Towards flexible solid-state supercapacitors for smart a

Chemical Society Reviews 47, 2065-2129 DOI: 10.1039/c7cs00505a

Citation Report

#	Article	IF	CITATIONS
1	Hierarchical CuO nanorod arrays <i>in situ</i> generated on three-dimensional copper foam <i>via</i> cyclic voltammetry oxidation for high-performance supercapacitors. Journal of Materials Chemistry A, 2018, 6, 10474-10483.	5.2	182
2	Flexible, large-area, all-solid-state supercapacitors using spray deposited PEDOT:PSS/reduced-graphene oxide. Electrochimica Acta, 2018, 270, 37-47.	2.6	62
3	An advanced sandwich-type architecture of MnCo ₂ O ₄ @N–C@MnO ₂ as an efficient electrode material for a high-energy density hybrid asymmetric solid-state supercapacitor. Journal of Materials Chemistry A, 2018, 6, 24509-24522.	5.2	102
4	Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. Journal of Materials Chemistry A, 2018, 6, 23046-23054.	5.2	127
5	Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte. Journal of Materials Chemistry A, 2018, 6, 24979-24987.	5.2	39
6	Steam-assisted assemblies of {Ni ₆ PW ₉ }-based inorganic–organic hybrid chains: synthesis, crystal structures and properties. CrystEngComm, 2018, 20, 7507-7512.	1.3	6
7	Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy and Environmental Science, 2018, 11, 3431-3442.	15.6	196
8	A Conductive and Highly Deformable Allâ€Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance. Small, 2018, 14, e1803786.	5.2	158
9	Lithium polyacrylate-polyacrylamide blend as polymer electrolytes for solid-state electrochemical capacitors. Electrochemistry Communications, 2018, 97, 77-81.	2.3	32
10	RGO-Protected Electroless Plated Nickel Electrode with Enhanced Stability Performance for Flexible Micro-Supercapacitors. ACS Applied Energy Materials, 2018, 1, 7182-7190.	2.5	12
11	A Flexible All-in-One Lithium-Sulfur Battery. ACS Nano, 2018, 12, 12503-12511.	7.3	95
12	Cobalt-Doped Porous Carbon Nanosheets Derived from 2D Hypercrosslinked Polymer with CoN4 for High Performance Electrochemical Capacitors. Polymers, 2018, 10, 1339.	2.0	17
13	Recent Progress in Microâ€Supercapacitor Design, Integration, and Functionalization. Small Methods, 2019, 3, 1800367.	4.6	154
14	Low Temperature Tolerant Organohydrogel Electrolytes for Flexible Solid‣tate Supercapacitors. Advanced Energy Materials, 2018, 8, 1801967.	10.2	288
15	Allâ€Metalâ€Organic Frameworkâ€Derived Battery Materials on Carbon Nanotube Fibers for Wearable Energyâ€Storage Device. Advanced Science, 2018, 5, 1801462.	5.6	89
16	Materials and Devices for Biodegradable and Soft Biomedical Electronics. Materials, 2018, 11, 2108.	1.3	66
17	Recent advances of light-driven micro/nanomotors: toward powerful thrust and precise control. Nanotechnology Reviews, 2018, 7, 555-581.	2.6	36
18	Hierarchical MnS2-MoS2 nanotubes with efficient electrochemical performance for energy storage. Materials and Design, 2018, 160, 1071-1079.	3.3	19

#	Article	IF	CITATIONS
19	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16131-16135.	7.2	89
20	Flexible Lithium–Air Battery in Ambient Air with an Inâ€Situ Formed Gel Electrolyte. Angewandte Chemie, 2018, 130, 16363-16367.	1.6	63
21	Solarâ€Thermal Driven Selfâ€Heating of Microâ€Supercapacitors at Low Temperatures. Solar Rrl, 2018, 2, 1800223.	3.1	36
22	Nanocasting and Direct Synthesis Strategies for Mesoporous Carbons as Supercapacitor Electrodes. Chemistry of Materials, 2018, 30, 7391-7412.	3.2	92
23	Cr2O3 nanoparticles: a fascinating electrode material combining both surface-controlled and diffusion-limited redox reactions for aqueous supercapacitors. Journal of Materials Science, 2018, 53, 16458-16465.	1.7	20
24	Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors. Journal of Energy Storage, 2018, 20, 30-40.	3.9	303
25	Metallic layered germanium phosphide GeP ₅ for high rate flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2018, 6, 19409-19416.	5.2	31
26	Graphene-Wrapped Polyaniline Nanowire Array Modified Functionalized of Carbon Cloth for High-Performance Flexible Solid-State Supercapacitor. ACS Sustainable Chemistry and Engineering, 2018, 6, 14723-14733.	3.2	77
27	A flexible 3-D structured carbon molecular sieve@PEDOT composite electrode for supercapacitor. Journal of Electroanalytical Chemistry, 2018, 826, 191-197.	1.9	9
28	Sustainable Utilization of Biomass Refinery Wastes for Accessing Activated Carbons and Supercapacitor Electrode Materials. ChemSusChem, 2018, 11, 3599-3608.	3.6	70
29	Aligning self-assembled perylene bisimides in a magnetic field. Chemical Communications, 2018, 54, 10977-10980.	2.2	7
30	Influence of deposition temperature on physical and electrochemical properties of reduced graphene oxide electrode material for supercapacitor application. Ceramics International, 2018, 44, 14547-14555.	2.3	14
31	Copper molybdenum sulfide: A novel pseudocapacitive electrode material for electrochemical energy storage device. International Journal of Hydrogen Energy, 2018, 43, 12222-12232.	3.8	66
32	Superfast Electrodeposition of Newly Developed RuCo ₂ O ₄ Nanobelts over Low ost Stainless Steel Mesh for Highâ€Performance Aqueous Supercapacitor. Advanced Materials Interfaces, 2018, 5, 1800283.	1.9	40
33	Design and Fabrication of Printed Paperâ€Based Hybrid Microâ€Supercapacitor by using Graphene and Redoxâ€Active Electrolyte. ChemSusChem, 2018, 11, 1849-1856.	3.6	46
34	Ternary composite solid-state flexible supercapacitor based on nanocarbons/manganese dioxide/PEDOT:PSS fibres. Materials and Design, 2018, 155, 194-202.	3.3	34
35	All-fiber-based quasi-solid-state lithium-ion battery towards wearable electronic devices with outstanding flexibility and self-healing ability. Nano Energy, 2018, 51, 425-433.	8.2	83
36	Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chemical Society Reviews, 2018, 47, 5919-5945.	18.7	314

#	Article	IF	CITATIONS
37	ZnCo2O4 ultrathin nanosheets towards the high performance of flexible supercapacitors and bifunctional electrocatalysis. Journal of Alloys and Compounds, 2018, 764, 565-573.	2.8	63
38	Near-infrared irradiation induced remote and efficient self-healable triboelectric nanogenerator for potential implantable electronics. Nano Energy, 2018, 51, 333-339.	8.2	106
39	Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy, 2018, 51, 604-612.	8.2	176
40	Hierarchical core-sheath polypyrrole@carbon nanotube/bacterial cellulose macrofibers with high electrochemical performance for all-solid-state supercapacitors. Electrochimica Acta, 2018, 283, 1578-1588.	2.6	54
41	Enhanced electrochemical property of graphite felt@Co2(OH)2CO3 via Niâ^'P electrodeposition for flexible supercapacitors. Electrochimica Acta, 2018, 283, 1568-1577.	2.6	20
42	Influence of Ti3C2Tx (MXene) intercalation pseudocapacitance on electrochemical performance of Co-MOF binder-free electrode. Ceramics International, 2018, 44, 14425-14431.	2.3	81
43	Alkaline Exchange Polymer Membrane Electrolyte for High Performance of All-Solid-State Electrochemical Devices. ACS Applied Materials & Interfaces, 2018, 10, 29593-29598.	4.0	52
44	Surface Modified Carbon Cloth via Nitrogen Plasma for Supercapacitor Applications. Journal of the Electrochemical Society, 2018, 165, A2446-A2450.	1.3	32
45	Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching. Journal of Materials Science: Materials in Electronics, 2018, 29, 18167-18177.	1.1	11
46	Supercapacitor with high cycling stability through electrochemical deposition of metal–organic frameworks/polypyrrole positive electrode. Dalton Transactions, 2018, 47, 13472-13478.	1.6	64
47	Functional biomaterials towards flexible electronics and sensors. Biosensors and Bioelectronics, 2018, 119, 237-251.	5.3	139
48	Activated carbon fibers with manganese dioxide coating for flexible fiber supercapacitors with high capacitive performance. Journal of Energy Chemistry, 2019, 31, 95-100.	7.1	53
49	Physical and Electrochemical Modulation of Polyoxometalate Ionic Liquids via Organic Functionalization. European Journal of Inorganic Chemistry, 2019, 2019, 456-460.	1.0	12
50	Polythiophene Grafted onto Singleâ€Wall Carbon Nanotubes through Oligo(ethylene oxide) Linkages for Supercapacitor Devices with Enhanced Electrochemical Performance. ChemElectroChem, 2019, 6, 4595-4607.	1.7	19
51	Facile preparation of mesoporous NiCo2S4 microaggregates constructed by nanoparticles via puffing NiCo2O4 cubes for highÂperformance asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 806, 1481-1490.	2.8	23
52	Rational design of modified fluororubber-based quasi-solid-state electrolyte for flexible supercapacitors with enhanced performance. Chemical Engineering Journal, 2019, 378, 122244.	6.6	13
53	Paper-Based, Hand-Painted Strain Sensor Based on ITO Nanoparticle Channels for Human Motion Monitoring. IEEE Access, 2019, 7, 77200-77207.	2.6	21
54	Porous and Hierarchically Structured Ammonium Nickel Molybdate/Nickel Sulfide/Reduced Graphene Oxide Ternary Composite as High Performance Electrode for Supercapacitors. ChemElectroChem, 2019, 6. 3806-3814.	1.7	13

#	Article	IF	CITATIONS
55	Freestanding Lamellar Porous Carbon Stacks for Lowâ€Temperatureâ€Foldable Supercapacitors. Small, 2019, 15, e1902071.	5.2	39
56	CoS2 nanodots anchored into heteroatom-doped carbon layer via a biomimetic strategy: Boosting the oxygen evolution and supercapacitor performance. Journal of Power Sources, 2019, 436, 226862.	4.0	48
57	Boosting the Capacitance of an Aqueous Zinc-Ion Hybrid Energy Storage Device by Using Poly(3,3′-dihydroxybenzidine)-Modified Nanoporous Carbon Cathode. ACS Sustainable Chemistry and Engineering, 2019, 7, 14195-14202.	3.2	33
58	Design and fabrication of polypyrrole/expanded graphite 3D interlayer nanohybrids towards high capacitive performance. RSC Advances, 2019, 9, 23109-23118.	1.7	33
59	Synthesis of holey graphene networks functionalized with p-phenylene diamine monomers for superior performance flexible solid-state supercapacitors. Electrochimica Acta, 2019, 320, 134610.	2.6	20
60	Advanced materials and technologies for hybrid supercapacitors for energy storage – A review. Journal of Energy Storage, 2019, 25, 100852.	3.9	417
61	Ni2P2O7 micro-sheets supported ultra-thin MnO2 nanoflakes: A promising positive electrode for stable solid-state hybrid supercapacitor. Electrochimica Acta, 2019, 319, 435-443.	2.6	31
62	Flexible solvent-free supercapacitors with high energy density enabled by electrical-ionic hybrid polymer nanocomposites. Journal of Materials Chemistry A, 2019, 7, 16748-16760.	5.2	18
63	Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review. Membranes, 2019, 9, 74.	1.4	22
64	Metal-organic framework-derived materials for electrochemical energy applications. EnergyChem, 2019, 1, 100001.	10.1	438
65	Scalable nanomanufacturing of inkjet-printed wearable energy storage devices. Journal of Materials Chemistry A, 2019, 7, 23280-23300.	5.2	44
66	Binary cooperative flexible magnetoelectric materials working as self-powered tactile sensors. Journal of Materials Chemistry C, 2019, 7, 8527-8536.	2.7	31
67	Giant Poisson's Effect for Wrinkleâ€Free Stretchable Transparent Electrodes. Advanced Materials, 2019, 31, e1902955.	11.1	38
68	An Olefin‣inked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie, 2019, 131, 12193-12197.	1.6	78
69	Ni-Bi-S nanosheets/Ni foam as a binder-free high-performance electrode for asymmetric supercapacitors. Chemical Engineering Journal, 2019, 378, 122162.	6.6	24
70	Aqueous asymmetric supercapacitor based on RuO2-WO3 electrodes. Electrochimica Acta, 2019, 325, 134879.	2.6	53
71	Flexible Zincâ€lon Hybrid Fiber Capacitors with Ultrahigh Energy Density and Long Cycling Life for Wearable Electronics. Small, 2019, 15, e1903817.	5.2	143
72	Laser-Graving-Assisted Fabrication of Foldable Supercapacitors for On-Chip Energy Storage. ACS Applied Materials & Interfaces, 2019, 11, 42172-42178.	4.0	9

#	Article	IF	CITATIONS
73	CNT/High Mass Loading MnO2/Graphene-Grafted Carbon Cloth Electrodes for High-Energy Asymmetric Supercapacitors. Nano-Micro Letters, 2019, 11, 88.	14.4	82
74	Synthesis of a Novel Mn(II)-porphyrins polycondensation polymer and its application as pseudo-capacitor electrode material. Journal of Organometallic Chemistry, 2019, 900, 120940.	0.8	12
75	Carbon-Based Electrode Materials for Microsupercapacitors in Self-Powering Sensor Networks: Present and Future Development. Sensors, 2019, 19, 4231.	2.1	16
76	Hydrated ruthenium dioxides @ graphene based fiber supercapacitor for wearable electronics. Journal of Power Sources, 2019, 440, 227143.	4.0	35
77	Polyoxometalatesâ€Based Metal–Organic Frameworks Made by Electrodeposition and Carbonization Methods as Cathodes and Anodes for Asymmetric Supercapacitors. Chemistry - A European Journal, 2019, 25, 16617-16624.	1.7	26
78	Boosting ion dynamics through superwettable leaf-like film based on porous g-C3N4 nanosheets for ionogel supercapacitors. NPG Asia Materials, 2019, 11, .	3.8	40
79	Near-Field Communication Sensors. Sensors, 2019, 19, 3947.	2.1	51
80	Free-standing Sandwich Structure MoO3-rGO Composite Film Electrode for Flexible Supercapacitors. MRS Advances, 2019, 4, 2299-2305.	0.5	1
81	Basicity‣ngineered Graphite Fluoride Functionalization and Beyond: An Unusual Reaction between Ultraweak Nucleophile and Ultrastrong CF Bonds. Advanced Functional Materials, 2019, 29, 1906076.	7.8	15
82	Engineering Redox Activity in Conjugated Microporous Polytriphenylamine Networks Using Pyridyl Building Blocks toward Efficient Supercapacitors. Macromolecular Rapid Communications, 2019, 40, e1900455.	2.0	35
83	Enhancing Energy Storage Devices with Biomacromolecules in Hybrid Electrodes. Biotechnology Journal, 2019, 14, e1900062.	1.8	21
84	Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications. Matter, 2019, 1, 1148-1202.	5.0	46
85	Fabrication of nanoporous NiO@CoO composites by dealloying method as ultra-high capacitance electrodes. Journal of Materials Science: Materials in Electronics, 2019, 30, 20311-20319.	1.1	2
86	All Solid-State Flexible Micro-Supercapacitor Based on Hybrid Electrodes for Power Application. , 2019, , .		1
87	Hierarchical Bimetallic Hydroxides Built by Porous Nanowire‣apped Bundles with Ultrahigh Areal Capacity for Stable Hybrid Solidâ€State Supercapacitors. Advanced Materials Interfaces, 2019, 6, 1900959.	1.9	12
88	Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, 2019, , .	0.7	12
89	Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte. Journal of Solid State Electrochemistry, 2019, 23, 3459-3465.	1.2	11
90	Challenges and Opportunities of Carbon Nanomaterials for Biofuel Cells and Supercapacitors: Personalized Energy for Futuristic Self-Sustainable Devices. Journal of Carbon Resear <u>ch, 2019, 5, 62.</u>	1.4	19

