, 47, 8307-8348.	38.1	169
32	Promoting Oxygen Reduction Reaction Activity of Fe–N/C Electrocatalysts by Silica-Coating-Mediated Synthesis for Anion-Exchange Membrane Fuel Cells. Chemistry of Materials, 2018, 30, 6684-6701.	6.7	105
33	Activeâ€Phase Formation and Stability of Gd/Pt(111) Electrocatalysts for Oxygen Reduction: An In Situ Grazing Incidence Xâ€Ray Diffraction Study. Chemistry - A European Journal, 2018, 24, 12280-12290.	3.3	17
34	Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. Journal of Energy Chemistry, 2018, 27, 1668-1673.	12.9	104
35	Defect and pyridinic nitrogen engineering of carbon-based metal-free nanomaterial toward oxygen reduction. Nano Energy, 2018, 52, 307-314.	16.0	176
36	Moltenâ€Saltâ€Assisted Synthesis of 3D Holey Nâ€Doped Graphene as Bifunctional Electrocatalysts for Rechargeable Zn–Air Batteries. Small Methods, 2018, 2, 1800144.	8.6	77
37	PtNi Alloy Nanoparticles Prepared by Nanocapsule Method for ORR Catalysts in Alkaline Media. Bulletin of the Chemical Society of Japan, 2018, 91, 1495-1497.	3.2	4
38	Core-Shell Polydopamine@Zr-Hemin MOFs Derived Fe-N-Doped Porous Carbon Nanospheres Electrocatalysts for the Oxygen Reduction. Journal of the Electrochemical Society, 2018, 165, H673-H679.	2.9	12
39	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 12430-12434.	13.8	15
40	Microscopic Electrode Processes in the Four-Electron Oxygen Reduction on Highly Active Carbon-Based Electrocatalysts. ACS Catalysis, 2018, 8, 8162-8176.	11.2	54
41	Transition metal oxide nanocatalysts for oxygen reduction reaction. Materials Science for Energy Technologies, 2018, 1, 117-128.	1.8	101

#	Article	IF	CITATIONS
42	Effects of dielectric barrier discharge plasma on the catalytic activity of Pt/CeO2 catalysts. Applied Catalysis B: Environmental, 2018, 238, 328-338.	20.2	112
43	Kinetics of Lifetime Changes in Bimetallic Nanocatalysts Revealed by Quick Xâ€ray Absorption Spectroscopy. Angewandte Chemie, 2018, 130, 12610-12614.	2.0	2
44	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	3.3	34
45	Synthesis of low- and high-index faceted metal (Pt, Pd, Ru, Ir, Rh) nanoparticles for improved activity and stability in electrocatalysis. Nanoscale, 2019, 11, 18995-19011.	5.6	110
46	Co/Co ₉ S ₈ nanoparticles coupled with N,S-doped graphene-based mixed-dimensional heterostructures as bifunctional electrocatalysts for the overall oxygen electrode. Inorganic Chemistry Frontiers, 2019, 6, 2558-2565.	6.0	13
47	Functionalization of 2D materials for enhancing OER/ORR catalytic activity in Li–oxygen batteries. Communications Chemistry, 2019, 2, .	4.5	61
48	Intermetallic Pd ₃ Pb ultrathin nanoplate-constructed flowers with low-coordinated edge sites boost oxygen reduction performance. Nanoscale, 2019, 11, 17301-17307.	5.6	16
49	Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation. Advanced Materials, 2019, 31, e1903683.	21.0	112
50	Electrocatalytic Production of H ₂ O ₂ by Selective Oxygen Reduction Using Earth-Abundant Cobalt Pyrite (CoS ₂). ACS Catalysis, 2019, 9, 8433-8442.	11.2	167
51	Carbonaceous materials for efficient electrocatalysis. , 2019, , 375-394.		2
52	High Pt Single-Atom Density for High-Rate Generation of H2O2. CheM, 2019, 5, 1927-1928.	11.7	21
53	The Chemical Bond between Transition Metals and Oxygen: Electronegativity, d-Orbital Effects, and Oxophilicity as Descriptors of Metal–Oxygen Interactions. Journal of Physical Chemistry C, 2019, 123, 18432-18444.	3.1	92
54	A highly durable carbon-nanofiber-supported Pt–C core–shell cathode catalyst for ultra-low Pt loading proton exchange membrane fuel cells: facile carbon encapsulation. Energy and Environmental Science, 2019, 12, 2820-2829.	30.8	158
55	Ligand Identity-Induced Generation of Enhanced Oxidative Hydrogen Atom Transfer Reactivity for a Cull2(O2•–) Complex Driven by Formation of a Cull2(â°OOH) Compound with a Strong O–H Bond. Journal of the American Chemical Society, 2019, 141, 12682-12696.	13.7	28
56	Evaluating the Catalytic Efficiency of Paired, Single-Atom Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2019, 9, 7660-7667.	11.2	128
57	Enhancement of PGM-free oxygen reduction electrocatalyst performance for conventional and enzymatic fuel cells: The influence of an external magnetic field. Applied Catalysis B: Environmental, 2019, 258, 117955.	20.2	25
58	Scaling Relation of Oxygen Reduction Reaction Intermediates at Defective TiO ₂ Surfaces. Journal of Physical Chemistry C, 2019, 123, 19486-19492.	3.1	20
59	Tuning Li ₂ O ₂ Formation Routes by Facet Engineering of MnO ₂ Cathode Catalysts. Journal of the American Chemical Society, 2019, 141, 12832-12838.	13.7	107

#	Article	IF	CITATIONS
60	In Situ Deposition of Pd during Oxygen Reduction Yields Highly Selective and Active Electrocatalysts for Direct H ₂ O ₂ Production. ACS Catalysis, 2019, 9, 8453-8463.	11.2	60
61	Recent advancements in Pt-nanostructure-based electrocatalysts for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 4835-4863.	4.1	73
62	Oxygen Reduction Reaction Mechanisms on Heteroatom-Doped Single-Walled Carbon Nanotube Catalysts: Insights from a Theoretical Study. Journal of the Electrochemical Society, 2019, 166, F670-F678.	2.9	15
63	The influence of mesopore size distributions on the electrochemical activity and two-electron selectivity of the oxygen reduction reaction in nitrogen-doped and CoOx-loaded activated carbon. Journal of Electroanalytical Chemistry, 2019, 847, 113258.	3.8	3
64	Potential-Dependent Volcano Plot for Oxygen Reduction: Mathematical Origin and Implications for Catalyst Design. Journal of Physical Chemistry Letters, 2019, 10, 7037-7043.	4.6	40
65	Improved Oxygen Reduction Reaction Activity of Nanostructured CoS ₂ through Electrochemical Tuning. ACS Applied Energy Materials, 2019, 2, 8605-8614.	5.1	42
66	Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nature Communications, 2019, 10, 4876.	12.8	220
67	Electrocatalytic Oxygen Reduction Reaction over the Au ₂₂ (L ⁸) ₆ Nanocluster with Promising Activity: A DFT Study. Journal of Physical Chemistry C, 2019, 123, 27116-27123.	3.1	19
68	Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy, 2019, 66, 104164.	16.0	68
69	Unraveling Polymorphic Pyrrhotite Electrochemical Oxidation by Underlying Electronic Structures. Journal of Physical Chemistry C, 2019, 123, 26442-26449.	3.1	9
70	Programmable Exposure of Pt Active Facets for Efficient Oxygen Reduction. Angewandte Chemie, 2019, 131, 15995-16001.	2.0	14
71	A Mesoporous Nanorattleâ€ S tructured Pd@PtRu Electrocatalyst. Chemistry - an Asian Journal, 2019, 14, 3397-3403.	3.3	4
72	A facile one-pot method to prepare nitrogen and fluorine co-doped three-dimensional graphene-like materials for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 19505-19512.	2.2	5
73	Structural and Physical Parameters Controlling the Oxygen Reduction Reaction Selectivity with Carboxylic Acid-Substituted Cobalt Corroles Incorporated in a Porous Carbon Support. Journal of Physical Chemistry C, 2019, 123, 26351-26357.	3.1	23
74	Enhanced Electrocatalysis of the Oxygen Reduction Reaction Using Cobalt and Iron Porphyrin/Ionic Liquid Systems. Energy Technology, 2019, 7, 1900698.	3.8	4
75	Metal–organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. Journal of Materials Chemistry A, 2019, 7, 1964-1988.	10.3	165
76	Interfacial synthesis of ultrathin two-dimensional 2PbCO ₃ ·Pb(OH) ₂ nanosheets with high enzyme mimic catalytic activity. Inorganic Chemistry Frontiers, 2019, 6, 498-503.	6.0	1
77	The Effect of Anions and pH on the Activity and Selectivity of an Annealed Polycrystalline Au Film Electrode in the Oxygen Reduction Reactionâ€Revisited. ChemPhysChem, 2019, 20, 3276-3288.	2.1	22

#	Article	IF	CITATIONS
78	Enhanced cycling stability of capacitive deionization via effectively inhibiting H2O2 formation: The role of nitrogen dopants. Journal of Electroanalytical Chemistry, 2019, 855, 113488.	3.8	15
79	Size, Composition, and Support-Doping Effects on Oxygen Reduction Activity of Platinum-Alloy and on Non-platinum Metal-Decorated-Graphene Nanocatalysts. Frontiers in Chemistry, 2019, 7, 610.	3.6	3
80	Contrasting Oxygen Reduction Reactions on Zero- and One-Dimensional Defects of MoS ₂ for Versatile Applications. ACS Applied Materials & Interfaces, 2019, 11, 46327-46336.	8.0	22
81	Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science, 2019, 366, 850-856.	12.6	1,005
82	Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach. AICHE Journal, 2019, 65, e16773.	3.6	21
83	Programmable Exposure of Pt Active Facets for Efficient Oxygen Reduction. Angewandte Chemie - International Edition, 2019, 58, 15848-15854.	13.8	81
84	Electrocatalyst Derived from Abundant Biomass and its Excellent Activity for In Situ H ₂ O ₂ Production. ChemElectroChem, 2019, 6, 4877-4884.	3.4	14
85	Electrocatalytically Active Silver Organic Framework: Ag(I)â€Complex Incorporated in Activated Carbon. ChemCatChem, 2019, 11, 6124-6130.	3.7	13
86	Fully Quantum Embedding with Density Functional Theory for Full Configuration Interaction Quantum Monte Carlo. Journal of Chemical Theory and Computation, 2019, 15, 5332-5342.	5.3	13
87	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 15233-15241.	2.0	49
88	Construction of a sp ³ /sp ² Carbon Interface in 3D Nâ€Doped Nanocarbons for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 15089-15097.	13.8	215
89	DFT calculations: A powerful tool for better understanding of electrocatalytic oxygen reduction reactions on Pt-based metallic catalysts. Computational Materials Science, 2019, 170, 109202.	3.0	59
90	Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. Nature Communications, 2019, 10, 3997.	12.8	528
91	Revelation of the Nature of the Ligand–PbS Bond and Its Implication on Chemical Functionalization of PbS. Journal of Physical Chemistry C, 2019, 123, 22981-22988.	3.1	2
92	Scalable Synthesis of Micromesoporous Iron-Nitrogen-Doped Carbon as Highly Active and Stable Oxygen Reduction Electrocatalyst. ACS Applied Materials & Interfaces, 2019, 11, 39263-39273.	8.0	38
93	Synthesis and characterization of Mn(II) complexes of 4-phenyl(phenyl-acetyl)-3-thiosemicarbazide, 4-amino-5-phenyl-1,2,4-triazole-3-thiolate, and their application towards electrochemical oxygen reduction reaction. Polyhedron, 2019, 173, 114125.	2.2	16
94	Simultaneously Achieving High Activity and Selectivity toward Two-Electron O ₂ Electroreduction: The Power of Single-Atom Catalysts. ACS Catalysis, 2019, 9, 11042-11054.	11.2	314
95	Fe(CN) ₅ @PIL-derived N-doped porous carbon with FeC _x N _y active sites as a robust electrocatalyst for the oxygen reduction reaction. Catalysis Science and Technology, 2019, 9, 97-105.	4.1	10

#	Article	IF	CITATIONS
96	Calculations of theoretical efficiencies for electrochemically-mediated tandem solar water splitting as a function of bandgap energies and redox shuttle potential. Energy and Environmental Science, 2019, 12, 261-272.	30.8	18
97	Noble metal supported hexagonal boron nitride for the oxygen reduction reaction: a DFT study. Nanoscale Advances, 2019, 1, 132-139.	4.6	29
98	The Effect of Gold Nanoparticle Concentration and Laser Fluence on the Laser-Induced Water Decomposition. Journal of Physical Chemistry B, 2019, 123, 1869-1880.	2.6	51
99	Metal–nonmetal nanoarchitectures: quaternary PtPdNiP mesoporous nanospheres for enhanced oxygen reduction electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 3910-3916.	10.3	38
100	Modeling the oxygen reduction reaction at platinum-based catalysts: A brief review of recent developments. Current Opinion in Electrochemistry, 2019, 13, 157-165.	4.8	28
101	One-pot aqueous synthesis of two-dimensional porous bimetallic PtPd alloyed nanosheets as highly active and durable electrocatalyst for boosting oxygen reduction and hydrogen evolution. Journal of Colloid and Interface Science, 2019, 543, 1-8.	9.4	115
102	Insights Into the Effect of Nickel Doping on ZIFâ€Derived Oxygen Reduction Catalysts for Zincâ^'Air Batteries. ChemElectroChem, 2019, 6, 1213-1224.	3.4	11
103	The design of a novel and resistant Zn(PZDC)(ATZ) MOF catalyst for the chemical fixation of CO ₂ under solvent-free conditions. Inorganic Chemistry Frontiers, 2019, 6, 317-325.	6.0	41
104	N–H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation. Physical Chemistry Chemical Physics, 2019, 21, 1506-1513.	2.8	8
105	Oxygen Reduction Reaction Catalyzed by Black-Phosphorus-Supported Metal Nanoparticles: Impacts of Interfacial Charge Transfer. ACS Applied Materials & amp; Interfaces, 2019, 11, 24707-24714.	8.0	33
106	Ligand-Effect-Induced Oxygen Reduction Reaction Activity Enhancement for Pt/Zr/Pt(111) Surfaces with Tensile Strain Relieved by Stacking Faults. ACS Applied Energy Materials, 2019, 2, 4597-4601.	5.1	13
107	Alloyed Pt ₃ M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction. Beilstein Journal of Nanotechnology, 2019, 10, 1251-1269.	2.8	6
108	Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway. Journal of Power Sources, 2019, 435, 226771.	7.8	40
109	High-level nitrogen-doped, micro/mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction: optimizing the reaction surface area by a solvent-free mechanochemical method. New Journal of Chemistry, 2019, 43, 10878-10886.	2.8	26
110	Catalysis of Oxygen Reduction Reaction on Atomically Dispersed Copper- and Nitrogen-Codoped Graphene. ACS Applied Energy Materials, 2019, 2, 4755-4762.	5.1	33
111	Fe 3 O 4 Nanoparticles Supported on Arcâ€synthesized Carbon Nanotubes as Advanced Electrocatalyst for Oxygen Reduction Reaction. ChemistrySelect, 2019, 4, 6227-6232.	1.5	3
112	Carbon nanotube-linked hollow carbon nanospheres doped with iron and nitrogen as single-atom catalysts for the oxygen reduction reaction in acidic solutions. Journal of Materials Chemistry A, 2019, 7, 14478-14482.	10.3	56
113	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 3967-3973.	6.7	85

#	Article	IF	CITATIONS
114	Highly stable nitrogen-doped carbon nanotubes derived from carbon dots and metal-organic frameworks toward excellent efficient electrocatalyst for oxygen reduction reaction. Nano Energy, 2019, 63, 103788.	16.0	74
115	Building Up a Picture of the Electrocatalytic Nitrogen Reduction Activity of Transition Metal Single-Atom Catalysts. Journal of the American Chemical Society, 2019, 141, 9664-9672.	13.7	642
116	Direct Oxidation of Methane to Methanol Enabled by Electronic Atomic Monolayer–Metal Support Interaction. ACS Catalysis, 2019, 9, 6073-6079.	11.2	36
117	Dual-Site Cascade Oxygen Reduction Mechanism on SnO _{<i>x</i>} /Pt–Cu–Ni for Promoting Reaction Kinetics. Journal of the American Chemical Society, 2019, 141, 9463-9467.	13.7	70
118	Fe ₃ O ₄ -Encapsulating N-doped porous carbon materials as efficient oxygen reduction reaction electrocatalysts for Zn–air batteries. Chemical Communications, 2019, 55, 7538-7541.	4.1	33
119	Beyond dealloying: development of nanoporous gold via metal-induced crystallization and its electrochemical properties. Nanotechnology, 2019, 30, 375601.	2.6	12
120	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 10787-10792.	2.0	58
121	A Phthalocyanineâ€Based Layered Twoâ€Dimensional Conjugated Metal–Organic Framework as a Highly Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 10677-10682.	13.8	278
122	Trends in Oxygen Electrocatalysis of <i>3 d</i> ‣ayered (Oxy)(Hydro)Oxides. ChemCatChem, 2019, 11, 3423-3431.	3.7	33
123	Homogenous Meets Heterogenous and Electroâ€Catalysis: Ironâ€Nitrogen Molecular Complexes within Carbon Materials for Catalytic Applications. ChemCatChem, 2019, 11, 3602-3625.	3.7	22
124	Optimal coordination-site exposure engineering in porous platinum for outstanding oxygen reduction performance. Chemical Science, 2019, 10, 5589-5595.	7.4	20
125	MnIII-enriched α-MnO2 nanowires as efficient bifunctional oxygen catalysts for rechargeable Zn-air batteries. Energy Storage Materials, 2019, 23, 252-260.	18.0	80
126	Breaking the volcano-plot limits for Pt-based electrocatalysts by selective tuning adsorption of multiple intermediates. Journal of Materials Chemistry A, 2019, 7, 13635-13640.	10.3	24
127	Performance characteristics of a passive direct ethylene glycol fuel cell with hydrogen peroxide as oxidant. Applied Energy, 2019, 250, 846-854.	10.1	51
128	Activation of Oxygen Reduction Reaction on Well-Defined Pt Electrocatalysts in Alkaline Media Containing Hydrophobic Organic Cations. ACS Applied Energy Materials, 2019, 2, 3904-3909.	5.1	14
129	Fabrication of nanoporous gold-islands via hydrogen bubble template: An efficient electrocatalyst for oxygen reduction and hydrogen evolution reactions. International Journal of Hydrogen Energy, 2019, 44, 15001-15008.	7.1	26
130	Fe ₃ Câ€Co Nanoparticles Encapsulated in a Hierarchical Structure of Nâ€Doped Carbon as a Multifunctional Electrocatalyst for ORR, OER, and HER. Advanced Functional Materials, 2019, 29, 1901949.	14.9	297
131	Stability of Pd clusters supported on pristine, B-doped, and defective graphene quantum dots, and their reactivity toward oxygen adsorption: A DFT analysis. Solid State Sciences, 2019, 93, 55-61.	3.2	20

#	Article	IF	CITATIONS
132	Recent Studies on Bifunctional Perovskite Electrocatalysts in Oxygen Evolution, Oxygen Reduction, and Hydrogen Evolution Reactions under Alkaline Electrolyte. Israel Journal of Chemistry, 2019, 59, 708-719.	2.3	12
133	Electrocatalyst derived from fungal hyphae and its excellent activity for electrochemical production of hydrogen peroxide. Electrochimica Acta, 2019, 308, 74-82.	5.2	33
134	An Integrated Single-Electrode Method Reveals the Template Roles of Atomic Steps: Disturb Interfacial Water Networks and Thus Affect the Reactivity of Electrocatalysts. Journal of the American Chemical Society, 2019, 141, 8516-8526.	13.7	20
135	MOF-Derived Carbon Networks with Atomically Dispersed Fe–N _{<i>x</i>} Sites for Oxygen Reduction Reaction Catalysis in Acidic Media. , 2019, 1, 37-43.		40
136	In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogen evolution reactions. Applied Catalysis B: Environmental, 2019, 254, 186-193.	20.2	135
137	Effective surface termination with Au on PtCo@Pt core-shell nanoparticle: Microstructural investigations and oxygen reduction reaction properties. Journal of Electroanalytical Chemistry, 2019, 842, 1-7.	3.8	14
138	Changes in the oxidation state of Pt single-atom catalysts upon removal of chloride ligands and their effect for electrochemical reactions. Chemical Communications, 2019, 55, 6389-6392.	4.1	44
139	Advances in Sustainable Catalysis: A Computational Perspective. Frontiers in Chemistry, 2019, 7, 182.	3.6	36
140	Metallic Ni ₃ N Quantum Dots as a Synergistic Promoter for NiO Nanosheet toward Efficient Oxygen Reduction Electrocatalysis. Journal of Physical Chemistry C, 2019, 123, 8633-8639.	3.1	19
141	Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Advanced Materials, 2019, 31, e1900341.	21.0	320
142	Identification of active sites in nitrogen and sulfur co-doped carbon-based oxygen reduction catalysts. Carbon, 2019, 147, 303-311.	10.3	44
143	Metallosupramolecular Polymer Precursor Design for Multi-Element Co-Doped Carbon Shells with Improved Oxygen Reduction Reaction Catalytic Activity. Catalysts, 2019, 9, 102.	3.5	4
144	Coordination-controlled single-atom tungsten as a non-3d-metal oxygen reduction reaction election electrocatalyst with ultrahigh mass activity. Nano Energy, 2019, 60, 394-403.	16.0	119
145	Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction. ACS Applied Materials & Interfaces, 2019, 11, 14110-14119.	8.0	50
146	Atomically dispersed nickel–nitrogen–sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nature Communications, 2019, 10, 1392.	12.8	424
147	Engineering of Hierarchical and Threeâ€Dimensional Architectures Constructed by Titanium Nitride Nanowire Assemblies for Efficient Electrocatalysis. ChemElectroChem, 2019, 6, 2208-2214.	3.4	60
148	Outlining the Scaling-Based and Scaling-Free Optimization of Electrocatalysts. ACS Catalysis, 2019, 9, 4218-4225.	11.2	76
149	Mechanistic Understanding of Sizeâ€Dependent Oxygen Reduction Activity and Selectivity over Pt/CNT Nanocatalysts, European Journal of Inorganic Chemistry, 2019, 2019, 3210-3217	2.0	18

#	Article	IF	CITATIONS
150	Pt-embedded in monolayer g-C ₃ N ₄ as a promising single-atom electrocatalyst for ammonia synthesis. Journal of Materials Chemistry A, 2019, 7, 11908-11914.	10.3	78
151	Well-dispersed iron oxide stabilized Fe N4 active sites in porous N-doped carbon spheres as alternative superior catalyst for oxygen reduction. International Journal of Hydrogen Energy, 2019, 44, 12127-12137.	7.1	21
152	Facile synthesis of defect-rich nitrogen and sulfur Co-doped graphene quantum dots as metal-free electrocatalyst for the oxygen reduction reaction. Journal of Alloys and Compounds, 2019, 792, 844-850.	5.5	71
153	Surface Compositions of Pt–Pd/Pd(111) Alloys in the Presence of O and OH during Oxygen Reduction Reaction: A First-Principles Study. Journal of the Physical Society of Japan, 2019, 88, 044802.	1.6	2
154	Application of the Electrochemical Oxygen Reduction Reaction (ORR) in Organic Synthesis. Advanced Synthesis and Catalysis, 2019, 361, 2804-2824.	4.3	45
155	The Challenge of Achieving a High Density of Fe-Based Active Sites in a Highly Graphitic Carbon Matrix. Catalysts, 2019, 9, 144.	3.5	22
156	Designing Robust Support for Pt Alloy Nanoframes with Durable Oxygen Reduction Reaction Activity. ACS Applied Materials & Interfaces, 2019, 11, 9117-9124.	8.0	60
157	Anionic defect engineering of transition metal oxides for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2019, 7, 5875-5897.	10.3	252
158	eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 2019, 10, 704.	12.8	199
159	Metal Chalcogenides on Silicon Photocathodes for Efficient Water Splitting: A Mini Overview. Catalysts, 2019, 9, 149.	3.5	56
160	Unusual strain effect of a Pt-based L1 _O face-centered tetragonal core in core/shell nanoparticles for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2019, 21, 6477-6484.	2.8	22
161	UiO-66-NO ₂ as an Oxygen "Pump―for Enhancing Oxygen Reduction Reaction Performance. Chemistry of Materials, 2019, 31, 1646-1654.	6.7	33
162	Cocatalysts for Selective Photoreduction of CO ₂ into Solar Fuels. Chemical Reviews, 2019, 119, 3962-4179.	47.7	1,591
163	Graphene based non-noble metal catalyst for oxygen reduction reaction. IOP Conference Series: Earth and Environmental Science, 2019, 384, 012057.	0.3	0
164	N-Doped holey carbon materials derived from a metal-free macrocycle cucurbit[6]uril assembly as an efficient electrocatalyst for the oxygen reduction reaction. Chemical Communications, 2019, 55, 13832-13835.	4.1	12
165	The oxygen reduction reaction catalyzed by <i>Synechocystis</i> sp. PCC 6803 flavodiiron proteins. Sustainable Energy and Fuels, 2019, 3, 3191-3200.	4.9	22
166	The dual-defective SnS ₂ monolayers: promising 2D photocatalysts for overall water splitting. Physical Chemistry Chemical Physics, 2019, 21, 26292-26300.	2.8	18
167	Detrimental Effects and Prevention of Acidic Electrolytes on Oxygen Reduction Reaction Catalytic Performance of Heteroatom-Doped Graphene Catalysts. Frontiers in Materials, 2019, 6, .	2.4	6

#	Article	IF	CITATIONS
168	Strategies to Break the Scaling Relation toward Enhanced Oxygen Electrocatalysis. Matter, 2019, 1, 1494-1518.	10.0	316
169	Cathodic Hydrogen Peroxide Electrosynthesis Using Anthraquinone Modified Carbon Nitride on Gas Diffusion Electrode. ACS Applied Energy Materials, 2019, 2, 7972-7979.	5.1	30
170	Prediction of Stable and Active (Oxy-Hydro) Oxide Nanoislands on Noble-Metal Supports for Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2019, 11, 2006-2013.	8.0	24
171	Theoretical Insights into Heterogeneous (Photo)electrochemical CO ₂ Reduction. Chemical Reviews, 2019, 119, 6631-6669.	47.7	431
172	Porous carbon nanosheets: Synthetic strategies and electrochemical energy related applications. Nano Today, 2019, 24, 103-119.	11.9	357
173	DFT-MD of the (110)-Co3O4 cobalt oxide semiconductor in contact with liquid water, preliminary chemical and physical insights into the electrochemical environment. Journal of Chemical Physics, 2019, 150, 041721.	3.0	23
174	Metal Nanoclusters: New Paradigm in Catalysis for Water Splitting, Solar and Chemical Energy Conversion. ChemSusChem, 2019, 12, 1517-1548.	6.8	81
175	Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts. Advanced Theory and Simulations, 2019, 2, 1800142.	2.8	16
176	Metal alloy hybrid nanoparticles with enhanced catalytic activities in fuel cell applications. Journal of Solid State Chemistry, 2019, 270, 295-303.	2.9	26
177	Electrocatalysts with Increased Activity for Coelectrolysis of Steam and Carbon Dioxide in Solid Oxide Electrolyzer Cells. ACS Catalysis, 2019, 9, 967-976.	11.2	21
178	Effect of surface-bound sulfide on oxygen reduction reaction on Pt: Breaking the scaling relationship and mechanistic insights. Journal of Chemical Physics, 2019, 150, 041728.	3.0	17
179	Well-dispersed Pt nanoparticles on borane-modified graphene oxide and their electrocatalytic performance for oxygen reduction reaction. Journal of Solid State Chemistry, 2019, 271, 168-174.	2.9	5
180	Bâ€Doped Fe/N/C Porous Catalyst for Highâ€Performance Oxygen Reduction in Anionâ€Exchange Membrane Fuel Cells. ChemElectroChem, 2019, 6, 1754-1760.	3.4	18
181	Computational Screening for ORR Activity of 3d Transition Metal Based M@Pt Core–Shell Clusters. Journal of Physical Chemistry C, 2019, 123, 3634-3644.	3.1	48
182	Nanosized catalysts of oxygen reduction reaction prepared on the base of bimetallic cluster compounds. Electrochimica Acta, 2019, 299, 886-893.	5.2	17
183	Influence of dispersion media on Nafion® ionomer distribution in proton exchange membrane fuel cell catalyst carbon support. Materials Chemistry and Physics, 2019, 226, 66-72.	4.0	22
184	Design of Noble Metal Electrocatalysts on an Atomic Level. ChemElectroChem, 2019, 6, 289-303.	3.4	46
185	Climbing the 3D Volcano for the Oxygen Reduction Reaction Using Porphyrin Motifs. ACS Sustainable Chemistry and Engineering, 2019, 7, 611-617.	6.7	31

#	Article	IF	CITATIONS
186	Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries. ACS Applied Materials & Interfaces, 2019, 11, 499-510.	8.0	27
187	Cobalt sulfide/N,S-codoped defect-rich carbon nanotubes hybrid as an excellent bi-functional oxygen electrocatalyst. Nanotechnology, 2019, 30, 075402.	2.6	13
188	The potential of zero total charge and electrocatalytic properties of Ru@Pt core-shell nanoparticles. Journal of Electroanalytical Chemistry, 2019, 833, 189-197.	3.8	7
189	Confined Synthesis of 2D Nanostructured Materials toward Electrocatalysis. Advanced Energy Materials, 2020, 10, 1900486.	19.5	123
190	Honeycomb-like porous carbon with N and S dual-doping as metal-free catalyst for the oxygen reduction reaction. Carbon, 2020, 156, 514-522.	10.3	80
191	In situ conversion of iron sulfide (FeS) to iron oxyhydroxide (γ-FeOOH) on N, S co-doped porous carbon nanosheets: An efficient electrocatalyst for the oxygen reduction reaction and zinc–air batteries. Journal of Colloid and Interface Science, 2020, 558, 323-333.	9.4	34
192	Surface and Interface Control in Nanoparticle Catalysis. Chemical Reviews, 2020, 120, 1184-1249.	47.7	492
193	Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. Journal of Energy Chemistry, 2020, 45, 59-66.	12.9	54
194	2D Electrocatalysts for Converting Earthâ€Abundant Simple Molecules into Valueâ€Added Commodity Chemicals: Recent Progress and Perspectives. Advanced Materials, 2020, 32, e1904870.	21.0	76
195	Oxygen Reduction Reactions on Single―or Fewâ€Atom Discrete Active Sites for Heterogeneous Catalysis. Advanced Energy Materials, 2020, 10, 1902084.	19.5	82
196	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie, 2020, 132, 4662-4678.	2.0	114
197	Metal–Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2020, 59, 4634-4650.	13.8	457
198	Recent advances in carbon-based electrocatalysts for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 626-634.	9.0	104
199	Charge Transfer Modulated Activity of Carbonâ€Based Electrocatalysts. Advanced Energy Materials, 2020, 10, 1901227.	19.5	156
200	Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem, 2020, 2, 100023.	19.1	138
201	Highly Active Carbon Supported PtCu Electrocatalysts for PEMFCs by <i>in situ</i> Supercritical Deposition Coupled with Electrochemical Dealloying. Fuel Cells, 2020, 20, 285-299.	2.4	19
202	Reduced segregation and integration of structural brain network associated with sympathetic and dorsal penile nerve activity in anejaculation patients: a graphâ€based connectome study. Andrology, 2020, 8, 392-399.	3.5	9
203	Tailoring the Electrochemical Production of H ₂ O ₂ : Strategies for the Rational Design of Highâ€Performance Electrocatalysts. Small, 2020, 16, e1902845.	10.0	114

#	Article	IF	CITATIONS
204	Magnetron sputtering a high-performance catalyst for ultra-low-Pt loading PEMFCs. Journal of Alloys and Compounds, 2020, 815, 152374.	5.5	23
205	Probing the active sites of site-specific nitrogen doping in metal-free graphdiyne for electrochemical oxygen reduction reactions. Science Bulletin, 2020, 65, 45-54.	9.0	52
206	Chemical Causes of Metal Nobleness. ChemPhysChem, 2020, 21, 360-369.	2.1	11
207	NbOx nano-nail with a Pt head embedded in carbon as a highly active and durable oxygen reduction catalyst. Nano Energy, 2020, 69, 104455.	16.0	37
208	Reverse Microemulsion Synthesis of Mesopore Phloroglucinolâ€Resorcinolâ€Formaldehyde Carbon Aerogel Microsphere as Nanoâ€Platinum Catalyst Support for ORR. ChemistrySelect, 2020, 5, 538-541.	1.5	7
209	The Fe–N–C oxidase-like nanozyme used for catalytic oxidation of NOM in surface water. Water Research, 2020, 171, 115491.	11.3	29
210	Atomic Platinum Anchored on Fe-N-C Material for High Performance Oxygen Reduction Reaction. European Journal of Inorganic Chemistry, 2020, 2020, 165-168.	2.0	4
211	Direct <i>In Situ</i> Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(<i>hkl</i>) Surfaces. Journal of the American Chemical Society, 2020, 142, 715-719.	13.7	154
212	Fast prediction of oxygen reduction reaction activity on carbon nanotubes with a localized geometric descriptor. Physical Chemistry Chemical Physics, 2020, 22, 890-895.	2.8	24
213	High-purity pyrrole-type FeN ₄ sites as a superior oxygen reduction electrocatalyst. Energy and Environmental Science, 2020, 13, 111-118.	30.8	327
214	Cobaltâ€based coordination polymer as high activity electrocatalyst for oxygen reduction reaction: Catalysis by novel active site CoO 4 N 2. International Journal of Energy Research, 2020, 44, 2164-2172.	4.5	9
215	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	7.8	29
216	Self-Template Synthesis of Atomically Dispersed Fe/N-Codoped Nanocarbon as Efficient Bifunctional Alkaline Oxygen Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 625-634.	5.1	19
217	Mechanisms of Two-Electron and Four-Electron Electrochemical Oxygen Reduction Reactions at Nitrogen-Doped Reduced Graphene Oxide. ACS Catalysis, 2020, 10, 852-863.	11.2	184
218	Design von komplexen Mischkristallâ€Elektrokatalysatoren auf Basis der Korrelation von Konfiguration, Verteilungsmustern der Adsorptionsenergie und AktivitÃtskurven. Angewandte Chemie, 2020, 132, 5893-5900.	2.0	15
219	Design of Complex Solidâ€Solution Electrocatalysts by Correlating Configuration, Adsorption Energy Distribution Patterns, and Activity Curves. Angewandte Chemie - International Edition, 2020, 59, 5844-5850.	13.8	81
220	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie - International Edition, 2020, 59, 2313-2317.	13.8	214
221	Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy, 2020, 67, 104288.	16.0	93

#	Article	IF	CITATIONS
222	Nâ€Doped Graphene Supported on Metalâ€Iron Carbide as a Catalyst for the Oxygen Reduction Reaction: Density Functional Theory Study. ChemSusChem, 2020, 13, 996-1005.	6.8	21
223	Three-Dimensional Kinetic Trends in Zeolites Catalyzed Benzene Ethylation Reaction: A Descriptor-Based DFT Study Coupled with Microkinetic Modeling. ACS Catalysis, 2020, 10, 1652-1662.	11.2	15
224	Hydrogen peroxide electrochemical synthesis on hybrid double-atom (Pd–Cu) doped N vacancy g-C ₃ N ₄ : a novel design strategy for electrocatalyst screening. Journal of Materials Chemistry A, 2020, 8, 2672-2683.	10.3	40
225	Evidence for interfacial geometric interactions at metal–support interfaces and their influence on the electroactivity and stability of Pt nanoparticles. Journal of Materials Chemistry A, 2020, 8, 1368-1377.	10.3	25
226	A cost-effective and chemically stable electrode binder for alkaline-acid direct ethylene glycol fuel cells. Applied Energy, 2020, 258, 114060.	10.1	45
227	Modeling electrochemical interfaces from ab initio molecular dynamics: water adsorption on metal surfaces at potential of zero charge. Current Opinion in Electrochemistry, 2020, 19, 129-136.	4.8	33
228	Atomic Fe-N4 sites on electrospun hierarchical porous carbon nanofibers as an efficient electrocatalyst for oxygen reduction reaction. Chinese Chemical Letters, 2020, 31, 1588-1592.	9.0	31
229	Catalytic activity trends from pure Pd nanoclusters to M@PdPt (M = Co, Ni, and Cu) core-shell nanoclusters for the oxygen reduction reaction: A first-principles analysis. International Journal of Hydrogen Energy, 2020, 45, 13738-13745.	7.1	14
230	Regulating the Spin State of Fe ^{III} by Atomically Anchoring on Ultrathin Titanium Dioxide for Efficient Oxygen Evolution Electrocatalysis. Angewandte Chemie, 2020, 132, 2333-2337.	2.0	24
231	3D Carbon Materials for Efficient Oxygen and Hydrogen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1902494.	19.5	97
232	Local structure engineering for active sites in fuel cell electrocatalysts. Science China Chemistry, 2020, 63, 1543-1556.	8.2	11
233	Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale, 2020, 12, 22718-22734.	5.6	26
234	Neural Network-Assisted Development of High-Entropy Alloy Catalysts: Decoupling Ligand and Coordination Effects. Matter, 2020, 3, 1318-1333.	10.0	83
235	Beyond Extended Surfaces: Understanding the Oxygen Reduction Reaction on Nanocatalysts. Journal of the American Chemical Society, 2020, 142, 17812-17827.	13.7	134
236	Engineering 2D Materials: A Viable Pathway for Improved Electrochemical Energy Storage. Advanced Energy Materials, 2020, 10, 2002621.	19.5	45
237	Explainable and trustworthy artificial intelligence for correctable modeling in chemical sciences. Science Advances, 2020, 6, .	10.3	26
238	Recent advances of Fe–N–C pyrolyzed catalysts for the oxygen reduction reaction. Current Opinion in Electrochemistry, 2020, 23, 154-161.	4.8	24
239	Emerging linear activity trend in the oxygen evolution reaction with dual-active-sites mechanism. Journal of Materials Chemistry A, 2020, 8, 20946-20952.	10.3	17