#	Article	IF	CITATIONS
91	High Ion Transport within a Freeze-Casted Gel Film for High-Rate Integrated Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 43294-43302.	4.0	23
92	Oneâ€Step Scalable Fabrication of Grapheneâ€Integrated Microâ€Supercapacitors with Remarkable Flexibility and Exceptional Performance Uniformity. Advanced Functional Materials, 2019, 29, 1902860.	7.8	104
93	Free-Standing and Heteroatoms-Doped Carbon Nanofiber Networks as a Binder-Free Flexible Electrode for High-Performance Supercapacitors. Nanomaterials, 2019, 9, 1189.	1.9	18
94	Electrolyte selection for supercapacitive devices: a critical review. Nanoscale Advances, 2019, 1, 3807-3835.	2.2	702
95	Thermoelectric phase diagram of the SrTiO3-LaTiO3 solid-solution system through a metal to Mott insulator transition. Journal of Applied Physics, 2019, 126, .	1.1	8
96	Rationally designed CuCo2O4@Ni(OH)2 with 3D hierarchical core-shell structure for flexible energy storage. Journal of Colloid and Interface Science, 2019, 557, 76-83.	5.0	35
97	Effect of deposition parameters on spray pyrolysis synthesized CuO nanoparticle thin films for higher supercapacitor performance. Journal of Electroanalytical Chemistry, 2019, 850, 113433.	1.9	56
98	Tungsten oxide and carbide composite synthesized by hot filament chemical deposition as electrodes in aqueous-based electrochemical capacitors. Journal of Energy Storage, 2019, 26, 100905.	3.9	9
99	Chitosan-assisted synthesis of wearable textile electrodes for high-performance electrochemical energy storage. Cellulose, 2019, 26, 9349-9359.	2.4	31
100	Design of 2D mesoporous Zn/Co-based metal-organic frameworks as a flexible electrode for energy storage and conversion. Journal of Power Sources, 2019, 438, 227057.	4.0	53
101	Breakthroughs in Designing Commercial-Level Mass-Loading Graphene Electrodes for Electrochemical Double-Layer Capacitors. Matter, 2019, 1, 596-620.	5.0	79
102	Nitrogen and phosphorus co-doped silkworm-cocoon-based self-activated porous carbon for high performance supercapacitors. Journal of Power Sources, 2019, 438, 227045.	4.0	57
103	Entire synergistic contribution of electrodeposited battery-type NiCo2O4@Ni4.5Co4.5S8 composite for high-performance supercapacitors. Journal of Power Sources, 2019, 439, 227097.	4.0	74
104	Challenges and opportunities for supercapacitors. APL Materials, 2019, 7, .	2.2	257
105	Flexible electrode with composite structure for large-scale production. Journal of Alloys and Compounds, 2019, 810, 151871.	2.8	5
106	Capacitive property studies of inexpensive SILAR synthesized polyaniline thin films for supercapacitor application. SN Applied Sciences, 2019, 1, 1.	1.5	14
107	Hybrid material passivation approach to stabilize the silicon nanowires in aqueous electrolyte for high-energy efficient supercapacitor. Chemical Engineering Journal, 2019, 362, 609-618.	6.6	40
108	Estimation of dynamic tire force by measurement of vehicle body responses with numerical and experimental validation. Mechanical Systems and Signal Processing, 2019, 123, 369-385.	4.4	39

#	Article	IF	CITATIONS
109	Hollow core–shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chemical Communications, 2019, 55, 1746-1749.	2.2	90
110	<i>In situ</i> tunable pillaring of compact and high-density graphite fluoride with pseudocapacitive diamines for supercapacitors with combined predominance in gravimetric and volumetric performances. Journal of Materials Chemistry A, 2019, 7, 3353-3365.	5.2	28
111	Ammonia-assisted thermal activation of graphene-embellished biological fiber for flexible supercapacitors. Journal of Alloys and Compounds, 2019, 785, 944-950.	2.8	10
112	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
113	Research on the High-Performance Electrochemical Energy Storage of a NiO@ZnO (NZO) Hybrid Based on Growth Time. Crystals, 2019, 9, 47.	1.0	13
114	Optimal structuring of nitrogen-doped hybrid-dimensional nanocarbons for high-performance flexible solid-state supercapacitors. Journal of Materials Chemistry A, 2019, 7, 7501-7515.	5.2	13
115	Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 2019, 7, 4259-4290.	5.2	249
116	Facile Synthesis of Three-Dimensional Ordered Porous Amorphous Ni-P for High-Performance Asymmetric Supercapacitors. Journal of the Electrochemical Society, 2019, 166, D37-D43.	1.3	16
117	Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceramics International, 2019, 45, 8577-8584.	2.3	72
118	Electrochemically building three-dimensional supramolecular polymer hydrogel for flexible solid-state micro-supercapacitors. Electrochimica Acta, 2019, 301, 136-144.	2.6	69
119	Self-woven nanofibrillar PEDOT mats for impact-resistant supercapacitors. Sustainable Energy and Fuels, 2019, 3, 1154-1162.	2.5	9
120	Facile strategy for mass production of polymer-supported film electrodes for high performance flexible symmetric solid-state supercapacitors. Applied Surface Science, 2019, 487, 295-303.	3.1	13
121	Textile carbon network with enhanced areal capacitance prepared by chemical activation of cotton cloth. Journal of Colloid and Interface Science, 2019, 553, 705-712.	5.0	51
122	Recent Progress in Ruthenium Oxideâ€Based Composites for Supercapacitor Applications. ChemElectroChem, 2019, 6, 4343-4372.	1.7	198
123	High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 2019, 74, 59-68.	1.4	33
124	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 12065-12069.	7.2	226
125	Ethanol interfacial assembly of Na0.44MnO2 nanorod/active carbon toward the fabrication of high-density hybrid films for binder-free supercapacitor electrode. Journal of Nanoparticle Research, 2019, 21, 1.	0.8	2
126	Onâ€Chip MXene Microsupercapacitors for ACâ€Line Filtering Applications. Advanced Energy Materials, 2019, 9, 1901061.	10.2	113

#	Article	IF	CITATIONS
127	Long-life flexible supercapacitors based on nitrogen-doped porous graphene@Ï€-conjugated polymer film electrodes and porous quasi-solid-state polymer electrolyte. Electrochimica Acta, 2019, 317, 250-260.	2.6	24
128	Copper molybdenum sulfide nanoparticles embedded on graphene sheets as advanced electrodes for wide temperature-tolerant supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1775-1784.	3.0	29
129	Electrochemical properties of polyoxometalate composite materials containing multiple redox centers. Chemical Papers, 2019, 73, 2611-2617.	1.0	3
130	An ultra-dense NiS ₂ /reduced graphene oxide composite cathode for high-volumetric/gravimetric energy density nickel–zinc batteries. Journal of Materials Chemistry A, 2019, 7, 15654-15661.	5.2	108
131	Fractal granular BiVO4 microspheres as high performance anode material for Li-ion battery. Materials Letters, 2019, 252, 235-238.	1.3	16
132	Fabrication of the piezoresistive sensor using the continuous laser-induced nanostructure growth for structural health monitoring. Carbon, 2019, 152, 376-387.	5.4	16
133	All-printed solid-state supercapacitors with versatile shapes and superior flexibility for wearable energy storage. Journal of Materials Chemistry A, 2019, 7, 15960-15968.	5.2	57
134	Multi-material 3D printing of a soft pressure sensor. Additive Manufacturing, 2019, 28, 629-638.	1.7	58
135	Molybdenum Nitride Nanocrystals Anchored on Phosphorus-Incorporated Carbon Fabric as a Negative Electrode for High-Performance Asymmetric Pseudocapacitor. IScience, 2019, 16, 50-62.	1.9	43
136	Morphology-controlled synthesis of NiCo2O4 nanoflowers on stainless steel substrates as high-performance supercapacitors. Materials Science for Energy Technologies, 2019, 2, 556-564.	1.0	12
137	Core–Sheath Porous Polyaniline Nanorods/Graphene Fiber-Shaped Supercapacitors with High Specific Capacitance and Rate Capability. ACS Applied Energy Materials, 2019, 2, 4335-4344.	2.5	72
138	Shaping and structuring supramolecular gels. Nature Reviews Materials, 2019, 4, 463-478.	23.3	270
139	Printed supercapacitors: materials, printing and applications. Chemical Society Reviews, 2019, 48, 3229-3264.	18.7	360
140	Suppression of self-discharge in solid-state supercapacitors using a zwitterionic gel electrolyte. Chemical Communications, 2019, 55, 7167-7170.	2.2	40
141	Core–shell assembly of carbon nanofibers and a 2D conductive metal–organic framework as a flexible free-standing membrane for high-performance supercapacitors. Inorganic Chemistry Frontiers, 2019, 6, 1824-1830.	3.0	70
142	Puncture-Resistant Hydrogel: Placing Molecular Complexes Along Phase Boundaries. ACS Applied Materials & Interfaces, 2019, 11, 19421-19428.	4.0	25
143	A flexible and self-healing hydrogel electrolyte for smart supercapacitor. Journal of Power Sources, 2019, 431, 210-219.	4.0	136
144	Boosting the capacitive storage performance of MOF-derived carbon frameworks via structural modulation for supercapacitors. Energy Storage Materials, 2019, 23, 491-498.	9.5	93

#	Article	IF	CITATIONS
145	Building Carbonâ€Based Versatile Scaffolds on the Electrode Surface to Boost Capacitive Performance for Fiber Pseudocapacitors. Small, 2019, 15, e1900721.	5.2	26
146	Trimanganese tetraoxide nanoframeworks: Morphology–controlled synthesis and application in asymmetric supercapacitors. Journal of Alloys and Compounds, 2019, 793, 446-453.	2.8	17
147	Integration of Electrochemical Microsupercapacitors with Thin Film Electronics for On hip Energy Storage. Advanced Materials, 2019, 31, e1807450.	11.1	32
148	In Situ Generated Fireproof Gel Polymer Electrolyte with Li _{6.4} Ga _{0.2} La ₃ Zr ₂ O ₁₂ As Initiator and Ionâ€Conductive Filler. Advanced Energy Materials, 2019, 9, 1900611.	10.2	185
149	Interconnected hollow carbon spheres with tunable wall-thickness for improving the high-rate performance of energy storage devices. Electrochimica Acta, 2019, 312, 358-368.	2.6	12
150	Flexible Breathable Nanomesh Electronic Devices for Onâ€Demand Therapy. Advanced Functional Materials, 2019, 29, 1902127.	7.8	108
151	Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and Microengineering, 2019, 29, 093001.	1.5	11
152	Flexible Graphene/Carbon Nanotube Electrochemical Double‣ayer Capacitors with Ultrahigh Areal Performance. ChemPlusChem, 2019, 84, 882-892.	1.3	28
153	Direct growth of flake-like metal-organic framework on textile carbon cloth as high-performance supercapacitor electrode. Journal of Power Sources, 2019, 428, 124-130.	4.0	70
154	Direct growth of WO3 nanostructures on multi-walled carbon nanotubes for high-performance flexible all-solid-state asymmetric supercapacitor. Electrochimica Acta, 2019, 308, 231-242.	2.6	63
155	Flexible perovskite solar cell-driven photo-rechargeable lithium-ion capacitor for self-powered wearable strain sensors. Nano Energy, 2019, 60, 247-256.	8.2	180
156	Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chemical Engineering Journal, 2019, 369, 988-995.	6.6	121
157	Flexible Molybdenum Disulfide (MoS ₂) Atomic Layers for Wearable Electronics and Optoelectronics. ACS Applied Materials & Interfaces, 2019, 11, 11061-11105.	4.0	277
158	α-Ni(OH) ₂ /NiS _{1.97} heterojunction composites with excellent ion and electron transport properties for advanced supercapacitors. Nanoscale, 2019, 11, 6243-6253.	2.8	106
159	Metal–organic framework derived hierarchical copper cobalt sulfide nanosheet arrays for high-performance solid-state asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 8620-8632.	5.2	129
160	Wrinkled two-dimensional ultrathin Cu(<scp>ii</scp>)-porphyrin framework nanosheets hybridized with polypyrrole for flexible all-solid-state supercapacitors. Dalton Transactions, 2019, 48, 9631-9638.	1.6	35
161	Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Applied Surface Science, 2019, 480, 371-383.	3.1	63
162	Porous carbon anchored titanium carbonitride for high-performance supercapacitor. Electrochimica Acta, 2019, 304, 138-145.	2.6	16

#	Article	IF	CITATIONS
163	Heterogeneous graphene/polypyrrole multilayered microtube with enhanced capacitance. Electrochimica Acta, 2019, 304, 378-385.	2.6	24
164	Poly(1,5-diaminoanthraquinone) coated carbon cloth composites as flexible electrode with extraordinary cycling stability for symmetric solid-state supercapacitors. Journal of Colloid and Interface Science, 2019, 546, 60-69.	5.0	16
165	"All-in-Cel―design for supercapacitors towards solid-state energy devices with thermal and mechanical compliance. Journal of Materials Chemistry A, 2019, 7, 8826-8831.	5.2	41
166	Metal-organic frameworks governed well-aligned conducting polymer/bacterial cellulose membranes with high areal capacitance. Energy Storage Materials, 2019, 23, 594-601.	9.5	53
167	Catâ€∓ailâ€Like Mesostructured Silica Fibers Decorated with Gold Nanowires: Synthesis, Characterization, and Application as Stretchable Sensors. ChemPlusChem, 2019, 84, 1031-1038.	1.3	6
168	The potassium hydroxide-urea synergy in improving the capacitive energy-storage performance of agar-derived carbon aerogels. Carbon, 2019, 147, 451-459.	5.4	46
169	Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO ₃ materials for simultaneously scavenging light and vibration energies. Energy and Environmental Science, 2019, 12, 1231-1240.	15.6	74
170	Hybridization design of materials and devices for flexible electrochemical energy storage. Energy Storage Storage Materials, 2019, 19, 212-241.	9.5	163
171	Vacancy modification of Prussian-blue nano-thin films for high energy-density micro-supercapacitors with ultralow RC time constant. Nano Energy, 2019, 60, 8-16.	8.2	26
172	Metal–Organic Framework (MOF) Derived Electrodes with Robust and Fast Lithium Storage for Liâ€ion Hybrid Capacitors. Advanced Functional Materials, 2019, 29, 1900532.	7.8	141
173	Cobalt Cyclotetraphosphate (Co ₂ P ₄ O ₁₂): A New High-Performance Electrode Material for Supercapacitors. ACS Applied Energy Materials, 2019, 2, 2972-2981.	2.5	57
174	Zwitterionic Copolymer‣upported Ionogel Electrolytes: Impacts of Varying the Zwitterionic Group and Ionic Liquid Identities. ChemElectroChem, 2019, 6, 2482-2488.	1.7	22
175	Selfâ€Assembled Nickel Pyrophosphateâ€Decorated Amorphous Bimetal Hydroxides 2Dâ€onâ€2D Nanostructure for Highâ€Energy Solidâ€State Asymmetric Supercapacitor. Small, 2019, 15, e1901145.	5.2	80
176	Graphene/Polyaniline flexible supercapacitors using non-metalic electrodes. Journal of Physics: Conference Series, 2019, 1186, 012034.	0.3	1
177	Green synthesized gold nanoparticle dispersed porous carbon composites for electrochemical energy storage. Materials Science for Energy Technologies, 2019, 2, 389-395.	1.0	30
178	Thieno[3,2―b]Thiophene Endâ€Capped allâ€Sulfur Analog of 3,4â€Ethylenedioxythiophene and its Eletrosynthesized Polymer: Is Distorted Conformation Not Suitable for Electrochromism?. Journal of Polymer Science Part A, 2019, 57, 1041-1048.	2.5	5
179	Structure-designed fabrication of all-printed flexible in-plane solid-state supercapacitors for wearable electronics. Journal of Power Sources, 2019, 425, 195-203.	4.0	39
180	Dual-Purpose 3D Pillared Metal–Organic Framework with Excellent Properties for Catalysis of Oxidative Desulfurization and Energy Storage in Asymmetric Supercapacitor. ACS Applied Materials & Interfaces, 2019, 11, 14759-14773.	4.0	97

181Toward a comprehensive understanding of textiles functionalized with silver nanoparticles. Journal0.80.0192Rational Design of a loadie CNT sept0MS film Pattemen by BioleAnspired Templates as a Strain Sensor0.291193Recent properties based on carbon nanotube MirO2 nanocomposite film electrode. Chemical0.6173194Recent anding More film modified by amorphous ECOOH quantum dots for high-performance0.6173194Study of pseudocapatitive contribution to superior energy storage of 3D heterostructure0.6121195CoUMO (SQO) manocoma mays, lournal of Power Sources, 2019, 132, 4300 (132, 43)0.324196Recent of the Particle Size of DaTiO Tiles on fabrication and Delectric Properties of supercepacitors. Cellulose, 2019, 26, 3587-3399.0.33197Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.38198PolypytroleQmentalegraphic fammscork (IIIO 664) ecartan fabric alectrodes for flexible1.82.40199Towards ectoblishing standard performance metrics for batteries, supercapacitors and beyond.1.8,788191Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.323191Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.323191Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.323191Nanostructured Materials for Energy Related Applications. Environmental Chemistr	#	Article	IF	CITATIONS
112Restoral Design of a Healthic CMI sigNDMS film Patterned by BioAChespired Templates as a Strain Sensor5.291113Expercepatitors based on earbon nanotube-MinO2 nanocomposite film electrode. Chemical6.6173114Premestanding MAene film modified by amorphous FROCH quantum dots for high-performance6.6173115Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure4.0121116Effects of the Particle Size of BaTIO3 Filers on Fabrication and Delectric Properties of BatIO3D dynamical Hilm for Capacitor Energy Storage AJ Dictarost. National AJ, 2019, 12, 439.1.328118Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.35118Supercapacity equipacity Electrochimacy Storage Applications and beyond.1.8.7844119Nanostructured Materials for Energy Related Applications Environmental Chemistry for A0.35119Nanostructured Materials for Energy Related Applications Environmental Chemistry for A0.33119Nanostructured Materials for Energy Related Applications and beyond.1.8.7844119Nanostructured Materials for Energy Related Applications (2019, 2019, 2019, 2019)2.33119Nanostructured Materials Environmental Chemistry for A Sustainable World, 2019, 243 270.0.32119Nanostructured Materials Environmental Chemistry for A Sustainable World, 2019, 243 270.0.32119Soldestate asymmetric appetcapacitors. Environmental Chemistry for A Sustainable World, 2019, 243 270.0.32	181	Toward a comprehensive understanding of textiles functionalized with silver nanoparticles. Journal of the Chinese Chemical Society, 2019, 66, 793-814.	0.8	30
188Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chemical6.6173191Fire-standing MX-ne film modified by anorphous FQOOH custure data for high-performance2.672186Study of pseudocapacitive contribution to supercapacitor recry storage of 3D heterostructure4.0121186Study of pseudocapacitive contribution to supercapacitors storage of 3D heterostructure4.0121186Study of pseudocapacitive contribution to supercapacitors and Delectric Properties of Exito 3Photymer/AFInns for Capacitor recry Storage Application. Materials, 2019, 12, 439.1.32187Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.35188Supercapacitors. Childsex, 2019, 26, 3387 3399.2.460189Chevrole State all standard performance metrics for batteries, supercapacitors and beyond.18.7824191Nanostructured Materials for Energy Related Applicational. Environmental Chemistry for A0.33192Towards establishing standard performance metrics for batteries, supercapacitors and beyond.18.7824193State asymmetric supercapacitic Ceramics International. 2019, 45, 10420 10423.2.33194Nanos andwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric terro supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 104111049.6.46.4194Selective integration of hierarchical nanostructured energy interlais an effective approach to supercapacitors. 2019, 7, 65746368.2.25.2<	182	Rational Design of a Flexible CNTs@PDMS Film Patterned by Bioâ€Inspired Templates as a Strain Sensor and Supercapacitor. Small, 2019, 15, e1805493.	5.2	91
194Free standing MXene film modified by amorphous FoOOH quantum dots for high-performance2.672196Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4(Co3OH nanocone arrays. Journal of Power Sources, 2019, 418, 202-210.4.0121196Effects of the Particle Size of BaffO3 Fillers on Fabrication and Dielectric Properties of BaffO3/Polymer/A Films for Capacitor Energy-Storage Application. Materials, 2019, 12, 439.1.328197Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.35198Spericapacitors. Cellulose, 2019, 26, 3387-3399.2.466199Towards establishing standard performance metrics for batteries, supercapacitors and beyond.1.8.7824191Anode electrodeposition of 3D mesoporous Fc2O3 nanosheets on carbon fabric for flexible solid state asymmetric supercapacitors. Environmental Under Solid, 5, 10420 10423.2.333191Nano-sandwiched metal hexecquancferrate/graphene hybrid thin films for in-plane asymmetric 	183	Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chemical Engineering Journal, 2019, 371, 145-153.	6.6	173
186Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure4.0121186Effects of the Particle Size of BallO3 Fillers on Fabrication and Dielectric Properties of BallO3 Pholymer/IAI Films for Capacitor Energy/Storage Application. Materials, 2019, 12, 439.1.328187Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.35188Polypyrole@imetial-organic framework (UIO 66)@cotton fabric electrodes for filexible upercapacitors. Cellulose, 2019, 26, 3387-3399.2.465189Towards establishing standard performance metrics for batteries, supercapacitors and beyond.18.7824190Ande electrodeposition of 3D mesoprocus Fe2O3 nanosheets on carbon fabric for flexible micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.464191Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to hemistry A, 2019, 7, 6374-6386.5.259194Anew strategy for anchoring a functionalized graphene hybrid supercapacitors. Journal of Materials5.250195Selective integration of hierarchical nanostructured energy materials: an effective approach to hemistry A, 2019, 7, 6374-6386.5.259195Anew strategy for anchoring a functionalized graphene hybrid bio frieble bio high areal-capacitors. Journal of Materials Chemistry A, 2019, 7, 5874-6386.5.2130196Perco-electre tanongenerational functionalized gr	184	Free-standing MXene film modified by amorphous FeOOH quantum dots for high-performance asymmetric supercapacitor. Electrochimica Acta, 2019, 308, 1-8.	2.6	72
180Effects of the Particle Size of BaTiO3 Fillers on Fabrication and Dielectric Properties of BaTiO3/Polymer/Al Films for Capacitor Energy-Storage Application. Materials, 2019, 12, 439.1.328187Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A sustainable World, 2019,0.35188Polypyrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose, 2019, 26, 3387-3399.2.40.5189Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.18.7824190Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019, 45, 10420-10428.2.333191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.454192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Lowing of for theriby high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6374-6386.5.2130195chemistry A, 2019, 7, 6374-6386.5.2130130196Feroelectret nanogenerators as flexible micr	185	Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. Journal of Power Sources, 2019, 418, 202-210.	4.0	121
187Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A0.35188Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible upercapacitors. Cellulose, 2019, 26, 3387,3399.2.465189Towards establishing standard performance metrics for batteries, supercapacitors and beyond.18.7824190Ande electrodeposition of 3D mecoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019, 45, 10420-10428.2.333191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.464192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, 7, 4374-6386.5.259193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy strateg performance of flexible hybrid supercapacitors. Journal of Materials5.259194Anew strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/ployaniline hydrogel as an integrated electrode for flexible high support a lignosulfonate/ployaniline hydrogel as an integrated electrode of flexible high supercapacitors. 2019, 7, 5819-5830.130194Ferroelectret nanogenerators as flexible microphones., 2019, 7, 5819-5830.5.2130195The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible5.2130196The Impact of Flexible Energy Harvester and Super	186	Effects of the Particle Size of BaTiO3 Fillers on Fabrication and Dielectric Properties of BaTiO3/Polymer/Al Films for Capacitor Energy-Storage Application. Materials, 2019, 12, 439.	1.3	28
188Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose, 2019, 26, 3387-3399.2.465189Towards establishing standard performance metrics for batteries, supercapacitors and beyond.18.7824190Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible supercapacitors. Ceramics International, 2019, 45, 10420-10428.2.333191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.464192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to 	187	Nanostructured Materials for Energy Related Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	5
189Towards establishing standard performance metrics for batteries, supercapacitors and beyond.18.7824190Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible2.333191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric6.454192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, 243-270.0.30195Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, .0.30195Support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.5.2130196Forro-electret nanogenerators as flexible microphones., 2019,21197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible11198Jourds Integrated Flexible Energy Harvester and Supercapacitor Self-powered Wearable Sensors.0	188	Polypyrrole@metal-organic framework (UIO-66)@cotton fabric electrodes for flexible supercapacitors. Cellulose, 2019, 26, 3387-3399.	2.4	65
190Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019, 45, 10420-10428.2.333191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.454192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, .0.30195A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high arael-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.130196Ferro-electret nanogenerators as flexible microphones., 2019,2197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors. 2019,1198Towards Integrated Hexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors.0	189	Towards establishing standard performance metrics for batteries, supercapacitors and beyond. Chemical Society Reviews, 2019, 48, 1272-1341.	18.7	824
191Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.6.454192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, .0.30195A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high 	190	Anode electrodeposition of 3D mesoporous Fe2O3 nanosheets on carbon fabric for flexible solid-state asymmetric supercapacitor. Ceramics International, 2019, 45, 10420-10428.	2.3	33
192Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019,, 243-270.0.32193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019,0.30195Anew strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.5.2130196Ferro-electret nanogenerators as flexible microphones., 2019,21197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors., 2019,11980	191	Nano-sandwiched metal hexacyanoferrate/graphene hybrid thin films for in-plane asymmetric micro-supercapacitors with ultrahigh energy density. Materials Horizons, 2019, 6, 1041-1049.	6.4	54
193Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials5.259194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019,, atrice, and a support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.0.30196Ferro-electret nanogenerators as flexible microphones., 2019,,2130197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors., 2019,,1198Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors.0	192	Biomass-Derived Nanomaterials. Environmental Chemistry for A Sustainable World, 2019, , 243-270.	0.3	2
194Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, 41-72.0.30195A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.5.2130196Ferro-electret nanogenerators as flexible microphones., 2019,2197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors., 2019,1198Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors.0	193	Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. Journal of Materials Chemistry A, 2019, 7, 6374-6386.	5.2	59
195A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.5.2130196Ferro-electret nanogenerators as flexible microphones., 2019, ,.22197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible supercapacitors, 2019, ,.1198Jowards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors.0	194	Recent Advances in Flexible Supercapacitors. Environmental Chemistry for A Sustainable World, 2019, , 41-72.	0.3	0
196Ferro-electret nanogenerators as flexible microphones., 2019,,.2197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors., 2019,,.1198Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors.0	195	A new strategy for anchoring a functionalized graphene hydrogel in a carbon cloth network to support a lignosulfonate/polyaniline hydrogel as an integrated electrode for flexible high areal-capacitance supercapacitors. Journal of Materials Chemistry A, 2019, 7, 5819-5830.	5.2	130
197The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors., 2019,,.1198Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors. , 2019,,.0	196	Ferro-electret nanogenerators as flexible microphones. , 2019, , .		2
Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors. , 2019, , . 0	197	The Impact of Polymer Electrolytes on the Performance and Longevity of Solid Flexible Supercapacitors. , 2019, , .		1
	198	Towards Integrated Flexible Energy Harvester and Supercapacitor for Self-powered Wearable Sensors. , 2019, , .		0