#	Article	IF	CITATIONS
240	The g-C ₃ N ₄ Quantum Dot Decorated g-C ₃ N ₄ Sheet/Reduced Graphene Oxide Composite as Efficient Metal-Free Electrocatalyst for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 100534.	2.9	5
241	Trimetal atoms confined in openly accessible nitrogen-doped carbon constructs for an efficient ORR. Journal of Materials Chemistry A, 2020, 8, 17266-17275.	10.3	32
242	Annealingâ€Free Platinumâ^'Cobalt Alloy Nanoparticles on Nitrogenâ€Doped Mesoporous Carbon with Boosted Oxygen Electroreduction Performance. ChemElectroChem, 2020, 7, 3341-3346.	3.4	6
243	Identifying the Active Sites of a Single Atom Catalyst with pH-Universal Oxygen Reduction Reaction Activity. Cell Reports Physical Science, 2020, 1, 100115.	5.6	26
244	Recent advances in metal–organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions. Dalton Transactions, 2020, 49, 12483-12502.	3.3	50
245	Active Site Engineering in Porous Electrocatalysts. Advanced Materials, 2020, 32, e2002435.	21.0	304
246	Electrochemical properties of oxygen-enriched carbon-based nanomaterials. Journal of Electroanalytical Chemistry, 2020, 873, 114420.	3.8	12
247	Effect of Collective Dynamics and Anharmonicity on Entropy in Heterogenous Catalysis: Building the Case for Advanced Molecular Simulations. ACS Catalysis, 2020, 10, 9236-9260.	11.2	63
248	Supported Metal Pair-Site Catalysts. ACS Catalysis, 2020, 10, 9065-9085.	11.2	67
249	A General Strategy to Atomically Dispersed Precious Metal Catalysts for Unravelling Their Catalytic Trends for Oxygen Reduction Reaction. ACS Nano, 2020, 14, 1990-2001.	14.6	116
250	Breaking scaling relations in electrocatalysis. Journal of Solid State Electrochemistry, 2020, 24, 2181-2182.	2.5	13
251	Two-dimensional Noble Metal Nanomaterials for Electrocatalysis. Chemical Research in Chinese Universities, 2020, 36, 597-610.	2.6	11
252	Sputter deposition of highly active complex solid solution electrocatalysts into an ionic liquid library: effect of structure and composition on oxygen reduction activity. Nanoscale, 2020, 12, 23570-23577.	5.6	21
253	Nanoalloys for Energy Applications. , 2020, , 347-380.		3
254	Identification of the Electronic and Structural Dynamics of Catalytic Centers in Single-Fe-Atom Material. CheM, 2020, 6, 3440-3454.	11.7	231
255	A theoretical study of atomically dispersed MN ₄ /C (M = Fe or Mn) as a high-activity catalyst for the oxygen reduction reaction. Physical Chemistry Chemical Physics, 2020, 22, 28297-28303.	2.8	34
256	A low temperature aqueous formate fuel cell using cobalt hexacyanoferrate as a non-noble metal oxidation catalyst. Sustainable Energy and Fuels, 2020, 4, 6227-6233.	4.9	8
257	Circumventing Scaling Relations in Oxygen Electrochemistry Using Metal–Organic Frameworks. Journal of Physical Chemistry Letters, 2020, 11, 10029-10036.	4.6	32

#	Article	IF	CITATIONS
258	Theoretical Insights on the Synergy and Competition between Thermochemical and Electrochemical Steps in Oxygen Electroreduction. Journal of Physical Chemistry C, 2020, 124, 25796-25804.	3.1	14
259	Scheme for Screening O ₂ Reduction Electrocatalysts: From Pure Metals and Alloys to Single-Atom Catalysts. Journal of Physical Chemistry C, 2020, 124, 25412-25420.	3.1	11
260	Phosphorus and iron doped nitrogen-containing carbon derived from biomass for oxygen reduction under various pH conditions. International Journal of Hydrogen Energy, 2020, 45, 28651-28663.	7.1	14
261	Integrated and Binderâ€Free Air Cathodes of Co ₃ Fe ₇ Nanoalloy and Co _{5.47} N Encapsulated in Nitrogenâ€Doped Carbon Foam with Superior Oxygen Reduction Activity in Flexible Aluminumâ€Air Batteries. Advanced Science, 2020, 7, 2000747.	11.2	67
262	Multidimensional Classification of Catalysts in Oxidative Coupling of Methane through Machine Learning and High-Throughput Data. Journal of Physical Chemistry Letters, 2020, 11, 6819-6826.	4.6	18
263	Discovery of Acid-Stable Oxygen Evolution Catalysts: High-Throughput Computational Screening of Equimolar Bimetallic Oxides. ACS Applied Materials & Interfaces, 2020, 12, 38256-38265.	8.0	47
264	Nanosized Zirconium Porphyrinic Metal–Organic Frameworks that Catalyze the Oxygen Reduction Reaction in Acid. Small Methods, 2020, 4, 2000085.	8.6	18
265	Highly ordered macroporous dual-element-doped carbon from metal–organic frameworks for catalyzing oxygen reduction. Chemical Science, 2020, 11, 9584-9592.	7.4	40
266	Prussian blue analogue Cu3[Fe(CN)6]2 derived N-doped Cu/Fe3C clusters as an excellent non-noble metal ORR catalyst for microbial fuel cells. Journal of Electroanalytical Chemistry, 2020, 877, 114556.	3.8	9
267	Understanding and Breaking the Scaling Relations in the Oxygen Reduction Reaction on PdxCu4–x Subnanoclusters Supported by Defective Two-Dimensional Boron Nitride Materials. Journal of Physical Chemistry C, 2020, 124, 19530-19537.	3.1	7
268	High-Density Planar-like Fe2N6 Structure Catalyzes Efficient Oxygen Reduction. Matter, 2020, 3, 509-521.	10.0	184
269	Onâ€Demand Synthesis of H ₂ O ₂ by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation. Angewandte Chemie - International Edition, 2020, 59, 20538-20544.	13.8	96
270	Ni3B as a highly efficient and selective catalyst for the electrosynthesis of hydrogen peroxide. Applied Catalysis B: Environmental, 2020, 279, 119371.	20.2	48
271	Gas Accessible Membrane Electrode (GAME): A Versatile Platform for Elucidating Electrocatalytic Processes Using Real-Time and in Situ Hyphenated Electrochemical Techniques. ACS Catalysis, 2020, 10, 9684-9693.	11.2	14
272	Oxygen Evolution and Reduction on Fe-doped NiOOH: Influence of Solvent, Dopant Position and Reaction Mechanism. Topics in Catalysis, 2020, 63, 833-845.	2.8	19
273	Space-confined catalyst design toward ultrafine Pt nanoparticles with enhanced oxygen reduction activity and durability. Journal of Power Sources, 2020, 473, 228607.	7.8	23
274	Two-Dimensional Conductive Ni-HAB as a Catalyst for the Electrochemical Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2020, 12, 39074-39081.	8.0	41
275	Transition metal–N ₄ embedded black phosphorus carbide as a high-performance bifunctional electrocatalyst for ORR/OER. Nanoscale, 2020, 12, 18721-18732.	5.6	39

#	Article	IF	CITATIONS
276	Dioxygen Binding to all 3d, 4d, and 5d Transition Metals from Coupledâ€Cluster Theory. ChemPhysChem, 2020, 21, 2173-2186.	2.1	2
277	Density Functional Theory Calculation of Zn and N Codoped Graphene for Oxygen Reduction and Evolution Reactions. Advanced Theory and Simulations, 2020, 3, 2000054.	2.8	11
278	Surface Coordination Chemistry of Atomically Dispersed Metal Catalysts. Chemical Reviews, 2020, 120, 11810-11899.	47.7	325
279	Stable and selective electrosynthesis of hydrogen peroxide and the electro-Fenton process on CoSe ₂ polymorph catalysts. Energy and Environmental Science, 2020, 13, 4189-4203.	30.8	134
280	Construction and Regulation of a Surface Protophilic Environment to Enhance Oxygen Reduction Reaction Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2020, 12, 41269-41276.	8.0	13
281	Advanced Electrocatalysts with Single-Metal-Atom Active Sites. Chemical Reviews, 2020, 120, 12217-12314.	47.7	563
282	Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano, 2020, 14, 14355-14374.	14.6	97
283	Understanding activity origin for the oxygen reduction reaction on bi-atom catalysts by DFT studies and machine-learning. Journal of Materials Chemistry A, 2020, 8, 24563-24571.	10.3	71
284	Robust Active Site Design of Single-Atom Catalysts for Electrochemical Ammonia Synthesis. Journal of Physical Chemistry C, 2020, 124, 23164-23176.	3.1	8
285	Effects of a conductive support on the bonding of oxygen containing molecules to transition metal oxide surfaces. Physical Chemistry Chemical Physics, 2020, 22, 26216-26222.	2.8	7
286	Facile and template-free strategy to construct N, P co-doped porous carbon nanosheets as a highly efficient electrocatalyst towards oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 877, 114732.	3.8	13
287	Theoretical insights into single-atom catalysts. Chemical Society Reviews, 2020, 49, 8156-8178.	38.1	231
288	Copper Isolated Sites on N-Doped Carbon Nanoframes for Efficient Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 14030-14038.	6.7	27
289	Atomically ordered intermetallic PdZn coupled with Co nanoparticles as a highly dispersed dual catalyst chemically bonded to N-doped carbon for boosting oxygen reduction reaction performance. Journal of Materials Chemistry A, 2020, 8, 21327-21338.	10.3	16
290	Distorted quantum dots enhance the efficiency of alkaline oxygen electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 21173-21180.	10.3	5
291	Recent Advances in Earth-Abundant Core/Noble-Metal Shell Nanoparticles for Electrocatalysis. ACS Catalysis, 2020, 10, 10886-10904.	11.2	38
292	Krypton-derivatization highlights O ₂ -channeling in a four-electron reducing oxidase. Chemical Communications, 2020, 56, 10863-10866.	4.1	10
293	Coexisting Singleâ€Atomic Fe and Ni Sites on Hierarchically Ordered Porous Carbon as a Highly Efficient ORR Electrocatalyst. Advanced Materials, 2020, 32, e2004670.	21.0	404

#	Article	IF	CITATIONS
294	Solvated proton and the origin of the high onset overpotential in the oxygen reduction reaction on Pt(111). Physical Chemistry Chemical Physics, 2020, 22, 22226-22235.	2.8	8
295	Illustrating the Role of Quaternary-N of BINOL Covalent Triazine-Based Frameworks in Oxygen Reduction and Hydrogen Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 44689-44699.	8.0	37
296	Unraveling the mechanisms of S-doped carbon nitride for photocatalytic oxygen reduction to H ₂ O ₂ . Physical Chemistry Chemical Physics, 2020, 22, 21099-21107.	2.8	29
297	Oxygen Reduction Assisted by the Concert of Redox Activity and Proton Relay in a Cu(II) Complex. Inorganic Chemistry, 2020, 59, 14012-14022.	4.0	19
298	Onâ€Đemand Synthesis of H ₂ O ₂ by Water Oxidation for Sustainable Resource Production and Organic Pollutant Degradation. Angewandte Chemie, 2020, 132, 20719-20725.	2.0	23
299	The impact of synthetic method on the catalytic application of intermetallic nanoparticles. Nanoscale, 2020, 12, 18545-18562.	5.6	20
300	Sustained-Release Method for the Directed Synthesis of ZIF-Derived Ultrafine Co-N-C ORR Catalysts with Embedded Co Quantum Dots. ACS Applied Materials & amp; Interfaces, 2020, 12, 57847-57858.	8.0	46
301	The mechanism of Co oxyhydroxide nano-islands deposited on a Pt surface to promote the oxygen reduction reaction at the cathode of fuel cells. RSC Advances, 2020, 10, 44719-44727.	3.6	7
302	Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. Green Energy and Environment, 2022, 7, 525-532.	8.7	5
303	Intrinsic Activity of Metal Centers in Metal–Nitrogen–Carbon Single-Atom Catalysts for Hydrogen Peroxide Synthesis. Journal of the American Chemical Society, 2020, 142, 21861-21871.	13.7	163
304	Influence of Local Inhomogeneities and the Electrochemical Environment on the Oxygen Reduction Reaction on Pt-Based Electrodes: A DFT Study. Journal of Physical Chemistry C, 2020, 124, 27604-27613.	3.1	10
305	Tailoring the Electrocatalytic Activity and Selectivity of Pt(111) through Cathodic Corrosion. ACS Catalysis, 2020, 10, 15104-15113.	11.2	26
306	Effect of Adatom Doping on the Electrochemical Performance of 1T′-MoS ₂ for Oxygen Reduction Reactions. Journal of Physical Chemistry C, 2020, 124, 24899-24907.	3.1	20
307	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	24.0	136
308	3 <i>d</i> -Metal Oxide Nanostructures for Oxygen Electrocatalysis. ACS Symposium Series, 2020, , 353-372.	0.5	0
309	Numerical Deconvolution of Surface Interrogation Scanning Electrochemical Microscopy Experiments on Platinum During Hydrogen Evolution. ChemElectroChem, 2020, 7, 4863-4872.	3.4	5
310	Multi-Walled Carbon Nanotubes Supported Pd(II) Complexes: A Supramolecular Approach towards Single-Ion Oxygen Reduction Reaction Catalysts. Energies, 2020, 13, 5539.	3.1	9
311	Atomic-Level Manipulations in Oxides and Alloys for Electrocatalysis of Oxygen Evolution and Reduction. ACS Nano, 2020, 14, 14323-14354.	14.6	37

#	Article	IF	CITATIONS
312	Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nature Communications, 2020, 11, 2209.	12.8	281
313	Engineering a metal–organic framework derived Mn–N ₄ –C _x S _y atomic interface for highly efficient oxygen reduction reaction. Chemical Science, 2020, 11, 5994-5999.	7.4	113
314	Highly Active Bifunctional Oxygen Electrocatalytic Sites Realized in Ceria–Functionalized Graphene. Advanced Sustainable Systems, 2020, 4, 2000048.	5.3	8
315	Exceeding the volcano relationship in oxygen reduction/evolution reactions using single-atom-based catalysts with dual-active-sites. Journal of Materials Chemistry A, 2020, 8, 10193-10198.	10.3	33
316	Synthesis and coordination properties of a new ligand designed for surface functionalization of carbon substrates. Inorganica Chimica Acta, 2020, 511, 119793.	2.4	6
317	Anchoring Mo single atoms/clusters and N on edge-rich nanoporous holey graphene as bifunctional air electrode in Znâ~'air batteries. Applied Catalysis B: Environmental, 2020, 276, 119172.	20.2	79
318	PdPt-TiO2 nanowires: correlating composition, electronic effects and O-vacancies with activities towards water splitting and oxygen reduction. Applied Catalysis B: Environmental, 2020, 277, 119177.	20.2	36
319	Challenge of advanced low temperature fuel cells based on high degree of freedom of group 4 and 5 metal oxides. Current Opinion in Electrochemistry, 2020, 21, 234-241.	4.8	14
320	Combining Single Crystal Experiments and Microkinetic Modeling in Disentangling Thermodynamic, Kinetic, and Double-Layer Factors Influencing Oxygen Reduction. Journal of Physical Chemistry C, 2020, 124, 13672-13678.	3.1	14
321	A novel cobalt and nitrogen co-doped mesoporous hollow carbon hemisphere as high-efficient electrocatalysts for oxygen reduction reaction. Journal of Colloid and Interface Science, 2020, 579, 12-20.	9.4	16
322	Manipulating electronic delocalization of Mn3O4 by manganese defects for oxygen reduction reaction. Applied Catalysis B: Environmental, 2020, 277, 119247.	20.2	65
323	Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nature Communications, 2020, 11, 3049.	12.8	537
324	Highly Durable Pt-Based Catalyst Supported on Carbon Derived from Tamarind Seeds for Oxygen Reduction Reaction in PEM Fuel Cell. Journal of the Electrochemical Society, 2020, 167, 104515.	2.9	19
325	Metalâ€Nitrogenâ€Doped Carbon Materials as Highly Efficient Catalysts: Progress and Rational Design. Advanced Science, 2020, 7, 2001069.	11.2	228
326	Metalâ€Rich Chalcogenides as Sustainable Electrocatalysts for Oxygen Evolution and Reduction: State of the Art and Future Perspectives. European Journal of Inorganic Chemistry, 2020, 2020, 2679-2690.	2.0	27
327	Bimetallic IrAu mesoporous nanovesicles. Chemical Engineering Journal, 2020, 395, 125135.	12.7	7
328	Catalyst Design for Electrochemical Oxygen Reduction toward Hydrogen Peroxide. Advanced Functional Materials, 2020, 30, 2003321.	14.9	170
329	Electrocatalytic Oxygen Reduction at Multinuclear Metal Active Sites Inspired by Metalloenzymes. E-Journal of Surface Science and Nanotechnology, 2020, 18, 81-93.	0.4	10

#	Article	IF	CITATIONS
330	Singleâ€Atom Catalysts for Electrocatalytic Applications. Advanced Functional Materials, 2020, 30, 2000768.	14.9	390
331	A Review on Challenges and Successes in Atomic-Scale Design of Catalysts for Electrochemical Synthesis of Hydrogen Peroxide. ACS Catalysis, 2020, 10, 7495-7511.	11.2	254
332	Effects of a Ni cocatalyst on the photocatalytic hydrogen evolution reaction of anatase TiO ₂ by first-principles calculations. New Journal of Chemistry, 2020, 44, 5428-5437.	2.8	8
333	Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catalysis, 2020, 10, 4313-4318.	11.2	119
334	Progress in Computational and Machine‣earning Methods for Heterogeneous Smallâ€Molecule Activation. Advanced Materials, 2020, 32, e1907865.	21.0	46
335	Recent Advances in Synthesis and Utilization of Ultraâ€low Loading of Precious Metalâ€based Catalysts for Fuel Cells. ChemCatChem, 2020, 12, 3434-3446.	3.7	34
336	Mechanistic Insight into the Oxygen Reduction Reaction on the Mn–N ₄ /C Single-Atom Catalyst: The Role of the Solvent Environment. Journal of Physical Chemistry C, 2020, 124, 7287-7294.	3.1	51
337	Surface Modification for Promoting Durable, Efficient, and Selective Electrocatalysts. ChemElectroChem, 2020, 7, 2345-2363.	3.4	26
338	Electrospinning synthesis of transition metal alloy nanoparticles encapsulated in nitrogen-doped carbon layers as an advanced bifunctional oxygen electrode. Journal of Materials Chemistry A, 2020, 8, 7245-7252.	10.3	66
339	Graphene-Supported Single Nickel Atom Catalyst for Highly Selective and Efficient Hydrogen Peroxide Production. ACS Applied Materials & Interfaces, 2020, 12, 17519-17527.	8.0	99
340	A zeroth-order active-space frozen-orbital embedding scheme for multireference calculations. Journal of Chemical Physics, 2020, 152, 094107.	3.0	10
341	A Facile Method to Prepare Ultrafine Pd Nanoparticles Embedded into N-Doped Porous Carbon Nanosheets as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2020, 167, 054508.	2.9	7
342	The Effect of Magnetic Field on Catalytic Properties in Core-Shell Type Particles. Frontiers in Chemistry, 2020, 8, 163.	3.6	15
343	Design and Preparation of Fe–N ₅ Catalytic Sites in Single-Atom Catalysts for Enhancing the Oxygen Reduction Reaction in Fuel Cells. ACS Applied Materials & Interfaces, 2020, 12, 17334-17342.	8.0	76
344	Practical Deep-Learning Representation for Fast Heterogeneous Catalyst Screening. Journal of Physical Chemistry Letters, 2020, 11, 3185-3191.	4.6	63
345	Investigating lattice strain impact on the alloyed surface of small Au@PdPt core–shell nanoparticles. Nanoscale, 2020, 12, 8687-8692.	5.6	16
346	In Situ Spectroscopy Study of Oxygen Reduction Reaction Intermediates at the Pt/Acid Interface: Surface-Enhanced Infrared Absorbance Spectroscopy. Journal of Physical Chemistry C, 2020, 124, 7267-7273.	3.1	17
347	Revealing the oxygen reduction reaction activity origin of single atoms supported on g-C ₃ N ₄ monolayers: a first-principles study. Journal of Materials Chemistry A, 2020, 8, 6555-6563.	10.3	140

ARTICLE IF CITATIONS Peptide Based Noble Metal Nanomaterials for Oxygen Reduction Reaction: A Review. International 348 1.3 3 Journal of Electrochemical Science, 2020, 15, 2634-2647. A review on fundamentals for designing oxygen evolution electrocatalysts. Chemical Society Reviews, 349 38.1 1,466 2020, 49, 2196-2214. Constructing flexible and self-standing electrocatalyst for oxygen reduction reaction by in situ 350 7 6.1 doping nitrogen atoms into carbon cloth. Applied Surface Science, 2020, 523, 146424. Hemoglobin-derived Fe-Nx-S species supported by bamboo-shaped carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. Carbon, 2020, 168, 588-596. Engineering Pt Nanoparticles with Fe and N Codoped Carbon to Boost Oxygen Reduction Catalytic 352 3.8 4 Performance in Acidic Electrolyte. Energy Technology, 2020, 8, 2000393. Progress of Electrochemical Hydrogen Peroxide Synthesis over Single Atom Catalysts. , 2020, 2, 1008-1024. 129 Towards high-performance heterogeneous palladium nanoparticle catalysts for sustainable 354 3.7 21 liquid-phase reactions. Reaction Chemistry and Engineering, 2020, 5, 1556-1618. High entropy alloy electrocatalysts: a critical assessment of fabrication and performance. Journal of 10.3 108 Materials Chemistry A, 2020, 8, 14844-14862. 356 Advances in the Molecular Catalysis of Dioxygen Reduction. ACS Catalysis, 2020, 10, 2640-2655. 11.2 76 Electrocatalyst design for promoting two-electron oxygen reduction reaction: Isolation of active 4.8 39 site atoms. Current Opinion in Electrochemistry, 2020, 21, 109-116. Metal-free carbocatalysis for electrochemical oxygen reduction reaction: Activity origin and 358 12.9 69 mechanism. Journal of Energy Chemistry, 2020, 48, 308-321. Comparative Catalytic Activity of Graphene Imperfections in Oxygen Reduction Reaction. Journal of 3.1 Physical Chemistry C, 2020, 124, 6038-6053. Identification of Efficient Active Sites in Nitrogen-Doped Carbon Nanotubes for Oxygen Reduction 360 3.1 27 Reaction. Journal of Physical Chemistry C, 2020, 124, 8689-8696. Insights into the role of an Fe–N active site in the oxygen reduction reaction on carbon-supported supramolecular catalysts. RSC Advances, 2020, 10, 8709-8716. 3.6 Graphitizing N-doped mesoporous carbon nanospheres via facile single atom iron growth for highly 362 10.4 52 efficient oxygen reduction reaction. Nano Research, 2020, 13, 752-758. The VN3 embedded graphane with the improved selectivity for nitrogen fixation. Applied Surface Science, 2020, 513, 145855. 6.1 23 Structural Screening and Design of Platinum Nanosamples for Oxygen Reduction. ACS Catalysis, 2020, 364 11.2 26 10, 3911-3920. Bimetallic PtAu electrocatalysts for the oxygen reduction reaction: challenges and opportunities. 3.3 Dalton Transactions, 2020, 49, 4189-4199.

#	Article	IF	CITATIONS
366	In Situ X-Ray Absorption Spectroscopy Disentangles the Roles of Copper and Silver in a Bimetallic Catalyst for the Oxygen Reduction Reaction. Chemistry of Materials, 2020, 32, 1819-1827.	6.7	30
367	Manipulation of Neighboring Palladium and Mercury Atoms for Efficient *OH Transformation in Anodic Alcohol Oxidation and Cathodic Oxygen Reduction Reactions. ACS Applied Materials & Interfaces, 2020, 12, 12677-12685.	8.0	12
368	Nanoporous high-entropy alloys with low Pt loadings for high-performance electrochemical oxygen reduction. Journal of Catalysis, 2020, 383, 164-171.	6.2	125
369	In situ confinement growth of peasecod-like N-doped carbon nanotubes encapsulate bimetallic FeCu alloy as a bifunctional oxygen reaction cathode electrocatalyst for sustainable energy batteries. Journal of Alloys and Compounds, 2020, 826, 154152.	5.5	43
370	Interlaced Pd–Ag nanowires rich in grain boundary defects for boosting oxygen reduction electrocatalysis. Nanoscale, 2020, 12, 5368-5373.	5.6	35
371	Stable zigzag edges of transition-metal dichalcogenides with high catalytic activity for oxygen reduction. Electrochimica Acta, 2020, 338, 135865.	5.2	14
372	Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule, 2020, 4, 45-68.	24.0	596
373	Zincâ€Mediated Template Synthesis of Feâ€Nâ€C Electrocatalysts with Densely Accessible Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Advanced Materials, 2020, 32, e1907399.	21.0	319
374	Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions. Materials Today, 2020, 36, 125-138.	14.2	308
375	Mn3O4 nanosheets coated on carbon nanotubes as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 6529-6537.	7.1	9
376	Durability screening of Pt ternary alloy (111) surfaces for oxygen reduction reaction using Density Functional Theory. Surfaces and Interfaces, 2020, 18, 100440.	3.0	2
377	Enabling Direct H2O2 Production in Acidic Media through Rational Design of Transition Metal Single Atom Catalyst. CheM, 2020, 6, 658-674.	11.7	418
378	Unravelling electrocatalytic properties of metal porphyrin-like complexes hosted in graphene matrices. 2D Materials, 2020, 7, 025017.	4.4	7
379	Simultaneously Integrating Single Atomic Cobalt Sites and Co ₉ S ₈ Nanoparticles into Hollow Carbon Nanotubes as Trifunctional Electrocatalysts for Zn–Air Batteries to Drive Water Splitting. Small, 2020, 16, e1906735.	10.0	98
380	Practical fuel cells enabled by unprecedented oxygen reduction reaction on 3D nanostructured electrocatalysts. Journal of Energy Chemistry, 2020, 48, 107-108.	12.9	14
381	Bottomâ€Up Fabrication of a Sandwichâ€Like Carbon/Graphene Heterostructure with Builtâ€In FeNC Dopants as Nonâ€Noble Electrocatalyst for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2020, 15, 432-439.	3.3	17
382	3D flower-like ZnFe-ZIF derived hierarchical Fe, N-Codoped carbon architecture for enhanced oxygen reduction in both alkaline and acidic media, and zinc-air battery performance. Carbon, 2020, 161, 502-509.	10.3	66
383	The identification of optimal active boron sites for N ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 3910-3917.	10.3	44

#	Article	IF	CITATIONS
384	Gadoliniumâ€Induced Valence Structure Engineering for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2020, 10, 1903833.	19.5	114
385	Metal–Organic Framework-Based Catalysts with Single Metal Sites. Chemical Reviews, 2020, 120, 12089-12174.	47.7	692
386	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie, 2020, 132, 18490-18504.	2.0	24
387	Enhancing Oxygen Reduction Activity of Ptâ€based Electrocatalysts: From Theoretical Mechanisms to Practical Methods. Angewandte Chemie - International Edition, 2020, 59, 18334-18348.	13.8	174
388	B, Nâ€codoped Cu–N/B–C Composite as an Efficient Electrocatalyst for Oxygenâ€Reduction Reaction in Alkaline Media. ChemistrySelect, 2020, 5, 3647-3654.	1.5	6
389	Nano-engineered directed growth of Mn3O4 quasi-nanocubes on N-doped polyhedrons: Efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 12903-12910.	7.1	36
390	Engineering the electronic and strained interface for high activity of PdMcore@Ptmonolayer electrocatalysts for oxygen reduction reaction. Science Bulletin, 2020, 65, 1396-1404.	9.0	76
391	Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O ₂ Reduction. Accounts of Chemical Research, 2020, 53, 1056-1065.	15.6	65
392	Oneâ€pot synthesis of twoâ€dimensional porphyrinâ€based polymer and derived Nâ€doped porous carbon as efficient oxygen reduction catalysts. Micro and Nano Letters, 2020, 15, 140-144.	1.3	1
393	Combining scaling relationships overcomes rate versus overpotential trade-offs in O ₂ molecular electrocatalysis. Science Advances, 2020, 6, eaaz3318.	10.3	46
394	Unraveling the single-atom electrocatalytic activity of transition metal-doped phosphorene. Nanoscale Advances, 2020, 2, 2410-2421.	4.6	23
395	Recent Advances in Nonâ€Noble Bifunctional Oxygen Electrocatalysts toward Large cale Production. Advanced Functional Materials, 2020, 30, 2000503.	14.9	226
396	Unveiling the Axial Hydroxyl Ligand on Feï£įN ₄ C Electrocatalysts and Its Impact on the pHâ€Dependent Oxygen Reduction Activities and Poisoning Kinetics. Advanced Science, 2020, 7, 2000176.	11.2	111
397	Selective electrochemical production of hydrogen peroxide at zigzag edges of exfoliated molybdenum telluride nanoflakes. National Science Review, 2020, 7, 1360-1366.	9.5	40
398	Facetâ€Dependent Oxygen Reduction Reaction Activity on the Surfaces of Co ₃ O ₄ . Energy and Environmental Materials, 2021, 4, 407-412.	12.8	19
399	Rapid microwave-assisted preparation of high-performance bifunctional Ni3Fe/Co-N-C for rechargeable Zn-air battery. Chemical Engineering Journal, 2020, 395, 125151.	12.7	52
400	Tailoring Selectivity of Electrochemical Hydrogen Peroxide Generation by Tunable Pyrrolicâ€Nitrogenâ€Carbon. Advanced Energy Materials, 2020, 10, 2000789.	19.5	247
401	Insight into the correlation of Pt–support interactions with electrocatalytic activity and durability in fuel cells. Journal of Materials Chemistry A, 2020, 8, 9420-9446.	10.3	62

#	Article	IF	CITATIONS
402	Intrinsic Electrocatalytic Activity Regulation of M–N–C Singleâ€Atom Catalysts for the Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2021, 60, 4448-4463.	13.8	433
403	Intrinsische elektrokatalytische AktivitÃæsteuerung von Mâ€Nâ€Câ€Einzelatomâ€Katalysatoren für die Sauerstoffreduktionsreaktion. Angewandte Chemie, 2021, 133, 4496-4512.	2.0	40
404	In-situ self-templated preparation of porous core–shell Fe1â^'S@N, S co-doped carbon architecture for highly efficient oxygen reduction reaction. Journal of Energy Chemistry, 2021, 54, 310-317.	12.9	24
405	Acceleration of catalyst discovery with easy, fast, and reproducible computational alchemy. International Journal of Quantum Chemistry, 2021, 121, e26380.	2.0	15
406	Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catalysis Today, 2021, 359, 99-105.	4.4	42
407	One-dimensional metal-organic nanowires-derived catalyst of carbon nanobamboos with encapsulated cobalt nanoparticles for oxygen reduction. Journal of Catalysis, 2021, 394, 366-375.	6.2	19
408	In Situ Preparation of Ionomer as a Tool for Tripleâ€Phase Boundary Enhancement in 3D Graphene Supported Pt Catalyst. Advanced Sustainable Systems, 2021, 5, .	5.3	6
409	Advanced Electrocatalysis for Energy and Environmental Sustainability via Water and Nitrogen Reactions. Advanced Materials, 2021, 33, e2000381.	21.0	231
410	TMN4 complex embedded graphene as bifunctional electrocatalysts for high efficiency OER/ORR. Journal of Energy Chemistry, 2021, 55, 437-443.	12.9	117
411	Saltâ€recrystallization preparation of metal organic framework derived porous carbon support for highlyâ€efficient proton exchange membrane fuel cell. International Journal of Energy Research, 2021, 45, 2334-2342.	4.5	5
412	Structure evolution of PtCu nanoframes from disordered to ordered for the oxygen reduction reaction. Applied Catalysis B: Environmental, 2021, 282, 119617.	20.2	80
413	Insights into efficient transition metal-nitrogen/carbon oxygen reduction electrocatalysts. Journal of Energy Chemistry, 2021, 56, 470-485.	12.9	56
414	Converting coals into carbon-based pH-universal oxygen reduction catalysts for fuel cells. Fuel, 2021, 285, 119163.	6.4	15
415	Photoexcited single metal atom catalysts for heterogeneous photocatalytic H2O2 production: Pragmatic guidelines for predicting charge separation. Applied Catalysis B: Environmental, 2021, 282, 119589.	20.2	74
416	Electrochemical Synthesis of H2O2 by Two-Electron Water Oxidation Reaction. CheM, 2021, 7, 38-63.	11.7	155
417	Enhanced oxygen reduction reaction performance of ReOx/NC (ReÂ=ÂLa, Ce, Pr, Sm, Eu, Tb, Er, Tm and) Tj ETQq1 Applied Surface Science, 2021, 535, 147689.	1 0.7843 6.1	14 rgBT /C 17
418	"More is Different:―Synergistic Effect and Structural Engineering in Doubleâ€Atom Catalysts. Advanced Functional Materials, 2021, 31, 2007423.	14.9	179
419	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	3.7	35

#	Article	IF	CITATIONS
420	Four-Electron Reduction of Dioxygen on a Metal Surface: Models of Dissociative and Associative Mechanisms in a Homogeneous System. Inorganic Chemistry, 2021, 60, 1550-1560.	4.0	1
421	Coordination Engineering of Singleâ€Atom Catalysts for the Oxygen Reduction Reaction: A Review. Advanced Energy Materials, 2021, 11, 2002473.	19.5	217
422	Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2002887.	19.5	226
423	Recent development on metal phthalocyanines based materials for energy conversion and storage applications. Coordination Chemistry Reviews, 2021, 431, 213678.	18.8	69
424	Design of Local Atomic Environments in Singleâ€Atom Electrocatalysts for Renewable Energy Conversions. Advanced Materials, 2021, 33, e2003075.	21.0	187
425	Effect of Zn atom in Fe-N-C catalysts for electro-catalytic reactions: theoretical considerations. Nano Research, 2021, 14, 611-619.	10.4	52
426	Understanding the Activity of Carbon-Based Single-Atom Electrocatalysts from <i>Ab Initio</i> Simulations. , 2021, 3, 110-120.		19
427	Structurally Disordered Phosphorus-Doped Pt as a Highly Active Electrocatalyst for an Oxygen Reduction Reaction. ACS Catalysis, 2021, 11, 355-363.	11.2	79
428	Twoâ€Ðimensional Metal–Organic Frameworksâ€Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000067.	5.8	29
429	Synthesis of hierarchical interconnected graphene oxide for enhanced oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125719.	4.7	4
430	Electronic structure modulation of isolated Co-N4 electrocatalyst by sulfur for improved pH-universal hydrogen evolution reaction. Nano Energy, 2021, 80, 105544.	16.0	37
431	Stabilization of nonâ€native polymorphs for electrocatalysis and energy storage systems. Wiley Interdisciplinary Reviews: Energy and Environment, 2021, 10, e389.	4.1	5
432	One-pot synthesis of mesoporous palladium/C nanodendrites as high-performance oxygen reduction eletrocatalysts through a facile dual surface protecting agent-assisted strategy. Dalton Transactions, 2021, 50, 6297-6305.	3.3	4
433	Recent advances in Pt-based electrocatalysts for PEMFCs. RSC Advances, 2021, 11, 13316-13328.	3.6	36
434	Gas–Liquid–Solid Triphase Interfacial Chemical Reactions Associated with Gas Wettability. Advanced Materials Interfaces, 2021, 8, 2001636.	3.7	17
435	Enabling multifunctional electrocatalysts by modifying the basal plane of unifunctional 1T′-MoS ₂ with anchored transition metal single atoms. Nanoscale, 2021, 13, 13390-13400.	5.6	69
436	Topological defect-containing Fe/N co-doped mesoporous carbon nanosheets as novel electrocatalysts for the oxygen reduction reaction and Zn–air batteries. Nanoscale, 2021, 13, 13249-13255.	5.6	13
437	Plasma-assisted defect engineering of N-doped NiCo ₂ O ₄ for efficient oxygen reduction. Physical Chemistry Chemical Physics, 2021, 23, 6591-6599.	2.8	22