#	Article	IF	CITATIONS
199	3D hierarchically gold-nanoparticle-decorated porous carbon for high-performance supercapacitors. Scientific Reports, 2019, 9, 17065.	1.6	38
200	Tunable energy storage capacity of two-dimensional Ti ₃ C ₂ T _x modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes. Nanoscale, 2019, 11, 21981-21989.	2.8	32
201	Few-layered Ti ₃ C ₂ T _x MXenes coupled with Fe ₂ O ₃ nanorod arrays grown on carbon cloth as anodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2019, 7, 22631-22641.	5.2	93
202	Three-dimensional seamless graphene/carbon nanotube hybrids for multifunctional energy storage. Journal of Materials Chemistry A, 2019, 7, 24792-24799.	5.2	28
203	Autonomous self-healing, self-adhesive, highly conductive composites based on a silver-filled polyborosiloxane/polydimethylsiloxane double-network elastomer. Journal of Materials Chemistry A, 2019, 7, 27278-27288.	5.2	79
204	Metal oxide-based supercapacitors: progress and prospectives. Nanoscale Advances, 2019, 1, 4644-4658.	2.2	403
205	High-performance flexible all-solid-state supercapacitor constructed by free-standing cellulose/reduced graphene oxide/silver nanoparticles composite film. Chemical Engineering Journal, 2019, 357, 45-55.	6.6	72
206	Designing a flexible all-solid-state supercapacitor based on CuGa2O4 and FeP-rGO electrodes. Journal of Alloys and Compounds, 2019, 773, 527-536.	2.8	49
207	Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. Journal of Materials Chemistry A, 2019, 7, 14-37.	5.2	181
208	Plasma Surface Functionalization of Carbon Nanofibres with Silver, Palladium and Platinum Nanoparticles for Cost-Effective and High-Performance Supercapacitors. Micromachines, 2019, 10, 2.	1.4	19
209	Development of the applications of titanium nitride in fuel cells. Materials Today Chemistry, 2019, 11, 42-59.	1.7	17
210	Flexible NiCo2O4@carbon/carbon nanofiber electrodes fabricated by a combined electrospray/electrospinning technique for supercapacitors. Materials Letters, 2019, 240, 21-24.	1.3	26
211	Couroupita guianansis dead flower derived porous activated carbon as efficient supercapacitor electrode material. Materials Research Bulletin, 2019, 112, 390-398.	2.7	46
212	Preparation and capacitance of V2O5/holey graphene hybrid aerogel electrode with high performance. Journal of Alloys and Compounds, 2019, 780, 792-799.	2.8	10
213	A flour-based one-stop supercapacitor with intrinsic self-healability and stretchability after self-healing and biodegradability. Energy Storage Materials, 2019, 21, 174-179.	9.5	48
214	Applications of 2D MXenes in energy conversion and storage systems. Chemical Society Reviews, 2019, 48, 72-133.	18.7	1,354
215	Synthesis of Pâ€Doped and NiCoâ€Hybridized Grapheneâ€Based Fibers for Flexible Asymmetrical Solid‣tate Microâ€Energy Storage Device. Small, 2019, 15, e1803469.	5.2	39
216	Znâ€lon Hybrid Microâ€Supercapacitors with Ultrahigh Areal Energy Density and Longâ€Term Durability. Advanced Materials, 2019, 31, e1806005.	11.1	266

#	Article	IF	CITATIONS
217	Interfaceâ€Engineered Nickel Cobaltite Nanowires through NiO Atomic Layer Deposition and Nitrogen Plasma for Highâ€Energy, Longâ€Cycleâ€Life Foldable Allâ€Solidâ€State Supercapacitors. Small, 2019, 15, e180	3716.	75
218	A 3D mesoporous flowers of nickel carbonate hydroxide hydrate for high-performance electrochemical energy storage application. Electrochimica Acta, 2019, 296, 112-119.	2.6	52
219	Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 2019, 410-411, 69-77.	4.0	159
220	One-step wet-spinning process of CB/CNT/MnO2 nanotubes hybrid flexible fibres as electrodes for wearable supercapacitors. Electrochimica Acta, 2019, 296, 481-490.	2.6	29
221	Novel Keplerate type polyoxometalate-surfactant-graphene hybrids as advanced electrode materials for supercapacitors. Energy Storage Materials, 2019, 17, 186-193.	9.5	34
222	Flexible Asymmetric Microsupercapacitors from Freestanding Hollow Nickel Microfiber Electrodes. Advanced Electronic Materials, 2019, 5, 1800584.	2.6	3
223	MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule, 2019, 3, 164-176.	11.7	250
224	Specific capacitance–pore texture relationship of biogas slurry mesoporous carbon/MnO2 composite electrodes for supercapacitors. Nano Structures Nano Objects, 2019, 17, 21-33.	1.9	12
225	Simple growth of mesoporous zinc cobaltite urchin-like microstructures towards high-performance electrochemical capacitors. Ceramics International, 2019, 45, 4059-4066.	2.3	38
226	Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 9011-9022.	4.0	79
227	Effects on optoelectronic performances of EDOT end-capped oligomers and electrochromic polymers by varying thienothiophene cores. Journal of Electroanalytical Chemistry, 2019, 834, 150-160.	1.9	16
228	High mass loading of h-WO3 and α-MnO2 on flexible carbon cloth for high-energy aqueous asymmetric supercapacitor. Electrochimica Acta, 2019, 299, 245-252.	2.6	61
229	Metal-organic frameworks for energy storage devices: Batteries and supercapacitors. Journal of Energy Storage, 2019, 21, 632-646.	3.9	271
230	A Study of Bending Properties of Solid Electrochemical Capacitors. Journal of the Electrochemical Society, 2019, 166, A15-A20.	1.3	6
231	Flexible and Mechanically Durable Asymmetric Supercapacitor Based on NiCo‣ayered Double Hydroxide and Nitrogenâ€Đoped Graphene Using a Simple Fabrication Method. Energy Technology, 2019, 7, 1801002.	1.8	23
232	Microfluidicsâ€Based Biomaterials and Biodevices. Advanced Materials, 2019, 31, e1805033.	11.1	102
233	Highly efficient and stable negative electrode for asymmetric supercapacitors based on graphene/FeCo2O4 nanocomposite hybrid material. Electrochimica Acta, 2019, 295, 195-203.	2.6	48
234	Porous polylactic acid/carbon nanotubes/polyaniline composite film as flexible free-standing electrode for supercapacitors. Electrochimica Acta, 2019, 294, 312-324.	2.6	38

#	Article	IF	CITATIONS
235	Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 2019, 4, 1800426.	3.0	23
236	PANI coated microporous graphene fiber capable of subjecting to external mechanical deformation for high performance flexible supercapacitors. Carbon, 2019, 143, 147-153.	5.4	39
237	Carboxymethyl cellulose aided fabrication of flaky structured mesoporous β-Co(OH)2/C nanocomposite for supercapacitors. Journal of Materials Science: Materials in Electronics, 2019, 30, 2107-2117.	1.1	15
238	Flexible all-solid-state supercapacitors of polyaniline nanowire arrays deposited on electrospun carbon nanofibers decorated with MOFs. Nanotechnology, 2019, 30, 085404.	1.3	35
239	Tungsten Nitride Nanodots Embedded Phosphorous Modified Carbon Fabric as Flexible and Robust Electrode for Asymmetric Pseudocapacitor. Small, 2019, 15, e1804104.	5.2	77
240	Flexible iron-doped Sr(OH)2 fibre wrapped tuberose for high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2019, 781, 831-841.	2.8	22
241	Influence of the pH on the electrochemical synthesis of polypyrrole nanotubes and the supercapacitive performance evaluation. Electrochimica Acta, 2019, 293, 447-457.	2.6	36
242	High performance electrospun Li+-functionalized sulfonated poly(ether ether ketone)/PVA based nanocomposite gel polymer electrolyte for solid-state electric double layer capacitors. Journal of Colloid and Interface Science, 2019, 534, 672-682.	5.0	33
243	First report on solution processed \hat{l}_{\pm} -Ce2S3 rectangular microrods: An efficient energy storage supercapacitive electrode. Journal of Colloid and Interface Science, 2019, 535, 169-175.	5.0	21
244	Super flexible electrospun carbon/nickel nanofibrous film electrode for supercapacitors. Journal of Alloys and Compounds, 2019, 774, 593-600.	2.8	22
245	How to efficiently utilize electrode materials in supercapattery?. Functional Materials Letters, 2019, 12, 1830005.	0.7	15
246	Recent Development of Printed Microâ€Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Advanced Materials, 2020, 32, e1805864.	11.1	142
247	Electrode materials for biomedical patchable and implantable energy storage devices. Energy Storage Materials, 2020, 24, 113-128.	9.5	44
248	Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. International Materials Reviews, 2020, 65, 129-163.	9.4	67
249	Layered manganese metal-organic framework with high specific and areal capacitance for hybrid supercapacitors. Chemical Engineering Journal, 2020, 387, 122982.	6.6	74
250	Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors. Chemical Engineering Journal, 2020, 380, 122488.	6.6	100
251	Stable and sustainable photoanodes using zinc oxide and cobalt oxide chemically gradient nanostructures for water-splitting applications. Journal of Colloid and Interface Science, 2020, 558, 9-20.	5.0	20
252	Recent developments in nickel based electrocatalysts for ethanol electrooxidation. International Journal of Hydrogen Energy, 2020, 45, 5928-5947.	3.8	40

#	Article	IF	CITATIONS
253	Aqueous asymmetric supercapacitors based on ZnCo2O4 nanoparticles via facile combustion method. Journal of Alloys and Compounds, 2020, 815, 152456.	2.8	59
254	Facile synthesis of freestanding cellulose/RGO/silver/Fe2O3 hybrid film for ultrahigh-areal-energy-density flexible solid-state supercapacitor. Applied Surface Science, 2020, 500, 144244.	3.1	39
255	Hybridization of MOFs and graphene: A new strategy for the synthesis of porous 3D carbon composites for high performing supercapacitors. Electrochimica Acta, 2020, 329, 135104.	2.6	58
256	Conducting polymers and composites nanowires for energy devices: A brief review. Materials Science for Energy Technologies, 2020, 3, 78-90.	1.0	24
257	Onâ€Body Bioelectronics: Wearable Biofuel Cells for Bioenergy Harvesting and Selfâ€Powered Biosensing. Advanced Functional Materials, 2020, 30, 1906243.	7.8	134
258	Thermomechanical properties and deformation behavior of a unidirectional carbonâ€fiberâ€reinforced shape memory polymer composite laminate. Journal of Applied Polymer Science, 2020, 137, 48532.	1.3	10
259	Twoâ€Dimensional Materials for Highâ€Energy Solidâ€State Asymmetric Pseudocapacitors with High Mass Loadings. ChemSusChem, 2020, 13, 1582-1592.	3.6	43
260	Na-rich metal hexacyanoferrate with water-mediated room-temperature fast Na+-ion conductance. Microporous and Mesoporous Materials, 2020, 292, 109715.	2.2	6
261	Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. Journal of Materials Science, 2020, 55, 480-497.	1.7	16
262	Strategies for Development of High-Performance Graphene-Based Supercapacitor. Current Graphene Science, 2020, 3, 2-10.	0.5	0
263	Advanced Soft Materials, Sensor Integrations, and Applications of Wearable Flexible Hybrid Electronics in Healthcare, Energy, and Environment. Advanced Materials, 2020, 32, e1901924.	11.1	575
264	Gold nanoparticles decorated rGO-ZnCo2O4 nanocomposite: A promising positive electrode for high performance hybrid supercapacitors. Chemical Engineering Journal, 2020, 379, 122211.	6.6	91
265	A Route Toward Smart System Integration: From Fiber Design to Device Construction. Advanced Materials, 2020, 32, e1902301.	11.1	116
266	Grapheneâ€Based Fibers: Recent Advances in Preparation and Application. Advanced Materials, 2020, 32, e1901979.	11.1	88
267	Porous Ultrathin NiSe Nanosheet Networks on Nickel Foam for Highâ€Performance Hybrid Supercapacitors. ChemSusChem, 2020, 13, 260-266.	3.6	50
268	Template-assisted synthesis of hierarchically hollow C/NiCo2S4 nanospheres electrode for high performance supercapacitors. Chemical Engineering Journal, 2020, 382, 122943.	6.6	118
269	A graphene-modified flexible SiOC ceramic cloth for high-performance lithium storage. Energy Storage Materials, 2020, 25, 876-884.	9.5	53
270	Recyclable and tear-resistant all-in-one supercapacitor with dynamic electrode/electrolyte interface. Journal of Colloid and Interface Science, 2020, 561, 629-637.	5.0	46

ARTICLE IF CITATIONS # Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular 271 8.2 26 coupling for high-performance flexible supercapacitors. Nano Energy, 2020, 67, 104275. A dual-carbon-anchoring strategy to fabricate flexible LiMn2O4 cathode for advanced lithium-ion 8.2 batteries with high areal capacity. Nano Energy, 2020, 67, 104256. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: From 273 3.9 137 design and development to applications. Journal of Energy Storage, 2020, 27, 101035. Integrated Conductive Hybrid Architecture of Metal–Organic Framework Nanowire Array on Polypyrrole Membrane for Allâ€Solidâ€State Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 1901892. 274 154 Smart supercapacitors from materials to devices. InformaÄnÄ-MateriÄįly, 2020, 2, 113-125. 275 8.5 145 Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 406-413. 1.7 NiWO₄ nanoparticle decorated lignin as electrodes for asymmetric flexible 277 2.7 40 supercapacitors. Journal of Materials Chemistry C, 2020, 8, 3418-3430. Synthesis and characterization of novel nitrogen doped biocarbons from distillers dried grains with 278 1.5 solubles (DDGS) for supercapacitor applications. Bioresource Technology Reports, 2020, 9, 100375. Electrochemical supercapacitive studies of chemically deposited Co1-Ni S thin films. Materials Science 279 1.9 13 in Semiconductor Processing, 2020, 107, 104799. Flexible 3D carbon cloth as a high-performing electrode for energy storage and conversion. 2.8 Nanoscale, 2020, 12, 5261-5285. Hydrothermally synthesized chalcopyrite platelets as an electrode material for symmetric 281 47 3.0supercapacitors. Inorganic Chemistry Frontiers, 2020, 7, 1492-1502. Engineering of electrodeposited binder-free organic-nickel hydroxide based nanohybrids for energy storage and electrocatalytic alkaline water splitting. Sustainable Energy and Fuels, 2020, 4, 1320-1331. 2.5 Optimizing the rate capability of nickel cobalt phosphide nanowires on graphene oxide by the 283 5.2 135 outer/inter-component synergistic effects. Journal of Materials Chemistry A, 2020, 8, 1697-1708. A facile route to high nitrogen-containing porous carbon fiber sheets from biomass-flax for 284 3.1 high-performance flexible supercapacitors. Applied Surface Science, 2020, 507, 145108. Highly-conductive PEDOT:PSS hydrogel framework based hybrid fiber with high volumetric 285 27 2.6 capacitance and excellent rate capability. Electrochimica Acta, 2020, 334, 135530. Self-Assembly of Radially π-Extended Tetrathiafulvalene Tetramers for Visible and Near Infrared Electrochromic Nanofiber. Bulletin of the Chemical Society of Japan, 2020, 93, 154-162. High areal capacitance of vanadium oxides intercalated Ti₃C₂ MXene for 287 1.313 flexible supercapacitors with high mass loading. Nanotechnology, 2020, 31, 165403. Fusing electrochromic technology with other advanced technologies: A new roadmap for future 288 14.8 development. Materials Science and Engineering Reports, 2020, 140, 100524.

#	Article	IF	CITATIONS
289	Oxidant-assisted direct-sulfidization of nickel foam toward a self-supported hierarchical Ni3S2@Ni electrode for asymmetric all-solid-state supercapacitors. Journal of Power Sources, 2020, 448, 227408.	4.0	49
290	Energy capacity enhancement of all-organic fabric supercapacitors by organic dyes: Old method for new application. Progress in Organic Coatings, 2020, 138, 105439.	1.9	6
291	Three-dimensional polymer networks for solid-state electrochemical energy storage. Chemical Engineering Journal, 2020, 391, 123548.	6.6	44
292	A photoelectrochemical supercapacitor based on a single BiVO4-RGO bilayer photocapacitive electrode. Electrochimica Acta, 2020, 329, 135170.	2.6	22
293	Self-assembled bimetallic cobalt–manganese metal–organic framework as a highly efficient, robust electrode for asymmetric supercapacitors. Electrochimica Acta, 2020, 335, 135327.	2.6	46
294	Roll-to roll initiated chemical vapor deposition of super hydrophobic thin films on large-scale flexible substrates. Chemical Engineering Science, 2020, 215, 115466.	1.9	56
295	A quasi-solid-state photothermal supercapacitor <i>via</i> enhanced solar energy harvest. Journal of Materials Chemistry A, 2020, 8, 1829-1836.	5.2	32
296	Highâ€Performance Flexible Asymmetric Supercapacitors Facilitated by Nâ€doped Porous Vertical Graphene Nanomesh Arrays. ChemElectroChem, 2020, 7, 366-366.	1.7	0
297	Hierarchical core-shell hollow CoMoS4@Ni–Co–S nanotubes hybrid arrays as advanced electrode material for supercapacitors. Electrochimica Acta, 2020, 331, 135459.	2.6	72
298	Self-supported flexible supercapacitor based on carbon fibers covalently combined with monoaminophthalocyanine. Chemical Engineering Journal, 2020, 391, 123535.	6.6	15
299	Materials and Fabrication Methods for Electrochemical Supercapacitors: Overview. Electrochemical Energy Reviews, 2020, 3, 155-186.	13.1	163
300	Fully-printed and silicon free self-powered electrochromic biosensors: Towards naked eye quantification. Sensors and Actuators B: Chemical, 2020, 306, 127535.	4.0	15
301	Design and Synthesis of Lignin-Based Flexible Supercapacitors. ACS Sustainable Chemistry and Engineering, 2020, 8, 498-511.	3.2	58
302	Dendritic Nanostructured Waste Copper Wires for High-Energy Alkaline Battery. Nano-Micro Letters, 2020, 12, 1.	14.4	556
303	Magnetoelectric soft composites with a self-powered tactile sensing capacity. Nano Energy, 2020, 69, 104391.	8.2	44
304	Co-electrodeposition of NiCu(OH)2@Ni-Cu-Se hierarchical nanoparticle structure for supercapacitor application with enhanced performance. Applied Surface Science, 2020, 506, 145015.	3.1	57
305	Stretchable Supercapacitors as Emergent Energy Storage Units for Health Monitoring Bioelectronics. Advanced Energy Materials, 2020, 10, 1902769.	10.2	93
306	Metal-organic framework-based materials for hybrid supercapacitor application. Coordination Chemistry Reviews, 2020, 404, 213093.	9.5	318

#	Article	IF	CITATIONS
307	Review of PVA-based gel polymer electrolytes in flexible solid-state supercapacitors: Opportunities and challenges. Journal of Energy Storage, 2020, 27, 101072.	3.9	299
308	Hydrothermal activated carbon cloth as electrode materials for symmetric supercapacitors. Ionics, 2020, 26, 1457-1464.	1.2	7
309	High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chemical Engineering Journal, 2020, 392, 123661.	6.6	78
310	Recent advances in 2D MXenes for enhanced cation intercalation in energy harvesting Applications: A review. Chemical Engineering Journal, 2020, 392, 123678.	6.6	127
311	Binder-free honeycomb-like FeMoO4 nanosheet arrays with dual properties of both battery-type and pseudocapacitive-type performances for supercapacitor applications. Journal of Energy Storage, 2020, 27, 101055.	3.9	44
312	Highly compressible lignin hydrogel electrolytes via double-crosslinked strategy for superior foldable supercapacitors. Journal of Power Sources, 2020, 449, 227532.	4.0	62
313	Molybdenum-doped CuO nanosheets on Ni foams with extraordinary specific capacitance for advanced hybrid supercapacitors. Journal of Materials Science, 2020, 55, 2492-2502.	1.7	74
314	Superior cycle stability carbon layer encapsulated polyaniline nanowire core-shell nanoarray free-standing electrode for high performance flexible solid-state supercapacitors. Journal of Power Sources, 2020, 449, 227477.	4.0	38
315	Hierarchical core-shell fibers of graphene fiber/radially-aligned molybdenum disulfide nanosheet arrays for highly efficient energy storage. Journal of Alloys and Compounds, 2020, 828, 153622.	2.8	27
316	Silicon-nanoforest-based solvent-free micro-supercapacitors with ultrahigh spatial resolution <i>via</i> IC-compatible <i>in situ</i> fabrication for on-chip energy storage. Journal of Materials Chemistry A, 2020, 8, 22736-22744.	5.2	12
317	Can polyoxometalates enhance the capacitance and energy density of activated carbon in organic electrolyte supercapacitors?. Electrochimica Acta, 2020, 362, 137007.	2.6	22
318	Construction of nanowall-supported-nanorod nico ldh array electrode with high mass-loading on carbon cloth for high-performance asymmetric supercapacitors. Electrochimica Acta, 2020, 362, 137081.	2.6	61
319	Current Research of Graphene-Based Nanocomposites and Their Application for Supercapacitors. Nanomaterials, 2020, 10, 2046.	1.9	38
320	Boosting the energy density of highly efficient flexible hybrid supercapacitors via selective integration of hierarchical nanostructured energy materials. Electrochimica Acta, 2020, 364, 137318.	2.6	48
321	Spent graphite from end-of-life Li-ion batteries as a potential electrode for aluminium ion battery. Sustainable Materials and Technologies, 2020, 26, e00230.	1.7	19
322	Controllable layer-by-layer assembly of metal-organic frameworks/polyaniline membranes for flexible solid-state microsupercapacitors. Journal of Power Sources, 2020, 474, 228681.	4.0	12
323	Stretchable Strain Sensor for Human Motion Monitoring Based on an Intertwined-Coil Configuration. Nanomaterials, 2020, 10, 1980.	1.9	13
324	Scalable Production of Wearable Solid‣tate Liâ€ŀon Capacitors from Nâ€Doped Hierarchical Carbon. Advanced Materials, 2020, 32, e2005531.	11.1	57

#	Article	IF	CITATIONS
325	Advanced Wearable Thermocells for Body Heat Harvesting. Advanced Energy Materials, 2020, 10, 2002539.	10.2	97
326	3D printed supercapacitor using porous carbon derived from packaging waste. Additive Manufacturing, 2020, 36, 101525.	1.7	33
327	Smart Ti ₃ C ₂ T _{<i>x</i>} MXene Fabric with Fast Humidity Response and Joule Heating for Healthcare and Medical Therapy Applications. ACS Nano, 2020, 14, 8793-8805.	7.3	288
328	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-Materiály, 2020, 2, 1131-1162.	8.5	343
329	Highâ€efficiency utilization of carbon materials for supercapacitors. Nano Select, 2020, 1, 244-262.	1.9	27
330	Flexible supercapacitor of high areal performance with vanadium/cobalt oxides on carbon nanofibers as a binder-free membrane electrode. Chemical Engineering Journal, 2020, 402, 126294.	6.6	67
331	Carbon Dot-Regulated 2D MXene Films with High Volumetric Capacitance. Industrial & Engineering Chemistry Research, 2020, 59, 13969-13978.	1.8	29
332	Widening potential window of flexible solid-state supercapacitor through asymmetric configured iron oxide and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate coated multi-walled carbon nanotubes assembly. Journal of Energy Storage, 2020, 31, 101622.	3.9	16
333	Co/CoS nanofibers with flower-like structure immobilized in carbonated porous wood as bifunctional material for high-performance supercapacitors and catalysts. Materials and Design, 2020, 195, 108942.	3.3	24
334	Introductory Chapter: Hybrid Nanomaterials. , 0, , .		6
335	Nitrogen-doped graphene and conducting polymer PEDOT hybrids for flexible supercapacitor and electrochemical sensor. Electrochimica Acta, 2020, 355, 136772.	2.6	55
336	Nanostructured conducting polymers and their composites: synthesis methodologies, morphologies and applications. Journal of Materials Chemistry C, 2020, 8, 10136-10159.	2.7	53
337	Basics of ferrites. , 2020, , 1-11.		5
338	Heterostructured Titanium Oxynitride-Manganese Cobalt Oxide Nanorods as High-Performance Electrode Materials for Supercapacitor Devices. ACS Applied Materials & Interfaces, 2020, 12, 54524-54536.	4.0	20
339	All-Solid-State Asymmetric Supercapacitors with Novel Ionic Liquid Gel Electrolytes. ACS Applied Electronic Materials, 2020, 2, 3906-3914.	2.0	12
340	Hollow Au/Polypyrrole Capsules to Form Porous and Neural Network-Like Nanofibrous Film for Wearable, Super-Rapid, and Ultrasensitive NH ₃ Sensor at Room Temperature. ACS Applied Materials & Interfaces, 2020, 12, 55056-55063.	4.0	25
341	Preparation of Y-Doped La ₂ Ti ₂ O ₇ Flexible Self-Supporting Films and Their Application in High-Performance Flexible All-Solid-State Supercapacitor Devices. ACS Omega, 2020, 5, 29722-29732.	1.6	15
342	CoCu2O4 nanoflowers architecture as an electrode material for battery type supercapacitor with improved electrochemical performance. Nano Structures Nano Objects, 2020, 24, 100618.	1.9	33

#	Article	IF	CITATIONS
343	Lichen-like anchoring of MoSe ₂ on functionalized multiwalled carbon nanotubes: an efficient electrode for asymmetric supercapacitors. RSC Advances, 2020, 10, 40092-40105.	1.7	17
344	Fabrication of a High-Energy Flexible All-Solid-State Supercapacitor Using Pseudocapacitive 2D-Ti ₃ C ₂ T <i>_x</i> -MXene and Battery-Type Reduced Graphene Oxide/Nickel–Cobalt Bimetal Oxide Electrode Materials. ACS Applied Materials & Interfaces, 2020, 12. 52749-52762.	4.0	66
345	Nanostructured Gels for Energy and Environmental Applications. Molecules, 2020, 25, 5620.	1.7	7
346	True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small, 2020, 16, e2002806.	5.2	405
347	Advances on Emerging Materials for Flexible Supercapacitors: Current Trends and Beyond. Advanced Functional Materials, 2020, 30, 2002993.	7.8	92
348	Coupling PEDOT on Mesoporous Vanadium Nitride Arrays for Advanced Flexible Allâ€Solidâ€State Supercapacitors. Small, 2020, 16, e2003434.	5.2	85
349	A highly-stable flexible electrode based on Co(OH)2@NiSe2 electroplated on metals co-coated textiles. Materials Letters, 2020, 279, 128492.	1.3	4
350	Textile-based supercapacitors for flexible and wearable electronic applications. Scientific Reports, 2020, 10, 13259.	1.6	61
351	Biaxial stretchable liquid crystal light scattering display based on uniform energy dissipation in non-oriented assembly of gel networks. Journal of Materials Chemistry C, 2020, 8, 13349-13356.	2.7	5
352	Green Synthesis of Free Standing Cellulose/Graphene Oxide/Polyaniline Aerogel Electrode for High-Performance Flexible All-Solid-State Supercapacitors. Nanomaterials, 2020, 10, 1546.	1.9	54
353	Energy storing bricks for stationary PEDOT supercapacitors. Nature Communications, 2020, 11, 3882.	5.8	67
354	Sodium dodecyl sulfate-assisted fabrication of NiO nanowalls grown on nickel foam as supercapacitor electrode materials. Journal of Materials Science: Materials in Electronics, 2020, 31, 13987-13997.	1.1	7
355	Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chemistry of Materials, 2020, 32, 8276-8285.	3.2	57
357	Fabrication of metal-supramolecular polymers of FeL/carbon nanomaterials with enhanced electrochromic properties. Composites Science and Technology, 2020, 198, 108252.	3.8	4
358	Catecholâ€Based Molecular Memory Film for Redox Linked Bioelectronics. Advanced Electronic Materials, 2020, 6, 2000452.	2.6	14
359	Rapid synthesis of high-areal-capacitance ultrathin hexagon Fe ₂ O ₃ nanoplates on carbon cloth <i>via</i> a versatile molten salt method. Materials Chemistry Frontiers, 2020, 4, 2744-2753.	3.2	22
360	Inkâ€Based Additive Nanomanufacturing of Functional Materials for Humanâ€Integrated Smart Wearables. Advanced Intelligent Systems, 2020, 2, 2000117.	3.3	17
361	Na3PO4 assistant dispersion of nano-CaCO3 template to enhance electrochemical interface: N/O/P co-doped porous carbon hybrids towards high-performance flexible supercapacitors. Composites Part B: Engineering, 2020, 199, 108256.	5.9	33