# 438	ARTICLE Unravelling the origin of bifunctional OER/ORR activity for single-atom catalysts supported on	IF 10.3	Citations 93
439	C ₂ N by DFT and machine learning. Journal of Materials Chemistry A, 2021, 9, 16860-16867. Lanthanide electronic perturbation in Pt–Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy and Environmental Science, 2021, 14, 5911-5918.	30.8	65
440	Comparing the Activity of Complex Solid Solution Electrocatalysts Using Inflection Points of Voltammetric Activity Curves as Activity Descriptors. ACS Catalysis, 2021, 11, 1014-1023.	11.2	39
441	Hydroxy- and Aminophenylporphyrin Polymers as Metal-Free Catalysts for Oxygen Reduction. SSRN Electronic Journal, 0, , .	0.4	0
442	Nanoarchitectonics of metal organic frameworks and PEDOT layer-by-layer electrodes for boosting oxygen reduction reaction. Materials Advances, 2021, 2, 7731-7740.	5.4	8
443	Electronic and geometric determinants of adsorption: fundamentals and applications. JPhys Energy, 2021, 3, 022001.	5.3	18
444	Integration of redox cocatalysts for artificial photosynthesis. Energy and Environmental Science, 2021, 14, 5260-5288.	30.8	105
445	Electrochemically controlled <i>in situ</i> conversion of CO ₂ to defective carbon nanotubes for enhanced H ₂ O ₂ production. Nanoscale, 2021, 13, 15973-15980.	5.6	15
446	Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 2021, 50, 10983-11031.	38.1	170
447	Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chemical Society Reviews, 2021, 50, 8428-8469.	38.1	452
448	Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts. Chemical Society Reviews, 2021, 50, 7745-7778.	38.1	385
449	Ultrafine Pt–Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Transactions, 2021, 50, 6811-6822.	3.3	10
450	A simple method for the preparation of a nickel selenide and cobalt selenide mixed catalyst to enhance bifunctional oxygen activity for Zn–air batteries. RSC Advances, 2021, 11, 19406-19416.	3.6	15
451	Design of ternary Pt–CoZn alloy catalysts coated with N-doped carbon towards acidic oxygen reduction. Materials Advances, 2021, 2, 5479-5486.	5.4	10
452	Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction. Catalysis Science and Technology, 2021, 11, 705-725.	4.1	114
453	Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles. Nature Nanotechnology, 2021, 16, 140-147.	31.5	424
454	Modeling and simulation of metal-air batteries. , 2021, , 179-215.		0
455	Oxygen reduction reaction (ORR) in acidic media with nanostructured metal oxide-based electrocatalysts. , 2021, , 37-59.		Ο

ARTICLE IF CITATIONS # Graphene-Based Dual-Metal Sites for Oxygen Reduction Reaction: A Theoretical Study. Journal of 456 3.1 32 Physical Chemistry C, 2021, 125, 2334-2344. Toward computational design of chemical reactions with reaction phase diagram. Wiley 14.6 Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1514. Maximizing the Active Site Densities of Single-Atomic Fe–N–C Electrocatalysts for High-Performance 458 26 5.1Anion Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 1459-1466. Atomically Dispersed Fe–Heteroatom (N, S) Bridge Sites Anchored on Carbon Nanosheets for Promoting Oxygen Reduction Reaction. ACS Energy Letters, 2021, 6, 379-386. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. 460 38.1 249 Chemical Society Reviews, 2021, 50, 2540-2581. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chemical Communications, 2021, 57, 7350-7361. 4.1 Distinguishing Among High Activity Electrocatalysts: Regression vs Classification. Journal of Physical 462 3.1 3 Chemistry C, 2021, 125, 4468-4476. Designing Highâ€Valence Metal Sites for Electrochemical Water Splitting. Advanced Functional 14.9 Materials, 2021, 31, 2009779. Orange Peel Derivedâ€Nitrogen and Sulfur Coâ€doped Carbon Dots: a Nanoâ€booster for Enhancing ORR 464 2.9 142 Electrocatalytic Performance of 3D Graphene Networks. Electroanalysis, 2021, 33, 1356-1369. Stability of Pt Skin Intermetallic Core Catalysts and Adsorption Properties for the Oxygen Reduction 3.1 Reaction. Journal of Physical Chemistry C, 2021, 125, 3527-3534. Catalytic mechanism of oxygen reduction on two types of <scp> CoN ₄ â€graphene </scp> : A 466 4.5 6 density functional study. International Journal of Energy Research, 2021, 45, 10858-10868. Efficient Discovery of Active, Selective, and Stable Catalysts for Electrochemical H₂O₂ Synthesis through Active Motif Screening. ACS Catalysis, 2021, 11, 11.2 44 2483-2491 Hydrogen Peroxide Generation with 100% Faradaic Efficiency on Metal-Free Carbon Black. ACS 468 11.2 98 Catalysis, 2021, 11, 2454-2459. Probing the catalytic activity of M-N4â^{*}xOx embedded graphene for the oxygen reduction reaction by density functional theory. Frontiers of Chemical Science and Engineering, 2021, 15, 1206-1216. 4.4 38 Spatial Confinement of a Carbon Nanocone for an Efficient Oxygen Evolution Reaction. Journal of 470 4.6 4 Physical Chemistry Letters, 2021, 12, 2252-2258. Defect and DopingÂCo-Engineered Non-Metal Nanocarbon ORR Electrocatalyst. Nano-Micro Letters, 471 169 2021, 13, 65. Carbon-nanotube-entangled Co,N-codoped carbon nanocomposite for oxygen reduction reaction. 473 2.6 6 Nanotechnology, 2021, 32, 205402. Singleâ€Atom Alloys for the Electrochemical Oxygen Reduction Reaction. ChemPhysChem, 2021, 22, 474 2.1 499-508.

#	Article	IF	CITATIONS
475	Recent progress in in situ/operando analysis tools for oxygen electrocatalysis. Journal Physics D: Applied Physics, 2021, 54, 173001.	2.8	11
476	In-situ synthesis of Fe, N, S co-doped graphene-like nanosheets around carbon nanoparticles with dual-nitrogen-source as efficient electrocatalyst for oxygen reduction reaction. International Journal of Hydrogen Energy, 2021, 46, 8002-8013.	7.1	8
478	The study of oxygen reduction reaction on Geâ€doped <scp> MoS ₂ </scp> monolayer based on first principle. International Journal of Energy Research, 2021, 45, 13748-13759.	4.5	7
479	Structural Evolution and Underlying Mechanism of Single-Atom Centers on Mo2C(100) Support during Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 17075-17084.	8.0	4
480	Straightforward synthesis of chemically ordered Pt3Co/C nanoparticles by a solid phase method for oxygen-reduction reaction. Ionics, 2021, 27, 2553-2560.	2.4	5
481	Unique Nitrogen-Doped Carbon Polyhedron Embedded with Co Derived Core-Shell Nanoparticles for the Electro-Catalysis towards Hydrogen Peroxide Redox Reaction and Nonenzymatic Detection. Journal of the Electrochemical Society, 2021, 168, 037501.	2.9	4
482	Superwetting behaviors at the interface between electrode and electrolyte. Cell Reports Physical Science, 2021, 2, 100374.	5.6	22
483	PtAuSn Nanorod Catalysts with a Beneficial Core/Shell Structure for Oxygen Reduction Electrocatalysis. ACS Applied Energy Materials, 2021, 4, 3067-3073.	5.1	8
484	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie, 2021, 133, 19724-19742.	2.0	30
485	Single Atomic Cerium Sites with a High Coordination Number for Efficient Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. ACS Catalysis, 2021, 11, 3923-3929.	11.2	156
486	Electrocatalytic Refinery for Sustainable Production of Fuels and Chemicals. Angewandte Chemie - International Edition, 2021, 60, 19572-19590.	13.8	341
487	Graphitic Carbon Nitride Sheet Supported Single-Atom Metal-Free Photocatalyst for Oxygen Reduction Reaction: A First-Principles Analysis. Journal of Physical Chemistry Letters, 2021, 12, 2788-2795.	4.6	38
488	Scalable solid-phase synthesis of defect-rich graphene for oxygen reduction electrocatalysis. Green Energy and Environment, 2023, 8, 224-232.	8.7	8
489	A fundamental comprehension and recent progress in advanced Ptâ€based ORR nanocatalysts. SmartMat, 2021, 2, 56-75.	10.7	141
490	Effect of Hydrophobic Cations on the Inhibitors for the Oxygen Reduction Reaction on Anions and Ionomers Adsorbed on Single-Crystal Pt Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 15866-15871.	8.0	22
491	Highly effective Fe–N–C electrocatalysts toward oxygen reduction reaction originated from 2,6-diaminopyridine. Journal of Materials Science: Materials in Electronics, 2021, 32, 10349-10358.	2.2	2
492	Toward Rational Design of Single-Atom Catalysts. Journal of Physical Chemistry Letters, 2021, 12, 2837-2847.	4.6	45
493	An Overview on Pt ₃ X Electrocatalysts for Oxygen Reduction Reaction. Chemistry - an Asian Journal, 2021, 16, 1184-1197.	3.3	7

#	Article	IF	CITATIONS
494	Density functional theory study of the sulfur/oxygen doped CoN4-graphene electrocatalyst for oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615, 126219.	4.7	15
495	Atomically dispersed cobalt-based species anchored on polythiophene as an efficient electrocatalyst for oxygen evolution reaction. Applied Surface Science, 2021, 545, 148943.	6.1	19
496	Sponge tofu-like graphene-carbon hybrid supporting Pt–Co nanocrystals for efficient oxygen reduction reaction and Zn-Air battery. International Journal of Hydrogen Energy, 2021, 46, 15561-15571.	7.1	9
497	Design of Highly Stable and Efficient Bifunctional <i>MX</i> ene-Based Electrocatalysts for Oxygen Reduction and Evolution Reactions. Physical Review Applied, 2021, 15, .	3.8	11
498	A New Class of Molecular Electrocatalysts for Hydrogen Evolution: Catalytic Activity of M ₃ N@C _{2<i>n</i>} (2 <i>n</i> = 68, 78, and 80) Fullerenes. Journal of the American Chemical Society, 2021, 143, 6037-6042.	13.7	37
499	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
500	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, 2100346.	19.5	86
501	Revealing the importance of kinetics in N-coordinated dual-metal sites catalyzed oxygen reduction reaction. Journal of Catalysis, 2021, 396, 215-223.	6.2	47
502	Fe, N-doped graphene-wrapped carbon black nanoparticles as highly efficient catalyst towards oxygen reduction reaction. Applied Surface Science, 2021, 545, 148981.	6.1	16
503	Zinc-iron bimetallic-nitrogen doped porous carbon microspheres as efficient oxygen reduction electrocatalyst for zinc-air batteries. Applied Surface Science, 2021, 546, 148934.	6.1	15
504	Plasmonic Core–Shell Nanomaterials and their Applications in Spectroscopies. Advanced Materials, 2021, 33, e2005900.	21.0	50
505	Perovskite Oxides for Cathodic Electrocatalysis of Energyâ€Related Gases: From O ₂ to CO ₂ and N ₂ . Advanced Functional Materials, 2021, 31, 2101872.	14.9	21
506	Titanium carbide: An emerging electrocatalyst for fuel cell and electrolyser. International Journal of Hydrogen Energy, 2021, 46, 12801-12821.	7.1	28
507	Concepts, models, and methods in computational heterogeneous catalysis illustrated through <scp>CO₂</scp> conversion. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2021, 11, e1530.	14.6	24
508	Progress and prospects of low platinum oxygen reduction catalysts for proton exchange membrane fuel cells. Chinese Science Bulletin, 2022, 67, 2212-2225.	0.7	3
509	Review—Current Progress of Non-Precious Metal for ORR Based Electrocatalysts Used for Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 044521.	2.9	15
510	Pyridinic-Type N-Doped Graphene on Cobalt Substrate as Efficient Electrocatalyst for Oxygen Reduction Reaction in Acidic Solution in Fuel Cell. Journal of Physical Chemistry Letters, 2021, 12, 3552-3559.	4.6	20
511	Dopants in the Design of Noble Metal Nanoparticle Electrocatalysts and their Effect on Surface Energy and Coordination Chemistry at the Nanocrystal Surface. Advanced Energy Materials, 2021, 11, 2100265.	19.5	25

#	ARTICLE	IF	CITATIONS
512	Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction. Journal of the American Chemical Society, 2021, 143, 6933-6941.	13.7	62
513	Flame Spray Pyrolysis Co3O4/CoO as Highly-Efficient Nanocatalyst for Oxygen Reduction Reaction. Nanomaterials, 2021, 11, 925.	4.1	34
514	Linear, tripodal, macrocyclic: Ligand geometry and ORR activity of supported Pd(II) complexes. Inorganica Chimica Acta, 2021, 518, 120250.	2.4	5
515	Enhancing the electrocatalytic activity via hybridization of Cu(I/II) oxides with Co3O4 towards oxygen electrode reactions. Journal of Power Sources, 2021, 490, 229511.	7.8	12
516	Structural Evolution of Atomically Dispersed Fe Species in Fe–N/C Catalysts Probed by X-ray Absorption and ⁵⁷ Fe MA¶ssbauer Spectroscopies. Journal of Physical Chemistry C, 2021, 125, 11928-11938.	3.1	9
517	Identification of the Active Sites of NiCo ₂ O ₄ and the Support Effect with Carbon Nanotubes for Oxygen Reduction Catalysis. Langmuir, 2021, 37, 6330-6336.	3.5	21
518	Structural Effectiveness of AgCl-decorated Ag Nanowires Enhancing Oxygen Reduction. ACS Sustainable Chemistry and Engineering, 2021, 9, 7519-7528.	6.7	14
519	Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. Nature Catalysis, 2021, 4, 374-384.	34.4	474
520	Recent Progress of Electrochemical Production of Hydrogen Peroxide by Twoâ€Electron Oxygen Reduction Reaction. Advanced Science, 2021, 8, e2100076.	11.2	148
521	Tailoring Acidic Oxygen Reduction Selectivity on Single-Atom Catalysts via Modification of First and Second Coordination Spheres. Journal of the American Chemical Society, 2021, 143, 7819-7827.	13.7	463
522	Strengthening absorption ability of Co–N–C as efficient bifunctional oxygen catalyst by modulating the d band center using MoC. Green Energy and Environment, 2023, 8, 459-469.	8.7	22
523	Manganese dioxides for oxygen electrocatalysis in energy conversion and storage systems over full pH range. Journal of Power Sources, 2021, 494, 229779.	7.8	37
524	On the catalytic and degradative role of oxygen-containing groups on carbon electrode in non-aqueous ORR. Carbon, 2021, 176, 632-641.	10.3	9
525	Engineering single MnN4 atomic active sites on polydopamine-modified helical carbon tubes towards efficient oxygen reduction. Energy Storage Materials, 2021, 37, 274-282.	18.0	47
526	Catalysis of core-shell nanoparticle M@Pt (M Co and Ni) for oxygen reduction reaction and its electronic structure in comparison to Pt nanoparticle. Journal of Catalysis, 2021, 397, 13-26.	6.2	13
527	Single-atomic Fe anchored on hierarchically porous carbon frame for efficient oxygen reduction performance. Chinese Chemical Letters, 2022, 33, 1070-1073.	9.0	17
528	Metal–Organic Frameworks for Photo/Electrocatalysis. Advanced Energy and Sustainability Research, 2021, 2, 2100033.	5.8	123
529	Metalâ€Free Electrocatalysts for Oxygen Reduction to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2021, 2, 2100021.	5.8	7

#	Article	IF	CITATIONS
530	Analysis of the limitations in the oxygen reduction activity of transition metal oxide surfaces. Nature Catalysis, 2021, 4, 463-468.	34.4	156
531	On scaling relations of single atom catalysts for electrochemical ammonia synthesis. Applied Surface Science, 2021, 550, 149283.	6.1	15
532	Direct correlation of oxygen adsorption on platinum-electrolyte interfaces with the activity in the oxygen reduction reaction. Science Advances, 2021, 7, .	10.3	44
533	Pulsed Laser in Liquids Made Nanomaterials for Catalysis. Chemical Reviews, 2021, 121, 7568-7637.	47.7	100
534	Toward a mechanistic understanding of electrocatalytic nanocarbon. Nature Communications, 2021, 12, 3288.	12.8	35
535	Manipulating the Coordination Chemistry of Ruï£įN(O)ï£įC Moieties for Fast Alkaline Hydrogen Evolution Kinetics. Advanced Functional Materials, 2021, 31, 2100698.	14.9	74
536	Structural Design Strategy and Active Site Regulation of Highâ€Efficient Bifunctional Oxygen Reaction Electrocatalysts for Zn–Air Battery. Small, 2021, 17, e2006766.	10.0	89
538	Oxygen Electrocatalysis by [Au ₂₅ (SR) ₁₈]: Charge, Doping, and Ligand Removal Effect. ACS Catalysis, 2021, 11, 7957-7969.	11.2	20
539	Simultaneous sulfamethoxazole degradation with electricity generation by microbial fuel cells using Ni-MOF-74 as cathode catalysts and quantification of antibiotic resistance genes. Environmental Research, 2021, 197, 111054.	7.5	31
540	Statistical Treatment of Activity and Durability of Electrocatalysts with Distributed Binding Energies. Journal of the Electrochemical Society, 2021, 168, 066507.	2.9	4
541	A simple general descriptor for rational design of graphyne-based bifunctional electrocatalysts toward hydrogen evolution and oxygen reduction reactions. Journal of Colloid and Interface Science, 2021, 592, 440-447.	9.4	22
542	Mapping transition metal–nitrogen–carbon catalystÂperformance on the critical descriptorÂdiagram. Current Opinion in Electrochemistry, 2021, 27, 100687.	4.8	34
543	Bimetallic PdAu Nanoframes for Electrochemical H ₂ O ₂ Production in Acids. , 2021, 3, 996-1002.		48
544	Dual Inorganic Sacrificial Template Synthesis of Hierarchically Porous Carbon with Specific N Sites for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 2021, 13, 28140-28149.	8.0	12
545	Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert. Chemistry - A European Journal, 2021, 27, 10016-10020.	3.3	10
546	Iron polyphthalocyanine-derived ternary-balanced Fe3O4/Fe3N/Fe-N-C@PC as a high-performance electrocatalyst for the oxygen reduction reaction. Science China Materials, 2021, 64, 2987-2996.	6.3	16
547	Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS Applied Materials & Interfaces, 2021, , .	8.0	0
548	<i>In Situ</i> X-ray Absorption Spectroscopy of PtNi-Nanowire/Vulcan XC-72R under Oxygen Reduction Reaction in Alkaline Media. ACS Omega, 2021, 6, 17203-17216.	3.5	5

#	Article	IF	CITATIONS
549	Current progress of Pt-based ORR electrocatalysts for PEMFCs: An integrated view combining theory and experiment. Materials Today Physics, 2021, 19, 100406.	6.0	65
550	Bimetal Phthalocyanineâ€Modified Carbon Nanotubeâ€Based Bifunctional Catalysts for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 2662-2670.	3.4	34
551	On the deactivation mechanisms of MnO2 electrocatalyst during operation in rechargeable zinc-air batteries studied via density functional theory. Journal of Alloys and Compounds, 2021, 869, 159280.	5.5	17
552	Identifying Activity and Selectivity Trends for the Electrosynthesis of Hydrogen Peroxide via Oxygen Reduction on Nickel–Nitrogen–Carbon Catalysts. Journal of Physical Chemistry C, 2021, 125, 15830-15840.	3.1	8
553	Density Functional Theory and Machine Learning Description and Prediction of Oxygen Atom Chemisorption on Platinum Surfaces and Nanoparticles. ACS Omega, 2021, 6, 17424-17432.	3.5	9
555	Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chemical Reviews, 2021, 121, 10271-10366.	47.7	156
556	Porous Silicon Carbide (SiC): A Chance for Improving Catalysts or Just Another Active-Phase Carrier?. Chemical Reviews, 2021, 121, 10559-10665.	47.7	61
559	Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction. Nature Catalysis, 2021, 4, 615-622.	34.4	336
560	Î ³ -Fe2O3 clusters embedded in 1D porous N-doped carbon matrix as pH-universal electrocatalyst for enhanced oxygen reduction reaction. Chemical Engineering Journal, 2021, 415, 129033.	12.7	25
561	Conductive Metalâ€Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry - A European Journal, 2021, 27, 11482-11538.	3.3	25
562	Quasiâ€Paired Pt Atomic Sites on Mo ₂ C Promoting Selective Fourâ€Electron Oxygen Reduction. Advanced Science, 2021, 8, e2101344.	11.2	29
563	Engineering Carbon Materials for Electrochemical Oxygen Reduction Reactions. Advanced Energy Materials, 2021, 11, 2100695.	19.5	63
564	Cross-Sphere Electrode Reaction: The Case of Hydroxyl Desorption during the Oxygen Reduction Reaction on Pt(111) in Alkaline Media. Journal of Physical Chemistry Letters, 2021, 12, 6448-6456.	4.6	7
565	High-throughput screening of carbon-supported single metal atom catalysts for oxygen reduction reaction. Nano Research, 2022, 15, 1054-1060.	10.4	34
566	Electrochemically Induced Strain Evolution in Pt–Ni Alloy Nanoparticles Observed by Bragg Coherent Diffraction Imaging. Nano Letters, 2021, 21, 5945-5951.	9.1	14
567	Role of atomicity in the oxygen reduction reaction activity of platinum sub nanometer clusters: A global optimization study. Journal of Computational Chemistry, 2021, 42, 1944-1958.	3.3	4
568	Linear Correlation between Water Adsorption Energies and Volta Potential Differences for Metal/water Interfaces. Journal of Physical Chemistry Letters, 2021, 12, 7299-7304.	4.6	23
569	Rational Design of Singleâ€Atom Site Electrocatalysts: From Theoretical Understandings to Practical Applications. Advanced Materials, 2021, 33, e2008151.	21.0	175

#	Article	IF	CITATIONS
570	Engineering of Electron Affinity and Interfacial Charge Transfer of Graphene for Self-Powered Nonenzymatic Biosensor Applications. ACS Applied Materials & Interfaces, 2021, 13, 40731-40741.	8.0	26
571	Recent Advances in Electrode Design for Rechargeable Zinc–Air Batteries. Small Science, 2021, 1, 2100044.	9.9	47
572	Fundamental Understanding and Application of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â^î^} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy & Fuels, 2021, 35, 13585-13609.	5.1	113
573	Oxygen Reduction Reaction at Singleâ€Site Catalysts: A Combined Electrochemical Scanning Tunnelling Microscopy and DFT Investigation on Iron Octaethylporphyrin Chloride on HOPG**. ChemElectroChem, 2021, 8, 2825-2835.	3.4	11
574	Electrochemistry of the Silicon Oxide Dielectric Layer: Principles, Electrochemical Reactions, and Perspectives. Chemistry - an Asian Journal, 2021, 16, 3014-3025.	3.3	2
575	Was macht Hochentropieâ€Legierungen zu außergewöhnlichen Elektrokatalysateuren?. Angewandte Chemie, 2021, 133, 27098-27108.	2.0	8
576	Advanced Atomically Dispersed Metal–Nitrogen–Carbon Catalysts Toward Cathodic Oxygen Reduction in PEM Fuel Cells. Advanced Energy Materials, 2021, 11, 2101222.	19.5	109
577	What Makes Highâ€Entropy Alloys Exceptional Electrocatalysts?. Angewandte Chemie - International Edition, 2021, 60, 26894-26903.	13.8	145
578	Density Functional Theory for Electrocatalysis. Energy and Environmental Materials, 2022, 5, 157-185.	12.8	95
579	Designing efficient single-atomic catalysts for bifunctional oxygen electrocatalysis via a general two-step strategy. Applied Surface Science, 2021, 556, 149779.	6.1	10
580	Mesoscale Diffusion Enhancement of Carbon-Bowl-Shaped Nanoreactor toward High-Performance Electrochemical H ₂ O ₂ Production. ACS Applied Materials & Interfaces, 2021, 13, 39763-39771.	8.0	41
581	Recent Advances in Enhancing Oxygen Reduction Reaction Performance for Nonâ€Nobleâ€Metal Electrocatalysts Derived from Electrospinning. Energy Technology, 2021, 9, 2100301.	3.8	6
582	Surface Phosphorusâ€Induced CoO Coupling to Monolithic Carbon for Efficient Air Electrode of Quasiâ€Solidâ€State Zn–Air Batteries. Advanced Science, 2021, 8, e2101314.	11.2	51
583	Role of Reaction Intermediate Diffusion on the Performance of Platinum Electrodes in Solid Acid Fuel Cells. Catalysts, 2021, 11, 1065.	3.5	3
584	Ligand effect over gold nanocatalysts towards enhanced gas-phase oxidation of alcohols. Journal of Catalysis, 2021, 400, 274-282.	6.2	9
585	Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. Journal of Energy Chemistry, 2021, 63, 285-293.	12.9	15
586	The role of oxygen-permeable ionomer for polymer electrolyte fuel cells. Nature Communications, 2021, 12, 4956.	12.8	91
587	Bifunctional Oxygen Electrocatalysis on Mixed Metal Phthalocyanine-Modified Carbon Nanotubes Prepared via Pyrolysis. ACS Applied Materials & Interfaces, 2021, 13, 41507-41516.	8.0	65

ARTICLE IF CITATIONS Gold Nanoclusters as Electrocatalysts: Atomic Level Understanding from Fundamentals to 588 6.7 36 Applications. Chemistry of Materials, 2021, 33, 7595-7612. Activity and Mechanism Mapping of Photocatalytic NO2 Conversion on the Anatase TiO2(101) Surface. 589 4.6 Journal of Physical Chemistry Letters, 2021, 12, 7708-7716. On the Roles of Electron Transfer in Catalysis by Nanoclusters and Nanoparticles. Chemistry - A 590 3.3 8 European Journal, 2021, 27, 16291-16308. NiTe Monolayer: Two-Dimensional Metal with Superior Basal-Plane Activity for the Oxygen Reduction 3.1 Reaction. Journal of Physical Chemistry C, 2021, 125, 19164-19170. Atomic Structure-Free Representation of Active Motifs for Expedited Catalyst Discovery. Journal of 592 5.4 7 Chemical Information and Modeling, 2021, 61, 4514-4520. Recent Developments of Microenvironment Engineering of Singleâ€Atom Catalysts for Oxygen Reduction toward Desired Activity and Selectivity. Advanced Functional Materials, 2021, 31, 2103857. Pre-fixing defects in carbon framework for revealing the active sites of oxygen reduction reaction at 594 12.9 20 nitrogen-doped carbon nanotubes. Journal of Energy Chemistry, 2021, 63, 521-527. Atomic CoN3S1 sites for boosting oxygen reduction reaction via an atomic exchange strategy. Nano 10.4 9 Research, 2022, 15, 1803-1808. Laser-generated high entropy metallic glass nanoparticles as bifunctional electrocatalysts. Nano 596 10.4 36 Research, 2022, 15, 4807-4819. Multiâ€Sites Electrocatalysis in Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2106715. 14.9 128 Mechanism study of Single-Step synthesis of Fe(core)@Pt(shell) nanoparticles by sonochemistry. 598 3 8.2 Ultrasonics Sonochemistry, 2021, 77, 105679. Quantitative kinetic analysis on oxygen reduction reaction: A perspective. Nano Materials Science, 599 8.8 64 2021, 3, 313-318. Mechanistic insight into the active centers of single/dual-atom Ni/Fe-based oxygen electrocatalysts. 600 12.8 173 Nature Communications, 2021, 12, 5589. Rational design of Fe-N-C electrocatalysts for oxygen reduction reaction: From nanoparticles to single atoms. Nano Research, 2022, 15, 1753-1778. 10.4 44 Active Site Fluxional Restructuring as a New Paradigm in Triggering Reaction Activity for Nanocluster 602 15.6 17 Catalysis. Accounts of Chemical Research, 2021, 54, 3841-3849. Self-catalyzed growth of Zn/Co-N-C carbon nanotubes derived from metal-organic frameworks as efficient oxygen reduction catalysts for Zn-air battery. Science China Materials, 2022, 65, 653-662. Two-Dimensional Graphdiyne-Confined Platinum Catalyst for Hydrogen Evolution and Oxygen 604 8.0 15 Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2021, 13, 47541-47548. Research progress of MXene-based catalysts for electrochemical water-splitting and metal-air batteries. Energy Storage Materials, 2021, 43, 509-530.

#	Article	IF	CITATIONS
606	Understanding the geometric and electronic factors of PtNi bimetallic surfaces for efficient and selective catalytic hydrogenation of biomass-derived oxygenates. Journal of Energy Chemistry, 2021, 60, 16-24.	12.9	30
607	Modelling electrocatalytic reactions with a concerted treatment of multistep electron transfer kinetics and local reaction conditions. Journal of Physics Condensed Matter, 2021, 33, 504002.	1.8	15
608	Long-range order, short-range disorder: Engineering one-dimensional flow channel arrays with hierarchically porous reaction interfaces for electrocatalytic reduction of oxygen. Applied Catalysis B: Environmental, 2021, 293, 120199.	20.2	13
609	A Chemical Dealloying Approach for Pt Surface-enriched Pt3Co Alloy Nanoparticles as Oxygen Reduction Reaction Electrocatalysts. Chemical Research in Chinese Universities, 0, , 1.	2.6	1
610	Activation of Oxygen Reduction Reaction on Carbon Supported Niâ€Based Complexes. ChemistrySelect, 2021, 6, 9101-9111.	1.5	1
611	Template-assisted polymerization-pyrolysis derived mesoporous carbon anchored with Fe/Fe3C and Feâr NX species as efficient oxygen reduction catalysts for Zn-air battery. International Journal of Hydrogen Energy, 2021, 46, 37895-37906.	7.1	23
612	Bayesian Optimization of Highâ€Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angewandte Chemie, 2021, 133, 24346-24354.	2.0	22
613	TM(TM=Fe, Co, Ni)/N/O tri-doped Graphene Heterogeneous Electrocatalysts for Oxygen Reduction Reaction: A Theoretical Insight. International Journal of Electrochemical Science, 2021, 16, 210927.	1.3	0
614	Multifunctional Electrocatalysis on Single-Site Metal Catalysts: A Computational Perspective. Catalysts, 2021, 11, 1165.	3.5	11
615	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	21.0	64
616	Tuning Metal Elements in Open Frameworks for Efficient Oxygen Evolution and Oxygen Reduction Reaction Reaction Catalysts. ACS Applied Materials & amp; Interfaces, 2021, 13, 42715-42723.	8.0	17
617	Hierarchical N-doped carbon spheres anchored with cobalt nanocrystals and single atoms for oxygen reduction reaction. Nano Energy, 2021, 87, 106153.	16.0	76
618	Molecule Confined Isolated Metal Sites Enable the Electrocatalytic Synthesis of Hydrogen Peroxide. Advanced Materials, 2022, 34, e2104891.	21.0	42
619	Dimensional-Dependent Effects in Platinum Core–Shell-Based Catalysts for Fuel Cell Applications. ACS Applied Nano Materials, 2021, 4, 9697-9708.	5.0	13
620	Developing Proton-Conductive Metal Coordination Polymer as Highly Efficient Electrocatalyst toward Oxygen Reduction. Journal of Physical Chemistry Letters, 2021, 12, 9197-9204.	4.6	15
621	Integration of Morphology and Electronic Structure Modulation on Atomic Ironâ€Nitrogenâ€Carbon Catalysts for Highly Efficient Oxygen Reduction. Advanced Functional Materials, 2022, 32, 2108345.	14.9	61
622	MOF/PCP-based Electrocatalysts for the Oxygen Reduction Reaction. Electrochemical Energy Reviews, 2022, 5, 32-81.	25.5	47
623	Identifying Outstanding Transition-Metal-Alloy Heterogeneous Catalysts for the Oxygen Reduction and Evolution Reactions via Subgroup Discovery. Topics in Catalysis, 2022, 65, 196-206.	2.8	10

#	Article	IF	CITATIONS
624	Bayesian Optimization of Highâ€Entropy Alloy Compositions for Electrocatalytic Oxygen Reduction**. Angewandte Chemie - International Edition, 2021, 60, 24144-24152.	13.8	61
625	Pt Nanoparticles Dispersed on Ni/C Nanoflowers as Stable Electrocatalysts for Methanol Oxidation and Oxygen Reduction. ACS Applied Nano Materials, 2021, 4, 10960-10968.	5.0	5
626	The rate-determining term of electrocatalytic reactions with first-order kinetics. Electrochimica Acta, 2021, 393, 139019.	5.2	25
627	Co/CoOx heterojunctions encapsulated N-doped carbon sheets via a dual-template-guided strategy as efficient electrocatalysts for rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2021, 599, 46-57.	9.4	41
628	Grand canonical ensemble approach to electrochemical thermodynamics, kinetics, and model Hamiltonians. Current Opinion in Electrochemistry, 2021, 29, 100749.	4.8	31
629	Nanostructured electrodes for electrocatalytic advanced oxidation processes: From materials preparation to mechanisms understanding and wastewater treatment applications. Applied Catalysis B: Environmental, 2021, 296, 120332.	20.2	104
630	Fe, P, N- and FeP, N-doped carbon hollow nanospheres: A comparison study toward oxygen reduction reaction electrocatalysts. Journal of Colloid and Interface Science, 2021, 602, 376-383.	9.4	27
631	Density functional theory–based design of a Pt-skinned PtNi catalyst for the oxygen reduction reaction in fuel cells. Applied Surface Science, 2021, 565, 150518.	6.1	13
632	Electrochemical catalytic mechanism of single transition metal atom embedded BC3 monolayer for oxygen reduction and evolution reactions. Chemical Engineering Journal, 2021, 425, 130631.	12.7	18
633	Harnessing selective and durable electrosynthesis of H2O2 over dual-defective yolk-shell carbon nanosphere toward on-site pollutant degradation. Applied Catalysis B: Environmental, 2021, 298, 120572.	20.2	29
634	Recent progress of electrospun porous carbon-based nanofibers for oxygen electrocatalysis. Materials Today Energy, 2021, 22, 100850.	4.7	18
635	Revealing the role of mo doping in promoting oxygen reduction reaction performance of Pt3Co nanowires. Journal of Energy Chemistry, 2022, 66, 16-23.	12.9	36
636	Enhanced bifunctional catalytic activities of N-doped graphene by Ni in a 3D trimodal nanoporous nanotubular network and its ultralong cycling performance in Zn-air batteries. Journal of Energy Chemistry, 2022, 66, 466-473.	12.9	18
637	Recent progress of electrocatalysts for oxygen reduction in fuel cells. Journal of Colloid and Interface Science, 2022, 607, 791-815.	9.4	55
638	Advanced electrocatalysts with Dual-metal doped carbon Materials: Achievements and challenges. Chemical Engineering Journal, 2022, 428, 132558.	12.7	28
639	One-pot synthesis of FeNxC as efficient catalyst for high-performance zinc-air battery. Journal of Energy Chemistry, 2022, 66, 100-106.	12.9	28
640	Integrating H2O2 generation from electrochemical oxygen reduction with the selective oxidation of organics in a dual-membrane reactor. Chemical Engineering Journal, 2022, 428, 131534.	12.7	16
641	First principles study on the oxygen reduction reaction of Ir@Pt core-shell structure. Chemical Physics, 2022, 552, 111356.	1.9	3

	ΟΙΤΑΤΙΟΝ	CITATION REPORT	
#	Article	IF	Citations
642	Electrocatalysis using nanomaterials. Frontiers of Nanoscience, 2021, 18, 343-420.	0.6	2
643	Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catalysis, 2021, 11, 1456-1463.	11.2	18
644	A sandwich-like Ga ₂ FeS ₄ -supported single metal atom as a promising bifunctional electrocatalyst for overall water splitting. Journal of Materials Chemistry A, 2021, 9, 18594-18603.	10.3	4
645	On the Pathways of N-Doped Carbon Materials Active Sites During Oxygen Reduction Reaction. SSRN Electronic Journal, 0, , .	0.4	0
646	Oxygen Reduction Reaction of Third Element-Modified Pt/Pd(111): Effect of Atomically Controlled Ir Locations on the Activity and Durability. ACS Catalysis, 2021, 11, 1554-1562.	11.2	12
647	Tuning the electrochemical and catalytic ORR performance of C ₆₀ by its encapsulation in ZIF-8: a solid-state analogue of dilute fullerene solution. Materials Chemistry Frontiers, 2021, 5, 7654-7665.	5.9	9
648	Metal oxide-doped activated carbons from bakery waste and coffee grounds for application in supercapacitors. Materials Science for Energy Technologies, 2021, 4, 69-80.	1.8	12
649	Assessing the oxygen reduction reaction by a 2-electron mechanism on ceria surfaces. Physical Chemistry Chemical Physics, 2021, 23, 18580-18587.	2.8	7
650	Ultralow non-noble metal loaded MOF derived bi-functional electrocatalysts for the oxygen evolution and reduction reactions. Journal of Materials Chemistry A, 2021, 9, 9319-9326.	10.3	26
651	Mechanochemically Synthetized PAN-Based Co-N-Doped Carbon Materials as Electrocatalyst for Oxygen Evolution Reaction. Nanomaterials, 2021, 11, 290.	4.1	10
652	Folic Acid Coordinated Cu–Co Site N-Doped Carbon Nanosheets for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 3949-3958.	8.0	29
653	Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Science China Materials, 2021, 64, 1671-1678.	6.3	18
654	Wetting-regulated gas-involving (photo)electrocatalysis: biomimetics in energy conversion. Chemical Society Reviews, 2021, 50, 10674-10699.	38.1	63
655	Engineering the structure of ZIF-derived catalysts by revealing the critical role of temperature for enhanced oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 18515-18525.	10.3	56
656	Activating transition metal dichalcogenide monolayers as efficient electrocatalysts for the oxygen reduction reaction <i>via</i> single atom doping. Journal of Materials Chemistry C, 2021, 9, 6040-6050.	5.5	35
657	Preparation of zero valence Pd nanoparticles with ultra-efficient electrocatalytic activity for ORR. Journal of Materials Chemistry A, 2021, 9, 14507-14514.	10.3	38
658	Pyrolyzed M–N _x catalysts for oxygen reduction reaction: progress and prospects. Energy and Environmental Science, 2021, 14, 2158-2185.	30.8	170
659	Density Functional Theory Study of Oxygen Reduction on Graphene and Platinum Surfaces of Pt–Graphene Hybrids. ACS Applied Nano Materials, 2021, 4, 1067-1075.	5.0	11