#	Article	IF	CITATIONS
362	Conjugated molecule functionalized graphene films for energy storage devices with high energy density. Electrochimica Acta, 2020, 340, 135804.	2.6	15
363	Binary nickel ferrite oxide (NiFe2O4) nanoparticles coated on reduced graphene oxide as stable and high-performance asymmetric supercapacitor electrode material. International Journal of Hydrogen Energy, 2020, 45, 27482-27491.	3.8	149
364	Substrate comparison for polypyrrole-graphene based high-performance flexible supercapacitors. Electrochimica Acta, 2020, 358, 136846.	2.6	21
365	Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material. Journal of Alloys and Compounds, 2020, 849, 156582.	2.8	47
366	Preparation of Polyaniline onto <scp>dl</scp> -Tartaric Acid Assembled MXene Surface as an Electrode Material for Supercapacitors. ACS Applied Energy Materials, 2020, 3, 9326-9336.	2.5	31
368	Flexible Cross-Linked Electrospun Carbon Nanofiber Mats Derived from Pitch as Dual-Functional Materials for Supercapacitors. Energy & Fuels, 2020, 34, 14975-14985.	2.5	28
369	Flexible and reconfigurable radio frequency electronics realized by high-throughput screen printing of vanadium dioxide switches. Microsystems and Nanoengineering, 2020, 6, 77.	3.4	23
370	2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor. Journal of Power Sources, 2020, 479, 229092.	4.0	34
371	Metal Halide Perovskite@Metalâ€Organic Framework Hybrids: Synthesis, Design, Properties, and Applications. Small, 2020, 16, e2004891.	5.2	46
372	Experimental investigation of improved graphene oxide as an efficient catalyst for the sustainable chemical fixation of CO2 with epoxides. Journal of Environmental Chemical Engineering, 2020, 8, 104568.	3.3	15
373	Preparation of autonomously self-healing electrode based on double network supramolecular elastomer. , 2020, , .		0
374	Synthesis of a Three-Dimensional Interconnected Oxygen-, Boron-, Nitrogen-, and Phosphorus Tetratomic-Doped Porous Carbon Network as Electrode Material for the Construction of a Superior Flexible Supercapacitor. ACS Applied Materials & Interfaces, 2020, 12, 46170-46180.	4.0	53
375	Arbitrary deformable and high-strength electroactive polymer/MXene anti-exfoliative composite films assembled into high performance, flexible all-solid-state supercapacitors. Nanoscale, 2020, 12, 20797-20810.	2.8	29
376	Wireless portable light-weight self-charging power packs by perovskite-organic tandem solar cells integrated with solid-state asymmetric supercapacitors. Nano Energy, 2020, 78, 105397.	8.2	32
377	3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Molecular Crystals and Liquid Crystals, 2020, 705, 105-111.	0.4	14
378	Compact polyelectrolyte hydrogels of gelatin and chondroitin sulfate as ion's mobile media in sustainable all-solid state electrochemical devices. Materials Advances, 2020, 1, 2526-2535.	2.6	7
379	Annealing-Assisted Dip-Coating Synthesis of Ultrafine Fe ₃ O ₄ Nanoparticles/Graphene on Carbon Cloth for Flexible Quasi-Solid-State Symmetric Supercapacitors. ACS Applied Energy Materials, 2020, 3, 9379-9389.	2.5	37
380	Doped photo-crosslinked polyesteramide hydrogels as solid electrolytes for supercapacitors. Soft Matter, 2020, 16, 8033-8046.	1.2	10

#	Article	IF	CITATIONS
381	Flexible/Stretchable Supercapacitors with Novel Functionality for Wearable Electronics. Advanced Materials, 2020, 32, e2002180.	11.1	236
382	Re-stickable All-Solid-State Supercapacitor Supported by Cohesive Thermoplastic for Textile Electronics. ACS Applied Materials & Interfaces, 2020, 12, 45322-45331.	4.0	11
383	Highly compressible hydrogel sensors with synergistic long-lasting moisture, extreme temperature tolerance and strain-sensitivity properties. Materials Chemistry Frontiers, 2020, 4, 3319-3327.	3.2	22
384	MXene/N-Doped Carbon Foam with Three-Dimensional Hollow Neuron-like Architecture for Freestanding, Highly Compressible All Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 44777-44788.	4.0	82
385	<i>Setaria Viridis</i> -Inspired Electrode with Polyaniline Decorated on Porous Heteroatom-Doped Carbon Nanofibers for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 43634-43645.	4.0	47
386	A Review of Conductive Hydrogel Used in Flexible Strain Sensor. Materials, 2020, 13, 3947.	1.3	121
387	Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors. CrystEngComm, 2020, 22, 6360-6370.	1.3	23
388	Soluble triarylamine functionalized symmetric viologen for all-solid-state electrochromic supercapacitors. Science China Chemistry, 2020, 63, 1632-1644.	4.2	26
389	Chemically Synthesized Cu ₃ Se ₂ Film Based Flexible Solid-State Symmetric Supercapacitor: Effect of Reaction Bath Temperature. Journal of Physical Chemistry C, 2020, 124, 28395-28406.	1.5	35
390	Highly Stable Indacenodithieno[3,2- <i>b</i>]thiophene-Based Donor–Acceptor Copolymers for Hybrid Electrochromic and Energy Storage Applications. Macromolecules, 2020, 53, 11106-11119.	2.2	31
391	Facile Synthesis of MnO ₂ /Ti ₃ C ₂ T _x /CC as Positive Electrode of Allâ€Solidâ€State Flexible Asymmetric Supercapacitor. ChemistrySelect, 2020, 5, 14768-14775.	0.7	24
392	Encapsulation of Co ₃ O ₄ Nanocone Arrays via Ultrathin NiO for Superior Performance Asymmetric Supercapacitors. Small, 2020, 16, e2005414.	5.2	75
393	Eco-Friendly Supercapacitors Based on Biodegradable Poly(3-Hydroxy-Butyrate) and Ionic Liquids. Nanomaterials, 2020, 10, 2062.	1.9	12
394	Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics. International Journal of Energy Research, 2020, 44, 7603-7616.	2.2	22
395	Self-assembling porous network nanostructure 7-aminoindole decorated reduced graphene oxide for high-performance asymmetric supercapacitor. Journal of Alloys and Compounds, 2020, 835, 155412.	2.8	8
396	A Flexible Film with SnS ₂ Nanoparticles Chemically Anchored on 3Dâ€Graphene Framework for High Areal Density and High Rate Sodium Storage. Small, 2020, 16, e2001265.	5.2	23
397	Effect of PANI and PPy on Electrochemical Performance of rGO/ZnMn2O4 Aerogels as Electrodes for Supercapacitors. Journal of Electronic Materials, 2020, 49, 4697-4706.	1.0	13
398	Construction of Ln ³⁺ -Substituted Arsenotungstates Modified by 2,5-Thiophenedicarboxylic Acid and Application in Selective Fluorescence Detection of Ba ²⁺ in Aqueous Solution. Inorganic Chemistry, 2020, 59, 6839-6848.	1.9	25

#	Article	IF	CITATIONS
399	Ultrasonic-assisted fabrication of porous carbon materials derived from agricultural waste for solid-state supercapacitors. Journal of Materials Science, 2020, 55, 11512-11523.	1.7	25
400	Freestanding 1Tâ€Mn <i>_x</i> Mo _{1â€"} <i>_x</i> S _{2â€"} <i>_y</i> S and MoFe ₂ S _{4â€"} <i>_z</i> Se <i>_z</i> Ultrathin Nanosheetâ€6tructured Electrodes for Highly Efficient Flexible Solidâ€6tate Asymmetric Supercapacitors.	e <i><sub 5.2</sub </i>	>y </td
401	A smart porous wood-supported flower-like NiS/Ni conjunction with vitrimer co-effect as a multifunctional material with reshaping, shape-memory, and self-healing properties for applications in high-performance supercapacitors, catalysts, and sensors. Journal of Materials Chemistry A, 2020, 8, 10898-10908.	5.2	107
402	Facile Preparation of an Excellent Mechanical Property Electroactive Biopolymer-Based Conductive Composite Film and Self-Enhancing Cellulose Hydrogel to Construct a High-Performance Wearable Supercapacitor. ACS Sustainable Chemistry and Engineering, 2020, 8, 7879-7891.	3.2	36
403	Hydrothermally synthesized zinc phosphate-rGO composites for supercapattery devices. Journal of Electroanalytical Chemistry, 2020, 871, 114299.	1.9	57
404	Rechargeable Aqueous Zinc″on Batteries with Mild Electrolytes: A Comprehensive Review. Batteries and Supercaps, 2020, 3, 966-1005.	2.4	68
405	Polyaniline and heteroatoms–enriched carbon derived from Pithophora polymorpha composite for high performance supercapacitor. Journal of Energy Storage, 2020, 30, 101562.	3.9	87
406	Electrochromic/Electrofluorochromic Supercapacitor Based on a Network Polysiloxane Bearing Oligoaniline and Cyanophenethylene Groups. ACS Applied Polymer Materials, 2020, 2, 3024-3033.	2.0	16
407	Optimizing Electrochemically Active Surfaces of Carbonaceous Electrodes for lonogel Based Supercapacitors. Advanced Functional Materials, 2020, 30, 2002053.	7.8	35
408	Fabrication of flexible polyindole/carbon nanotube/bacterial cellulose nanofiber nonwoven electrode doped by D-tartaric acid with high electrochemical performance. Cellulose, 2020, 27, 6353-6366.	2.4	11
409	Preparation of activated carbon via acidic dehydration of durian husk for supercapacitor applications. Diamond and Related Materials, 2020, 107, 107906.	1.8	31
410	Three-dimensional heterostructured polypyrrole/nickel molybdate anchored on carbon cloth for high-performance flexible supercapacitors. Journal of Colloid and Interface Science, 2020, 574, 355-363.	5.0	17
411	Core-shell nanowires of NiCo2O4 $@\hat{l}$ ±-Co(OH)2 on Ni foam with enhanced performances for supercapacitors. Journal of Colloid and Interface Science, 2020, 579, 71-81.	5.0	62
412	Polyaniline Hybrid Nanofibers via Green Interfacial Polymerization for All-Solid-State Symmetric Supercapacitors. ACS Omega, 2020, 5, 14494-14501.	1.6	15
413	A facile preparation of polyaniline/cellulose hydrogels for all-in-one flexible supercapacitor with remarkable enhanced performance. Carbohydrate Polymers, 2020, 245, 116611.	5.1	82
414	Facile preparation of polyaniline covalently grafted to isocyanate functionalized reduced graphene oxide nanocomposite for high performance flexible supercapacitors. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 602, 125172.	2.3	54
415	Hollow polypyrrole/cellulose hydrogels for high-performance flexible supercapacitors. Energy Storage Materials, 2020, 31, 135-145.	9.5	90
416	Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Materials, 2020, 33, 62-70.	9.5	67

#	Article	IF	CITATIONS
417	A Highly Elastic and Fatigueâ€Resistant Natural Proteinâ€Reinforced Hydrogel Electrolyte for Reversibleâ€Compressible Quasiâ€Solidâ€State Supercapacitors. Advanced Science, 2020, 7, 2000587.	5.6	64
418	A large areal capacitance structural supercapacitor with a 3D rGO@MnO ₂ foam electrode and polyacrylic acid–Portland cement–KOH electrolyte. Journal of Materials Chemistry A, 2020, 8, 12586-12593.	5.2	43
419	Recent Advancements and Perspective of High-Performance Printed Power Sources with Multiple Form Factors. Electrochemical Energy Reviews, 2020, 3, 581-612.	13.1	26
420	Scalable graphene-based nanocomposite coatings for flexible and washable conductive textiles. Carbon, 2020, 167, 495-503.	5.4	23
421	Nanocomposite Supercapacitor Electrode from Sulfonated Graphene Oxide and Poly(pyrrole-(biphenyldisulfonic acid)-pyrrole). ACS Applied Energy Materials, 2020, 3, 6743-6751.	2.5	32
422	Wide potential window TiO2@carbon cloth and high capacitance MnO2@carbon cloth for the construction of a 2.6ÂV high-performance aqueous asymmetric supercapacitor. Journal of Power Sources, 2020, 469, 228425.	4.0	50
423	Growth of polypyrrole conductive and integrated hybrids with lysozyme nanolayer and the thermal properties. Composites Part A: Applied Science and Manufacturing, 2020, 137, 105975.	3.8	13
424	High-performance pseudo-capacitor energy storage device based on a hollow-structured copper sulfide nanoflower and carbon quantum dot nanocomposite. Electrochimica Acta, 2020, 353, 136606.	2.6	22
425	Manganese selenide: Synthetic aspects and applications. Journal of Alloys and Compounds, 2020, 842, 155800.	2.8	18
426	An eco-friendly hot-water therapy towards ternary layered double hydroxides laminated flexible fabrics for wearable supercapatteries. Nano Energy, 2020, 76, 105016.	8.2	28
427	Polymer nanocomposite meshes for flexible electronic devices. Progress in Polymer Science, 2020, 107, 101279.	11.8	119
428	Color-switchable electrochromic Co(OH)2/Ni(OH)2 nanofilms with ultrafast kinetics for multifunctional smart windows. Nano Energy, 2020, 72, 104720.	8.2	59
429	Signal extraction and monitoring of motion loads based on wearable online device. Computer Communications, 2020, 154, 138-147.	3.1	1
430	An integrated electrode based on nanoflakes of MoS2 on carbon cloth for enhanced lithium storage. RSC Advances, 2020, 10, 9335-9340.	1.7	8
431	Twoâ€dimensional materials of groupâ€ŧVA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
432	Unraveling and Regulating Self-Discharge Behavior of Ti ₃ C ₂ T _{<i>x</i>} MXene-Based Supercapacitors. ACS Nano, 2020, 14, 4916-4924.	7.3	203
433	3D printing of cellular materials for advanced electrochemical energy storage and conversion. Nanoscale, 2020, 12, 7416-7432.	2.8	56
434	Biodegradable porous polylactic acid film as a separator for supercapacitors. Journal of Applied Polymer Science, 2020, 137, 49270.	1.3	10

<u><u> </u></u>	 	Dee	~ ~ ~
	ON	RFD	<u> </u>
<u> </u>			

#	Article	IF	CITATIONS
435	Assembly of graphene oxide on cotton fiber through dyeing and their properties. RSC Advances, 2020, 10, 11982-11989.	1.7	14
436	Solvent treatment inducing ultralong cycle stability poly(3,4â€ethylenedioxythiophene):poly(styrenesulfonic acid) fibers as bindingâ€free electrodes for supercapacitors. International Journal of Energy Research, 2020, 44, 5856-5865.	2.2	8
437	Nickel vanadium sulfide grown on nickel copper phosphide Dendrites/Cu fibers for fabrication of all-solid-state wire-type micro-supercapacitors. Chemical Engineering Journal, 2020, 392, 124880.	6.6	53
438	Ionic Liquid-Assisted Synthesis of Hierarchical One-Dimensional MoP/NPC for High-Performance Supercapacitor and Electrocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 6343-6351.	3.2	53
439	Selfâ€Healing Materials for Energyâ€Storage Devices. Advanced Functional Materials, 2020, 30, 1909912.	7.8	121
440	Recycled Red Mud–Decorated Porous 3D Graphene for Highâ€Energy Flexible Microâ€Supercapacitor. Advanced Sustainable Systems, 2020, 4, 1900133.	2.7	25
441	Asymmetric supercapacitor featuring carbon nanotubes and nickel hydroxide grown on carbon fabric: A study of self-discharging characteristics. Journal of Alloys and Compounds, 2020, 828, 154447.	2.8	38
442	Toward the Design of Highâ€performance Supercapacitors by Prussian Blue, its Analogues and their Derivatives. Energy and Environmental Materials, 2020, 3, 323-345.	7.3	29
443	Improving LiNi _x Co _y Mn _{1â^'xâ^'y} O ₂ cathode electrolyte interface under high voltage in lithium ion batteries. Nano Select, 2020, 1, 111-134.	1.9	36
444	Hierarchical NiCo2S4 nanostructure as highly efficient electrode material for high-performance supercapacitor applications. Journal of Energy Storage, 2020, 31, 101619.	3.9	97
445	Carbon-Coated Graphitic Carbon Nitride Nanotubes for Supercapacitor Applications. ACS Applied Nano Materials, 2020, 3, 7016-7028.	2.4	31
446	An "inverted load―strategy to fabricate interface-optimized flexible electrodes with superior electrochemical performance and ultrastability. Journal of Materials Chemistry C, 2020, 8, 11128-11137.	2.7	0
447	Synthesis and Characterization of a NiCo2O4@NiCo2O4 Hierarchical Mesoporous Nanoflake Electrode for Supercapacitor Applications. Nanomaterials, 2020, 10, 1292.	1.9	35
448	Fabrication of iron oxide-CNT based flexible asymmetric solid state supercapacitor device with high cyclic stability. Nanotechnology, 2020, 31, 435402.	1.3	18
449	Asymmetric Carbon Nanohorn Enabled Soft Capacitors with High Power Density and Ultra‣ow Cutoff Frequency. Advanced Materials Technologies, 2020, 5, 2000372.	3.0	5
450	Highly Sensitive Flexible Piezoresistive Sensor with 3D Conductive Network. ACS Applied Materials & Interfaces, 2020, 12, 35291-35299.	4.0	81
451	The Application of a Yâ€Modified Lanthanum Zirconate Flexible Thin Film for a Highâ€Performance Flexible Supercapacitor. Chemistry - A European Journal, 2020, 26, 14654-14664.	1.7	6
452	An ultrathin robust polymer membrane for wearable solid-state electrochemical energy storage. Nano Energy, 2020, 76, 105179.	8.2	70