#	Article	IF	CITATIONS
660	Improved Rate for the Oxygen Reduction Reaction in a Sulfuric Acid Electrolyte using a Pt(111) Surface Modified with Melamine. ACS Applied Materials & Interfaces, 2021, 13, 3369-3376.	8.0	29
661	Tuning the electronic structure of Ag-Pd alloys to enhance performance for alkaline oxygen reduction. Nature Communications, 2021, 12, 620.	12.8	107
662	Cu Nanoparticles Embedded in <scp>Nâ€Doped</scp> Carbon Materials for Oxygen Reduction Reaction. Chinese Journal of Chemistry, 2020, 38, 941-946.	4.9	42
663	Bimetallic ZnCo zeolitic imidazolate framework/polypyrrole-polyaniline derived Co/N-doped carbon for oxygen reduction reaction. International Journal of Hydrogen Energy, 2020, 45, 15453-15464.	7.1	27
664	Low-temperature synthesis of PdO-CeO2/C toward efficient oxygen reduction reaction. Materials Today Energy, 2020, 18, 100557.	4.7	11
665	Nickel-introduced structurally ordered PtCuNi/C as high performance electrocatalyst for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 905-911.	4.4	11
666	Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds. Accounts of Chemical Research, 2021, 54, 1662-1672.	15.6	22
667	Single-Iron Supported on Defective Graphene as Efficient Catalysts for Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2020, 124, 13283-13290.	3.1	28
668	Oxygen Coordination on Fe–N–C to Boost Oxygen Reduction Catalysis. Journal of Physical Chemistry Letters, 2021, 12, 517-524.	4.6	20
669	Synthesis of Structurally Stable and Highly Active PtCo ₃ Ordered Nanoparticles through an Easily Operated Strategy for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2021, 13, 827-835.	8.0	13
670	Hollow and mesoporous lipstick-like nitrogen-doped carbon with incremented catalytic activity for oxygen reduction reaction. Nanotechnology, 2021, 32, 095401.	2.6	3
671	Grand Canonical Rate Theory for Electrochemical and Electrocatalytic Systems I: General Formulation and Proton-coupled Electron Transfer Reactions. Journal of the Electrochemical Society, 2020, 167, 116518.	2.9	39
672	Hexanediamine Monolayer Electrografted at Glassy Carbon Electrodes Enhances Oxygen Reduction Reaction in Aqueous Neutral Media. Journal of the Electrochemical Society, 2020, 167, 166508.	2.9	10
673	Superior Fe _{<i>x</i>} N electrocatalyst derived from 1,1′-diacetylferrocene for oxygen reduction reaction in alkaline and acidic media. Nanotechnology Reviews, 2020, 9, 843-852.	5.8	8
674	Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction. Research, 2020, 2020, 9512763.	5.7	45
675	K ⁺ , Ni and carbon co-modification promoted two-electron O ₂ reduction for photocatalytic H ₂ O ₂ production by crystalline carbon nitride. Journal of Materials Chemistry A, 2021, 9, 24056-24063.	10.3	30
676	Water dissociation and association on mirror twin boundaries in two-dimensional MoSe ₂ : insights from density functional theory calculations. Nanoscale Advances, 2021, 3, 6992-7001.	4.6	4
677	<i>Ab initio</i> molecular dynamics with enhanced sampling in heterogeneous catalysis. Catalysis Science and Technology, 2022, 12, 12-37.	4.1	29

#	ARTICLE	IF	Citations
678	Surface and interface engineering of hollow carbon sphere-based electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 25706-25730.	10.3	15
679	Recent advances in the design of a high performance metal–nitrogen–carbon catalyst for the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 22218-22247.	10.3	66
680	Modeling Hydrogen Adsorption on a Gold Nanoparticle Applied on a Graphite Substrate with Various Defects. Russian Journal of Physical Chemistry B, 2021, 15, 732-739.	1.3	6
681	Acid-Stable and Active M–N–C Catalysts for the Oxygen Reduction Reaction: The Role of Local Structure. ACS Catalysis, 2021, 11, 13102-13118.	11.2	59
682	Breaking the Linear Scaling Relationship by a Proton Donor for Improving Electrocatalytic Oxygen Reduction Kinetics. ACS Catalysis, 2021, 11, 12712-12720.	11.2	4
683	Recent Progress of Metal Organic Frameworksâ€Based Electrocatalysts for Hydrogen Evolution, Oxygen Evolution, and Oxygen Reduction Reaction. Energy and Environmental Materials, 2022, 5, 1084-1102.	12.8	24
684	Single-Atom Catalysts: Advances and Challenges in Metal-Support Interactions for Enhanced Electrocatalysis. Electrochemical Energy Reviews, 2022, 5, 145-186.	25.5	86
686	Criterion for finding the optimal electrocatalyst at any overpotential. Electrochimica Acta, 2021, 400, 139413.	5.2	6
687	Ordered Mesoporous Carbon Confined Highly Dispersed PtCo Alloy for the Oxygen Reduction Reaction: The Effect of Structure and Composition on Performance. Industrial & Engineering Chemistry Research, 2021, 60, 14728-14736.	3.7	18
688	First-Principles Studies on Electrocatalytic Activity of Novel Two-Dimensional MA ₂ Z ₄ Monolayers toward Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2021, 125, 22581-22590.	3.1	27
689	The interface is a tunable dimension in electricityâ€driven organic synthesis. Natural Sciences, 2021, 1, e20210036.	2.1	2
690	Lowâ€Coordinated CoNC on Oxygenated Graphene for Efficient Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2022, 32, 2106886.	14.9	97
691	Edge-hosted Fe-N3 sites on a multiscale porous carbon framework combining high intrinsic activity with efficient mass transport for oxygen reduction. Chem Catalysis, 2021, 1, 1291-1307.	6.1	86
692	Bimetallic alloys encapsulated in fullerenes as efficient oxygen reduction or oxygen evolution reaction catalysts: A density functional theory study. Journal of Alloys and Compounds, 2022, 894, 162508.	5.5	20
693	Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. Journal of Energy Chemistry, 2022, 67, 432-450.	12.9	66
694	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	104
695	High-Performance, Stable, and Flexible Direct Methanol Fuel Cell Based on a Pre-swelling Kalium Polyacrylate Gel Electrolyte and Single-Atom Cathode Catalyst. ACS Sustainable Chemistry and Engineering, 2021, 9, 15138-15146.	6.7	9
696	Durable and Selective Electrochemical H ₂ O ₂ Synthesis under a Large Current Enabled by the Cathode with Highly Hydrophobic Three-Phase Architecture. ACS Catalysis, 2021, 11, 13797-13808.	11.2	59

#	ARTICLE	IF	Citations
697	Nickel Iron Phosphide/Phosphate as an Oxygen Bifunctional Electrocatalyst for High-Power-Density Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2021, 13, 52487-52497.	8.0	28
698	Highly wrinkled palladium nanosheets as advanced electrocatalysts for the oxygen reduction reaction in acidic medium. Chemical Engineering Journal, 2022, 431, 133237.	12.7	33
699	Tailoring the Electronic Structure of an Atomically Dispersed Zinc Electrocatalyst: Coordination Environment Regulation for High Selectivity Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	9
700	Outstanding Oxygen Reduction Reaction Catalytic Performance of In–PtNi Octahedral Nanoparticles Designed via Computational Dopant Screening. Chemistry of Materials, 2021, 33, 8895-8903.	6.7	17
701	Anomalous Size Effect of Pt Ultrathin Nanowires on Oxygen Reduction Reaction. Nano Letters, 2021, 21, 9354-9360.	9.1	43
702	Large Vibrational Free Energy of Tightly Bonded Small Chemicals on Metal Surfaces. Applied Surface Science, 2021, 575, 151778.	6.1	1
703	A High-Pressure System for Studying Oxygen Reduction During Pt Nanoparticle Collisions. Journal of the Electrochemical Society, 2020, 167, 166507.	2.9	9
704	Ultrafine rhodium selenides enable efficient oxygen reduction reaction catalysis. Sustainable Energy and Fuels, 2021, 5, 6197-6201.	4.9	4
705	Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–N _{<i>x</i>} -embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 5971-5980.	10.3	12
706	Boosting oxygen-reduction catalysis over mononuclear CuN2+2 moiety for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 430, 133105.	12.7	12
707	Achieving flexible large-scale reactivity tuning by controlling the phase, thickness and support of two-dimensional ZnO. Chemical Science, 2021, 12, 15284-15290.	7.4	3
708	Differences in the Electrochemical Performance of Pt-Based Catalysts Used for Polymer Electrolyte Membrane Fuel Cells in Liquid Half- and Full-Cells. Chemical Reviews, 2021, 121, 15075-15140.	47.7	104
709	Pt-Free Metal Nanocatalysts for the Oxygen Reduction Reaction Combining Experiment and Theory: An Overview. Molecules, 2021, 26, 6689.	3.8	11
710	A potential and pH inclusive microkinetic model for hydrogen reactions on Pt surface. Chem Catalysis, 2021, 1, 1331-1345.	6.1	16
711	Boron Coordination Effect in Niâ^'N _x Doped Graphene Catalysts on the ORR Performance Based on DFT Calculations. ChemPhysChem, 2022, 23, .	2.1	7
712	Early Transition-Metal-Based Binary Oxide/Nitride for Efficient Electrocatalytic Hydrogen Evolution from Saline Water in Different pH Environments. ACS Applied Materials & Interfaces, 2021, 13, 53702-53716.	8.0	22
713	Sol-gel pore-sealing strategy imparts tailored electronic structure to the atomically dispersed Ru sites for efficient oxygen reduction reaction. Energy Storage Materials, 2022, 44, 469-476.	18.0	26
714	Scanning probe microscopy for electrocatalysis. Matter, 2021, 4, 3483-3514.	10.0	17

#	Article	IF	CITATIONS
715	Complex singleâ€molecule and molecular scale entities in electrochemical environments: Mechanisms and challenges. Electrochemical Science Advances, 2022, 2, e2100157.	2.8	1
716	Interface engineering of iron sulfide/tungsten nitride heterostructure catalyst for boosting oxygen reduction activity. Chemical Engineering Journal, 2022, 431, 133274.	12.7	8
718	Carbon-supported Pd-Ir nanoalloys as cathodic catalyst for oxygen reduction reaction. Nano Express, 2020, 1, 030024.	2.4	2
719	Oxygen Reduction Reaction Catalyzed by Carbon-Supported Platinum Few-Atom Clusters: Significant Enhancement by Doping of Atomic Cobalt. Research, 2020, 2020, 9167829.	5.7	18
720	Catalytic Air Oxidation of Refractory Organics in Wastewater. Current Organocatalysis, 2020, 7, 179-198.	0.5	4
721	Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 15802-15820.	7.4	28
722	Electrocatalysts: selectivity and utilization. , 2022, , 55-70.		1
723	Highly-dispersed and high-metal-density electrocatalysts on carbon supports for the oxygen reduction reaction: from nanoparticles to atomic-level architectures. Materials Advances, 2022, 3, 779-809.	5.4	45
724	Optimization of pH-universal O2 reduction electrocatalysis by precise control over structural variables via basic bathing. Applied Catalysis B: Environmental, 2022, 303, 120912.	20.2	18
725	Honeycomb-like phosphorus doped nickel/carbon: A highly efficient electrocatalyst for oxygen reduction to H2O2. Chemical Engineering Journal, 2022, 433, 133651.	12.7	15
726	Optimizing Microenvironment of Asymmetric N,Sâ€Coordinated Singleâ€Atom Fe via Axial Fifth Coordination toward Efficient Oxygen Electroreduction. Small, 2022, 18, e2105387.	10.0	72
727	Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell. Membranes, 2021, 11, 879.	3.0	25
728	Screening of catalytic oxygen reduction reaction activity of 2, 9-dihalo-1, 10-phenanthroline metal complexes: The role of transition metals and halogen substitution. Journal of Colloid and Interface Science, 2022, 609, 130-138.	9.4	17
729	Understanding the activity origin of oxygen-doped carbon materials in catalyzing the two-electron oxygen reduction reaction towards hydrogen peroxide generation. Journal of Colloid and Interface Science, 2022, 610, 934-943.	9.4	15
730	Insights into the pH-dependent Behavior of N-Doped Carbons for the Oxygen Reduction Reaction by First-Principles Calculations. Journal of Physical Chemistry C, 2021, 125, 26429-26436.	3.1	3
731	BiVO ₄ Microparticles Decorated with Cu@Au Core-Shell Nanostructures for Photocatalytic H ₂ O ₂ Production. ACS Applied Nano Materials, 2021, 4, 13158-13166.	5.0	21
732	Design of Co Nanoparticlesâ€Encapsulated by Boron and Nitrogen Coâ€Doped Carbon Nanosheets as Highly Efficient Electrocatalyst for Oxygen Reduction Reaction. Advanced Materials Interfaces, 0, , 2101454.	3.7	4
733	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26

#	Article	IF	CITATIONS
734	Hyper-Crosslinked Polymer-Derived Nitrogen-Doped Hierarchical Porous Carbon as Metal-Free Electrocatalysts for High-Efficiency Oxygen Reduction. Energy & Fuels, 2021, 35, 19614-19623.	5.1	3
735	Tuning oxygen-containing groups of pyrene for high hydrogen peroxide production selectivity. Applied Catalysis B: Environmental, 2022, 304, 120908.	20.2	27
736	On the Correlation between the Oxygen in Hydrogen Content and the Catalytic Activity of Cathode Catalysts in PEM Water Electrolysis. Journal of the Electrochemical Society, 0, , .	2.9	2
737	Effects of hydronium and hydroxide ion/group on oxygen reduction reaction electrocatalytic activities of N-doped graphene quantum dots. Molecular Catalysis, 2022, 517, 112009.	2.0	7
738	The ORR electron transfer kinetics control via Co-N and graphitic N sites in cobalt single atom catalysts in alkaline and acidic media. Journal of Energy Chemistry, 2022, 68, 184-194.	12.9	54
739	Local Environment Determined Reactant Adsorption Configuration for Enhanced Electrocatalytic Acetone Hydrogenation to Propane. Angewandte Chemie, 0, , .	2.0	4
740	Oxygen Reduction Activity of Bâ†N ontaining Organic Molecule Affected by Asymmetric Regulation. Small, 2022, 18, e2105524.	10.0	8
741	Interfacial Engineering of Metal/Metal Oxide Heterojunctions toward Oxygen Reduction and Evolution Reactions. ChemPlusChem, 2021, 86, 1586-1601.	2.8	14
742	Electrochemical two-electron O ₂ reduction reaction toward H ₂ O ₂ production: using cobalt porphyrin decorated carbon nanotubes as a nanohybrid catalyst. Journal of Materials Chemistry A, 2021, 9, 26019-26027.	10.3	55
743	Elaborating Nitrogen and Oxygen Dopants Configurations within Graphene Electrocatalysts for Two-Electron Oxygen Reduction. , 2022, 4, 320-328.		15
744	Revisiting the Link between Magnetic Properties and Chemisorption at Graphene Nanoribbon Zigzag Edge. Journal of Chemical Physics, 2022, 156, 044706.	3.0	1
745	Activity origin of boron doped carbon cluster for thermal catalytic oxidation: Coupling effects of dopants and edges. Journal of Colloid and Interface Science, 2022, 613, 47-56.	9.4	11
746	Nanoscale Design of Pdâ€Based Electrocatalysts for Oxygen Reduction Reaction Enhancement in Alkaline Media. Small Structures, 2022, 3, .	12.0	40
747	Identifying the impact of the covalent-bonded carbon matrix to FeN4 sites for acidic oxygen reduction. Nature Communications, 2022, 13, 57.	12.8	67
748	Voltammetry in sheep's blood: Membrane-free amperometric measurement of O2 concentration. Talanta, 2022, 239, 123127.	5.5	2
749	Structurally-controlled FeNi LDH/CNTs electro-Fenton membrane for in-situ electro-generation and activation of hydroxyl radicals toward organic micropollutant treatment. Chemical Engineering Journal, 2022, 432, 134436.	12.7	25
750	Interfacial engineered PdRu/C with robust poison tolerance for oxygen reduction reaction and zinc-air battery. Journal of Alloys and Compounds, 2022, 896, 163112.	5.5	3
751	Surfactant-assisted implantation strategy for facile construction of Pt-based hybrid electrocatalyst to accelerate oxygen reduction reaction. Materials Today Energy, 2022, 24, 100919.	4.7	6

#	Article	IF	Citations
752	Engineering Gd2O3-Ni heterostructure for efficient oxygen reduction electrocatalysis via the electronic reconfiguration and adsorption optimization of intermediates. Chemical Engineering Journal, 2022, 433, 134597.	12.7	13
753	Boosting hydrogen evolution activity of transition meta-nitrogen embedded graphene through introducing secondary transition metal. Surfaces and Interfaces, 2022, 29, 101714.	3.0	1
754	On the deactivation of N-doped carbon materials active sites during oxygen reduction reaction. Carbon, 2022, 189, 548-560.	10.3	23
755	Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Topics in Catalysis, 2022, 65, 6-39.	2.8	27
756	Au–Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature, 2022, 603, 271-275.	27.8	114
757	Domainâ€Confined Etching Strategy to Regulate Defective Sites in Carbon for Highâ€Efficiency Electrocatalytic Oxygen Reduction. Advanced Functional Materials, 2022, 32, .	14.9	33
758	Edge-segregated ternary Pd–Pt–Ni spiral nanosheets as high-performance bifunctional oxygen redox electrocatalysts for rechargeable zinc–air batteries. Journal of Materials Chemistry A, 2022, 10, 3808-3817.	10.3	17
759	Overcoming Hurdles in Oxygen Evolution Catalyst Discovery via Codesign. Chemistry of Materials, 2022, 34, 899-910.	6.7	17
760	Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy and Environmental Science, 2022, 15, 1172-1182.	30.8	37
761	Synthesis and Characterization of Plant Derived Copper Oxide Nanoparticles and Their Application towards Oxygen Reduction Reaction. ChemistrySelect, 2022, 7, .	1.5	0
762	Recycling and valorization of LDPE: direct transformation into highly ordered doped-carbon materials and their application as electro-catalysts for the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	4.1	3
763	Revisiting catalytic performance of supported metal dimers for oxygen reduction reaction via magnetic coupling from first principles. , 2022, 1, 100031.		31
764	In‣itu Silica Xerogel Assisted Facile Synthesis of Feâ€N Catalysts with Dense Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, e2104934.	10.0	25
765	Catalyst overcoating engineering towards high-performance electrocatalysis. Chemical Society Reviews, 2022, 51, 188-236.	38.1	53
766	Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Pt _{<i>n</i>} (<i>n</i> = 3–9). Catalysis Science and Technology, 2022, 12, 1400-1407.	4.1	6
767	Improving the intrinsic activity of electrocatalysts for sustainable energy conversion: where are we and where can we go?. Chemical Science, 2021, 13, 14-26.	7.4	45
768	Using Palladium and Gold Palladium Nanoparticles Decorated with Molybdenum Oxide for Versatile Hydrogen Peroxide Electroproduction on Graphene Nanoribbons. ACS Applied Materials & Interfaces, 2022, 14, 6777-6793.	8.0	13
769	Synergistic Effect of Coordination Fields and Hydrosolvents on the Single-Atom Catalytic Property in H ₂ O ₂ Synthesis: A Density Functional Theory Study. Journal of Physical Chemistry C 2022 126 2349-2364	3.1	9

#	Article	IF	CITATIONS
770	Effects of Surface Structures and Hydrophobic Species on the Oxygen Reduction Reaction Activity of Pt3Fe Single-Crystal Electrodes. Electrocatalysis, 0, , .	3.0	5
771	Hollow structured Zn0.76Co0.24S–Co9S8 composite with two-phase synergistic effect as bifunctional catalysts. International Journal of Hydrogen Energy, 2022, 47, 8811-8819.	7.1	8
772	Deciphering the Precursor–Performance Relationship of Singleâ€Atom Iron Oxygen Electroreduction Catalysts via Isomer Engineering. Small, 2022, 18, e2106122.	10.0	9
773	Carbon-Encapsulated Cobalt Phosphide Catalyst for Efficient Electrochemical Synthesis of Hydrogen Peroxide. Journal of the Electrochemical Society, 2022, 169, 024509.	2.9	1
774	Heteroatom-doped nanomaterials/core–shell nanostructure based electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2022, 10, 987-1021.	10.3	24
775	Toward Excellence of Electrocatalyst Design by Emerging Descriptorâ€Oriented Machine Learning. Advanced Functional Materials, 2022, 32, .	14.9	43
776	Spiers Memorial Lecture. Next generation nanoelectrochemistry: the fundamental advances needed for applications. Faraday Discussions, 2021, 233, 10-32.	3.2	12
777	Insights into the Determining Effect of Carbon Support Properties on Anchoring Active Sites in Fe–N–C Catalysts toward the Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 1601-1613.	11.2	39
778	Structural effects of the oxygen reduction reaction on the high index planes of Pt3Fe. Electrochemistry Communications, 2022, 136, 107235.	4.7	5
779	Electrogenetic Signal Transmission and Propagation in Coculture to Guide Production of a Small Molecule, Tyrosine. ACS Synthetic Biology, 2022, 11, 877-887.	3.8	9
780	Hydrogen Peroxide Production from Water Oxidation on a CuWO ₄ Anode in Oxygen-Deficient Conditions for Water Decontamination. ACS Applied Materials & Interfaces, 2022, 14, 7878-7887.	8.0	14
781	Theoretical investigation on the Ni atom-pair supported by N-doped graphene for the oxygen reduction reaction. Computational and Theoretical Chemistry, 2022, 1209, 113598.	2.5	4
782	Activity volcano plots for the oxygen reduction reaction using FeN4 complexes: From reported experimental data to the electrochemical meaning. Current Opinion in Electrochemistry, 2022, 32, 100923.	4.8	12
783	Tuning Twoâ€Electron Oxygenâ€Reduction Pathways for H ₂ O ₂ Electrosynthesis via Engineering Atomically Dispersed Single Metal Site Catalysts. Advanced Materials, 2022, 34, e2107954.	21.0	84
784	Uncovering electrocatalytic conversion mechanisms from Li2S2 to Li2S: Generalization of computational hydrogen electrode. Energy Storage Materials, 2022, 47, 327-335.	18.0	22
785	Electrocatalysis in Alkaline Media and Alkaline Membrane-Based Energy Technologies. Chemical Reviews, 2022, 122, 6117-6321.	47.7	195
786	Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nature Communications, 2022, 13, 685.	12.8	82
787	Twoâ€Dimensional Dirac Nodal Line Carbon Nitride to Anchor Singleâ€Atom Catalyst for Oxygen Reduction Reaction. ChemSusChem, 2022, 15, e202102537.	6.8	9

#	Article	IF	Citations
788	Enhancement of selectivity towards the synthesis of hydrogen peroxide by dimensional effect in mesoporous carbon. Microporous and Mesoporous Materials, 2022, 333, 111741.	4.4	2
789	Complexes of metals with organotellurium compounds and nanosized metal tellurides for catalysis, electrocatalysis and photocatalysis. Coordination Chemistry Reviews, 2022, 459, 214406.	18.8	27
790	Edge Effect Promotes Graphene-Confining Single-Atom Co–N ₄ and Rh–N ₄ for Bifunctional Oxygen Electrocatalysis. Journal of Physical Chemistry C, 2022, 126, 30-39.	3.1	17
791	Electrochemical Hydrogen Peroxide Synthesis from Selective Oxygen Reduction over Metal Selenide Catalysts. Nano Letters, 2022, 22, 1257-1264.	9.1	33
792	Uncovering Electrocatalytic Conversion Mechanisms from Li ₂ S ₂ to Li ₂ S: Generalization of Computational Hydrogen Electrode. SSRN Electronic Journal, 0, , .	0.4	0
793	Revealing the structure–activity relationship in woven covalent organic frameworks for the electrocatalytic oxygen reduction reaction. Nanoscale, 2022, 14, 6126-6132.	5.6	10
794	Pt- and Pd-modified transition metal nitride catalysts for the hydrogen evolution reaction. Physical Chemistry Chemical Physics, 2022, 24, 12149-12157.	2.8	9
795	Functionalized Graphitic Carbon Nitrides for Photocatalytic H ₂ 0 ₂ Production: Desired Properties Leading to Rational Catalyst Design. KONA Powder and Particle Journal, 2023, 40, 124-148.	1.7	2
796	Ternary Pdnimo Alloy as Bifunctional Nanocatalysts for Oxygen Reduction Reaction and Hydrogen Revolution Reaction. SSRN Electronic Journal, 0, , .	0.4	0
797	Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization. Journal of Materials Chemistry A, 2022, 10, 9150-9160.	10.3	25
798	Nickel Single Atoms Anchored on Ultrathin Carbon Nitride for Selective Hydrogen Peroxide Generation with Enhanced Photocatalytic Activity. SSRN Electronic Journal, 0, , .	0.4	0
799	Electronic Regulation of ZnCo Dualâ€Atomic Active Sites Entrapped in 1D@2D Hierarchical Nâ€Doped Carbon for Efficient Synergistic Catalysis of Oxygen Reduction in Zn–Air Battery. Small, 2022, 18, e2107141.	10.0	36
800	Carbon based electrocatalysts for selective hydrogen peroxide conversion. New Carbon Materials, 2022, 37, 223-236.	6.1	7
801	Electrocatalysts for the Oxygen Reduction Reaction: From Bimetallic Platinum Alloys to Complex Solid Solutions. ChemEngineering, 2022, 6, 19.	2.4	5
802	Tuning Nitrate Electroreduction Activity via an Equilibrium Adsorption Strategy: A Computational Study. Journal of Physical Chemistry Letters, 2022, 13, 1726-1733.	4.6	25
803	Stability and Activity of Cobalt Antimonate for Oxygen Reduction in Strong Acid. ACS Energy Letters, 2022, 7, 993-1000.	17.4	21
805	A 2D covalent organic framework as a metal-free electrode towards electrochemical oxygen reduction reaction. Materials Today: Proceedings, 2022, 57, 228-233.	1.8	4
806	Molecular-Scale Manipulation of Layer Sequence in Heteroassembled Nanosheet Films toward Oxygen Evolution Electrocatalysts. ACS Nano, 2022, 16, 4028-4040.	14.6	29

#	Article	IF	CITATIONS
807	Enhanced Electrochemical O ₂ â€toâ€H ₂ O ₂ Synthesis Via Cuâ€Pb Synergistic Interplay. Small, 2022, 18, e2106534.	10.0	7
808	Second-Order Active-Space Embedding Theory. Journal of Chemical Theory and Computation, 2022, 18, 1527-1541.	5.3	6
809	Identification of Catalytic Active Sites for Durable Proton Exchange Membrane Fuel Cell: Catalytic Degradation and Poisoning Perspectives. Small, 2022, 18, e2106279.	10.0	25
810	Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Communications Chemistry, 2022, 5, .	4.5	33
811	Enhancing Oxygen Reduction Reaction Activity Using Single Atom Catalyst Supported on Tantalum Pentoxide. ChemCatChem, 0, , .	3.7	1
812	Short-range order in amorphous nickel oxide nanosheets enables selective and efficient electrochemical hydrogen peroxide production. Cell Reports Physical Science, 2022, 3, 100788.	5.6	12
813	Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer. Chemical Reviews, 2022, 122, 10599-10650.	47.7	83
814	Stress Regulation of the Oxygen Reduction Reaction on a Pt (100) Surface Using First Principles Calculations. Chemistry Letters, 2022, 51, 566-569.	1.3	1
815	Hollow Capsule NiCo ₂ NS Prepared by Selfâ€Sacrificing Template Method for Highâ€Efficiency Bifunctional Catalyst and Its Application in Znâ€Air Battery. Chemistry - A European Journal, 2022, 28, .	3.3	4
816	Spatial-five coordination promotes the high efficiency of CoN4 moiety in graphene-based bilayer for oxygen reduction electrocatalysis: A density functional theory study. Chinese Journal of Chemical Engineering, 2023, 54, 106-113.	3.5	0
817	A new MnxOy/carbon nanorods derived from bimetallic Zn/Mn metal–organic framework as an efficient oxygen reduction reaction electrocatalyst for alkaline Zn-Air batteries. Journal of Solid State Electrochemistry, 2022, 26, 1163-1173.	2.5	3
818	Facet-Defined Strain-Free Spinel Oxide for Oxygen Reduction. Nano Letters, 2022, 22, 3636-3644.	9.1	3
819	Microscopic EDL structures and charge–potential relation on stepped platinum surface: Insights from the <i>ab initio</i> molecular dynamics simulations. Journal of Chemical Physics, 2022, 156, 104701.	3.0	12
820	Tailoring 2-electron oxygen reduction reaction selectivity on h-BN-based single-atom catalysts from superoxide dismutase: A DFT investigation. Applied Surface Science, 2022, 592, 153233.	6.1	18
821	Computational Screening of Single-Metal-Atom Embedded Graphene-Based Electrocatalysts Stabilized by Heteroatoms. Frontiers in Chemistry, 2022, 10, 873609.	3.6	6
822	First-Row Transition Metal Antimonates for the Oxygen Reduction Reaction. ACS Nano, 2022, 16, 6334-6348.	14.6	23
823	High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation. Nano-Micro Letters, 2022, 14, 94.	27.0	79
824	Highly Active and Renewable Catalytic Electrodes for Two-Electron Oxygen Reduction Reaction. Langmuir, 2022, 38, 4785-4792.	3.5	7

#	Article	IF	CITATIONS
825	Designing Eco-functional Redox Conversions Integrated in Environmental Photo(electro)catalysis. ACS ES&T Engineering, 2022, 2, 1116-1129.	7.6	14
826	Accounting for Dispersion Effects in the DFT Framework of Electrocatalysis: A Hybrid Solvation Model-Based Case Study of the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2022, 126, 6171-6188.	3.1	3
827	Investigation of Oxygen Reduction Reaction of Graphene Supported Metal-N ₄ Catalysts via Density Functional Theory. Journal of the Electrochemical Society, 2022, 169, 044521.	2.9	1
828	Pseudo-adsorption and long-range redox coupling during oxygen reduction reaction on single atom electrocatalyst. Nature Communications, 2022, 13, 1734.	12.8	56
829	Metal-free catalyst for efficient pH-universal oxygen reduction electrocatalysis in microbial fuel cell. Journal of Electroanalytical Chemistry, 2022, 911, 116233.	3.8	4
830	Carbon Coated and Nitrogen Doped Hierarchical NiMo-Based Electrocatalysts with High Activity and Durability for Efficient Borohydride Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 17631-17641.	8.0	11
831	Modulating the d-band centers by coordination environment regulation of single-atom Ni on porous carbon fibers for overall water splitting. Nano Energy, 2022, 98, 107266.	16.0	57
832	Impact of Intrinsic Density Functional Theory Errors on the Predictive Power of Nitrogen Cycle Electrocatalysis Models. ACS Catalysis, 2022, 12, 4784-4791.	11.2	20
833	Polyhedral Carbon Anchored on Carbon Nanosheet with Abundant Atomic Feâ€N _x Moieties for Oxygen Reduction. Advanced Materials Interfaces, 2022, 9, .	3.7	1
834	High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376, eabn3103.	12.6	239
835	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie - International Edition, 2022, 61, .	13.8	15
836	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie, 0, , .	2.0	0
837	Modeling Temperature-, Humidity-, and Material-Dependent Kinetics of the Oxygen Reduction Reaction. Journal of the Electrochemical Society, 2022, 169, 044507.	2.9	4
838	Portable proton exchange membrane fuel cell using polyoxometalates as multi-functional hydrogen carrier. Applied Energy, 2022, 313, 118781.	10.1	6
839	Hierarchical porous single-wall carbon nanohorns with atomic-level designed single-atom Co sites toward oxygen reduction reaction. Nano Energy, 2022, 97, 107206.	16.0	17
840	Activating Cu/Fe2O3 nanoislands rooted on N-rich porous carbon nanosheets via the Mott-Schottky effect for rechargeable Zn-air battery. Chemical Engineering Journal, 2022, 442, 136128.	12.7	38
841	Perspective on advanced nanomaterials used for energy storage and conversion. Pure and Applied Chemistry, 2022, 94, 959-981.	1.9	0
842	Facile Oxygen-promoted Synthesis of Cu, N Co-doped Carbon Composites for Oxygen Reduction. Journal Wuhan University of Technology, Materials Science Edition, 2021, 36, 796-803.	1.0	1

#	Article	IF	CITATIONS
844	Strain Engineering in Electrocatalysts: Fundamentals, Progress, and Perspectives. Advanced Energy Materials, 2022, 12, .	19.5	72
845	Dualâ€Metal Atom Electrocatalysts: Theory, Synthesis, Characterization, and Applications. Advanced Energy Materials, 2022, 12, .	19.5	78
846	Vacancy-mediated transition metals as efficient electrocatalysts for water splitting. Nanoscale, 2022, 14, 7181-7188.	5.6	8
847	Modulating Coordination Environment of Fe Single Atoms for High-Efficiency All-Ph-Tolerated H2o2 Electrochemical Production. SSRN Electronic Journal, 0, , .	0.4	0
848	Hollow Porous Carbon-Confined Atomically Ordered PtCo ₃ Intermetallics for an Efficient Oxygen Reduction Reaction. ACS Catalysis, 2022, 12, 5380-5387.	11.2	57
849	Tuning Electrocatalytic Activity of Gold Silver Nanoparticles on Reduced Graphene Oxide for Oxygen Reduction Reaction. Journal of the Electrochemical Society, 0, , .	2.9	2
850	Tafel Analysis Guided Optimization of Zn _{NP} -O-C Catalysts for the Selective 2-Electron Oxygen Reduction Reaction in Neutral Media. Journal of Physical Chemistry Letters, 2022, 13, 3409-3416.	4.6	11
851	Unexpected Intrinsic Catalytic Function of Porous Boron Nitride Nanorods for Highly Efficient Peroxymonosulfate Activation in Water Treatment. ACS Applied Materials & Interfaces, 2022, 14, 18409-18419.	8.0	14
852	Fe Singleâ€atom Sites in Twoâ€Dimensional Nitrogenâ€doped Porous Carbon for Electrocatalytic Oxygen Reduction. ChemCatChem, 2022, 14, .	3.7	3
853	Activation of Mainâ€Group Antimony Atomic Sites for Oxygen Reduction Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	42
854	Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study. Nature Communications, 2022, 13, 1973.	12.8	9
855	Two-Dimensional Metal–Organic Frameworks as Ultrahigh-Performance Electrocatalysts for the Fuel Cell Cathode: A First-Principles Study. Langmuir, 2022, 38, 4996-5005.	3.5	9
856	Activation of Mainâ€Group Antimony Atomic Sites for Oxygen Reduction Catalysis. Angewandte Chemie, 2022, 134, .	2.0	8
857	Advanced Pt-based intermetallic nanocrystals for the oxygen reduction reaction. Chinese Journal of Catalysis, 2022, 43, 1444-1458.	14.0	22
858	Conducting polymers-derived fascinating electrocatalysts for advanced hydrogen and oxygen electrocatalysis. Coordination Chemistry Reviews, 2022, 464, 214555.	18.8	32
859	Rational design and synthesis of one-dimensional platinum-based nanostructures for oxygen-reduction electrocatalysis. Chinese Journal of Catalysis, 2022, 43, 1459-1472.	14.0	95
860	Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway. Chinese Journal of Catalysis, 2022, 43, 1433-1443.	14.0	37
864	Dataâ€Driven Materials Innovation and Applications. Advanced Materials, 2022, 34, e2104113.	21.0	51