#	Article	IF	CITATIONS
453	Polyaniline/graphene hybrid fibers as electrodes for flexible supercapacitors. Synthetic Metals, 2020, 268, 116484.	2.1	41
454	Synthesis of nickel sulfide–graphene oxide composite microflower structures to enhance supercapacitor performance. Journal of Materials Science: Materials in Electronics, 2020, 31, 12536-12545.	1.1	12
455	Control of allosteric electrochemical protein switch using magnetic signals. Chemical Communications, 2020, 56, 9206-9209.	2.2	7
456	A novel redox bromide-ion additive hydrogel electrolyte for flexible Zn-ion hybrid supercapacitors with boosted energy density and controllable zinc deposition. Journal of Materials Chemistry A, 2020, 8, 15042-15050.	5.2	79
457	Biomass-derived wearable energy storage systems based on poplar tree-cotton fibers coupled with binary nickel–cobalt nanostructures. Sustainable Energy and Fuels, 2020, 4, 643-654.	2.5	29
458	Remote and efficient infrared induced self-healable stretchable substrate for wearable electronics. European Polymer Journal, 2020, 126, 109542.	2.6	21
459	Graphene and molybdenum disulphide hybrids for energy applications: an update. Materials Today Advances, 2020, 6, 100053.	2.5	24
460	Construction of a vertically arrayed three-dimensional composite structure as a high coloration efficiency electrochromic film. New Journal of Chemistry, 2020, 44, 4177-4184.	1.4	9
461	Cost-Effective Yarn-Shaped Lithium-Ion Battery with High Wearability. ACS Omega, 2020, 5, 4697-4704.	1.6	3
462	High-Performance All-Solid-State Supercapacitor Based on Activated Carbon Coated Fiberglass Cloth Using Asphalt as Active Binder. Journal of the Electrochemical Society, 2020, 167, 020540.	1.3	11
463	Manganese dioxide thin films deposited by chemical bath and successive ionic layer adsorption and reaction deposition methods and their supercapacitive performance. Inorganic Chemistry Communication, 2020, 115, 107853.	1.8	17
464	Nitrogenâ€Doped Porous Graphene Coated with Fe ₃ O ₄ Nanoparticles for Advanced Supercapacitor Electrode Material with Improved Electrochemical Performance. Particle and Particle Systems Characterization, 2020, 37, 2000011.	1.2	11
465	Flexible electrochemical energy storage: The role of composite materials. Composites Science and Technology, 2020, 192, 108102.	3.8	82
466	Intelligent wearable rehabilitation robot control system based on mobile communication network. Computer Communications, 2020, 153, 286-293.	3.1	17
467	Flexible and transparent planar supercapacitor based on embedded metallic mesh current collector. Journal Physics D: Applied Physics, 2020, 53, 165501.	1.3	10
468	NiSe2/Ni(OH)2 Heterojunction Composite through Epitaxial-like Strategy as High-Rate Battery-Type Electrode Material. Nano-Micro Letters, 2020, 12, 61.	14.4	44
469	A self-template strategy to prepare hollow NiMoS4 nanospheres supported on Ni foam as advanced supercapacitor electrodes. Electrochimica Acta, 2020, 338, 135897.	2.6	24
470	Effects of three fabric weave textures on the electrochemical and electrical properties of reduced graphene/textile flexible electrodes. RSC Advances, 2020, 10, 6249-6258.	1.7	14

#	Article	IF	CITATIONS
471	Carbon-Based Polymer Nanocomposite for High-Performance Energy Storage Applications. Polymers, 2020, 12, 505.	2.0	144
473	WSe ₂ 2D pâ€type semiconductorâ€based electronic devices for information technology: Design, preparation, and applications. InformaÄnÃ-Materiály, 2020, 2, 656-697.	8.5	115
474	Flexible in-plane micro-supercapacitors: Progresses and challenges in fabrication and applications. Energy Storage Materials, 2020, 28, 160-187.	9.5	113
475	Enhanced energy density of flexible asymmetric solid state supercapacitor device fabricated with amorphous thin film electrode materials. Journal of Physics and Chemistry of Solids, 2020, 141, 109425.	1.9	33
476	Redox active coating on graphite surface of hierarchically porous wood electrodes for supercapacitor application. Materials Today Communications, 2020, 24, 101045.	0.9	8
477	Size-Tunable Flowerlike MoS ₂ Nanospheres Combined with Laser-Induced Graphene Electrodes for NO ₂ Sensing. ACS Applied Nano Materials, 2020, 3, 2545-2553.	2.4	36
478	Heating Rate-Controlled Thermal Exfoliation for Foldable Graphene Sponge. Industrial & Engineering Chemistry Research, 2020, 59, 2946-2952.	1.8	12
479	Allâ€Printed MnHCFâ€MnO <i>_x</i> â€Based Highâ€Performance Flexible Supercapacitors. Advanced Energy Materials, 2020, 10, 2000022.	10.2	113
480	Potentiodynamic polarization assisted phosphorus-containing amorphous trimetal hydroxide nanofibers for highly efficient hybrid supercapacitors. Journal of Materials Chemistry A, 2020, 8, 5721-5733.	5.2	38
481	Porous carbon prepared via combustion and acid treatment as flexible zinc-ion capacitor electrode material. Chemical Engineering Journal, 2020, 387, 124161.	6.6	170
482	Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices. Materials Horizons, 2020, 7, 1246-1278.	6.4	46
483	Effect of annealing temperature on charge storage kinetics of an electrospun deposited manganese oxide supercapacitor. Applied Surface Science, 2020, 511, 145466.	3.1	22
484	Research Frontiers in Energyâ€Related Materials and Applications for 2020–2030. Advanced Sustainable Systems, 2020, 4, 1900145.	2.7	30
485	Green synthesis of polypyrrole tubes using curcumin template for excellent electrochemical performance in supercapacitors. Journal of Materials Chemistry A, 2020, 8, 3186-3202.	5.2	66
486	Supercritical ethanol deposition of Ni(OH)2 nanosheets on carbon cloth for flexible solid-state asymmetric supercapacitor electrode. Journal of Supercritical Fluids, 2020, 159, 104774.	1.6	21
487	Promoting Oriented Growth of a Polyaniline Array on Carbon Cloth through in Situ Chemical Polymerization under a High Voltage Electric Field for a Flexible Supercapacitor with High Areal Capacity and Stability. ACS Applied Energy Materials, 2020, 3, 1969-1978.	2.5	49
488	Intelligent Nanoarchitectonics for Selfâ€Assembling Systems. Advanced Intelligent Systems, 2020, 2, 1900157.	3.3	14
489	MOF-modified polyester fabric coated with reduced graphene oxide/polypyrrole as electrode for flexible supercapacitors. Electrochimica Acta, 2020, 336, 135743.	2.6	45

#	Article	IF	CITATIONS
490	Atomic Modulation Triggering Improved Performance of MoO ₃ Nanobelts for Fiberâ€Shaped Supercapacitors. Small, 2020, 16, e1905778.	5.2	38
491	Enhanced Surface Area, Graphene Quantum Dots, and Functional Groups for the Simple Acid-Treated Carbon Fiber Electrode of Flexible Fiber-Type Solid-State Supercapacitors without Active Materials. ACS Sustainable Chemistry and Engineering, 2020, 8, 2453-2461.	3.2	33
492	Ti ₃ C ₂ T _{<i>x</i>} Nanosheets/Ti ₃ C ₂ T _{<i>x</i>} Quantum Dots/RGO (Reduced) Tj ETQq0 0 () rgBT /Ove 4.0	erlock 10 Tf 50
493	Density and Good Flexibility. ACS Applied Materials & amp; Interfaces, 2020, 12, 11833-11842. Electrochromic devices based on ultraviolet-cured poly(methyl methacrylate) gel electrolytes and their utilisation in smart window applications. Journal of Materials Chemistry C, 2020, 8, 8747-8754.	2.7	25
494	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	3.3	24
495	lonic self-assembled organogel polyelectrolytes for energy storage applications. RSC Advances, 2020, 10, 11743-11749.	1.7	2
496	Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes. Energy Storage Materials, 2020, 29, 310-331.	9.5	63
497	A Skin-Mountable Bacteria-Powered Battery System for Self-Powered Medical Devices. , 2020, , .		2
498	An Efficient Ultraâ€Flexible Photoâ€Charging System Integrating Organic Photovoltaics and Supercapacitors. Advanced Energy Materials, 2020, 10, 2000523.	10.2	46
501	Facile Synthesis of Microstrip-Like Copper Phosphate Hydroxide Thin Films for Supercapacitor Applications. Journal of Electronic Materials, 2020, 49, 3890-3901.	1.0	41
502	Capacitive property studies of electrochemically synthesized Co3O4 and Mn3O4 on inexpensive stainless steel current collector for supercapacitor application. Ceramics International, 2020, 46, 14640-14649.	2.3	26
503	Superior supercapacitive performance of grass-like CuO thin films deposited by liquid phase deposition. New Journal of Chemistry, 2020, 44, 6778-6790.	1.4	12
504	3D silk fibroin/carbon nanotube array composite matrix for flexible solid-state supercapacitors. New Journal of Chemistry, 2020, 44, 6575-6582.	1.4	10
505	A unique core–shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Dalton Transactions, 2020, 49, 14432-14444.	1.6	29
506	Effect of Long-Chain Ionic Liquids on the Capacitive Performance of Carbon Nanotube-Sulfonated Polyaniline Hydrogels for Energy Storage Applications. Journal of Physical Chemistry C, 2020, 124, 9810-9821.	1.5	32
507	Mesoporous Bi2MoO6 quasi-nanospheres anchored on activated carbon cloth for flexible all-solid-state supercapacitors with enhanced energy density. Journal of Power Sources, 2020, 463, 228202.	4.0	24
508	High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. Nanomaterials, 2020, 10, 728.	1.9	35
509	Cotton Clothâ€Induced Flexible Hierarchical Carbon Film for Sodiumâ€Ion Batteries. ChemElectroChem, 2020, 7, 2136-2144.	1.7	11

#	Article	IF	CITATIONS
510	Coin cell fabricated symmetric supercapacitor device of two-steps synthesized V2O5 Nanorods. Journal of Electroanalytical Chemistry, 2020, 864, 114080.	1.9	36
511	Preparation of Slightly Crumpled Aminated Graphene Nanosheets for Honeycomb-Like Flexible Graphene/PANI Composite Film Electrode with Enhanced Capacitive Performance in Solid-State Supercapacitors. Langmuir, 2020, 36, 4654-4663.	1.6	19
512	Design of Slidable Polymer Networks: A Rational Strategy to Stretchable, Rapid Self-Healing Hydrogel Electrolytes for Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 20479-20489.	4.0	58
513	Zeolitic imidazolate framework derived ZnCo ₂ O ₄ hollow tubular nanofibers for long-life supercapacitors. RSC Advances, 2020, 10, 13922-13928.	1.7	16
514	Deep eutectic solvent-assisted synthesis of RuCo ₂ O ₄ : an efficient positive electrode for hybrid supercapacitors. Sustainable Energy and Fuels, 2020, 4, 3066-3076.	2.5	43
515	The one-step electrodeposition of nickel phosphide for enhanced supercapacitive performance using 3-mercaptopropionic acid. New Journal of Chemistry, 2020, 44, 7690-7697.	1.4	13
516	Novel chemically cross-linked chitosan-cellulose based ionogel with self-healability, high ionic conductivity, and high thermo-mechanical stability. Cellulose, 2020, 27, 5121-5133.	2.4	30
517	Recent advances in flexible fiber-shaped metal-air batteries. Energy Storage Materials, 2020, 28, 364-374.	9.5	79
518	Mussel-Inspired Autonomously Self-Healable All-in-One Supercapacitor with Biocompatible Hydrogel. ACS Sustainable Chemistry and Engineering, 2020, 8, 6935-6948.	3.2	41
519	Effect of α-Fe2O3 nanoparticles on the mechanism of charge storage in polypyrrole-based hydrogel. Polymer Bulletin, 2021, 78, 2389-2404.	1.7	2
520	Current advancements on charge selective contact interfacial layers and electrodes in flexible hybrid perovskite photovoltaics. Journal of Energy Chemistry, 2021, 54, 151-173.	7.1	51
521	Ultrathin Ni Co -silicate nanosheets natively anchored on CNTs films for flexible lithium ion batteries. Journal of Energy Chemistry, 2021, 54, 746-753.	7.1	30
522	Smart textiles: an overview of recent progress on chromic textiles. Journal of the Textile Institute, 2021, 112, 152-171.	1.0	58
523	Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136.	8.3	125
524	A Highâ€Performance, Tailorable, Wearable, and Foldable Solidâ€State Supercapacitor Enabled by Arranging Pseudocapacitive Groups and MXene Flakes on Textile Electrode Surface. Advanced Functional Materials, 2021, 31, 2008185.	7.8	104
525	Fabrication of PEDOT:PSS/rGO fibers with high flexibility and electrochemical performance for supercapacitors. Electrochimica Acta, 2021, 365, 137363.	2.6	50
526	Self‣upported Binderâ€Free Hybrid Electrodes of Cu@CuO Nanowires/Carbon Nanotubes for Supercapacitors with Ultrahigh Arealâ€Capacitance. Energy Technology, 2021, 9, 2000744.	1.8	2
527	A mass production paper-making method to prepare superior flexible electrodes and asymmetric supercapacitors with high volumetric capacitance. Electrochimica Acta, 2021, 367, 137409.	2.6	16