	CITATION RE	PORT	
#	Article	IF	Citations
865	Dual Selfâ€Built Gating Boosts the Hydrogen Evolution Reaction. Advanced Materials, 2022, 34, e2202479.	21.0	14
866	Oxygen Reduction Reaction at Single Entity Multiwalled Carbon Nanotubes. Journal of Physical Chemistry Letters, 2022, 13, 3748-3753.	4.6	11
867	Recent advances in Fe-based metal–organic framework derivatives for battery applications. Sustainable Energy and Fuels, 2022, 6, 2665-2691.	4.9	15
868	Impact of sp ² carbon material species on Pt nanoparticle-based electrocatalysts produced by one-pot pyrolysis methods with ionic liquids. RSC Advances, 2022, 12, 14268-14277.	3.6	1
869	Effect of structural modifications on the oxygen reduction reaction properties of metal-organic framework-based catalysts. , 2022, , 165-184.		0
870	Automated exploitation of the big configuration space of large adsorbates on transition metals reveals chemistry feasibility. Nature Communications, 2022, 13, 2087.	12.8	8
871	Local Coordination Regulation through Tuning Atomicâ€Scale Cavities of Pd Metallene toward Efficient Oxygen Reduction Electrocatalysis. Advanced Materials, 2022, 34, e2202084.	21.0	57
872	Low-temperature gasoline fuel cell based on phosphotungstic acid: a proof-of-concept. , 2022, , .		0
873	Unraveling Electronic Trends in O* and OH* Surface Adsorption in the MO ₂ Transition-Metal Oxide Series. Journal of Physical Chemistry C, 2022, 126, 7903-7909.	3.1	8
874	Rugaeâ€like Nâ€doped porous carbon incorporated with <scp> Feâ€N _x </scp> and <scp> Fe ₃ O ₄ </scp> dual active sites as a powerful oxygen reduction catalyst for zincâ€air batteries. International Journal of Energy Research, 2022, 46, 12378-12390.	4.5	2
875	Density functional theory study of the copper phthalocyanine based metalâ^'organic frameworks as the highly active electrocatalysts for the oxygen reduction. International Journal of Hydrogen Energy, 2022, 47, 17611-17620.	7.1	1
876	Establishing a theoretical insight for penta-coordinated iron-nitrogen-carbon catalysts toward oxygen reaction. Nano Research, 2022, 15, 6067-6075.	10.4	28
877	Accelerated intermediate conversion through nickel doping into mesoporous Co-N/C nanopolyhedron for efficient ORR. Journal of Energy Chemistry, 2022, 73, 240-247.	12.9	23
878	Clean hydrogen for mobility – Quo vadis?. International Journal of Hydrogen Energy, 2022, 47, 20632-20661.	7.1	37
879	Enhanced oxygen reduction of porous N-doped carbon nanosheets with graphitic N and defects obtained from coal-based graphene quantum dots. Journal of Alloys and Compounds, 2022, 914, 165359.	5.5	13
880	Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market. Frontiers in Chemistry, 2022, 10, .	3.6	15
881	Tailoring surface carboxyl groups of mesoporous carbon boosts electrochemical H2O2 production. Journal of Colloid and Interface Science, 2022, 622, 849-859.	9.4	12
882	First-principles screening of Pt doped Ti2CNL (N = O, S and Se, L = F, Cl, Br and I) as high-performance catalysts for ORR/OER. Applied Surface Science, 2022, 596, 153574.	6.1	31

#	Article	IF	CITATIONS
883	Iterative redox activation promotes interfacial synergy in an Ag/CuxO catalyst for oxygen reduction. Chemical Engineering Journal, 2022, 446, 136966.	12.7	10
884	Accelerating electrocatalytic reduction of nitrate to ammonia by utilizing steric hindrance in single boron-decorated 2H/1T-MoS2: A theoretical insight. Applied Surface Science, 2022, 596, 153624.	6.1	13
885	Gasâ€Phase Errors Affect DFTâ€Based Electrocatalysis Models of Oxygen Reduction to Hydrogen Peroxide. ChemElectroChem, 2022, 9, .	3.4	2
886	Seizing gaseous Fe ²⁺ to densify O ₂ -accessible Fe–N ₄ sites for high-performance proton exchange membrane fuel cells. Energy and Environmental Science, 2022, 15, 3033-3040.	30.8	49
887	Mechanistic characterization of an oxygen reduction reaction-driven, fully enzymatic and self-calibrating pH biosensor based on wired bilirubin oxidase. Sensors and Actuators B: Chemical, 2022, 367, 132054.	7.8	1
888	Theory-guided design of hydrogen-bonded cobaltoporphyrin frameworks for highly selective electrochemical H2O2 production in acid. Nature Communications, 2022, 13, 2721.	12.8	38
889	Metal-free catalysts for fuel cell applications. , 2022, , 67-109.		1
890	Promoting oxygen reduction <i>via</i> crafting bridge-bonded oxygen ligands on a single-atom iron catalyst. Inorganic Chemistry Frontiers, 2022, 9, 3306-3318.	6.0	14
891	Electrocatalysis with metal-free carbon-based catalysts. , 2022, , 213-244.		1
892	MXene supported transition metal nanoparticles accelerate sulfur reduction reaction kinetics. Journal of Materials Chemistry A, 2022, 10, 13758-13768.	10.3	11
893	Bifunctional catalysts for heterogeneous electro-Fenton processes: a review. Environmental Chemistry Letters, 2022, 20, 3837-3859.	16.2	22
894	Unraveling the Elusive Oxygen Reduction Reaction Electrokinetics and Energetics in Pem Fuel Cells. SSRN Electronic Journal, 0, , .	0.4	0
895	Dissecting Î-Conjugated Covalent-Coupling Over Conductive Mofs Toward Efficient Two-Electron Oxygen Reduction. SSRN Electronic Journal, 0, , .	0.4	0
896	Strained Pt(221) Facet in a PtCo@Pt-Rich Catalyst Boosts Oxygen Reduction and Hydrogen Evolution Activity. ACS Applied Materials & amp; Interfaces, 2022, 14, 25246-25256.	8.0	27
897	Porphyrin-based framework materials for energy conversion. , 2022, 1, e9120009.		174
898	Boosting Oxygen Electrocatalysis by Combining Iron Nanoparticles with Single Atoms. Catalysts, 2022, 12, 585.	3.5	3
899	Recent advances in metal-organic frameworks-derived carbon-based electrocatalysts for the oxygen reduction reaction. International Journal of Hydrogen Energy, 2022, 47, 21634-21661.	7.1	25
900	Design of platinum single-atom doped metal nanoclusters as efficient oxygen reduction electrocatalysts by coupling electronic descriptor. Nano Research, 2022, 15, 7016-7025.	10.4	15

#	Article	IF	CITATIONS
901	Confined PdMo Ultrafine Nanowires in CNTs for Superior Oxygen Reduction Catalysis. Advanced Energy Materials, 2022, 12, .	19.5	23
902	PdAg/Ag(111) Surface Alloys: A Highly Efficient Catalyst of Oxygen Reduction Reaction. Nanomaterials, 2022, 12, 1802.	4.1	3
903	Computational Design of Spinel Oxides through Coverage-Dependent Screening on the Reaction Phase Diagram. ACS Catalysis, 2022, 12, 6781-6793.	11.2	10
904	Atomically dispersed dualâ€metalâ€site PCMâ€free electrocatalysts for oxygen reduction reaction: Opportunities and challenges. SusMat, 2022, 2, 569-590.	14.9	36
905	Nickel single atoms anchored on ultrathin carbon nitride for selective hydrogen peroxide generation with enhanced photocatalytic activity. Chemical Engineering Journal, 2022, 446, 137379.	12.7	32
906	Dual-Metal Active Sites Mediated by p-Block Elements: Knowledge-Driven Design of Oxygen Reduction Reaction Catalysts. ACS Omega, 2022, 7, 19676-19686.	3.5	2
907	Application of Machine Learning in Optimizing Proton Exchange Membrane Fuel Cells: A Review. Energy and Al, 2022, 9, 100170.	10.6	54
908	Electrocatalytic activity on single atoms catalysts: Synthesis strategies, characterization, classification, and energy conversion applications. Coordination Chemistry Reviews, 2022, 467, 214600.	18.8	16
909	Modulating coordination environment of Fe single atoms for high-efficiency all-pH-tolerated H2O2 electrochemical production. Applied Catalysis B: Environmental, 2022, 315, 121578.	20.2	38
910	Nitrogen-doped carbon derived from horse manure biomass as a catalyst for the oxygen reduction reaction. RSC Advances, 2022, 12, 17481-17489.	3.6	0
911	Oxygen reduction reaction by noble metal-based catalysts. , 2022, , 173-203.		0
912	Low-coordinated cobalt arrays for efficient hydrazine electrooxidation. Energy and Environmental Science, 2022, 15, 3246-3256.	30.8	36
913	Atomic and Nanosized Co Species Functionalized N-Doped Porous Carbon Hybrid for Boosting Electrocatalytic Oxygen Reduction. New Journal of Chemistry, 0, , .	2.8	1
914	The surface structure, stability, and catalytic performances toward O ₂ reduction of CoP and FeCoP ₂ . Dalton Transactions, 2022, 51, 10420-10431.	3.3	7
915	Accelerating the oxygen adsorption kinetics to regulate the oxygen reduction catalysis via Fe3C nanoparticles coupled with single Fe-N4 sites. Energy Storage Materials, 2022, 51, 149-158.	18.0	34
916	Engineering Location and Supports of Atomically Ordered <i>L1₀</i> â€PdFe Intermetallics for Ultraâ€Anticorrosion Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	11
917	Synergetic Dualâ€lon Centers Boosting Metal Organic Framework Alloy Catalysts toward Efficient Two Electron Oxygen Reduction. Small, 2022, 18, .	10.0	17
918	Strategies and challenges on selective electrochemical hydrogen peroxide production: Catalyst and reaction medium design. Chem Catalysis, 2022, 2, 1919-1960.	6.1	41

# 919	ARTICLE Spectroscopy predicts catalyst functionality. Nature Catalysis, 2022, 5, 469-470.	IF 34.4	CITATIONS 3
920	Low-coordinated surface sites make truncated Pd tetrahedrons as robust ORR electrocatalysts outperforming Pt for DMFC devices. Nano Research, 2022, 15, 7951-7958.	10.4	15
921	Hierarchical palladium catalyst for highly active and stable water oxidation in acidic media. National Science Review, 2023, 10, .	9.5	12
922	Identifying Activity Trends for the Electrochemical Production of H ₂ O ₂ on M–N–C Single-Atom Catalysts Using Theoretical Kinetic Computations. Journal of Physical Chemistry C, 2022, 126, 10388-10398.	3.1	12
923	Pt–Ni Alloy Nanoparticles via High-Temperature Shock as Efficient Electrocatalysts in the Oxygen Reduction Reaction. ACS Applied Nano Materials, 2022, 5, 8243-8250.	5.0	8
924	Insights into MXenes-based electrocatalysts for oxygen reduction. Energy, 2022, 255, 124465.	8.8	15
926	PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells. Nano Research, 2022, 15, 9010-9018.	10.4	20
927	Composition of Oxygen Functional Groups on Graphite Surfaces. Journal of Physical Chemistry C, 2022, 126, 10653-10667.	3.1	6
928	Comparative density functional theory study for predicting oxygen reduction activity of single-atom catalyst. Surface Science, 2022, 724, 122144.	1.9	3
929	Gram-Scale Synthesis of Carbon-Supported Sub-5 nm PtNi Nanocrystals for Efficient Oxygen Reduction. Metals, 2022, 12, 1078.	2.3	2
930	Electrochemical Oxygen Generator With 99.9% Oxygen Purity and High Energy Efficiency. Advanced Energy Materials, 2022, 12, .	19.5	3
931	Spin engineering of single-site metal catalysts. Innovation(China), 2022, 3, 100268.	9.1	6
932	Exploiting the trade-offs of electron transfer in MOF-derived single Zn/Co atomic couples for performance-enhanced zinc-air battery. Applied Catalysis B: Environmental, 2022, 316, 121591.	20.2	51
933	Theoretical insights into the electroreduction of nitrate to ammonia on graphene-based single-atom catalysts. Nanoscale, 2022, 14, 10862-10872.	5.6	57
934	Analysing oxygen reduction electrocatalysis on transition metal doped niobium oxide(110). Physical Chemistry Chemical Physics, 0, , .	2.8	2
935	New challenges in oxygen reduction catalysis: a consortium retrospective to inform future research. Energy and Environmental Science, 2022, 15, 3775-3794.	30.8	19
936	Antimony-Doped Tin Oxide Catalysts for Green and Sustainable Chemistry. Journal of Physical Chemistry C, 2022, 126, 13539-13547.	3.1	6
937	Ultrathin Porous WPdH Nanosheet Assemblies for Efficient Alkaline Oxygen Reduction. Energy & Fuels, 2022, 36, 7775-7781.	5.1	4

#	Article	IF	CITATIONS
938	Configuration Sensitivity of Electrocatalytic Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Journal of Physical Chemistry Letters, 2022, 13, 6187-6193.	4.6	1
939	Charge-Transfer Mechanism in Oxygen Reduction over Co Porphyrins: Single-Site Molecular Electrocatalysts to Macromolecular Frameworks. ACS Catalysis, 2022, 12, 8610-8622.	11.2	14
940	Microenvironment Alters the Oxygen Reduction Activity of Metal/N/C Catalysts at the Triple-Phase Boundary. ACS Catalysis, 2022, 12, 9003-9010.	11.2	10
941	Lowâ€Pt NiNC‧upported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
942	ZIFâ€Mg(OH) ₂ Dual Template Assisted Selfâ€Confinement of Small PtCo NPs as Promising Oxygen Reduction Reaction in PEM Fuel Cell. Advanced Energy Materials, 2022, 12, .	19.5	24
943	Chirality enhances oxygen reduction. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	20
944	Fe–Fe ₃ C Functionalized Few-Layer Graphene Sheet Nanocomposites for an Efficient Electrocatalyst of the Oxygen Reduction Reaction. ACS Omega, 2022, 7, 25458-25465.	3.5	5
945	Lowâ€Pt NiNCâ€5upported PtNi Nanoalloy Oxygen Reduction Reaction Electrocatalysts—In Situ Tracking of the Atomic Alloying Process. Angewandte Chemie, 2022, 134, .	2.0	1
946	Pt–Ni nanoparticles electrodeposited on rGO/CFP as high-performance integrated electrode for methanol oxidation. International Journal of Hydrogen Energy, 2022, 47, 23957-23970.	7.1	3
947	Biomass-Derived Fe ₂ N@NCNTs from Bioaccumulation as an Efficient Electrocatalyst for Oxygen Reduction and Zn–Air Battery. ACS Sustainable Chemistry and Engineering, 2022, 10, 9105-9112.	6.7	12
948	Transition metal decorated bismuthene for ammonia synthesis: A density functional theory study. Chinese Chemical Letters, 2023, 34, 107659.	9.0	1
949	A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nature Catalysis, 2022, 5, 615-623.	34.4	62
950	Construction of metal (oxy) hydroxides surface on high entropy alloy as lattice-oxygen-participated electrocatalyst for oxygen evolution reaction. Journal of Electroanalytical Chemistry, 2022, 920, 116574.	3.8	0
951	Dissecting π-conjugated covalent-coupling over conductive MOFs toward efficient two-electron oxygen reduction. Applied Catalysis B: Environmental, 2022, 317, 121706.	20.2	15
952	Graphene-Derived Carbon Support Boosts Proton Exchange Membrane Fuel Cell Catalyst Stability. ACS Catalysis, 2022, 12, 9540-9548.	11.2	13
953	Rechargeable Metal–Hydrogen Peroxide Battery, A Solution to Improve the Metal–Air Battery Performance. ACS Energy Letters, 2022, 7, 2717-2724.	17.4	6
954	Facet Strain Strategy of Atomically Dispersed FeNC Catalyst for Efficient Oxygen Electrocatalysis. Advanced Functional Materials, 2022, 32, .	14.9	22
955	An In-Depth Exploration of the Electrochemical Oxygen Reduction Reaction (ORR) Phenomenon on Carbon-Based Catalysts in Alkaline and Acidic Mediums. Catalysts, 2022, 12, 791.	3.5	13

#	Article	IF	CITATIONS
956	Heterogenization of Molecular Electrocatalytic Active Sites through Reticular Chemistry. Advanced Materials, 2023, 35, .	21.0	11
957	Size-Dependent Electrocatalytic Water Oxidation Activity for a Series of Atomically Precise Nickel-Thiolate Clusters. Inorganic Chemistry, 2023, 62, 1875-1884.	4.0	6
958	The strain induced synergistic catalysis of FeN4 and MnN3 dual-site catalysts for oxygen reduction in proton- /anion- exchange membrane fuel cells. Applied Catalysis B: Environmental, 2022, 317, 121770.	20.2	53
959	Catalytic activity trends of pyrite transition metal dichalcogenides for oxygen reduction and evolution. Physical Chemistry Chemical Physics, 2022, 24, 19911-19918.	2.8	3
960	Hydroxyl Radical Streaming from Molecular Oxygen Activation by Β-Fec2o4·2h2o for Efficiently Degrading Microcystin-Lr. SSRN Electronic Journal, 0, , .	0.4	0
961	Machine learning aided synthesis and screening of HER catalyst: Present developments and prospects. Catalysis Reviews - Science and Engineering, 0, , 1-31.	12.9	8
962	On-Chip Electrokinetic Micropumping for Nanoparticle Impact Electrochemistry. Analytical Chemistry, 2022, 94, 11600-11609.	6.5	7
963	Hierarchical Design in Nanoporous Metals. Advanced Science, 2022, 9, .	11.2	19
964	Lewis Acid Site Assisted Bifunctional Activity of Tin Doped Gallium Oxide and Its Application in Rechargeable Znâ€Air Batteries. Small, 2022, 18, .	10.0	9
965	Electrochemically Accessing ROSâ€Related Cytotoxicity through the Oxygen Reduction Reaction to Identify Antimicrobial Agents. ChemElectroChem, 0, , .	3.4	Ο
966	Utilizing High Coordination Diversity in Carbon Nanocone Supported Catalytic Single-Atom Sites for Screening of Optimal Activity. Journal of Physical Chemistry Letters, 2022, 13, 7043-7050.	4.6	4
967	Identification of the Highly Active Co–N ₄ Coordination Motif for Selective Oxygen Reduction to Hydrogen Peroxide. Journal of the American Chemical Society, 2022, 144, 14505-14516.	13.7	162
968	Screening of bimetallic electrocatalysts for water purification with machine learning. Journal of Chemical Physics, 2022, 157, .	3.0	3
969	Linear paired electrochemical valorization of glycerol enabled by the electro-Fenton process using a stable NiSe2 cathode. Nature Catalysis, 2022, 5, 716-725.	34.4	48
970	Improving the electrophilicity of nitrogen on nitrogen-doped carbon triggers oxygen reduction by introducing covalent vanadium nitride. Science China Materials, 2023, 66, 160-168.	6.3	21
971	Stably Immobilizing Subâ€3Ânm Highâ€Entropy Pt Alloy Nanocrystals in Porous Carbon as Durable Oxygen Reduction Electrocatalyst. Advanced Functional Materials, 2022, 32, .	14.9	23
972	Twoâ€Dimensional Organometallic Frameworks with Pyridinic Singleâ€Metalâ€Atom Sites for Bifunctional ORR/OER. Advanced Functional Materials, 2022, 32, .	14.9	32
973	Machine learning–based inverse design for electrochemically controlled microscopic gradients of O ₂ and H ₂ O ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	2

#	Article	IF	CITATIONS
974	Modifying Interface Solvation and Oxygen Reduction Electrocatalysis with Hydrophobic Species. Journal of Physical Chemistry C, 0, , .	3.1	4
975	Constructing and interpreting volcano plots and activity maps to navigate homogeneous catalyst landscapes. Nature Protocols, 2022, 17, 2550-2569.	12.0	9
976	Electrocatalytic rate constants from DFT simulations and theoretical models: Learning from each other. Current Opinion in Electrochemistry, 2022, 36, 101110.	4.8	9
977	Recent Advances of Singleâ€Atomâ€Alloy for Energy Electrocatalysis. Advanced Energy Materials, 2022, 12,	19.5	50
978	A Robust Electrocatalyst for Oxygen Reduction Reaction Assembled with Pt Nanoclusters and A Melemâ€Modified Carbon Support. Energy Technology, 0, , .	3.8	2
979	Probing the relationship between bulk and local environments to understand impacts on electrocatalytic oxygen reduction reaction. Journal of Catalysis, 2022, 414, 33-43.	6.2	12
980	High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst. Frontiers in Energy Research, 0, 10, .	2.3	10
981	Advances and Challenges in DFT-based Energy Materials Design. Chinese Physics B, O, , .	1.4	8
982	A review on the synthesis of transition metal nitride nanostructures and their energy related applications. Green Energy and Environment, 2023, 8, 406-437.	8.7	34
983	CoNi Nanoparticle-Decorated ZIF-67-Derived Hollow Carbon Cubes as a Bifunctional Electrocatalyst for Zn–Air Batteries. ACS Applied Nano Materials, 2022, 5, 12496-12505.	5.0	6
984	Effect of Crystal Growth on the Thermodynamic Stability and Oxygen Reduction Reaction Activity of Cu–Pt Nanoparticles. Langmuir, 2022, 38, 10621-10631.	3.5	2
985	The Effect of Sulphate and Chloride Palladium Salt Anions on the Morphology of Electrodeposited Pd Nanoparticles and their Catalytic Activity for Oxygen Reduction in Acid and Alkaline Media. International Journal of Electrochemical Science, 2022, 17, 220943.	1.3	2
986	Highly active nitrogen $\hat{a} \in $ doped carbon nanostructures as electrocatalysts for bromine evolution reaction: A combined experimental and DFT study. Journal of Catalysis, 2022, 413, 1005-1016.	6.2	0
987	Highly efficient unitized regenerative hydrogen peroxide cycle cell with ultralow overpotential for renewable energy storage. Journal of Power Sources, 2022, 545, 231948.	7.8	5
988	Graphdiyne supported single-atom cobalt catalyst for oxygen reduction reaction: The role of the co-adsorbates. Chemical Physics Letters, 2022, 804, 139805.	2.6	2
989	Roles of H2 evolution overpotential, materials porosity and cathode potential on mineral electro-precipitation in microfluidic reactor – New criterion to predict and assess interdependency. Electrochimica Acta, 2022, 428, 140926.	5.2	4
990	Coordinating single-atom catalysts on two-dimensional nanomaterials: A paradigm towards bolstered photocatalytic energy conversion. Coordination Chemistry Reviews, 2022, 471, 214743.	18.8	25
991	Highly efficient photocatalytic H2O2 generation over dysprosium oxide-integrated g-C3N4 nanosheets with nitrogen deficiency. Chemosphere, 2022, 307, 135910.	8.2	15

#	Article	IF	CITATIONS
992	Electrochemical synthesis of monodispersed and highly alloyed PtCo nanoparticles with a remarkable durability towards oxygen reduction reaction. Applied Catalysis B: Environmental, 2022, 318, 121831.	20.2	23
993	N-doped hierarchically porous carbon based on MnO2 nanotubes as self-sacrificial reaction templates for supercapacitors and oxygen reduction. Journal of Alloys and Compounds, 2022, 926, 166856.	5.5	4
994	Electrocatalysis and activity descriptors with metal phthalocyanines for energy conversion reactions. Journal of Electroanalytical Chemistry, 2022, 922, 116799.	3.8	6
995	Etching-directed nitrogen doping strategy to construct efficient defective sites in carbon for electrocatalytic oxygen reduction. Journal of Power Sources, 2022, 549, 232122.	7.8	4
996	Interfacial component coupling effects towards precise heterostructure design for efficient electrocatalytic water splitting. Nano Energy, 2022, 103, 107753.	16.0	47
997	Transition metal embedded graphynes as advanced bifunctional single atom catalysts for oxygen reduction and evolution reactions. Applied Surface Science, 2022, 605, 154828.	6.1	11
998	Rationally designed metal-N-C/MoS2 heterostructures as bifunctional oxygen electrocatalysts: A computational study. Applied Surface Science, 2022, 606, 154969.	6.1	7
999	Pd–Ni(OH)2 nanocatalyst on Ketjen black carbon as a potential alternative to commercial Pt-catalysts for oxygen reduction reactions. Materials Science in Semiconductor Processing, 2022, 152, 107116.	4.0	4
1000	First-principles calculation on effects of oxygen vacancy on α-MnO2 and β-MnO2 during oxygen reduction reaction for rechargeable metal-air batteries. Journal of Alloys and Compounds, 2022, 926, 166929.	5.5	9
1001	Nitrogen-doped carbon nanotubes filled with Fe3C nanowires for efficient electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 654, 130095.	4.7	0
1002	Effect of oxygen impurity on corrosion behavior of a Zr-based bulk metallic glass in 0.5ÂM H2SO4 and 0.5ÂM NaOH solutions. Materials Letters, 2023, 330, 133231.	2.6	3
1003	Improving the Orr Performance by Enhancing the Pt Oxidation Resistance. SSRN Electronic Journal, 0, ,	0.4	0
1004	Tailoring the selectivity and activity of oxygen reduction by regulating the coordination environments of carbon-supported atomically dispersed metal sites. Journal of Materials Chemistry A, 2022, 10, 17948-17967.	10.3	18
1005	Synthetic carbon nanomaterials for electrochemical energy conversion. Nanoscale, 2022, 14, 13473-13489.	5.6	6
1006	Effect of local pH change on non-PGM catalysts – a potential-dependent mechanistic analysis of the oxygen reduction reaction. Catalysis Science and Technology, 2022, 12, 6246-6255.	4.1	3
1007	Surface coverage control for dramatic enhancement of thermal CO oxidation by precise potential tuning of metal supported catalysts. Chemical Science, 2022, 13, 9774-9783.	7.4	4
1008	A theoretical roadmap for the best oxygen reduction activity in two-dimensional transition metal tellurides. Chemical Science, 2022, 13, 11048-11057.	7.4	2
1009	Three-dimensional porous platinum–tellurium–rhodium surface/interface achieve remarkable practical fuel cell catalysis. Energy and Environmental Science, 2022, 15, 3877-3890.	30.8	32

#	Article	IF	CITATIONS
1010	Engineering Co and Ru dual-metal atoms on nitrogen-doped carbon as highly efficient bifunctional oxygen electrocatalysts. Catalysis Science and Technology, 2022, 12, 5435-5441.	4.1	6
1011	N and S Dual-Doped Mesoporous Carbon Nanostructure as a High Performance and Durable Metal Free Oxygen Reduction Reaction Electrocatalyst. E3S Web of Conferences, 2022, 355, 01006.	0.5	1
1012	Ultrahigh oxygen-doped carbon quantum dots for highly efficient H ₂ O ₂ production <i>via</i> two-electron electrochemical oxygen reduction. Energy and Environmental Science, 2022, 15, 4167-4174.	30.8	48
1013	Suppression of H2 bubble formation on an electrified Pt electrode interface in an acidic "water-in-salt―electrolyte solution. Journal of Materials Chemistry A, O, , .	10.3	0
1014	Metal-organic framework in fuel cell technology: Fundamentals and application. , 2022, , 135-189.		1
1015	Identification of ORR activity of random graphene-based systems using the general descriptor and predictive model equation. Carbon, 2023, 201, 703-711.	10.3	9
1016	Science and engineering for non-noble-metal-based electrocatalysts to boost their ORR performance: A critical review. Coordination Chemistry Reviews, 2023, 474, 214854.	18.8	63
1017	Boosting oxygen reduction with coexistence of single-atomic Fe and Cu sites decorated nitrogen-doped porous carbon. Chemical Engineering Journal, 2023, 452, 138938.	12.7	11
1018	Hydroxyl radical streaming from molecular oxygen activation by β-FeC2O4·2H2O for efficiently degrading Microcystin-LR. Applied Catalysis B: Environmental, 2023, 321, 121970.	20.2	12
1019	Nanostructured Materials for Hydrogen Storage and Generation and Oxygen Reduction Reaction. ACS Symposium Series, 0, , 131-168.	0.5	1
1020	Recent Advances in the Development of Nanocatalysts for Direct Methanol Fuel Cells. Energies, 2022, 15, 6335.	3.1	9
1022	Modelling Hydrogen Adsorption on a Copper Nanoparticle Deposited on a Graphite Substrate with Various Defects. Russian Journal of Physical Chemistry B, 2022, 16, 772-779.	1.3	3
1023	Synergistic Hybrid Electrocatalysts of Platinum Alloy and Single-Atom Platinum for an Efficient and Durable Oxygen Reduction Reaction. ACS Nano, 2022, 16, 14121-14133.	14.6	55
1024	The action mechanisms and structures designs of F-containing functional materials for high performance oxygen electrocatalysis. Journal of Energy Chemistry, 2023, 76, 377-397.	12.9	12
1025	Evaluation of the durability of ZrC as support material for Pt electrocatalysts in PEMFCs: Experimental and computational studies. International Journal of Hydrogen Energy, 2022, 47, 36232-36247.	7.1	2
1026	Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO2. Angewandte Chemie, 0, , .	2.0	4
1027	Effect of Nitrogen Doping and Oxygen Vacancy on the Oxygen Reduction Reaction on the Tetragonal Zirconia(101) Surface. Journal of Physical Chemistry C, 2022, 126, 15662-15670.	3.1	4
1028	Active-site and interface engineering of cathode materials for aqueous Zn—gas batteries. Nano Research, 2023, 16, 2325-2346.	10.4	63

#	Article	IF	CITATIONS
1029	Design of Frustrated Lewis Pair Catalysts for Direct Hydrogenation of CO ₂ . Angewandte Chemie - International Edition, 2022, 61, .	13.8	13
1030	Interstitial Carbon-Doped PdMo Bimetallene for High-Performance Oxygen Reduction Reaction. ACS Energy Letters, 2022, 7, 3329-3336.	17.4	24
1031	Hierarchical Metal–[Carbon Nitride <i>Shell</i> /Carbon <i>Core</i>] Electrocatalysts: A Promising New General Approach to Tackle the ORR Bottleneck in Low-Temperature Fuel Cells. ACS Catalysis, 2022, 12, 12291-12301.	11.2	8
1032	Advanced TEM Characterization for Single-atom Catalysts: from Ex-situ Towards In-situ. Chemical Research in Chinese Universities, 2022, 38, 1172-1184.	2.6	11
1033	Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices. Electrochemical Energy Reviews, 2022, 5, .	25.5	24
1034	Transition metal carbides as cathode supports for PEM fuel cells. Nano Research, 2022, 15, 10218-10233.	10.4	6
1035	What is the Real Origin of the Activity of Fe–N–C Electrocatalysts in the O ₂ Reduction Reaction? Critical Roles of Coordinating Pyrrolic N and Axially Adsorbing Species. Journal of the American Chemical Society, 2022, 144, 18144-18152.	13.7	105
1036	Pauling-type adsorption of O2 induced electrocatalytic singlet oxygen production on N–CuO for organic pollutants degradation. Nature Communications, 2022, 13, .	12.8	45
1037	Recent Advances of Single-atom Catalysts for Electro-catalysis. Chemical Research in Chinese Universities, 2022, 38, 1146-1150.	2.6	7
1038	xmins:mmi= http://www.w3.org/1998/Wath/Wath/WathWiL_altimg= si129.svg_display= inline id="d1e2003"> <mml:mrow><mml:mi mathvariant="normal">O</mml:mi><mml:mo <br="" linebreak="goodbreak">linebreakstyle="after">â<⁻</mml:mo><mml:mi mathvariant="normal">M</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">=<mml:mo><mml:mo><mml:mo><mml:mo><mml:mo><mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo></mml:mo </mml:mrow>	2.4	4
1039	Pd–Sb Rhombohedra with an Unconventional Rhombohedral Phase as a Trifunctional Electrocatalyst. Advanced Materials, 2022, 34, .	21.0	20
1040	Development of a dielectrically consistent reference interaction site model combined with the density functional theory for electrochemical interface simulations. Physical Review Materials, 2022, 6, .	2.4	4
1041	Development and activity enhancement of zirconium/vanadium oxides as micro-heterogeneous ceramic electrocatalyst for ORR in low temperature fuel cell. Ceramics International, 2023, 49, 4313-4321.	4.8	3
1042	Single-atom Catalysts Based on Layered Double Hydroxides. Chemical Research in Chinese Universities, 2022, 38, 1185-1196.	2.6	2
1043	Enhanced Activity of Oxygen Reduction Reaction on Pr ₆ O ₁₁ -Assisted PtPr Alloy Electrocatalysts. ACS Applied Materials & Interfaces, 2022, 14, 41861-41869.	8.0	6
1044	Engineering 3d–2p–4f Gradient Orbital Coupling to Enhance Electrocatalytic Oxygen Reduction. Advanced Materials, 2022, 34, .	21.0	92
1045	Making cathode composites more efficient for electro-fenton and bio-electro-fenton systems: A review. Separation and Purification Technology, 2023, 304, 122302.	7.9	12
1046	Role of Morphology of Platinum-Based Nanoclusters in ORR/OER Activity for Nonaqueous Li–Air Battery Applications. ACS Applied Energy Materials, 2022, 5, 12561-12570.	5.1	6

#	Article	IF	CITATIONS
1047	Unifying the Nitrogen Reduction Activity of Anatase and Rutile TiO ₂ Surfaces. ChemPhysChem, 2023, 24, .	2.1	3
1048	Boron-Doped Platinum-Group Metals in Electrocatalysis: A Perspective. ACS Catalysis, 2022, 12, 12750-12764.	11.2	31
1049	Lamellar-assembled PdNi super-nanosheets as effective oxygen redox dual-electrocatalysts for rechargeable Zn-air batteries. Nano Research, 2023, 16, 2163-2169.	10.4	2
1050	A trade-off between ligand and strain effects optimizes the oxygen reduction activity of Pt alloys. Energy and Environmental Science, 2022, 15, 5181-5191.	30.8	21
1051	Mechanistic insights into metal, nitrogen doped carbon catalysts for oxygen reduction: progress in computational modeling. Journal of Materials Chemistry A, 2022, 10, 23959-23972.	10.3	4
1052	A 2D copper-imidazolate framework without thermal treatment as an efficient ORR electrocatalyst for Zn–air batteries. Journal of Materials Chemistry A, 2022, 10, 24590-24597.	10.3	8
1053	Integrating multifunctional catalytic sites in COF@ZIF-67 derived carbon for the HER and ORR. Chemical Communications, 2022, 58, 13214-13217.	4.1	10
1054	Role of heteroatom-doping in enhancing catalytic activities and the stability of single-atom catalysts for oxygen reduction and oxygen evolution reactions. Nanoscale, 2022, 14, 16286-16294.	5.6	13
1055	Zinc doping induced WS2 accelerating the HER and ORR kinetics: A theoretical and experimental validation. Catalysis Today, 2023, 423, 113921.	4.4	2
1056	Potential dependence of OER/EOP performance on heteroatom-doped carbon materials by grand canonical density functional theory. Journal of Chemical Physics, 2022, 157, .	3.0	4
1057	Thienothiophene and Triphenylbenzene Based Electroactive Conjugated Porous Polymer for Oxygen Reduction Reaction (ORR). ACS Applied Energy Materials, 2022, 5, 13284-13292.	5.1	15
1058	Regulating the scaling relationship for high catalytic kinetics and selectivity of the oxygen reduction reaction. Nature Communications, 2022, 13, .	12.8	65
1059	Recent Developments of Atomically Dispersed Metal Electrocatalysts for Oxygen Reduction Reaction ^{â€} . Chinese Journal of Chemistry, 2023, 41, 581-598.	4.9	6
1060	Orbital Occupancy and Spin Polarization: From Mechanistic Study to Rational Design of Transition Metal-Based Electrocatalysts toward Energy Applications. ACS Nano, 2022, 16, 17847-17890.	14.6	48
1061	The cathode catalysts of hydrogen fuel cell: From laboratory toward practical application. Nano Research, 2023, 16, 4365-4380.	10.4	10
1062	Emerging noble metal-free Mo-based bifunctional catalysts for electrochemical energy conversion. Nano Research, 2022, 15, 10234-10267.	10.4	9
1063	Quinary, Senary, and Septenary High Entropy Alloy Nanoparticle Catalysts from Core@Shell Nanoparticles and the Significance of Intraparticle Heterogeneity. ACS Nano, 2022, 16, 18873-18885.	14.6	32
1064	Looking beyond Adsorption Energies to Understand Interactions at Surface using Machine Learning. ChemistrySelect, 2022, 7, .	1.5	1

		CITATION RE	PORT	
#	Article		IF	Citations
1065	Breaking the scaling relationship for electrocatalysis. Chem Catalysis, 2022, 2, 2417-2	419.	6.1	2
1066	Bimetallic Electrocatalyst of Hyaluronate-Au@Pt for Durable Oxygen Reduction in Biof Applied Energy Materials, 2022, 5, 12475-12484.	uel Cells. ACS	5.1	1
1067	Polydopamine/graphite sheet electrode for highly efficient electrocatalytic hydrogen p generation and bisphenol A removal. Chemical Engineering Journal, 2023, 454, 14002	eroxide 6.	12.7	0
1068	Polymerâ€derived ceramics for electrocatalytic energy conversion reactions. Internation Applied Ceramic Technology, 0, , .	onal Journal of	2.1	1
1069	Tuning the spin state of Fe single atoms by Pd nanoclusters enables robust oxygen rec dissociative pathway. CheM, 2023, 9, 181-197.	luction with	11.7	75
1070	Controlled Adsorption Boosting the Cumulation of H ₂ O ₂ Ba Mail Catalyst. Advanced Energy Materials, 2022, 12, .	ased on the Chain	19.5	5
1071	Are Fe–N–C Electrocatalysts an Alternative to Pt-Based Electrocatalysts for the Ne Proton Exchange Membrane Fuel Cells?. ACS Catalysis, 2022, 12, 13853-13875.	ext Generation of	11.2	24
1072	Rapid Screening of Mechanistic Pathways for Oxygenâ€Reduction Catalysts. ChemCat	:Chem, 2023, 15, .	3.7	5
1073	Stabilizing Pt Electrocatalysts via Introducing Reducible Oxide Support as Reservoir of Electrons and Oxygen Species. ACS Catalysis, 2022, 12, 13523-13532.		11.2	16
1074	N,Sâ€coâ€doped FeCo Nanoparticles Supported on Porous Carbon Nanofibers as Effic Oxygen Reduction Catalysts. ChemSusChem, 2023, 16, .	ient and Durable	6.8	5
1075	Pt–Fe–Cu Ordered Intermetallics Encapsulated with N-Doped Carbon as High-Perf for Oxygen Reduction Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10		6.7	10
1076	Research Progress of Bifunctional Oxygen Reactive Electrocatalysts for Zinc–Air Bat Nanomaterials, 2022, 12, 3834.	teries.	4.1	4
1077	Modeling Absolute Redox Potentials of Ferrocene in the Condensed Phase. Journal of F Chemistry Letters, 2022, 13, 10005-10010.	Physical	4.6	2
1078	Bimetallic catalysts as electrocatalytic cathode materials for the oxygen reduction read microbial fuel cell: A review. Green Energy and Environment, 2023, 8, 1043-1070.	ction in	8.7	19
1079	PtCu subnanoclusters epitaxial on octahedral PtCu/Pt skin matrix as ultrahigh stable c electrocatalysts for room-temperature hydrogen fuel cells. Nano Research, 2023, 16, 2		10.4	16
1080	One-step access to bifunctional γ-Fe2O3,δ-FeOOH electrocatalyst for oxygen reductio acetaminophen sensing. Journal of the Taiwan Institute of Chemical Engineers, 2022, 1		5.3	8
1081	Oxygen Spillover Effect at Cu/Fe ₂ O ₃ Heterointerfaces to En Electrocatalytic Reactions for Rechargeable Zn–Air Batteries. ACS Applied Materials 2022, 14, 51222-51233.		8.0	10
1082	A universal approach for predicting electrolyte decomposition in carbon materials: On thermodynamics. Energy Storage Materials, 2022, 53, 946-957.	the basis of	18.0	1

#	Article	IF	CITATIONS
1083	Cu-Nx active sites derived from copper phthalocyanine in porous carbon promoting oxygen reduction reaction. Synthetic Metals, 2022, 291, 117204.	3.9	2
1084	Dual-atom catalysts for oxygen electrocatalysis. Nano Energy, 2022, 104, 107927.	16.0	57
1085	Encapsulation Fe-Nx combined with Co@C to construct efficient oxygen reduction catalysts with bimetallic sites and the application of Zn-air batteries. Materials Today Chemistry, 2022, 26, 101174.	3.5	3
1086	Critical review on the synthesis, characterization, and application of highly efficient metal chalcogenide catalysts for fuel cells. Progress in Energy and Combustion Science, 2023, 94, 101044.	31.2	19
1087	Metal ferrites-based nanocomposites and nanohybrids for photocatalytic water treatment and electrocatalytic water splitting. Chemosphere, 2023, 310, 136835.	8.2	23
1088	Designing catalysts via evolutionary-based optimization techniques. Computational Materials Science, 2023, 216, 111833.	3.0	4
1089	A ternary PdNiMo alloy as a bifunctional nanocatalyst for the oxygen reduction reaction and hydrogen evolution reaction. Inorganic Chemistry Frontiers, 2022, 9, 6574-6583.	6.0	8
1090	Construction of dual active sites for efficient alkaline hydrogen evolution: single-metal-atoms supported on BC ₂ N monolayers. Physical Chemistry Chemical Physics, 2022, 24, 29141-29150.	2.8	3
1091	Kinetic analysis to describe Co-operative redox enhancement effects exhibited by bimetallic Au–Pd systems in aerobic oxidation. Catalysis Science and Technology, 2023, 13, 47-55.	4.1	4
1092	Improving the ORR performance by enhancing the Pt oxidation resistance. Journal of Catalysis, 2022, 416, 311-321.	6.2	13
1093	Colloidal synthesis of monodisperse trimetallic Pt–Fe–Ni nanocrystals and their enhanced electrochemical performances. Nanotechnology, 2023, 34, 075401.	2.6	2
1094	Oxygen vacancies endow atomic cobalt-palladium oxide clusters with outstanding oxygen reduction reaction activity. Chemical Engineering Journal, 2023, 454, 140289.	12.7	4
1095	Simultaneous Improvement of Oxygen Reduction and Catalyst Anchoring via Multiple Dopants on Mesoporous Carbon Frameworks for Flexible Al-Air Batteries. ACS Nano, 2022, 16, 19165-19173.	14.6	17
1096	Graphite-Supported Pt _{<i>n</i>} Cluster Electrocatalysts: Major Change of Active Sites as a Function of the Applied Potential. ACS Catalysis, 2022, 12, 14517-14526.	11.2	13
1097	Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Materials for Renewable and Sustainable Energy, 2022, 11, 169-213.	3.6	3
1098	Challenges and Opportunities of Transition Metal Oxides as Electrocatalysts. Chemistry - A European Journal, 2023, 29, .	3.3	30
1099	Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem, 2023, 15, .	3.7	6
1100	Advances in Graphene-Supported Single-Atom Catalysts for Clean Energy Conversion. Electrochemical Energy Reviews, 2022, 5, .	25.5	17

ARTICLE IF CITATIONS Individually-atomic governing dâ€"΀* orbital interactions via Cu-promoted optimization of Fe-d band 1101 10.4 8 centers for high-efficiency zinc-air battery. Nano Research, 2023, 16, 4634-4642. Theory-guided electrocatalyst engineering: From mechanism analysis to structural design. Chinese 14.0 Journal of Catalysis, 2022, 43, 2987-3018. Decorating Singleâ€Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction. 1103 2.0 6 Angewandte Chemie, 2023, 135, . Lowâ€Coordinated Mo Clusters for Highâ€Efficiency Electrocatalytic Hydrogen Peroxide Production. 1104 Advanced Materials Interfaces, 2023, 10, . Tuning the Coordination Microenvironment of Central Fe Active Site to Boost Water Electrolysis and 1105 10.0 11 Oxygen Reduction Activity. Small, 2023, 19, . Decorating Singleâ€Atomic Mn Sites with FeMn Clusters to Boost Oxygen Reduction Reaction. 13.8 44 Angewandte Chemie - International Edition, 2023, 62, . Application of a TEMPO-Polypyrrole Polymer for NOx-Mediated Oxygen Electroreduction. Catalysts, 1107 3.5 3 2022, 12, 1466. Co-generation of electricity and formate in glycerol fuel cells with a bifunctional PdPtAg alloy nanowire electrocatalyst. Green Chemistry, 2022, 24, 9721-9733. 1108 Unraveling the elusive oxygen reduction reaction electrokinetics and energetics in PEM fuel cells. 1109 5.2 0 Electrochimica Acta, 2023, 439, 141591. Kinetically favorable edge-type iron–cobalt atomic pair sites synthesized <i>via</i> a silica xerogel approach for efficient bifunctional oxygen electrocatalysis. Journal of Materials Chemistry A, 2023, 11, 10.3 7<mark>08-7</mark>16. Exploring the underlying oxygen reduction reaction electrocatalytic activities of pyridinic-N and 1111 3 2.0 pyrrolic-N doped graphene quantum dots. Molecular Catalysis, 2023, 535, 112880. Heterogeneous molecular Co–N–C catalysts for efficient electrochemical 30.8 H₂O₂ synthesis. Energy and Environmental Science, 2023, 16, 446-459. A dynamic piezoelectric effect to promote electrosynthesis of hydrogen peroxide. Energy and 1113 30.8 5 Environmental Science, 2023, 16, 210-221. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Materials, 2023, 55, 94-104. 1114 18.0 Mass Production of Dealloyed Pt3Co/C Catalyst for Oxygen Reduction Catalysis in PEMFC. Journal of 1115 10.3 2 Materials Chemistry A, O, , The effect of pyrolysis temperature on the N conversion of biochar derived from the residue of Chlorella vulgaris after lipid extraction. Journal of Analytical and Applied Pyrolysis, 2023, 169, 105810. Mesoporous carbon-based materials and their applications as non-precious metal electrocatalysts in 1117 5.26 the oxygen reduction reaction. Electrochimica Acta, 2023, 439, 141678. Screening of single transition metal substitution in two-dimensional Mo2CT MXene electrocatalyst with ultrahigh activity for oxygen reduction reaction. Surfaces and Interfaces, 2023, 36, 102585.

	CITATION RI	EPORT	
#	Article	IF	Citations
1119	Two-dimensional template-directed synthesis of one-dimensional kink-rich Pd3Pb nanowires for efficient oxygen reduction. Journal of Colloid and Interface Science, 2023, 634, 827-835.	9.4	3
1120	Synthesis of dual-metal single atom in porous carbon with efficient oxygen reduction reaction in both acidic and alkaline electrolytes. Journal of Colloid and Interface Science, 2023, 633, 828-835.	9.4	6
1121	Three-dimensional structured electrode for electrocatalytic organic wastewater purification: Design, mechanism and role. Journal of Hazardous Materials, 2023, 445, 130524.	12.4	20
1122	Roles of structural defects in polycrystalline platinum nanowires for enhanced oxygen reduction activity. Applied Catalysis B: Environmental, 2023, 324, 122268.	20.2	5
1123	Iterative machine learning method for screening high-performance catalysts for H2O2 production. Chemical Engineering Science, 2023, 267, 118368.	3.8	2
1124	Preparation of Two-Dimensional Fe-N-C Nanosheets Derived from ZIF8 and Their Catalytic Performance for Oxygen Reduction Reaction. Material Sciences, 2022, 12, 1230-1236.	0.0	0
1125	Metal-Compound-Based Electrocatalysts for Hydrogen Peroxide Electrosynthesis and the Electro-Fenton Process. ACS Energy Letters, 2023, 8, 196-212.	17.4	18
1126	High-Throughput Fluorescent Screening and Machine Learning for Feature Selection of Electrocatalysts for the Alkaline Hydrogen Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2022, 10, 16299-16312.	6.7	2
1127	Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies. Energies, 2022, 15, 9084.	3.1	12
1128	A novel bimetallic RuFe nanocluster to enable highly efficient oxygen reduction in zinc-air batteries. Progress in Natural Science: Materials International, 2022, 32, 769-775.	4.4	4
1129	Effects of Hydrophobic Species on the Oxygen Reduction Reaction on the High-Index Planes of Pt3Fe. Electrocatalysis, 0, , .	3.0	0
1130	Following Paths of Maximum Catalytic Activity in the Composition Space of Highâ€Entropy Alloys. Advanced Energy Materials, 2023, 13, .	19.5	8
1131	Fundamental Limit of Selectivity in Photocatalytic Denitrification over Titania. Journal of Physical Chemistry Letters, 2022, 13, 11051-11058.	4.6	0
1132	Hydrogen-Fuel Cell Hybrid Powertrain: Conceptual Layouts and Current Applications. Machines, 2022, 10, 1121.	2.2	11
1133	N-doped LaPO4: An effective Pt-free catalyst for electrocatalytic oxygen reduction. Chem Catalysis, 2022, 2, 3590-3606.	6.1	40
1134	Layered Double Hydroxide Templated Synthesis of Amorphous NiCoFeB as a Multifunctional Electrocatalyst for Overall Water Splitting and Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2023, 13, .	19.5	24
1135	Magnetoelectric Coupling for Metal–Air Batteries. Advanced Functional Materials, 2023, 33, .	14.9	8
1136	High Dispersion FeFe ₂ O ₄ nanoparticles synthesis and its Oxygen Reduction Reaction catalytic performance. ChemistrySelect, 2022, 7, .	1.5	0

#	Article	IF	CITATIONS
1137	Electronic configuration regulation by Nâ€doped MXenes boosting electrocatalytic performance of Cobalt Phthalocyanine. European Journal of Inorganic Chemistry, 0, , .	2.0	0
1138	Bulkâ€like Pt(100)â€oriented Ultrathin Surface: Combining the Merits of Single Crystals and Nanoparticles to Boost Oxygen Reduction Reaction. Angewandte Chemie, 0, , .	2.0	1
1139	Enhanced Selectivity in the Electroproduction of H ₂ O ₂ via F/S Dualâ€Doping in Metalâ€Free Nanofibers. Advanced Materials, 2023, 35, .	21.0	30
1140	Engineering the Electronic Structure of Singleâ€Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc–Air Batteries. Advanced Materials, 2023, 35, .	21.0	63
1141	The emerging coupled low-PGM and PGM-free catalysts for oxygen reduction reaction. Chem Catalysis, 2023, 3, 100484.	6.1	5
1142	Editors' Choice—Review—Polymer Electrolyte Fuel Cell Science and Technology: Highlighting a General Mechanistic Pattern and a General Rate Expression for Electrocatalytic Processes. Journal of the Electrochemical Society, 2022, 169, 124518.	2.9	4
1143	Chargeâ€Polarized Selenium Vacancy in Nickel Diselenide Enabling Efficient and Stable Electrocatalytic Conversion of Oxygen to Hydrogen Peroxide. Advanced Science, 2023, 10, .	11.2	9
1144	Unraveling the Electrocatalytic Activity of Platinum Doped Zirconium Disulfide toward the Oxygen Reduction Reaction. Energy & Fuels, 2023, 37, 567-579.	5.1	3
1145	Bulkâ€like Pt(100)â€oriented Ultrathin Surface: Combining the Merits of Single Crystals and Nanoparticles to Boost Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	10
1146	Altering oxygen binding by redoxâ€inactive metal substitution to control catalytic activity: oxygen reduction on manganese oxide nanoparticles as a model system. Angewandte Chemie, 0, , .	2.0	0
1147	Altering Oxygen Binding by Redoxâ€Inactive Metal Substitution to Control Catalytic Activity: Oxygen Reduction on Manganese Oxide Nanoparticles as a Model System**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	4
1148	ZrN ₆ â€Doped Graphene for Ammonia Synthesis: A Density Functional Theory Study. ChemPhysChem, 2023, 24, .	2.1	1
1149	Role of Fluxionality and Metastable Isomers in the ORR Activity: A Case Study. Journal of Physical Chemistry C, 2023, 127, 217-228.	3.1	3
1150	Nitrogen-Doped Carbon Sponge Derived from the Self-Assembly of a Poly(amic acid) for High Performance Oxygen Reduction Reaction. New Journal of Chemistry, 0, , .	2.8	2
1151	Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Đependent Electrochemiluminescence. Angewandte Chemie, 0, , .	2.0	1
1152	How pH Affects the Oxygen Reduction Reactivity of Fe–N–C Materials. ACS Catalysis, 2023, 13, 1717-1725.	11.2	21
1153	Metal single-site catalyst design for electrocatalytic production of hydrogen peroxide at industrial-relevant currents. Nature Communications, 2023, 14, .	12.8	49
1154	Electrocatalysis Mechanism and Structure–Activity Relationship of Atomically Dispersed Metalâ€Nitrogenâ€Carbon Catalysts for Electrocatalytic Reactions. Small Methods, 2023, 7, .	8.6	7

#	Article	IF	CITATIONS
1155	Review and Perspective on Transition Metal Electrocatalysts Toward Carbon-Neutral Energy. Energy & Fuels, 2023, 37, 1545-1576.	5.1	16
1156	Amino-tethering synthesis strategy toward highly accessible sub-3-nm L10-PtM catalysts for high-power fuel cells. Matter, 2023, 6, 963-982.	10.0	12
1157	Elucidating Electrocatalytic Oxygen Reduction Kinetics via Intermediates by Timeâ€Dependent Electrochemiluminescence. Angewandte Chemie - International Edition, 2023, 62, .	13.8	16
1158	Applications of In Situ Raman Spectroscopy on Rechargeable Batteries and Hydrogen Energy Systems. ChemElectroChem, 2023, 10, .	3.4	4
1159	Pyrolysis-Free Mechanochemical Conversion of Small Organic Molecules into Metal-Free Heteroatom-Doped Mesoporous Carbons for Efficient Electrosynthesis of Hydrogen Peroxide. , 2023, 5, 379-387.		6
1160	Strong precious metal–metal oxide interaction for oxygen reduction reaction: A strategy for efficient catalyst design. SusMat, 2023, 3, 2-20.	14.9	17
1161	Atomically Dispersed Alkalineâ€Earth Metals as Active Centers for CO ₂ Electroreduction to Exclusively Produce Formate. Small Structures, 2023, 4, .	12.0	23
1162	Bifunctional Edgeâ€Rich Nitrogen Doped Porous Carbon for Activating Oxygen and Sulfur. Advanced Functional Materials, 2023, 33, .	14.9	10
1163	Mn–N–C catalysts derived from metal triazole framework with hierarchical porosity for efficient oxygen reduction. Nanotechnology, 2023, 34, 145403.	2.6	1
1164	The surface charge induced high activity of oxygen reduction reaction on the PdTe ₂ bilayer. Physical Chemistry Chemical Physics, 2023, 25, 4105-4112.	2.8	2
1165	PtFeCoNiCu high-entropy solid solution alloy as highly efficient electrocatalyst for the oxygen reduction reaction. IScience, 2023, 26, 105890.	4.1	10
1166	General rules of active zone on the three-dimensional volcano surface enables rapid location of efficient catalyst. Journal of Catalysis, 2023, 417, 453-461.	6.2	0
1167	Integrated cathode with in-situ grown MnCo2O4/NC/MnO2 catalyst layer for alkaline liquid fuel cells. Journal of Alloys and Compounds, 2023, 938, 168677.	5.5	0
1168	Mechanism of Pt3Co nanocatalysts to improve the performance for oxygen reduction reactions: DFT study on oxygen adsorption and durability of different facets. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 289, 116202.	3.5	0
1169	Development and evaluation of cost-effective and green Bi-functional nickel oxide decorated graphene electrocatalysts for alkaline fuel cells. Results in Engineering, 2023, 17, 100871.	5.1	12
1170	The synergistic effect of "soft-hard template―to in situ regulate mass transfer and defective sites of doped-carbon nanostructures for catalysis of oxygen reduction. Journal of Alloys and Compounds, 2023, 939, 168782.	5.5	11
1171	Atomic Fe/Zn anchored N, S co-doped nano-porous carbon for boosting oxygen reduction reaction. Journal of Colloid and Interface Science, 2023, 635, 578-587.	9.4	14
1172	Temperature versus type: Which is the determining factor in biomass-based electrocatalyst performance?. Applied Catalysis B: Environmental, 2023, 325, 122391.	20.2	7

#	Article	IF	CITATIONS
1173	Potentialâ€Modulated Ion Distributions in the Backâ€ŧoâ€Back Electrical Double Layers at a Polarised Liquid Liquid Interface Regulate the Kinetics of Interfacial Electron Transfer. ChemElectroChem, 2023, 10, .	3.4	1
1174	Candied Haws-Like Fe–N–C Catalysts with Broadened Carbon Interlayer Spacing for Efficient Zinc–Air Battery. ACS Applied Materials & Interfaces, 2023, 15, 953-962.	8.0	3
1175	Facile Preparation of Cobalt Nanoparticles Encapsulated Nitrogen-Doped Carbon Sponge for Efficient Oxygen Reduction Reaction. Polymers, 2023, 15, 521.	4.5	5
1176	Synthesis of Platinum Nanocrystals Dispersed on Nitrogen-Doped Hierarchically Porous Carbon with Enhanced Oxygen Reduction Reaction Activity and Durability. Nanomaterials, 2023, 13, 444.	4.1	2
1177	Theory-guided development of homogeneous catalysts for the reduction of CO ₂ to formate, formaldehyde, and methanol derivatives. Chemical Science, 2023, 14, 2799-2807.	7.4	11
1178	Advances and status of anode catalysts for proton exchange membrane water electrolysis technology. Materials Chemistry Frontiers, 2023, 7, 1025-1045.	5.9	19
1179	Recent Progress of Non-Pt Catalysts for Oxygen Reduction Reaction in Fuel Cells. Processes, 2023, 11, 361.	2.8	8
1180	Electrocatalytic Oxygen Reduction to Hydrogen Peroxide on Graphdiyne-Based Single-Atom Catalysts: First-Principles Studies. Catalysts, 2023, 13, 307.	3.5	9
1181	Identification of catalytic activity descriptors for selective 5-hydroxymethyl furfural electrooxidation to 2,5-furandicarboxylic acid. Journal of Materials Chemistry A, 2023, 11, 5527-5539.	10.3	7
1182	Bifunctional Nanostructured Palladium/MoS _x Electrocatalyst for Cathode Hydrogen Evolution Reaction PEM Water Electrolysis and Oxygen Reduction Reaction. Advanced Sustainable Systems, 2023, 7, .	5.3	2
1183	Cr-doped Pd metallene nanoribbon superstructures for the oxygen reduction reaction and formic acid oxidation. Chemical Communications, 2023, 59, 2473-2476.	4.1	8
1184	Application of Bimetallic Cathode Catalysts for Enhancing the Performance of Microbial Fuel Cell: A Review. Water, Air, and Soil Pollution, 2023, 234, .	2.4	5
1185	Rational Design of Atomically Dispersed Metal Site Electrocatalysts for Oxygen Reduction Reaction. Advanced Science, 2023, 10, .	11.2	14
1186	Machine Learning Identification of Active Sites in Graphite-Conjugated Catalysts. Journal of Physical Chemistry C, 2023, 127, 2303-2313.	3.1	3
1187	Mass Production of Sulfurâ€Tuned Singleâ€Atom Catalysts for Zn–Air Batteries. Advanced Materials, 0, , 2209948.	21.0	23
1188	First-principles screening of transition metal doped anatase TiO ₂ (101) surfaces for the electrocatalytic nitrogen reduction. Physical Chemistry Chemical Physics, 2023, 25, 5827-5835.	2.8	2
1189	Constructing direct Z-scheme heterojunctions of defective MoS2-v on carbon nitride nanotubes for high-performance hydrogen peroxide production and iron-free photo-Fenton-like reactions over a wide pH range. Applied Surface Science, 2023, 618, 156656.	6.1	6
1190	Tailoring Metal–Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc–Air Batteries. Nano Letters, 2023, 23, 1573-1581.	9.1	24

#	Article	IF	CITATIONS
1191	Regulating the Fe-spin state by Fe/Fe3C neighbored single Fe-N4 sites in defective carbon promotes the oxygen reduction activity. Energy Storage Materials, 2023, 56, 394-402.	18.0	22
1192	Recent progress in heteroatom doping to modulate the coordination environment of M–N–C catalysts for the oxygen reduction reaction. Materials Chemistry Frontiers, 2023, 7, 2595-2619.	5.9	11
1193	Recent advances in probing electrode processes at well-defined electrified solid–liquid interfaces. , 2024, , 124-135.		0
1194	Insight into the Mechanism for Catalytic Activity of the Oxygen/Hydrogen Evolution Reaction on a Dual-Site Catalyst. Journal of Physical Chemistry Letters, 2023, 14, 2201-2207.	4.6	5
1195	Regulating the N-Coordination Structure of Fe–Fe Dual Sites as the Electrocatalyst for the O ₂ Reduction Reaction in Metal–Air Batteries. Inorganic Chemistry, 2023, 62, 5253-5261.	4.0	6
1196	Singlet Oxygen Induced Siteâ€Specific Etching Boosts Nitrogenâ€Carbon Sites for Highâ€Efficiency Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	21
1197	Non-bonding interaction of dual atom catalysts for enhanced oxygen reduction reaction. Nano Energy, 2023, 108, 108218.	16.0	17
1198	Highly Active and Durable Metalâ€Free Carbon Catalysts for Anionâ€Exchange Membrane Fuel Cells. Advanced Energy Materials, 2023, 13, .	19.5	7
1199	Immobilization of a Molecular Copper Complex and a Carboxylate-Terminated Cocatalyst on a Metal Oxide Electrode for Enhanced Electrocatalytic Oxygen Reduction. ACS Catalysis, 2023, 13, 5599-5608.	11.2	4
1200	Subnanoscale Dual-Site Pd–Pt Layers Make PdPtCu Nanocrystals CO-Tolerant Bipolar Effective Electrocatalysts for Alcohol Fuel Cell Devices. Nano Letters, 2023, 23, 3467-3475.	9.1	10
1201	Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts. IScience, 2023, 26, 106624.	4.1	3
1202	Enhanced Durability of Automotive Fuel Cells via Selectivity Implementation by Hydrogen Spillover on the Electrocatalyst Surface. ACS Energy Letters, 2023, 8, 2201-2213.	17.4	7
1203	Carbon-Free, Binder-Free MnO ₂ @Mn Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 20110-20119.	8.0	6
1204	Regulating single-atom Mn sites by precisely axial pyridinic-nitrogen coordination to stabilize the oxygen reduction. Journal of Energy Chemistry, 2023, 80, 542-552.	12.9	18
1205	Oxygen Reduction and Hydrogen Evolution Reactions on Zigzag ReS2 Nanoribbons. Applied Surface Science, 2023, 618, 156677.	6.1	1
1206	High throughput screening of single atomic catalysts with optimized local structures for the electrochemical oxygen reduction by machine learning. Journal of Energy Chemistry, 2023, 81, 349-357.	12.9	9
1207	Modeling the electrosynthesis of H2O2: Understanding the role of predatory species. Chemical Engineering Science, 2023, 273, 118647.	3.8	0
1208	Fabrication of superhydrophilic porous carbon materials through a porogen-free method: Surface and structure modification promoting the two-electron oxygen reduction activity. Journal of Colloid and Interface Science, 2023, 639, 333-342	9.4	1

#	Article	IF	CITATIONS
1209	FeCo alloy entrapped in N-doped graphitic carbon nanotubes-on-nanosheets prepared by coordination-induced pyrolysis for oxygen reduction reaction and rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2023, 639, 424-433.	9.4	77
1210	Recent experimental and theoretical advances in the design and science of high-entropy alloy nanoparticles. Nano Energy, 2023, 110, 108362.	16.0	24
1211	CO2-derived edge-boron-doped hierarchical porous carbon catalysts for highly effective electrochemical H2O2 production. Applied Catalysis B: Environmental, 2023, 329, 122557.	20.2	9
1212	Electrocatalytic transformation of oxygen to hydroxyl radicals via three-electron pathway using nitrogen-doped carbon nanotube-encapsulated nickel nanocatalysts for effective organic decontamination. Journal of Hazardous Materials, 2023, 452, 131352.	12.4	10
1213	Precisely optimizing polysulfides adsorption and conversion by local coordination engineering for high-performance Li-S batteries. Nano Energy, 2023, 110, 108353.	16.0	20
1214	Boosting electrocatalytic performance and durability of Pt nanoparticles by conductive MO2â^'x (M =) Tj ETQq1 1	0,784314	1 ggBT /Over
1215	Highly graphitic Fe-doped carbon xerogels as dual-functional electro-Fenton catalysts for the degradation of tetracycline in wastewater. Environmental Research, 2023, 228, 115757.	7.5	5
1216	Insights into the Use of Te–O Pairs as Active Centers of Carbon Nanosheets for Efficient Electrochemical Oxygen Reduction. ACS Nano, 2023, 17, 8671-8679.	14.6	40
1217	Single-Atom Iridium-Based Catalysts: Synthesis Strategies and Electro(Photo)-Catalytic Applications for Renewable Energy Conversion and Storage. Coordination Chemistry Reviews, 2023, 486, 215143.	18.8	8
1218	The OER/ORR activities of copper oxyhydroxide series electrocatalysts. Molecular Catalysis, 2023, 537, 112942.	2.0	4
1219	Low-Voltage Hydrogen Peroxide Electrolyzer for Highly Efficient Power-to-Hydrogen Conversion. ACS Sustainable Chemistry and Engineering, 2023, 11, 2599-2606.	6.7	3
1220	Fe/N/S Co-doped Porous Carbon from the Co-processing Residue of Coal and Heavy Oil for an Efficient Oxygen Reduction Reaction. Industrial & Engineering Chemistry Research, 2023, 62, 2536-2547.	3.7	2
1221	Atomically precise electrocatalysts for oxygen reduction reaction. CheM, 2023, 9, 280-342.	11.7	36
1222	Steering Selectivity in the Four-Electron and Two-Electron Oxygen Reduction Reactions: On the Importance of the Volcano Slope. ACS Physical Chemistry Au, 2023, 3, 190-198.	4.0	10
1223	Rational design of donor-acceptor engineered g-C3N4 for boosted H2O2 production via photocatalytic O2 reduction. Journal of Environmental Chemical Engineering, 2023, 11, 109426.	6.7	4
1224	Boosting the electrochemical O2-to-H2O2 synthesis by revamping the FeMo catalyst with N/O co-doped surface. Chemical Engineering Journal, 2023, 460, 141673.	12.7	2
1225	Prospect of microfluidic devices for on-site electrochemical production of hydrogen peroxide. Current Opinion in Electrochemistry, 2023, 38, 101223.	4.8	2
1226	Industrial-scale H2O2 electrosynthesis in practical electrochemical cell systems. Current Opinion in Flectrochemistry, 2023, 38, 101224.	4.8	2

#	Article	IF	CITATIONS
1227	Role of solvation model on the stability of oxygenates on Pt(111): A comparison between microsolvation, extended bilayer, and extended metal/water interface. Electrochemical Science Advances, 2024, 4, .	2.8	10
1228	Toward data―and mechanisticâ€driven volcano plots in electrocatalysis. Electrochemical Science Advances, 2024, 4, .	2.8	3
1229	Understanding the Activity and Design Principle of Dual-Atom Catalysts Supported on C ₂ N for Oxygen Reduction and Evolution Reactions: From Homonuclear to Heteronuclear. Journal of Physical Chemistry Letters, 2023, 14, 1674-1683.	4.6	10
1230	Insights into the Effect of Metal Ratio on Cooperative Redox Enhancement Effects over Au- and Pd-Mediated Alcohol Oxidation. ACS Catalysis, 2023, 13, 2892-2903.	11.2	8
1231	Directional Charge Transfer Channels in a Monolithically Integrated Electrode for Photoassisted Overall Water Splitting. ACS Nano, 2023, 17, 3465-3482.	14.6	26
1232	On the concept of metal–hydrogen peroxide batteries: improvement over metal–air batteries?. Energy Advances, 2023, 2, 522-529.	3.3	5
1233	Measurement of Ionomer Coverage on Carbon and Pt in Catalyst Layer of Polymer Electrolyte Fuel Cells by Electrochemical Impedance Spectroscopy. Electrocatalysis, 2023, 14, 522-533.	3.0	4
1234	Strategies to Improve the Oxygen Reduction Reaction Activity on Pt–Bi Bimetallic Catalysts: A Density Functional Theory Study. Journal of Physical Chemistry Letters, 2023, 14, 1990-1998.	4.6	4
1235	Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. Nano-Micro Letters, 2023, 15, .	27.0	55
1236	External-Shell Oxygen Enabling the Local Environment Modulation of Unsaturated NbN ₃ for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2023, 15, 10718-10725.	8.0	1
1237	CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. Journal of Physical Chemistry A, 2023, 127, 1975-1987.	2.5	2
1238	Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chemical Reviews, 2023, 123, 3443-3492.	47.7	11
1239	Tetrazole-functionalized benzoquinoline-linked covalent organic frameworks with efficient performance for electrocatalytic H ₂ O ₂ production and Li–S batteries. Materials Chemistry Frontiers, 2023, 7, 1650-1658.	5.9	12
1240	Single-Atom Ce-N ₄ -C-(OH) ₂ Nanozyme-Catalyzed Cascade Reaction to Alleviate Hyperglycemia. Research, 2023, 6, .	5.7	3
1241	Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study. Frontiers of Chemical Science and Engineering, 2023, 17, 570-580.	4.4	1
1242	Stride Strategy to Enable a Quasi-ergodic Search of Reaction Pathways Demonstrated by Ring-opening Polymerization of Cyclic Esters. Chinese Journal of Polymer Science (English Edition), 2023, 41, 745-759.	3.8	4
1243	Green carbon science: fundamental aspects. National Science Review, 2023, 10, .	9.5	8
1244	Metalâ€Redox Bicatalysis Batteries for Energy Storage and Chemical Production. Advanced Materials, 2023, 35, .	21.0	8

#	Article	IF	CITATIONS
1245	Recent advances in carbon-supported non-precious metal single-atom catalysts for energy conversion electrocatalysis. , 2023, 2, 20220059.		6
1246	Direct Oxygenâ€Oxygen Cleavage through Optimizing Interatomic Distances in Dual Singleâ€atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	36
1247	Regulating the electronic structure of single-atom catalysts for electrochemical energy conversion. Journal of Materials Chemistry A, 2023, 11, 12643-12658.	10.3	14
1248	Direct Oxygenâ€Oxygen Cleavage through Optimizing Interatomic Distances in Dual Singleâ€atom Electrocatalysts for Efficient Oxygen Reduction Reaction. Angewandte Chemie, 2023, 135, .	2.0	1
1249	pH Effects in a Model Electrocatalytic Reaction Disentangled. Jacs Au, 2023, 3, 1052-1064.	7.9	8
1250	ldentifying the key N species for electrocatalytic oxygen reduction reaction on N-doped graphene. Nano Research, 2023, 16, 6642-6651.	10.4	18
1251	Unravelling catalytic activity trends in ceria surfaces toward the oxygen reduction and water oxidation reactions. Reaction Chemistry and Engineering, 2023, 8, 1285-1293.	3.7	0
1252	The surface states of transition metal X-ides under electrocatalytic conditions. Journal of Chemical Physics, 2023, 158, .	3.0	23
1253	Recent advances in catalyst design and activity enhancement induced by a magnetic field for electrocatalysis. Journal of Materials Chemistry A, 2023, 11, 7802-7832.	10.3	11
1254	Bioinspired Hydrophobicity Coupled with Single Feâ€N ₄ Sites Promotes Oxygen Diffusion for Efficient Zincâ€Air Batteries. Small, 2023, 19, .	10.0	9
1255	Covalent Organic Frameworks with Molecular Electronic Modulation as Metalâ€Free Electrocatalysts for Efficient Hydrogen Peroxide Production. Small Structures, 2023, 4, .	12.0	7
1256	Interface synergism and engineering of Pd/Co@N-C for direct ethanol fuel cells. Nature Communications, 2023, 14, .	12.8	33
1257	Analysis of the Scale of Global Human Needs and Opportunities for Sustainable Catalytic Technologies. Topics in Catalysis, 2023, 66, 338-374.	2.8	6
1258	Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au–water interfaces. Chemical Science, 2023, 14, 3913-3922.	7.4	8
1259	Disrupting Intracellular Iron Homeostasis by Engineered Metalâ€Organic Framework for Nanocatalytic Tumor Therapy in Synergy with Autophagy Amplificationâ€Promoted Ferroptosis. Advanced Functional Materials, 2023, 33, .	14.9	10
1260	A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation. ACS Nano, 2023, 17, 5329-5339.	14.6	24
1261	Identification and Understanding of Active Sites of Nonâ€Noble Ironâ€Nitrogenâ€Carbon Catalysts for Oxygen Reduction Electrocatalysis. Advanced Functional Materials, 2023, 33, .	14.9	16
1262	Rational design of septenary high-entropy alloy for direct ethanol fuel cells. Joule, 2023, 7, 587-602.	24.0	23

#	Article	IF	CITATIONS
1263	Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers, 2023, 15, 1450.	4.5	12
1264	H2O2 electrosynthesis and emerging applications, challenges, and opportunities: A computational perspective. Chem Catalysis, 2023, 3, 100568.	6.1	8
1265	Influence of Nitrogen Doping into Carbon on the Activation Barrier of ORR in Alkaline Medium: An Investigation Based on Eyring Analysis. Langmuir, 2023, 39, 4351-4361.	3.5	5
1266	Trends and Prospects of Bulk and Singleâ€Atom Catalysts for the Oxygen Evolution Reaction. Advanced Energy Materials, 2023, 13, .	19.5	25
1267	Potent Chargeâ€Trapping for Boosted Electrocatalytic Oxygen Reduction. Advanced Energy Materials, 2023, 13, .	19.5	11
1268	Hollow tubular Co3S4/NiS/FeS as high-efficiency tri-functional electrocatalyst for Zn-air battery and overall water splitting. Journal of Alloys and Compounds, 2023, 948, 169752.	5.5	5
1269	Tailoring the electronic structure of PdAg alloy nanowires for high oxygen reduction reaction. , 2023, 42, 100068.		1
1270	Singlet Oxygen Induced Siteâ€Specific Etching Boosts Nitrogenâ€Carbon Sites for Highâ€Efficiency Oxygen Reduction. Angewandte Chemie, 2023, 135, .	2.0	1
1271	Oxygen Evolution/Reduction Reaction Catalysts: From <i>In Situ</i> Monitoring and Reaction Mechanisms to Rational Design. Chemical Reviews, 2023, 123, 6257-6358.	47.7	81
1272	Selective Control and Characteristics of Water Oxidation and Dioxygen Reduction in Environmental Photo(electro)catalytic Systems. Accounts of Chemical Research, 2023, 56, 867-877.	15.6	8
1273	The mechanism of high electrocatalytic activity and stability of the Pt3Co alloy embedded into the lattice by Au or Rh atoms. Ionics, 2023, 29, 1991-2003.	2.4	0
1274	Dissolvable templates to prepare Pt-based porous metallic glass for the oxygen reduction reaction. Nanoscale, 2023, 15, 6802-6811.	5.6	2
1275	Highly Stable Pt-Based Oxygen Reduction Electrocatalysts toward Practical Fuel Cells: Progress and Perspectives. Materials, 2023, 16, 2590.	2.9	4
1276	Nano-Polycrystalline Cu Layer Interlaced with Ti ³⁺ -Self-Doped TiO ₂ Nanotube Arrays as an Electrocatalyst for Reduction of Nitrate to Ammonia. ACS Applied Materials & Interfaces, 2023, 15, 16680-16691.	8.0	5
1277	Equilibrium and kinetic isotope effects in heterogeneous catalysis: A density functional theory perspective. Catalysis Communications, 2023, 177, 106654.	3.3	0
1278	Scalable and Controllable Synthesis of Ptâ€Ni Bunchedâ€Nanocages Aerogels as Efficient Electrocatalysts for Oxygen Reduction Reaction. Advanced Energy Materials, 2023, 13, .	19.5	19
1279	Atomically Dispersed Fe–N ₄ Sites and NiFe-LDH Sub-Nanoclusters as an Excellent Air Cathode for Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2023, 15, 16732-16743.	8.0	5
1280	Mechanistic Insight into Dual-Metal-Site Catalysts for the Oxygen Reduction Reaction. ACS Catalysis, 2023, 13, 4992-4999.	11.2	7

#	Article	IF	CITATIONS
1281	Investigation of structural and transport properties of highly oxygen-permeable ionomer in polymer electrolyte membrane fuel cells using molecular dynamics simulations. Journal of Industrial and Engineering Chemistry, 2023, 123, 418-427.	5.8	1
1282	Longitudinally Grafting of Graphene with Iron Phthalocyanineâ€based Porous Organic Polymer to Boost Oxygen Electroreduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
1283	Longitudinally Grafting of Graphene with Iron Phthalocyanineâ€based Porous Organic Polymer to Boost Oxygen Electroreduction. Angewandte Chemie, 0, , .	2.0	0
1284	Atomically Structured Metalâ€Organic Frameworks: A Powerful Chemical Path for Noble Metalâ€Based Electrocatalysts. Advanced Functional Materials, 2023, 33, .	14.9	6
1285	Nitrogen-doped carbon dot/activated carbon nanotube-supported copper nanoparticles as an efficient electrocatalyst for the oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2023, 937, 117423.	3.8	1
1286	Enhancement Mechanism of Pt/Pd-Based Catalysts for Oxygen Reduction Reaction. Nanomaterials, 2023, 13, 1275.	4.1	4
1287	Elucidating the oxygen reduction reaction kinetics on defect engineered nanocarbon electrocatalyst: interplay between the N-dopant and defect sites. Journal of Materials Chemistry A, 2023, 11, 17045-17055.	10.3	6
1288	How Size and Strain Effect Synergistically Improve Electrocatalytic Activity: A Systematic Investigation Based on PtCoCu Alloy Nanocrystals. Small, 2023, 19, .	10.0	5
1289	Metal Oxideâ€5upported Metal Catalysts for Electrocatalytic Oxygen Reduction Reaction: Characterization Methods, Modulation Strategies, and Recent Progress. Small Methods, 2023, 7, .	8.6	6
1290	Geometric and Electronic Engineering of Atomically Dispersed Copperâ€Cobalt Diatomic Sites for Synergistic Promotion of Bifunctional Oxygen Electrocatalysis in Zinc–Air Batteries. Advanced Materials, 2023, 35, .	21.0	48
1291	Computational screening of two-dimensional metal-benzenehexathial for the oxygen reduction reaction. Catalysis Science and Technology, 0, , .	4.1	0
1292	Mechanistic Investigations into the Selective Reduction of Oxygen by a Multicopper Oxidase T3 Site-Inspired Dicopper Complex. ACS Catalysis, 2023, 13, 5712-5722.	11.2	3
1293	Functionalized graphitic carbon nitride based catalysts in solar-to-chemical conversion for hydrogen peroxide production. Chemical Engineering Journal, 2023, 466, 142931.	12.7	7
1294	A Perspective on the Recent Amelioration of Co ₃ O ₄ and MnO ₂ Bifunctional Catalysts for Oxygen Electrode Reactions. , 0, , .		Ο
1295	High dispersion Co-N/C ultra-thin carbon nanosheets modified with trace Ce as efficient oxygen reduction reaction catalysts. New Journal of Chemistry, 0, , .	2.8	0
1296	Crafting Pyrolysis-Free M–N–C Catalysts. , 0, , .		0
1297	Recent advances, properties, fabrication and opportunities in two-dimensional materials for their potential sustainable applications. Energy Storage Materials, 2023, 59, 102780.	18.0	12
1298	Revisit to Grain Boundary Effect in Pt Nanocrystals toward the Oxygen Electroreduction Reaction. ChemCatChem, 2023, 15, .	3.7	2

# 1299	ARTICLE Improved metal-support interaction in Ru/CeO2 catalyst via plasma-treated strategy for dichloroethane oxidation. Applied Catalysis A: General, 2023, 660, 119215.	IF 4.3	Citations
1300	Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS). Advanced Materials, 2024, 36, .	21.0	13
1301	Boosting heterogeneous catalyst discovery by structurally constrained deep learning models. Materials Today Chemistry, 2023, 30, 101541.	3.5	0
1302	Promoting Oxygen Reduction Reaction on Carbonâ€based Materials by Selective Hydrogen Bonding. ChemSusChem, 0, , .	6.8	1
1303	Carbon spheres modified titanium air diffusion cathode for boosting H2O2 and application in disinfection. Journal of Environmental Chemical Engineering, 2023, 11, 110012.	6.7	1
1304	CuO/Co3O4 heterostructures with carbon nanotubes composites as ORR/OER electrocatalysts for Zn-air batteries. Journal of Energy Storage, 2023, 66, 107485.	8.1	11
1305	Designing Ce single-atom-sites coupled with CeO ₂ nanoparticles for oxygen reduction enhancement. Inorganic Chemistry Frontiers, 2023, 10, 3091-3102.	6.0	5
1306	Two-Dimensional Covalent Framework Derived Nonprecious Transition Metal Single-Atomic-Site Electrocatalyst toward High-Efficiency Oxygen Reduction. Nano Letters, 2023, 23, 3803-3809.	9.1	4
1307	Revisiting the Role of Sulfur Functionality in Regulating theÂElectron Distribution of Singleâ€Atomic Fe Sites Toward Enhanced Oxygen Reduction. Advanced Functional Materials, 2023, 33, .	14.9	6
1308	Enhanced Oxygen Reduction Reaction Performance by Adsorbed Water on Edge Sites. ACS Applied Materials & amp; Interfaces, 2023, 15, 21049-21056.	8.0	2
1309	Recent progress in two-dimensional Nb2C MXene for applications in energy storage and conversion. Materials and Design, 2023, 231, 112046.	7.0	7
1310	Strainâ€Regulated Pt–NiO@Ni Subâ€Micron Particles Achieving Bifunctional Electrocatalysis for Zinc–Air Battery. Small, 2023, 19, .	10.0	6
1311	Modulating local coordination of Ni-Nx-C electrocatalysts for improving oxygen reduction activity by the first-principles calculations. Computational and Theoretical Chemistry, 2023, 1225, 114129.	2.5	0
1312	High platinum utilization for proton exchange membrane fuel cells via low-temperature substrate sputtering on acid-treated carbon nanotube sheet. Chemical Engineering Journal, 2023, 466, 143135.	12.7	1
1313	Unveiling the role of hydroxyl groups in glycerol as a critical descriptor for efficient electrocatalytic reforming of biomass molecules using PtCu alloy nanoparticle catalysts. Chemical Engineering Journal, 2023, 466, 143138.	12.7	6
1314	Heteroatom-doped M N C catalysts for oxygen reduction reactions: Doping strategies and active site regulation. Journal of Electroanalytical Chemistry, 2023, 943, 117506.	3.8	0
1315	Single atom iron implanted polydopamine-modified hollow leaf-like N-doped carbon catalyst for improving oxygen reduction reaction and zinc-air batteries. Journal of Colloid and Interface Science, 2023, 645, 350-358.	9.4	3
1316	Pre-Oxidation-Tuned Oxygen and Nitrogen Species of Porous Carbon as an Advanced Electrocatalyst of the Oxygen Reduction Reaction for Flow Zn–Air Batteries. ACS Sustainable Chemistry and Engineering, 2023, 11, 7378-7387.	6.7	4

#	Article	IF	CITATIONS
1317	Electrocatalyst with fluorinated protective layer for efficient oxygen reduction in the operating temperature of PEMFCs. Chemical Engineering Journal, 2023, 466, 143105.	12.7	1
1318	Low-temperature catalytic hydrogen combustion over Pd-Cu/Al2O3: Catalyst optimization and rate law determination. Korean Journal of Chemical Engineering, 2023, 40, 1317-1330.	2.7	2
1319	Catalyst Development for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cell (HTâ€PEMFC) Applications. Advanced Materials, 2023, 35, .	21.0	11
1320	A combined approach toward enhancing 2-electron oxygen reduction through the incorporation of Pd-based complex into a carbonaceous matrix: Experimental and mechanistic-theoretical studies. Electrochimica Acta, 2023, 460, 142543.	5.2	1
1321	A zeolite templating method for fabricating edge site-enriched N-doped carbon materials. Nanoscale Advances, 2023, 5, 4233-4239.	4.6	2
1322	Operando Electrochemical Raman Spectroscopy. Springer Handbooks, 2023, , 189-211.	0.6	1
1323	Analysis of Oxidized Pt Species on a Connected Pt–Fe Catalyst with Enhanced Oxygen Reduction Activity Probed by Electrochemical XPS. Journal of Chemical Engineering of Japan, 2023, 56, .	0.6	1
1324	Surface self-reconstruction of catalysts in electrocatalytic oxygen evolution reaction. , 2024, , 316-327.		0
1325	Insights into local coordination environment of main group metal-nitrogen-carbon catalysts for enhanced oxygen reduction reaction. Applied Surface Science, 2023, 631, 157581.	6.1	1
1326	Symmetric Electronic Structures of Active Sites to Boost Bifunctional Oxygen Electrocatalysis by MN ₄₊₄ Sites Directly from Initial Covalent Organic Polymers. Advanced Functional Materials, 2023, 33, .	14.9	13
1327	Ultrahigh-Density Double-Atom Catalyst with Spin Moment as an Activity Descriptor for the Oxygen-Reduction Reaction. Physical Review Applied, 2023, 19, .	3.8	14
1328	Design strategies towards transition metal single atom catalysts for the oxygen reduction reaction – A review. , 2023, 2, e9120082.		12
1329	Reactivity of Pd–Cu/Al2O3 and Cu/Al2O3 during catalytic hydrogen combustion – In-situ mechanistic study and rate law determination. Journal of the Energy Institute, 2023, 109, 101297.	5.3	0
1330	Chalcogen Composition Driven Enhancement of Catalytic Efficiency in Zirconium based Monolayers: Insight from Reaction Coordinate Mapping. Sustainable Energy and Fuels, 0, , .	4.9	0
1331	Electrosynthesis of Hydrogen Peroxide through Selective Oxygen Reduction: A Carbon Innovation from Active Site Engineering to Device Design. Small, 2023, 19, .	10.0	6
1332	Practical Classification of Catalysts for Oxygen Reduction Reactions: Optimization Strategies and Mechanistic Analysis. Advanced Functional Materials, 2023, 33, .	14.9	5
1333	Improving the Hydrogen Oxidation Reaction Rate of Ru by Active Hydrogen in the Ultrathin Pd Interlayer. Journal of the American Chemical Society, 2023, 145, 12717-12725.	13.7	14
1334	Lanthanide-doped MoS2 with enhanced oxygen reduction activity and biperiodic chemical trends. Nature Communications, 2023, 14, .	12.8	5

#	Article	IF	CITATIONS
1335	Model-based evaluation and data requirements for parallel kinetic experimentation and data-driven reaction identification and optimization. , 2023, 2, 994-1005.		1
1336	Bifunctional Single Atom Catalysts for Rechargeable Zinc–Air Batteries: From Dynamic Mechanism to Rational Design. Advanced Materials, 2023, 35, .	21.0	33
1337	Ligand effect on switching the rate-determining step of water oxidation in atomically precise metal nanoclusters. Nature Communications, 2023, 14, .	12.8	12
1338	Interface engineering of transition metal-nitrogen-carbon by graphdiyne for boosting the oxygen reduction/evolution reactions: A computational study. Journal of Colloid and Interface Science, 2023, 649, 1-9.	9.4	6
1339	Unconventional Bilateral Compressive Strained Ni–Ir Interface Synergistically Accelerates Alkaline Hydrogen Oxidation. Journal of the American Chemical Society, 2023, 145, 13805-13815.	13.7	15
1340	Probing high catalytic activity and selectivity of enzyme-mimicking single-atom catalysts formed by pyrrole-type M-N4 sites embedded into g-C3N4 for oxygen reduction reaction. Journal of Environmental Chemical Engineering, 2023, 11, 110382.	6.7	6
1341	Structure engineering of MoO ₃ breaks the scaling relationship and achieves high electrocatalytic oxygen evolution activity in acidic conditions. Journal of Materials Chemistry A, 2023, 11, 14952-14958.	10.3	2
1342	Quantitative Composition and Mesoscale Ion Distribution in p-Type Organic Mixed Ionic-Electronic Conductors. ACS Applied Materials & amp; Interfaces, 2023, 15, 30553-30566.	8.0	5
1344	Protection Against Absorption Passivation on Platinum by a Nitrogen-Doped Carbon Shell for Enhanced Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 30240-30248.	8.0	3
1345	Pt, Ag and Au Nanoparticles on Hollow Carbon Spheres as Cathode ORR. Electronic Materials Letters, 2024, 20, 199-206.	2.2	2
1346	MBE Grown Vanadium Oxide Thin Films for Enhanced Nonâ€Enzymatic Glucose Sensing. Advanced Functional Materials, 2023, 33, .	14.9	1
1347	Ice Formation during PEM Fuel Cell Cold Start: Acceptable or Not?. Advanced Science, 0, , .	11.2	2
1349	Investigation of oxygen reduction reaction activity on Pt-Fe/C catalyst. Ionics, 0, , .	2.4	0
1350	Waste to wealth: direct utilization of spent materials for electrocatalysis and energy storage. Green Chemistry, 2023, 25, 3816-3846.	9.0	5
1351	Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction. Nanoscale, 2023, 15, 9605-9634.	5.6	6
1352	Strategies for improving stability of Pt-based catalysts for oxygen reduction reaction. , 2023, 2, 100058.		5
1353	Exploring the catalytic activity of graphene-based TM-N _{<i>x</i>} C _{4-<i>x</i>} single atom catalysts for the oxygen reduction reaction <i>via</i> density functional theory calculation. Physical Chemistry Chemical Physics, 2023, 25, 13913-13922.	2.8	2
1354	Theoretical Screening of Highly Efficient Single-Atom Catalysts Based on Covalent Triazine Frameworks for Oxygen Reduction. Langmuir, 2023, 39, 6905-6913.	3.5	5

#	Article	IF	CITATIONS
1355	Understanding the mechanism and synergistic interaction of cobalt-based electrocatalysts containing nitrogen-doped carbon for 4 e ^{â^'} ORR. Journal of Materials Chemistry A, 2023, 11, 10095-10124.	10.3	13
1356	Experimental and Theoretical Elucidation of Metalâ€Free Sulfur and Nitrogen Coâ€Doped Porous Carbon Materials with an Efficient Synergistic Effect on the Oxygen Reduction Reaction. Advanced Materials Interfaces, 2023, 10, .	3.7	3
1357	Revealing the Synergistic Enhancement Effect of Dual Metal RuFe(Co) Sites for Bifunctional Oxygen Catalysis. , 2023, 5, 1656-1664.		8
1358	Hydrogen and oxygen evolution reactions on single atom catalysts stabilized by a covalent organic framework. Energy Advances, 2023, 2, 1022-1029.	3.3	4
1359	Strategies for Sustainable Production of Hydrogen Peroxide via Oxygen Reduction Reaction: From Catalyst Design to Device Setup. Nano-Micro Letters, 2023, 15, .	27.0	16
1360	Rh/Cr ₂ O ₃ and CoO _{<i>x</i>/i>} Cocatalysts for Efficient Photocatalytic Water Splitting by Poly (Triazine Imide) Crystals. Angewandte Chemie, 2023, 135, .	2.0	3
1361	Rh/Cr ₂ O ₃ and CoO _{<i>x</i>} Cocatalysts for Efficient Photocatalytic Water Splitting by Poly (Triazine Imide) Crystals. Angewandte Chemie - International Edition, 2023, 62, .	13.8	23
1362	Selective aerobic oxidation of benzyl alcohol under ambient conditions using polyionic nanoclay-supported gold/palladium nanoparticles. Molecular Catalysis, 2023, 546, 113237.	2.0	1
1363	Boosting oxygen reduction catalysis by introducing Fe bridging atoms between Pt nanoparticles and N-doped graphene. Chemical Engineering Journal, 2023, 467, 143482.	12.7	8
1364	Gradual introduction of multiple active sites in quest of high activity metal-free oxygen reduction catalysts and exploring the synergistic effect. Inorganic Chemistry Frontiers, 2023, 10, 3867-3873.	6.0	0
1365	Bending the ORR Scaling Relations on Zirconium Oxynitride for Enhanced Oxygen Electrocatalysis. ChemCatChem, 2023, 15, .	3.7	0
1366	Photocatalytic H ₂ O ₂ Generation over Microsphere Carbon-Assisted Hierarchical Indium Sulfide Nanoflakes via a Two-Step One-Electron Pathway. ACS Applied Materials & Interfaces, 2023, 15, 29224-29235.	8.0	3
1367	The rational design of high-performance graphene-based single-atom electrocatalysts for the ORR using machine learning. Physical Chemistry Chemical Physics, 2023, 25, 18983-18989.	2.8	3
1368	A General Strategy to Synthesize Fluidic Single Atom Electrodes for Selective Reactive Oxygen Species Production. ACS Nano, 2023, 17, 12875-12883.	14.6	16
1369	Data-driven pursuit of electrochemically stable 2D materials with basal plane activity toward oxygen electrocatalysis. Energy and Environmental Science, 2023, 16, 5003-5018.	30.8	12
1370	Recent progress of dual-site catalysts in emerging electrocatalysis: a review. Catalysis Science and Technology, 2023, 13, 4615-4634.	4.1	3
1371	Design high-entropy electrocatalyst via interpretable deep graph attention learning. Joule, 2023, 7, 1832-1851.	24.0	7
1372	Mimicking Metalloenzyme Microenvironments in the Transition Metalâ€Single Atom Catalysts for Electrochemical Hydrogen Peroxide Synthesis in an Acidic Medium. Small Methods, 2023, 7, .	8.6	1

#	Article	IF	CITATIONS
1373	Electrochemical filtration for drinking water purification: A review on membrane materials, mechanisms and roles. Journal of Environmental Sciences, 2024, 141, 102-128.	6.1	1
1374	Exploring Scaling Relations and Active Site Specificity of Graphite-Conjugated Catalysts Using Density Functional Theory. Journal of Physical Chemistry C, 2023, 127, 13582-13592.	3.1	0
1375	Single Cu–N ₄ sites enable atomic Fe clusters with high-performance oxygen reduction reactions. Energy and Environmental Science, 2023, 16, 3576-3586.	30.8	10
1376	Atomic Engineering Modulates Oxygen Reduction of Hollow Carbon Matrix Confined Single Metalâ€Nitrogen Sites for Zincâ€Air Batteries. Small, 2023, 19, .	10.0	3
1377	Hydrogen peroxide electrosynthesis: A comparative study employing Vulcan carbon modification by different MnO2 nanostructures. Electrochimica Acta, 2023, 463, 142852.	5.2	6
1378	N-doped porous carbon encapsulated Fe and Ni bimetal derived from MOFs as efficient oxygen reduction reaction catalysts for anion exchange membrane fuel cell. Journal of Electroanalytical Chemistry, 2023, 944, 117652.	3.8	0
1379	Ordered mesoporous Fe2N electrocatalysts with regulated nitrogen vacancy for oxygen reduction reaction and Zn-air battery. Nano Energy, 2023, 115, 108672.	16.0	4
1380	Effect of MnO Content on the Oxygen Reduction Activity of MnO/C Nanostructures. Electrocatalysis, 2023, 14, 788-799.	3.0	1
1381	Spatially and temporally understanding dynamic solid–electrolyte interfaces in carbon dioxide electroreduction. Chemical Society Reviews, 2023, 52, 5013-5050.	38.1	21
1382	Mechanisms of the Higher Catalytic Activity of Polymer Forms over Complexes for Non-pyrolytic Mono-1,10-phenanthroline-Coordinated Cu ²⁺ (Cu-N ₂ Type) in an Oxygen Reduction Reaction. Inorganic Chemistry, 2023, 62, 11436-11445.	4.0	2
1383	Oxygen Reduction Reaction on Single-Atom Catalysts From Density Functional Theory Calculations Combined with an Implicit Solvation Model. Journal of Physical Chemistry C, 2023, 127, 13623-13631.	3.1	0
1384	Asymmetric N, Pâ€Coordinated Singleâ€Atomic Fe Sites with Fe ₂ P Nanoclusters/Nanoparticles on Porous Carbon Nanosheets for Highly Efficient Oxygen Electroreduction. Advanced Energy Materials, 2023, 13, .	19.5	12
1385	O, N Coordination-Mediated Nickel Single-Atom Catalysts for High-Efficiency Generation of H ₂ O ₂ . ACS Applied Materials & Interfaces, 2023, 15, 33665-33674.	8.0	2
1386	PtNi alloy nanoparticles grown <i>in situ</i> on nitrogen doped carbon for the efficient oxygen reduction reaction. Dalton Transactions, 0, , .	3.3	2
1387	Rational Modulation of Single Atom Coordination Microenvironments in a BCN Monolayer for Multifunctional Electrocatalysis. Small, 2023, 19, .	10.0	2
1388	Highly electronegative PtAu alloy for simultaneous hydrogen generation and ethanol upgrading. Rare Metals, 2023, 42, 2949-2956.	7.1	2
1389	Effect of the Axial Halogen Ligand on the Oxygen Reduction Reaction Performance of Transition Metal–Nitrogen–Carbon Catalysts. Journal of Physical Chemistry C, 2023, 127, 14107-14116.	3.1	1
1390	A review: Multi-hierarchy design strategy of electrocatalysts for energy molecule conversion. Journal of Energy Chemistry, 2023, 86, 54-68.	12.9	2

#	Article	IF	CITATIONS
1391	dâ€Orbital Electron Delocalization Realized by Axial Fe ₄ C Atomic Clusters Delivers Highâ€Performance Fe–N–C Catalysts for Oxygen Reduction Reaction. Advanced Materials, 2023, 35, .	21.0	10
1392	Epoxyâ€rich Fe Single Atom Sites Boost Oxygen Reduction Electrocatalysis. Angewandte Chemie - International Edition, 2023, 62, .	13.8	17
1393	Epoxyâ \in rich Fe Single Atom Sites Boost Oxygen Reduction Electrocatalysis. Angewandte Chemie, 0, , .	2.0	0
1394	Fe2O3/Fe/Fe-N multidimensional cross-linked composite enhancing oxygen reduction reaction of al-air batteries: Oxygen vacancies and bandgap engineering. Applied Surface Science, 2023, 638, 158050.	6.1	1
1395	Recent advancements on designing transition metal-based carbon-supported single atom catalysts for oxygen electrocatalysis: Miles to go for sustainable Zn-air batteries. Energy Storage Materials, 2023, 61, 102890.	18.0	4
1396	Enhanced Fourâ€Electron Selective Oxygen Reduction Reaction at Carbonâ€Nanotubeâ€Supported Sulfonicâ€Acidâ€Functionalized Copper Phthalocyanine. ChemPhysChem, 2023, 24, .	2.1	2
1397	Creating conjugated Câ \in C bonds between commercial carbon electrode and molecular catalyst for oxygen Åreduction to hydrogen peroxide. ChemSusChem, 0, , .	6.8	0
1398	Enhanced Electrocatalytic Oxygen Reduction Performance of Differently Optimized S,N Heteroatom Dual-Doped Carbon-Encapsulated Iron Carbide–Carbon (Fe ₃ C@C-SN) Nanostructures. ACS Applied Energy Materials, 2023, 6, 7803-7817.	5.1	1
1399	It's time for an update—A perspective on fuel cell electrodes. Canadian Journal of Chemical Engineering, 0, , .	1.7	1
1400	Heteroatom doping regulates the catalytic performance of single-atom catalyst supported on graphene for ORR. Nano Research, 2024, 17, 1086-1093.	10.4	4
1401	Engineering Lung-Inspired Flow Field Geometries for Electrochemical Flow Cells with Stereolithography 3D Printing. ACS Sustainable Chemistry and Engineering, 2023, 11, 12243-12255.	6.7	3
1402	Origin of the superior oxygen reduction activity of zirconium nitride in alkaline media. Chemical Science, 2023, 14, 9000-9009.	7.4	6
1403	Boosting photocatalytic hydrogen peroxide production by regulating electronic configuration of single Sb atoms via carbon vacancies in carbon nitrides. Journal of Colloid and Interface Science, 2023, 651, 18-26.	9.4	1
1404	Atomically Dispersed Fe Sites Regulated by Adjacent Single Co Atoms Anchored on Nâ€P Coâ€Doped Carbon Structures for Highly Efficient Oxygen Reduction Reaction. Advanced Materials, 0, , .	21.0	8
1405	Firstâ€principles Screening of Transitionâ€Metal Doped FeS ₂ As Sulfur Cathode Host for Sulfur Redox Chemistry. ChemCatChem, 2023, 15, .	3.7	3
1406	Designing Oxide Catalysts for Oxygen Electrocatalysis: Insights from Mechanism to Application. Nano-Micro Letters, 2023, 15, .	27.0	11
1407	Density Matrix-Based Features as Descriptors for Oxygen Reduction and Evolution Catalysts. Journal of Physical Chemistry C, 2023, 127, 15246-15256.	3.1	1
1408	Regulating nonmetallic species beyond the first coordination shell of single-atom catalysts for high-performance electrocatalysis. Energy and Environmental Science, 2023, 16, 3679-3710.	30.8	8

#	Article	IF	CITATIONS
1409	A Flexible Theory for Catalysis: Learning Alkaline Oxygen Reduction on Complex Solid Solutions within the Agaˆ'Pdaˆ'Ptaˆ'Ru Composition Space**. Angewandte Chemie, 2023, 135, .	2.0	0
1410	Tailoring the Atomic‣ocal Environment of Carbon Nanotube Tips for Selective H ₂ O ₂ Electrosynthesis at High Current Densities. Advanced Materials, 2023, 35, .	21.0	8
1411	A Flexible Theory for Catalysis: Learning Alkaline Oxygen Reduction on Complex Solid Solutions within the Agâ^'Pdâ^'Ptâ^'Ru Composition Space**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1412	Review and Perspectives of Carbon-Supported Platinum-Based Catalysts for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 2023, 37, 11532-11566.	5.1	9
1413	Regulating Catalytic Properties and Thermal Stability of Pt and PtCo Intermetallic Fuel-Cell Catalysts via Strong Coupling Effects between Single-Metal Site-Rich Carbon and Pt. Journal of the American Chemical Society, 2023, 145, 17643-17655.	13.7	32
1414	Insight into Defect Engineering of Atomically Dispersed Iron Electrocatalysts for Highâ€Performance Proton Exchange Membrane Fuel Cell. Advanced Materials, 2023, 35, .	21.0	4
1415	Atomic-Scale Understanding of Electrified Interfacial Structures and Dynamics during the Oxygen Reduction Reaction on the Fe–N ₄ /C Electrocatalyst. ACS Catalysis, 2023, 13, 11080-11090.	11.2	0
1416	Towards superior metal phthalocyanine catalysts for electrochemical oxygen reduction: A comprehensive screening under experimental conditions. Chemical Engineering Journal, 2023, 473, 145101.	12.7	0
1417	Influence of activating and supporting oxygen in M–N–C electrocatalysts for oxygen reduction. Electrochimica Acta, 2023, 466, 143001.	5.2	1
1420	Research progress of electrocatalysts for the preparation of H ₂ O ₂ by electrocatalytic oxygen reduction reaction. SusMat, 2023, 3, 442-470.	14.9	3
1421	Mechanical-Effect descriptor for oxygen reduction reaction and hydrogen evolution reaction on Single-Atomic Ni-Graphene catalysts. Fuel, 2024, 355, 129496.	6.4	0
1422	Intrinsic Carbon Defects in Nitrogen and Sulfur Doped Porous Carbon Nanotubes Accelerate Oxygen Reduction and Sulfur Reduction for Electrochemical Energy Conversion and Storage. ACS Applied Nano Materials, 2023, 6, 15147-15158.	5.0	2
1423	Utilizing the Oxygen Reduction Reaction in Particle Impact Electrochemistry: A Step toward Mediator-Free Digital Electrochemical Sensors. ACS Omega, 2023, 8, 31265-31270.	3.5	0
1424	Challenges in Unravelling the Intrinsic Kinetics of Gas Reactions at Rotating Disk Electrodes by Koutecky–Levich Equation. Journal of Physical Chemistry C, 2023, 127, 16235-16248.	3.1	5
1425	Transition metal catalysts in the heterogeneous electro-Fenton process for organic wastewater treatment: a review. Environmental Science: Water Research and Technology, 2023, 9, 2429-2445.	2.4	1
1426	Dendritic hollow nitrogen-doped carbon nanospheres for oxygen reduction at primary zinc–air batteries. Materials Advances, 0, , .	5.4	1
1427	Recent advances in single-atom catalysts for acidic electrochemical oxygen reduction to hydrogen peroxide. Nano Energy, 2023, 116, 108798.	16.0	1
1428	Ultrafast Hole Transfer in Graphitic Carbon Nitride Imide Enabling Efficient H ₂ O ₂ Photoproduction. ACS Applied Materials & Interfaces, 2023, 15, 42611-42621.	8.0	1

#	Article	IF	Citations
1429	Influence of coordination structure of Fe-585DV/N _{<i>x</i>} C _{4â^'<i>x</i>} on the electrocatalytic performance of oxygen reduction reactions. RSC Advances, 2023, 13, 27705-27713.	3.6	0
1430	Three factors make bulk high-entropy alloys as effective electrocatalysts for oxygen evolution. Materials Futures, 2023, 2, 045101.	8.4	2
1431	Defect-stabilized and oxygen-coordinated iron single-atom sites facilitate hydrogen peroxide electrosynthesis. Materials Horizons, 2023, 10, 4270-4277.	12.2	7
1432	Macadamia Nut Bio-Waste: An Agricultural Waste with Potential to Be Used as Carbon Support Material in Fuel Cell Applications. Coatings, 2023, 13, 1545.	2.6	0
1433	Thermodynamic and kinetic modeling of electrocatalytic reactions using a first-principles approach. Journal of Chemical Physics, 2023, 159, .	3.0	0
1434	Firstâ€Row Transition Metals for Catalyzing Oxygen Redox. Small, 2023, 19, .	10.0	3
1435	Unraveling the Electron Transfer Effect of Singleâ€Metal Ceâ€N ₄ Sites via Mesoporeâ€Coupling for Boosted Oxygen Reduction Activity. Small, 2024, 20, .	10.0	0
1436	Recent Progress on the Catalysts and Device Designs for (Photo)Electrochemical Onâ€Site H ₂ O ₂ Production. Advanced Energy Materials, 2023, 13, .	19.5	3
1437	Metal-free covalent organic frameworks containing precise heteroatoms for electrocatalytic oxygen reduction reaction. Journal of Materials Chemistry A, 2023, 11, 18349-18355.	10.3	5
1438	Advanced electrocatalytic redox processes for environmental remediation of halogenated organic water pollutants. Chemical Communications, 2023, 59, 11895-11922.	4.1	1
1439	Biomass-Derived Carbon Aerogels for ORR/OER Bifunctional Oxygen Electrodes. Nanomaterials, 2023, 13, 2397.	4.1	2
1440	Recent Progress in Development of Cost Effective and Highly Efficient Pt Group Metal Free ORR and HER Electrocatalysts for Next Generation Energy Devices. Journal of the Electrochemical Society, 2023, 170, 100509.	2.9	0
1441	Modulating the valence electronic structure using earth-abundant aluminum for high-performance acidic oxygen evolution reaction. CheM, 2023, 9, 3600-3612.	11.7	3
1442	Recent Advances with Biomassâ€Derived Carbonâ€Based Catalysts for the Highâ€Efficiency Electrochemical Reduction of Oxygen to Hydrogen Peroxide. Advanced Energy and Sustainability Research, 2023, 4, .	5.8	1
1443	Selective Hydrogenation of Croton Aldehyde on Pt Nanoparticles Controlled by Tailoring Fraction of Well-Ordered Facets Under Different Pretreatment Conditions. Catalysis Letters, 0, , .	2.6	0
1444	Unlocking the Potential of Subâ€Nanometer Pd Catalysts for Electrochemical Hydrogen Peroxide Production. Advanced Materials Interfaces, 2023, 10, .	3.7	0
1445	Electro-Fenton-Based Membrane System for Organic Micropollutant Removal: New Trend and Prospect. ACS ES&T Engineering, 2023, 3, 2147-2160.	7.6	6
1446	Reducing the Activation Energy by Introduction of Pb Atoms to Boost Oxygen Reduction Reaction Performance. ACS Applied Energy Materials, 2023, 6, 10030-10037.	5.1	Ο

#	Article	IF	CITATIONS
1447	Fine-structure sensitive deep learning framework for predicting catalytic properties with high precision. Chinese Journal of Catalysis, 2023, 50, 284-296.	14.0	0
1448	Fundamentals of catalytic activities, recent progress, and perspectives in the oxygen reduction reaction. , 2023, , 78-106.		0
1449	Atomicâ€Level Regulation of Cuâ€Based Electrocatalyst for Enhancing Oxygen Reduction Reaction: From Single Atoms to Polymetallic Active Sites. Small, 2024, 20, .	10.0	0
1450	Terrace-Rich Ultrathin PtCu Surface on Earth-Abundant Metal for Oxygen Reduction Reaction. ACS Nano, 2023, 17, 19421-19430.	14.6	2
1451	Exploring spin states by hybrid functional methods to define correct trends in electrocatalytic activity of SACs embedded in N-doped graphene. Materials Today Chemistry, 2023, 33, 101728.	3.5	1
1452	Gas-phase errors in computational electrocatalysis: a review. , 2024, 2, 157-179.		2
1453	Effect of Transition Metals on Self-Assembly and Oxygen Reduction Properties of Graphene Nanoribbons. ACS Applied Nano Materials, 2023, 6, 17826-17837.	5.0	1
1454	PdPt Alloy Nanoframes with Rugged Surfaces: Efficient Bifunctional Fuel Cell Catalysts in a Broad pH Range. , 2023, 5, 2384-2392.		2
1455	Synthesis of Few-Layer Graphene by Ball-Milling for Oxygen Reduction: Kinetics and Mechanistic Insights. , 2023, 1, 2304-2314.		1
1456	Identifying intermediates of oxygen reduction reaction on nitrogen-doped fullerene by high-resolution tip-enhanced Raman scattering. Chinese Journal of Chemical Physics, 2023, 36, 419-426.	1.3	1
1457	Singleâ€Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H ₂ O ₂ Production. Angewandte Chemie, 2023, 135, .	2.0	1
1458	Singleâ€Atom Zinc Sites with Synergetic Multiple Coordination Shells for Electrochemical H ₂ O ₂ Production. Angewandte Chemie - International Edition, 2023, 62, .	13.8	6
1460	Recent progress in high-loading single-atom catalysts and their applications. , 2023, 1, 486-500.		2
1461	Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	3
1462	Activity And Stability of Single―And Diâ€Atom Catalysts for the O ₂ Reduction Reaction. Angewandte Chemie - International Edition, 2023, 62, .	13.8	7
1463	Synergistic Active Phases of Transition Metal Oxide Heterostructures for Highly Efficient Ammonia Electrosynthesis. Advanced Functional Materials, 2023, 33, .	14.9	7
1464	Enhancing hydrogen peroxide electrosynthesis by manipulating the three-phase interface microenvironment. Cell Reports Physical Science, 2023, , 101643.	5.6	0
1465	Review and perspectives on carbon-based electrocatalysts for the production of H ₂ O ₂ <i>via</i> two-electron oxygen reduction. Green Chemistry, 2023, 25, 9501-9542.	9.0	3

#	Article	IF	CITATIONS
1466	2023 Roadmap on molecular modelling of electrochemical energy materials. JPhys Energy, 2023, 5, 041501.	5.3	3
1467	Tailoring microenvironments of single-atom catalysts with non-metal p-block elements for selective environmental processes. , 2023, , .		0
1468	Introducing highly polarizable cation in M-N-C type catalysts to boost their oxygen reduction reaction performance. Applied Catalysis B: Environmental, 2024, 341, 123251.	20.2	1
1469	Mesoporous and dual-shelled hollow CeO2@CoNC nanospheres as efficient and stable oxygen reduction reaction electrocatalysts. Electrochimica Acta, 2023, 468, 143180.	5.2	0
1470	Dipole field in nitrogen-enriched carbon nitride with external forces to boost the artificial photosynthesis of hydrogen peroxide. Nature Communications, 2023, 14, .	12.8	14
1471	Correlating oxygen functionalities and electrochemical durability of carbon supports for electrocatalysts. Carbon, 2023, 215, 118458.	10.3	3
1472	Two-dimensional phthalocyanine-based covalent organic frameworks as high-performance electrocatalysts for oxygen reduction and oxygen evolution. Materials Today Communications, 2023, 37, 107157.	1.9	2
1473	An <i>In Situ</i> Fabricated Hydrogel Polymer – Palladium Nanocomposite Electrocatalyst for the HER: Critical Role of the Polymer in Realizing High Efficiency and Stability. Chemistry - A European Journal, 2023, 29, .	3.3	0
1475	Activity And Stability of Single―And Diâ€Atom Catalysts for the O ₂ Reduction Reaction. Angewandte Chemie, 2023, 135, .	2.0	1
1476	Regulating N Species in Nâ€Doped Carbon Electro atalysts for Highâ€Efficiency Synthesis of Hydrogen Peroxide in Simulated Seawater. Advanced Science, 0, , .	11.2	0
1477	Alliance of atomic-scale/nanoscale Fe/Co active sites with hierarchically porous N-doped carbon frameworks for efficient electrocatalytic oxygen reduction. Rare Metals, 2023, 42, 3766-3779.	7.1	2
1478	Palladium Zinc Nanocrystals: Nanoscale Amalgamation Enables Multifunctional Intermetallic Colloids. Advanced Functional Materials, 0, , .	14.9	0
1479	Recent Advances in Nonâ€Precious Metal Singleâ€Atom Electrocatalysts for Oxygen Reduction Reaction in Lowâ€Temperature Polymerâ€Electrolyte Fuel Cells. ChemCatChem, 2023, 15, .	3.7	8
1480	P-doped binary Ni/Fe–N–C for enhanced oxygen electrocatalysis performance. Physical Chemistry Chemical Physics, 2023, 25, 28841-28847.	2.8	1
1481	Terbium-induced cobalt valence-band narrowing boosts electrocatalytic oxygen reduction. Energy and Environmental Science, 2023, 16, 5500-5512.	30.8	13
1483	Does Coherence Affect the Multielectron Oxygen Reduction Reaction?. Journal of Physical Chemistry Letters, 2023, 14, 9377-9384.	4.6	1
1485	Single-atom catalysts for the photocatalytic and electrocatalytic synthesis of hydrogen peroxide. Chinese Journal of Catalysis, 2023, 52, 79-98.	14.0	1
1486	New scaling relationships for the oxygen evolution reaction on single atom catalysts. Catalysis Today, 2024, 427, 114409.	4.4	0

#	Article	IF	CITATIONS
1487	Selective Fourâ€Electron Reduction of Oxygen by a Nonheme Heterobimetallic CuFe Complex. Angewandte Chemie - International Edition, 2023, 62, .	13.8	0
1488	Selective Fourâ€Electron Reduction of Oxygen by a Nonheme Heterobimetallic CuFe Complex. Angewandte Chemie, 2023, 135, .	2.0	0
1489	Theoretical study on the graphitic alkyne-like metal–organic framework materials as the high-performance electrocatalysts for oxygen reduction reaction. Chemical Physics Letters, 2023, 832, 140889.	2.6	0
1490	Elucidating Multiple Reaction Pathways for the Degradation of Antibiotics in Water by Self-Active Single-Atom Zinc Catalyst on Biochar. , 0, , .		0
1492	Scalable Synthesis and Electrocatalytic Performance of Highly Fluorinated Covalent Organic Frameworks for Oxygen Reduction. Angewandte Chemie, 2023, 135, .	2.0	1
1493	Molecular Recognition Regulates Coordination Structure of Singleâ€Atom Sites. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1494	Molecular Recognition Regulates Coordination Structure of Singleâ€Atom Sites. Angewandte Chemie, 2023, 135, .	2.0	0
1495	Electrocatalytic Mechanisms for an Oxygen Evolution Reaction at a Rhombohedral Boron Monosulfide Electrode/Alkaline Medium Interface. ACS Applied Materials & Interfaces, 2023, 15, 50174-50184.	8.0	2
1496	Electrochemical Polarization of Disparate Catalytic Sites Drives Thermochemical Rate Enhancement. ACS Catalysis, 2023, 13, 14189-14198.	11.2	1
1497	Modulating Fe spin state in FeNC catalysts by adjacent Fe atomic clusters to facilitate oxygen reduction reaction in proton exchange membrane fuel cell. Applied Catalysis B: Environmental, 2024, 342, 123407.	20.2	4
1498	Tuning metal-support interaction of Pt-based electrocatalysts for hydrogen energy conversion. Science China Chemistry, 0, , .	8.2	0
1499	Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance–Backdonation. Jacs Au, O, , .	7.9	1
1500	Design of Efficient Oxygen Reduction Reaction Catalysts with Single Transition Metal Atom on N-Doped Graphdiyne. Journal of Physical Chemistry Letters, 0, , 9624-9632.	4.6	0
1501	Lattice Distortion and Hâ€passivation in Pure Carbon Electrocatalysts for Efficient and Stable Twoâ€electron Oxygen Reduction to H2O2. Angewandte Chemie, 0, , .	2.0	0
1502	Similar electronic state effect enables excellent activity for nitrate-to-ammonia electroreduction on both high- and low-density double-atom catalysts. Journal of Chemical Physics, 2023, 159, .	3.0	0
1503	Lattice Distortion and Hâ€passivation in Pure Carbon Electrocatalysts for Efficient and Stable Twoâ€electron Oxygen Reduction to H ₂ O ₂ . Angewandte Chemie - International Edition, 2023, 62, .	13.8	1
1504	Building up a view and understanding of the multifunctional activity of black phosphorous nanosheet modified with the metal atom. Journal of Chemical Physics, 2023, 159, .	3.0	0
1506	Synergistic Niobium Doped Two-Dimensional Zirconium Diselenide: An Efficient Electrocatalyst for O ₂ Reduction Reaction. ACS Physical Chemistry Au, 0, , .	4.0	0

#	Article	IF	CITATIONS
1507	Single-Atom catalysts for oxygen reduction reaction and methanol oxidation reaction. Fuel, 2024, 358, 130241.	6.4	1
1508	Recent progress of self-supported air electrodes for flexible Zn-air batteries. Journal of Energy Chemistry, 2024, 89, 110-136.	12.9	4
1509	Developing Ni single-atom sites in carbon nitride for efficient photocatalytic H2O2 production. Nature Communications, 2023, 14, .	12.8	10
1510	High Metal Loading, Two Nanometer-Sized Platinum Zinc Intermetallic Nanoparticles from Atomically Dispersed Precursors for Hydrogenation Reaction. ACS Applied Nano Materials, 2023, 6, 19848-19857.	5.0	0
1511	One-step synthesis of thin-carbon-shell-encapsulated binary cobalt chromium nitrides for oxygen reduction reaction. Applied Surface Science, 2024, 644, 158722.	6.1	1
1512	Establishment of descriptor for screening high-performance catalysts for hydrogen peroxide production through surface stress modulation induced by metal atom doping. Applied Surface Science, 2024, 646, 158909.	6.1	0
1513	Rational Design of Oxygen Species Adsorption on Nonnoble Metal Catalysts for Twoâ€Electron Oxygen Reduction. Advanced Energy Materials, 2024, 14, .	19.5	0
1514	MOF-derived porous Ni3S4/CoS nanosheet arrays for flexible supercapacitor electrode. Ionics, 0, , .	2.4	0
1515	Investigation of the Shift in Volcano Peak for the Oxygen Evolution Reaction at a High Reaction Rate. Journal of Physical Chemistry C, 2023, 127, 21526-21533.	3.1	0
1516	Co(CN)3 catalysts with well-defined coordination structure for the oxygen reduction reaction. Nature Catalysis, 2023, 6, 1164-1173.	34.4	7
1517	Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chemical Reviews, 2023, 123, 12507-12593.	47.7	9
1518	Hierarchical Superaerophobic Nanoarray Electrode (FeOOH/CoFe LDH) as an Efficient Oxygen Evolution Reaction Catalyst for Alkaline Seawater Electrolysis. ACS Sustainable Chemistry and Engineering, 2023, 11, 16479-16490.	6.7	0
1519	Effect of Nanoparticle Shape on the Oxygen Reduction Reaction Activity of PtNiFe Nanocatalysts. ACS Applied Nano Materials, 2023, 6, 20569-20578.	5.0	0
1520	Avoiding Sabatier's Limitation on Spatially Correlated Pt–Mn Atomic Pair Sites for Oxygen Electroreduction. Journal of the American Chemical Society, 2023, 145, 25252-25263.	13.7	2
1521	H2O2 electrosynthesis activity and selectivity of Pd–Te nanoparticles with different surface compositions in acidic electrolyte. Applied Surface Science, 2024, 647, 158976.	6.1	0
1522	Local structural environment of single-atom catalysts. Inorganic Chemistry Frontiers, 0, , .	6.0	1
1523	Tetraiodo Fe/Ni phthalocyanine-based molecular catalysts for highly efficient oxygen reduction reaction and oxygen evolution reaction: Constructing a built-in electric field with iodine groups. Journal of Colloid and Interface Science, 2024, 655, 474-484.	9.4	0
1524	Catalytic reactivity descriptors of metalâ€nitrogenâ€doped carbon catalysts for electrocatalysis. , 2023, 1, 154-185.		2

#	Article	IF	CITATIONS
1525	Rational design of Fe-M-N-C based dual-atom catalysts for oxygen reduction electrocatalysis. Chinese Journal of Catalysis, 2023, 54, 56-87.	14.0	2
1526	Recent Advances and Synergistic Effects of Non-Precious Carbon-Based Nanomaterials as ORR Electrocatalysts: A Review. Molecules, 2023, 28, 7751.	3.8	1
1527	Builtâ€In Electric Fields and Interfacial Electron Modulation: Enhancement of Oxygen Reduction Reaction in Alkaline Seawater. Advanced Energy Materials, 2023, 13, .	19.5	0
1528	Atomic-level functionalized carbon-based materials for effective electrosynthesis of hydrogen peroxide: A review. Chemical Engineering Journal, 2024, 479, 147608.	12.7	0
1529	Electrochemical Potential-Driven Shift of Frontier Orbitals in M–N–C Single-Atom Catalysts Leading to Inverted Adsorption Energies. Journal of the American Chemical Society, 2023, 145, 25264-25273.	13.7	8
1530	Advancing electrocatalytic urea synthesis: Insights from 2D benzenehexathiolate coordination nanosheets. Journal of Catalysis, 2024, 429, 115218.	6.2	0
1531	Pt single crystal surfaces in electrochemistry and electrocatalysis. , 2024, 2, 399-410.		0
1532	Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)**. Angewandte Chemie - International Edition, 2023, 62, .	13.8	2
1533	Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)**. Angewandte Chemie, 2023, 135, .	2.0	3
1534	Unified ORR mechanism criteria <i>via</i> charge–spin–coordination of Fe functional units. Energy and Environmental Science, 2024, 17, 27-48.	30.8	1
1535	Core-alloyed shell structured Fe@FeCo di-atomic nanoclusters loaded in carbon aerogels as efficient bi-functional catalysts towards ORR and HER. Chemical Engineering Journal, 2023, 478, 147375.	12.7	0
1536	Universal metrics for predicting the activity of a wide range of fuel-cell catalysts. Science and Technology of Advanced Materials Methods, 2023, 3, .	1.3	0
1537	Computational Design of Ni6@Pt1M31 Clusters for Multifunctional Electrocatalysts. Molecules, 2023, 28, 7563.	3.8	0
1538	Emerging strategies and developments in oxygen reduction reaction using high-performance platinum-based electrocatalysts. Nano Research, 0, , .	10.4	1
1539	Recent advances in metal-based electrocatalysts: from fundamentals and structural regulations to applications in anion-exchange membrane fuel cells. Materials Chemistry Frontiers, 2024, 8, 903-929.	5.9	0
1540	Atomically Dispersed Fe Motifâ€based Electrocatalysts for Hydrogen Peroxide Synthesis. ChemNanoMat, 2024, 10, .	2.8	0
1541	Comparative Study of Computational Hydrogen Electrodes and Constant Electrode Potential Models Applied to Electrochemical Reduction of CO ₂ and Oxygen Evolution Reaction on Metal Oxides/Copper Catalysts. Journal of Physical Chemistry C, 2023, 127, 23170-23179.	3.1	1
1542	Water hyacinth root derived hybrid metal oxides/nitrogen doped porous carbon as an efficient non-precious metal oxygen reduction reaction electrocatalyst in alkaline media. International Journal of Hydrogen Energy, 2024, 50, 1549-1558.	7.1	0

#	Article	IF	CITATIONS
1543	Proton Relay for the Rate Enhancement of Electrochemical Hydrogen Reactions at Heterogeneous Interfaces. Journal of the American Chemical Society, 2023, 145, 26016-26027.	13.7	1
1544	Boron-doped rGO electrocatalyst for high effective generation of hydrogen peroxide: Mechanism and effect of oxygen-enriched air. Applied Catalysis B: Environmental, 2024, 343, 123471.	20.2	3
1545	Multicomponent Synthesis of Imidazole‣inked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie, 2023, 135, .	2.0	0
1546	Multicomponent Synthesis of Imidazoleâ€Linked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
1547	Revision of the oxygen reduction reaction on N-doped graphenes by grand-canonical DFT. Physical Chemistry Chemical Physics, 0, , .	2.8	0
1548	Overcoming the problem of insolubility to controllably synthesize AuCo alloy as a high performance electrocatalyst for the oxygen reduction reaction. New Journal of Chemistry, 2023, 47, 21150-21154.	2.8	1
1550	Boosting Oxygen Reduction Reaction Kinetics by Designing Rich Vacancy Coupling Pentagons in the Defective Carbon. Journal of the American Chemical Society, 2023, 145, 25695-25704.	13.7	3
1551	Interpretable Machine Learning for Catalytic Materials Design toward Sustainability. Accounts of Materials Research, 0, , .	11.7	1
1552	One pot production of Co core/carbon shell materials and their electrocatalytic properties. Bulletin of the Korean Chemical Society, 2024, 45, 23-31.	1.9	0
1553	Predicting CO Interaction and Activation on Inhomogeneous Ru Nanoparticles Using Density Functional Theory Calculations and Machine Learning Models. Journal of Physical Chemistry C, 2023, 127, 23010-23022.	3.1	0
1554	Fabrication of Zn–Air Battery with High Output Capacity Under Ultra‣arge Current. Small, 0, , .	10.0	0
1555	Guest molecule-directed conversion of covalent organic framework into carbon with synergistic high content N dopants and defects for efficient oxygen reduction. Chemical Engineering Journal, 2023, 478, 147424.	12.7	1
1556	Preparation of a High-Performance Fe–N–C Electrocatalyst from an MOF Precursor for ORR Toward Zinc–Air Batteries. Energy & Fuels, 2023, 37, 19092-19102.	5.1	0
1557	Facile Synthesis of N-Doped Metal-Free Catalysts for Oxygen Reduction Reaction via a Self-Sacrificed Template Method Using Zinc Amino-Acid Complex. ACS Omega, 2023, 8, 46276-46283.	3.5	1
1558	Atomic regulation strategies of dual-metal single-atom catalytic sites supported on 3D N-doped carbon nanotube aerogels for boosting oxygen reduction and zinc-air battery. Journal of Electroanalytical Chemistry, 2023, 951, 117953.	3.8	1
1559	Copper monatomic wire supported on graphene nanoribbons as an electrocatalyst for nitric oxide reduction: pre-adsorption mechanism of reactant. Journal of Molecular Modeling, 2023, 29, .	1.8	0
1560	Realizing a high OER activity in new single-atom catalysts formed by introducing TMN _{<i>x</i>} (<i>x</i> = 3 and 4) units into carbon nanotubes using high-throughput calculations. Nanoscale, 0, , .	5.6	0
1561	Twoâ€Dimensional Tetragonal Transition Metal Chalcogenides for High Performance Oxygen Evolution and Reduction: A DFT Study. ChemPhysChem, 0, , .	2.1	0

#	Article	IF	CITATIONS
1562	Cationâ€Deficient Perovskites Greatly Enhance the Electrocatalytic Activity for Oxygen Reduction Reaction. Advanced Materials, 2024, 36, .	21.0	1
1563	Metal chelating membrane derived TM/TMOx nitrogen-doped carbon fibers as efficient oxygen reduction electrocatalyst. Chemical Communications, 0, , .	4.1	0
1564	Inductive Effect on Single-Atom Sites. Journal of the American Chemical Society, 2023, 145, 27531-27538.	13.7	3
1565	Covalent Organic Frameworks Enable Sustainable Solar to Hydrogen Peroxide. Advanced Functional Materials, 2024, 34, .	14.9	2
1566	A Quantum Signature for Catalytic Activity in N-doped, Single-Atom Fe Electrocatalysts. Catalysis Letters, 0, , .	2.6	0
1567	Transformation of Waste Agarwood Leaves into Heteroatom-Doped Microporous Carbon for Highly Active Metal-Free Catalytic Oxygen Reduction Reaction and Efficient Capacitive Energy Storage Application. , 0, , .		0
1568	Donorâ€Acceptor Conjugated Acetylenic Polymers for Highâ€Performance Bifunctional Photoelectrodes. ChemSusChem, 0, , .	6.8	0
1569	High Catalytic Activity of Co-centered 2D Metal Organic Frameworks toward Bifunctional Oxygen Evolution and Reduction Reactions: Rationalized by Spin Polarization Effect. Journal of Physical Chemistry Letters, 0, , 11429-11437.	4.6	0
1570	First-principles study of the discharge electrochemical and catalytic performance of the sulfur cathode host Fe _{0.875} M _{0.125} S ₂ (M = Ti, V). Physical Chemistry Chemical Physics, 2024, 26, 2249-2259.	2.8	0
1571	Construction of Dual-atom catalysts on MoTe2 monolayer to achieve high-efficiency OER/ORR performance. Applied Surface Science, 2024, 649, 159174.	6.1	0
1572	Surface modulation of transition-metal-doped MoS2@graphite felt for bifunctional catalysis in Zn-air batteries. Electrochimica Acta, 2024, 475, 143670.	5.2	1
1573	The millisecond fabrication of medium-entropy alloy as a high-performance bifunctional electrocatalyst for ultralong-term rechargeable zinc–air batteries. Journal of Alloys and Compounds, 2024, 976, 173183.	5.5	0
1574	The role of nitrogen sources and hydrogen adsorption on the dynamic stability of Fe–N–C catalysts in oxygen reduction reaction. Chemical Science, 2024, 15, 1132-1142.	7.4	0
1575	Graphite and Cobalt Recycled from Li-Ion Batteries: A Valuable Raw Material for Oxygen Reduction Reaction Electrocatalysts. Energy & Fuels, 2024, 38, 659-670.	5.1	1
1577	Recent advances in TiO2-based S-scheme heterojunction photocatalysts. Chinese Journal of Catalysis, 2023, 55, 137-158.	14.0	2
1580	Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angewandte Chemie, 2024, 136, .	2.0	0
1581	Origin of Stability and Activity Enhancements in Ptâ€based Oxygen Reduction Reaction Catalysts via Defectâ€Mediated Dopant Adsorption. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1582	Contemporary Progress on Photo-induced Green Hydrogen Evolution: Potential, Challenges, and Perspectives for the Hydrogen Energy based Economy -An Updated Review. Fuel, 2024, 361, 130654.	6.4	1

#	Article	IF	CITATIONS
1583	Rare Earth Evoked Subsurface Oxygen Species in Platinum Alloy Catalysts Enable Durable Fuel Cells. Angewandte Chemie - International Edition, 2024, 63, .	13.8	1
1584	Pd/NiSix: An efficient and stable acid-ORR electrocatalyst. Chem Catalysis, 2023, , 100849.	6.1	0
1585	Origin of Stability and Activity Enhancements in Ptâ€based Oxygen Reduction Reaction Catalysts via Defectâ€Mediated Dopant Adsorption. Angewandte Chemie, 2024, 136, .	2.0	0
1586	Carbon-shell-encapsulated gold–palladium nanoreactors for highly efficient 5-hydroxymethylfurfural oxidation: Confinement and alloy effects study. Chemical Engineering Science, 2024, 286, 119666.	3.8	0
1587	Enhancing oxygen reduction and evolution reactions on multi-metal N-doped graphene catalysts through catalytic activity and selectivity tuning. Applied Surface Science, 2023, , 159219.	6.1	0
1588	MoOy-Pt(CuNi)x heterojunction nanostructured catalyst for promoting the oxygen reduction reaction activity property. Catalysis Communications, 2023, , 106835.	3.3	0
1589	Molybdenum disulfide: A nanomaterial that is paving the way toward a sustainable future. Materials Today Sustainability, 2024, 25, 100659.	4.1	0
1590	Metal-Organic Framework Derived Synergistic Carbon Nanoarchitectures Boost Bifunctional Electrocatalytic Performances toward Methanol Oxidation and Oxygen Reduction in Pt-nanoparticles. Surfaces and Interfaces, 2023, , 103816.	3.0	0
1591	Heteroatom-Coordinated Palladium Molecular Catalysts for Sustainable Electrochemical Production of Hydrogen Peroxide. Journal of the American Chemical Society, 2024, 146, 419-429.	13.7	1
1592	Constructing sulfur and oxygen super-coordinated main-group electrocatalysts for selective and cumulative H2O2 production. Nature Communications, 2024, 15, .	12.8	1
1593	Optimizing the Activation Energy of Reactive Intermediates on Singleâ€Atom Electrocatalysts: Challenges and Opportunities. Small Methods, 0, , .	8.6	0
1594	Direct measurement of the oxygen reduction reaction kinetics on iron phthalocyanine using advanced transient voltammetry. Nature Catalysis, 2024, 7, 139-147.	34.4	0
1595	Local reaction environment in electrocatalysis. Chemical Society Reviews, 2024, 53, 2022-2055.	38.1	2
1596	Exploration of metalâ \in free 2D electrocatalysts toward the oxygen electroreduction. Exploration, 0, , .	11.0	1
1597	Electrochemical water oxidation for hydrogen peroxide production: Focus on catalyst and reaction medium design. Journal of Environmental Chemical Engineering, 2024, 12, 111960.	6.7	0
1598	Methanol-induced assembly and pyrolysis preparation of three-dimensional N-doped interconnected open carbon cages supported FeNb2O6 nanoparticles for boosting oxygen reduction reaction and Zn-air battery. Journal of Colloid and Interface Science, 2024, 661, 102-112.	9.4	2
1599	The DFT and Machine Learning Method Accelerated the Discovery of DMSCs with High ORR and OER Catalytic Activities. Journal of Physical Chemistry Letters, 2024, 15, 281-289.	4.6	1
1600	Recent progress in two-dimensional materials for generation of hydrogen peroxide by two-electron oxygen reduction reaction. Materials Today Energy, 2024, 40, 101500.	4.7	0

#	Article	IF	CITATIONS
1601	FeCo Bimetallic Alloy Nanoparticles Embedded in Nitrogen-Doped Porous Carbon for Effective Oxygen Reduction in Zinc–Air Batteries. ACS Applied Nano Materials, 0, , .	5.0	0
1602	Theoretical Study on the Regulation of Oxygen Reduction Mechanism by Modulating the Spatial Structure of Active Sites on Platinum ^{aˆ} . Acta Chimica Sinica, 2023, 81, 1478.	1.4	0
1603	Dual defect regulation of BiOCl halogen layer enables photocatalytic O2 activation into singlet oxygen for refractory aromatic pollutant removal. Applied Catalysis B: Environmental, 2024, 345, 123689.	20.2	1
1604	Catalytic selectivity of nanorippled graphene. Nanoscale Horizons, 2024, 9, 449-455.	8.0	0
1605	Unveiling the impact of axial ligands on Fe-N-C complexes through DFT simulation and machine learning analysis. , 2024, 2, 100041.		0
1606	Operando formation of highly efficient electrocatalysts induced by heteroatom leaching. Nature Communications, 2024, 15, .	12.8	0
1607	Fluoropyridine-medicated zeolite templating method for N/F co-doped carbon with high electrocatalytic performance on oxygen reduction reaction. Electrochemistry Communications, 2024, 160, 107665.	4.7	0
1608	Single atom sites as CO scavenger to allow for crude hydrogen usage in PEMFC. Science Bulletin, 2024, 69, 1061-1070.	9.0	0
1609	Advanced design strategies for Fe-based metal–organic framework-derived electrocatalysts toward high-performance Zn–air batteries. Energy and Environmental Science, 2024, 17, 1725-1755.	30.8	1
1610	Redesign of Anode Catalyst for Sustainable Survival of Fuel Cells. Advanced Science, 2024, 11, .	11.2	0
1611	First-principle calculations study of oxygen reduction electrocatalyst: Single transition metal supported on a brand-new graphitic carbon nitride (g-C7N3) substrate. Molecular Catalysis, 2024, 554, 113844.	2.0	0
1612	Density Functional Theory-Based Approaches to Improving Hydrogen Storage in Graphene-Based Materials. Molecules, 2024, 29, 436.	3.8	1
1613	Regulating electrocatalytic properties of oxygen reduction reaction via strong coupling effects between Co-NC sites and intermetallic Pt3Co. Applied Catalysis B: Environmental, 2024, 346, 123740.	20.2	0
1614	Pd 4d Orbital Overlapping Modulation on Au@Pd Nanowires for Efficient H ₂ O ₂ Production. Journal of the American Chemical Society, 2024, 146, 2816-2823.	13.7	0
1615	Fullerene-metalloporphyrin co-crystal as efficient oxygen reduction reaction electrocatalyst precursor for Zn–air batteries. , 2024, , .		0
1616	NiCo ₂ O ₄ /MXene Hybrid as an Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reaction. ChemCatChem, 2024, 16, .	3.7	0
1617	First-Principles Landscape of Single Atomic Catalysts to Metal Catalysts. Journal of Physical Chemistry C, 2024, 128, 1964-1970.	3.1	0
1618	Design Principle of Carbon-Supported Single-Atom Catalysts – Interplay between d-Orbital Periodicity and Local Hybridization. Chemistry of Materials, 2024, 36, 1405-1412.	6.7	0

#	Article	IF	CITATIONS
1619	Tuning the Pyridine Units in Vinylene‣inked Covalent Organic Frameworks Boosting 2e ^{â^'} Oxygen Reduction Reaction. Small, 0, , .	10.0	0
1621	Thermodynamics of Ionic Thermoelectrics for Low-Grade Heat Harvesting. ACS Energy Letters, 2024, 9, 679-706.	17.4	1
1622	Computationally screening non-precious single atom catalysts for oxygen reduction in alkaline media. Catalysis Today, 2024, 431, 114560.	4.4	0
1623	The atomic structural descriptor based on cluster expansion method and superior performance of oxygen reduction on PtTi surface alloys from theoretical perspective. International Journal of Hydrogen Energy, 2024, 59, 359-368.	7.1	0
1624	A review of research progress and prospects of modified two-dimensional catalysts based on black phosphorus in the oxygen reduction reaction. Catalysis Science and Technology, 2024, 14, 1105-1121.	4.1	0
1625	Computational Screening of a Single-Atom Catalyst Supported by Monolayer Nb ₂ S ₂ C for Oxygen Reduction Reaction. Langmuir, 0, , .	3.5	0
1626	Study on the strengthening mechanism of graphene-FeTCPP MOF on the corrosion resistance of steel bars in alkaline environment. Journal of Building Engineering, 2024, 85, 108770.	3.4	0
1627	Positional Thiophene Isomerization: A Geometric Strategy for Precisely Regulating the Electronic State of Covalent Organic Frameworks to Boost Oxygen Reduction. Angewandte Chemie - International Edition, 2024, 63, .	13.8	0
1628	Understanding oxygen reduction reaction activity of Pt-based nanoparticles from Pt atomic layers to Pt single atom alloy. Journal of Catalysis, 2024, 431, 115367.	6.2	0
1629	Positional Thiophene Isomerization: A Geometric Strategy for Precisely Regulating the Electronic State of Covalent Organic Frameworks to Boost Oxygen Reduction. Angewandte Chemie, 2024, 136, .	2.0	0
1630	Encapsulation of Highly Dispersed Au NPs by Strong Metal–Support Interactions in Porous Titania Nanoplates for Efficient Electrosynthesis of H ₂ O ₂ . Advanced Functional Materials, 0, , .	14.9	0
1631	Activating the passivated Ir sites in 3R-IrO2 by intercalating Pt atoms for enhanced oxygen reduction reaction activity. Chemical Engineering Journal, 2024, 484, 149671.	12.7	0
1632	Monodisperse Sea-Urchin-like Nanodendrites and Nanoparticles of Multicomponent Pd-Based Alloys for Enhanced C ₂ Alcohol Oxidation Activity. Chemistry of Materials, 2024, 36, 2124-2137.	6.7	1
1633	Computational investigation of the oxygen reduction reaction on the edges of differently-sized, shaped and terminated graphene nanoclusters. Carbon, 2024, 222, 118942.	10.3	0
1634	Recent Progress of Transition Metal Selenides for Electrochemical Oxygen Reduction to Hydrogen Peroxide: From Catalyst Design to Electrolyzers Application. Small, 0, , .	10.0	0
1635	General Pyrolysis for High-Loading Transition Metal Single Atoms on 2D-Nitro-Oxygeneous Carbon as Efficient ORR Electrocatalysts. ACS Applied Materials & Interfaces, 2024, 16, 10227-10237.	8.0	0
1636	A doping strategy to regulate the adsorption energy of Li ₂ S ₄ and Li ₂ S to promote sulfur reduction on Chevrel phase Mo ₆ Se ₈ in lithium–sulfur batteries. Nanoscale, 2024, 16, 5352-5361.	5.6	0
1637	Porphyrin-based frameworks and derivatives for the oxygen reduction reaction. , 2024, 4, 100044.		0

#	Article	IF	CITATIONS
1638	Dataâ€Driven Screening of Pivotal Subunits in Edgeâ€Anchored Single Atom Catalysts for Oxygen Reactions. Advanced Functional Materials, 0, , .	14.9	0
1639	Machine learning guides the discovery of high-performance HEA catalysts. , 0, , .		0
1640	Engineering the Co(II)/Co(III) Redox Cycle and Co ^{Î'+} Species Shuttle for Nitrate-to-Ammonia Conversion. Nano Letters, 2024, 24, 2812-2820.	9.1	0
1641	Nanocurvature-induced field effects enable control over the activity of single-atom electrocatalysts. Nature Communications, 2024, 15, .	12.8	0
1642	Unveiling the resistance component on fuel cell electrodes by ionic liquid adsorbed PtCo/C catalyst through distribution of relaxation time. Applied Surface Science, 2024, 657, 159797.	6.1	0
1643	Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction. Frontiers in Energy, 0, , .	2.3	0
1644	Strain engineering of Pt-based electrocatalysts for oxygen reaction reduction. Frontiers in Energy, 2024, 18, 241-262.	2.3	0
1645	Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts. Nano Research, 0, , .	10.4	0
1646	Single- and double-atom catalyst anchored on graphene-like C2N for ORR and OER: mechanistic insight and catalyst screening. Carbon Letters, 0, , .	5.9	0
1647	Carbon-based synergistic catalysis with transition metal dichalcogenides for electrocatalytic oxygen evolution/reduction. Materials Chemistry and Physics, 2024, 317, 129163.	4.0	0
1648	Carbon Fiber Film with Multiâ€Hollow Channels to Expedite Oxygen Electrocatalytic Reaction Kinetics for Flexible Zn–Air Battery. Small, 0, , .	10.0	0
1649	Defect Engineering of Oxygen Vacancies in Ultrathin NiFe-Layered Double Hydroxides: Insights from Density Functional Theory. Journal of Physical Chemistry C, 2024, 128, 4161-4170.	3.1	0
1650	<pre><mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Fe</mml:mi></mml:math> and <mml:math display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>Fe</mml:mi></mml:math> and <mml:math userflow="scroll"><mml:mi>Fe</mml:mi></mml:math> and <mml:math userflow="scroll"><mml:mi>Fe</mml:mi></mml:math> and <mml:math userflow="scroll"><mml:mi>Fe</mml:mi></mml:math> and <mml:math< mml:math="" mml:math<=""> and <mml:math< mml:math="" mml:math<=""> and <mml:math< mml:math=""><td>3.8</td><td>0</td></mml:math<></mml:math<></mml:math<></pre>	3.8	0
1651	catalysts for the oxygen-reduction reaction: A theoretical study. Physical Review Applied, 2024, 21, . Benefits of Using Rapid Microwave Heating in the Synthesis of Metal-Free Carbon Electrocatalysts. Industrial & Engineering Chemistry Research, 2024, 63, 4825-4837.	3.7	0
1652	Recent Approaches for Cleaving the C─C Bond During Ethanol Electroâ€Oxidation Reaction. Advanced Science, 2024, 11, .	11.2	0
1653	Potential of Nanocages as Effective Catalysts for Oxygen Reduction Reaction. Silicon, 0, , .	3.3	0
1654	A neoteric antibacterial ceria-silver nanozyme for abiotic surfaces. Biomaterials, 2024, 307, 122527.	11.4	0
1655	High-Loading Platinum-Cobalt Intermetallic Compounds with Enhanced Oxygen Reduction Activity in Membrane Electrode Assemblies. , 2024, 5, 100065.		Ο

#	Article	IF	CITATIONS
1656	Investigating the Metastability-Triggered Reactivity of Pt _{7,8} Clusters on Graphene: Unraveling Statistical Ensemble Representation for ORR in Gas and Implicit Solvent Phases. Journal of Physical Chemistry C, 2024, 128, 7504-7517.	3.1	0
1657	Progress of Pt and iron-group transition metal alloy catalysts with high ORR activity for PEMFCs. Journal of Electroanalytical Chemistry, 2024, 959, 118165.	3.8	0
1658	Bioelectronic Direct Current Stimulation at the Transition Between Reversible and Irreversible Charge Transfer. Advanced Science, 0, , .	11.2	0
1659	Simultaneously Engineering the First and Second Coordination Shells of Single Iron Catalysts for Enhanced Oxygen Reduction. Small, 0, , .	10.0	0
1660	Benchmarking pH-field coupled microkinetic modeling against oxygen reduction in large-scale Fe–azaphthalocyanine catalysts. Chemical Science, 2024, 15, 5123-5132.	7.4	0
1661	Regulating the Electronic Synergy of Asymmetric Atomic Fe Sites with Adjacent Defects for Boosting Activity and Durability toward Oxygen Reduction. Advanced Functional Materials, 0, , .	14.9	0
1662	Influence of Alkali Metal Cations on the Oxygen Reduction Activity of Pt ₅ Y and Pt ₅ Gd Alloys. Journal of Physical Chemistry C, 2024, 128, 4969-4977.	3.1	0
1663	Orbitalâ€Morphologyâ€Based Oxygen Reduction in a Correlated Oxide. Advanced Functional Materials, 0, ,	14.9	0
1664	Activity and stability of electrochemically reduced graphene oxide films for applications requiring mixed conductivity. Surfaces and Interfaces, 2024, 47, 104233.	3.0	0
1665	Interfacial engineering of high-performance Fe2P2O7-based electrocatalysts for alkaline exchange membrane fuel cells. Electrochimica Acta, 2024, 485, 144098.	5.2	0
1666	Hierarchical High-Throughput Screening of the Ligand Effect of Electrocatalytic Oxygen Reduction on Dual-Metal Atomic Catalysts (M ₁ M ₂ N ₆ –R): A First-Principles	5.0	0

Study. ACS Applied Nano Materials, 2024, 7, 6401-6408.