#	Article	IF	CITATIONS
528	Electrodeposited more-hydrophilic nano-nest polyaniline electrodes for supercapacitor application. Journal of Physics and Chemistry of Solids, 2021, 149, 109774.	1.9	19
529	All-redox solid-state supercapacitor with cobalt manganese oxide@bimetallic hydroxides and vanadium nitride@nitrogen-doped carbon electrodes. Chemical Engineering Journal, 2021, 405, 127029.	6.6	49
530	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie, 2021, 133, 1003-1010.	1.6	130
531	Core cation tuned MxCo3-xS4@NiMoS4 [MÂ=ÂNi, Mn, zn] core–shell nanomaterials as advanced all solid-state asymmetric supercapacitor electrodes. Chemical Engineering Journal, 2021, 405, 127046.	6.6	39
532	Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 320-355.	9.5	98
533	Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@NiS2@C core-shell for high performance energy storage device. Chemical Engineering Journal, 2021, 406, 126810.	6.6	45
534	Large interspaced layered potassium niobate nanosheet arrays as an ultrastable anode for potassium ion capacitor. Energy Storage Materials, 2021, 34, 475-482.	9.5	33
535	Recent research advances of self-discharge in supercapacitors: Mechanisms and suppressing strategies. Journal of Energy Chemistry, 2021, 58, 94-109.	7.1	109
536	Bismuth Yttrium Oxide (Bi3YO6), A New Electrode Material For Asymmetric Aqueous Supercapacitors. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1260-1270.	1.9	17
537	Recent progress in energy storage and conversion of flexible symmetric transducers. Journal of Materials Chemistry A, 2021, 9, 753-781.	5.2	17
538	Bilateral growth of monoclinic WO3 and 2D Ti3C2Tx on 3D free-standing hollow graphene foam for all-solid-state supercapacitor. Chemical Engineering Journal, 2021, 421, 127883.	6.6	36
539	Self-assembled PANI/CeO2/Ni(OH)2 hierarchical hybrid spheres with improved energy storage capacity for high-performance supercapacitors. Electrochimica Acta, 2021, 367, 137525.	2.6	28
540	A self-powered skin-patch electrochromic biosensor. Biosensors and Bioelectronics, 2021, 175, 112879.	5.3	42
541	Soft Electronics Based on Liquid Conductors. Advanced Electronic Materials, 2021, 7, .	2.6	24
542	Tear resistant Tyvek/Ag/poly(3,4-ethylenedioxythiophene): Polystyrene sulfonate (PEDOT:PSS)/carbon nanotubes electrodes for flexible high-performance supercapacitors. Chemical Engineering Journal, 2021, 420, 127665.	6.6	16
543	Lignin Cellulose Nanofibrils as an Electrochemically Functional Component for Highâ€Performance and Flexible Supercapacitor Electrodes. ChemSusChem, 2021, 14, 1057-1067.	3.6	40
544	Three-dimensional hierarchical core-shell CuCo2O4@Co(OH)2 nanoflakes as high-performance electrode materials for flexible supercapacitors. Journal of Colloid and Interface Science, 2021, 586, 797-806.	5.0	62
545	High-energy all-in-one stretchable micro-supercapacitor arrays based on 3D laser-induced graphene foams decorated with mesoporous ZnP nanosheets for self-powered stretchable systems. Nano Energy, 2021, 81, 105609.	8.2	148

#	Article	IF	CITATIONS
546	Hierarchical porous "skin/skeleton―like MXene/biomass derived carbon fibers heterostructure for self-supporting, flexible all solid-state supercapacitors. Journal of Hazardous Materials, 2021, 410, 124565.	6.5	51
547	Expeditious and controllable synthesis of micron flower-like architecture Cu7S4@LSC via Ni ions morphology confinement for asymmetric button supercapacitor. Electrochimica Acta, 2021, 366, 137362.	2.6	6
548	Black potassium titanate nanobelts: Ultrafast and durable aqueous redox electrolyte energy storage. Journal of Power Sources, 2021, 483, 229140.	4.0	5
549	Prototype symmetric configured MWCNTs/Fe2O3 based solid-state supercapacitor. Synthetic Metals, 2021, 271, 116629.	2.1	18
550	Integrated photo-rechargeable supercapacitors formed via electrode sharing. Organic Electronics, 2021, 89, 106050.	1.4	11
551	Electrochemical capacitors: Materials, technologies and performance. Energy Storage Materials, 2021, 36, 31-55.	9.5	87
552	Self-assembled polypyrrole hierarchical porous networks as the cathode and porous three dimensional carbonaceous networks as the anode materials for asymmetric supercapacitor. Journal of Energy Storage, 2021, 33, 102080.	3.9	48
553	Flexible Transparent Supercapacitors: Materials and Devices. Advanced Functional Materials, 2021, 31, 2009136.	7.8	141
554	Piezoelectric properties reflecting nanostructures of tetrathiafulvalene and chloranil complexes using cyclic peptide nanotube scaffolds. Peptide Science, 2021, 113, e24192.	1.0	4
555	Titanium Nanopillar Arrays Functioning as Electron Transporting Layers for Efficient, Antiâ€Aging Perovskite Solar Cells. Small, 2021, 17, e2004778.	5.2	9
556	Laser carving assisted preparation of polypyrrole coated paper-based supercapacitors. Chemical Physics Letters, 2021, 765, 138290.	1.2	10
557	Ti3C2Tx/RGO//PANI/RGO all-solid-state asymmetrical fiber supercapacitor with high energy density and superior flexibility. Journal of Alloys and Compounds, 2021, 861, 157950.	2.8	15
558	Stretchable Energy Storage Devices: From Materials and Structural Design to Device Assembly. Advanced Energy Materials, 2021, 11, 2003308.	10.2	61
559	Scalable, Allâ€Printed Photocapacitor Fibers and Modules based on Metalâ€Embedded Flexible Transparent Conductive Electrodes for Selfâ€Charging Wearable Applications. Advanced Energy Materials, 2021, 11, 2003509.	10.2	39
560	Building biobased, degradable, flexible polymer networks from vanillin <i>via</i> thiol–ene "click― photopolymerization. Polymer Chemistry, 2021, 12, 564-571.	1.9	22
561	High electrochemical performance of rGO anchored CuS nanospheres for supercapacitor applications. Journal of Energy Storage, 2021, 34, 102001.	3.9	52
562	Fabrication and characterization of MnO2-Coated carbon fabrics from silk for shape-editable supercapacitors. Journal of Alloys and Compounds, 2021, 854, 157289.	2.8	12
563	Advancement of technology towards high-performance non-aqueous aluminum-ion batteries. Journal of Energy Chemistry, 2021, 57, 169-188.	7.1	24

#	Article	IF	CITATIONS
564	Graphene/tungsten disulfide core-sheath fibers: High-performance electrodes for flexible all-solid-state fiber-shaped supercapacitors. Journal of Alloys and Compounds, 2021, 858, 157747.	2.8	22
565	A universal strategy for ultra-flexible inorganic all-solid-state supercapacitors. Journal of Alloys and Compounds, 2021, 852, 156613.	2.8	6
566	Toward Flexible Zincâ€lon Hybrid Capacitors with Superhigh Energy Density and Ultralong Cycling Life: The Pivotal Role of ZnCl ₂ Saltâ€Based Electrolytes. Angewandte Chemie - International Edition, 2021, 60, 990-997.	7.2	215
567	Recent Progress in Functional Materials for Selective Detection and Removal of Mercury(II) Ions. Advanced Functional Materials, 2021, 31, .	7.8	109
568	Towards Responsive <scp>Singleâ€Molecule</scp> Device. Chinese Journal of Chemistry, 2021, 39, 421-439.	2.6	7
569	Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. Journal of Materials Chemistry A, 2021, 9, 16621-16684.	5.2	146
570	Nanoporous Transition Metal Oxide-Based Electrodes for Supercapacitor Application. , 2021, , 623-672.		3
571	Thermal effect on the pseudocapacitive behavior of high-performance flexible supercapacitors based on polypyrrole-decorated carbon cloth electrodes. New Journal of Chemistry, 2021, 45, 12435-12447.	1.4	24
572	E-Textile Technology Review–From Materials to Application. IEEE Access, 2021, 9, 97152-97179.	2.6	40
573	Electrode materials and device architecture strategies for flexible supercapacitors in wearable energy storage. Journal of Materials Chemistry A, 2021, 9, 8099-8128.	5.2	93
574	The rise of flexible zinc-ion hybrid capacitors: advances, challenges, and outlooks. Journal of Materials Chemistry A, 2021, 9, 19054-19082.	5.2	60
575	Size-controlled Ag quantum dots decorated on binder-free hierarchical NiCoP films by magnetron sputtering to boost electrochemical performance for supercapacitors. Nanoscale, 2021, 13, 7761-7773.	2.8	16
576	Flexible supercapacitors based on 2D materials. , 2021, , 253-310.		1
577	MOF/PEDOT/HPMo-based polycomponent hierarchical hollow micro-vesicles for high performance flexible supercapacitors. Journal of Materials Chemistry A, 2021, 9, 2948-2958.	5.2	53
578	Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices. Dalton Transactions, 2021, 50, 9983-10013.	1.6	13
579	Liquid Phase Deposition of Nanostructured Materials for Supercapacitor Applications. , 2021, , 725-763.		1
580	Flexible capacitive pressure sensor based on multi-walled carbon nanotubes microstructure electrodes. Journal Physics D: Applied Physics, 2021, 54, 155101.	1.3	22
581	Polymers in Lithiumâ€lon and Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003239	10.2	160

#	Article	IF	CITATIONS
582	High-power graphene supercapacitors for the effective storage of regenerative energy during the braking and deceleration process in electric vehicles. Materials Chemistry Frontiers, 2021, 5, 6200-6211.	3.2	41
583	Electrochemical performance of the homologous molybdenum(<scp>vi</scp>) redox-active gel polymer electrolyte system. New Journal of Chemistry, 2021, 45, 3418-3431.	1.4	12
584	Emerging trends in anion storage materials for the capacitive and hybrid energy storage and beyond. Chemical Society Reviews, 2021, 50, 6734-6789.	18.7	93
585	Hydrothermally prepared nickel disulphide nanoparticles with enhanced areal capacitance. Journal of Materials Science: Materials in Electronics, 2021, 32, 2409-2421.	1.1	1
586	Modification techniques to improve the capacitive performance of biocarbon materials. Journal of Energy Storage, 2021, 33, 101870.	3.9	18
587	Dihydrophenazine linked porous organic polymers for high capacitance and energy density pseudocapacitive electrodes and devices. Journal of Materials Chemistry A, 2021, 9, 4984-4989.	5.2	13
588	3D Hierarchical NiCo ₂ S ₄ Nanoparticles/Carbon Nanotube Sponge Cathode for Highly Compressible Asymmetric Supercapacitors. Energy & Fuels, 2021, 35, 3449-3458.	2.5	21
589	Hydrogel Patterning with Catechol Enables Networked Electron Flow. Advanced Functional Materials, 2021, 31, 2007709.	7.8	24
590	Hexagonal petal-like cobalt oxide nanowire arrays encapsulated by MOF-derived Co/N-codoped carbon for boosting electrochemical capacitor behaviour. Materials Chemistry Frontiers, 2021, 5, 6969-6977.	3.2	10
591	Recent trends in graphene supercapacitors: from large area to microsupercapacitors. Sustainable Energy and Fuels, 2021, 5, 1235-1254.	2.5	105
592	Solid-state integrated micro-supercapacitor array construction with low-cost porous biochar. Materials Chemistry Frontiers, 2021, 5, 4772-4779.	3.2	5
593	Global Trends in Supercapacitors. Springer Series in Materials Science, 2021, , 329-365.	0.4	8
594	Enhanced thermoelectric performance of graphene based nanocomposite coated self-powered wearable e-textiles for energy harvesting from human body heat. RSC Advances, 2021, 11, 16675-16687.	1.7	30
595	Thermo- and chemical-triggered overhand and reef knots based on liquid crystal gels. Journal of Materials Chemistry C, 0, , .	2.7	0
596	Current Collector Material Selection for Supercapacitors. Springer Series in Materials Science, 2021, , 271-311.	0.4	12
597	Synthesis and characterization of poly-3-(9H-carbazol-9-yl)propylmethacrylate as a gel electrolyte for dye-sensitized solar cell applications. Polymer Bulletin, 2022, 79, 921-934.	1.7	4
598	Methodologies for Fabricating Flexible Supercapacitors. Micromachines, 2021, 12, 163.	1.4	14
599	A review of neutral pH polymer electrolytes for electrochemical capacitors: Transitioning from liquid to solid devices. Materials Reports Energy, 2021, 1, 100005.	1.7	12

#	Article	IF	CITATIONS
600	Extra-Durable Hybrid Supercapacitor Based on Cobalt Sulfide and Carbon (MWCNT) Matrix Electrodes. Journal of Energy Storage, 2021, 34, 102200.	3.9	16
601	Scalable Assembly of Flexible Ultrathin Allâ€inâ€One Zincâ€lon Batteries with Highly Stretchable, Editable, and Customizable Functions. Advanced Materials, 2021, 33, e2008140.	11.1	106
602	A scalable synthesis of carbon nanotube ink for Pad-dry-deposition method for solar cell application. Journal of Materials Science: Materials in Electronics, 2021, 32, 6123-6132.	1.1	1
603	Redox-active electrolyte-based MnWO4//AC asymmetric supercapacitors. Journal of Materials Science: Materials in Electronics, 2021, 32, 8054-8063.	1.1	8
604	Hybrid Triboelectric Nanogenerators: From Energy Complementation to Integration. Research, 2021, 2021, 9143762.	2.8	32
605	Synthesis of hierarchically porous boron-doped carbon material with enhanced surface hydrophobicity and porosity for improved supercapacitor performance. Electrochimica Acta, 2021, 370, 137801.	2.6	30
606	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	7.8	100
607	Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to Enable Highâ€Performance Flexible Allâ€5olidâ€State Supercapacitors. Advanced Energy Materials, 2021, 11, 2003010.	10.2	128
608	Preparation and Application of Keggin Polyoxometalateâ€based 3D Coordination polymer Materials as Supercapacitors and Amperometric Sensors. ChemNanoMat, 2021, 7, 299-306.	1.5	19
609	A novel phosphorus oxide quantum dots as an emissive nanomaterial for inorganic ions screening and bioimaging. Chinese Chemical Letters, 2021, 32, 2856-2860.	4.8	7
610	Printable and Recyclable Conductive Ink Based on a Liquid Metal with Excellent Surface Wettability for Flexible Electronics. ACS Applied Materials & amp; Interfaces, 2021, 13, 7443-7452.	4.0	67
611	Past, present and future of electrochemical capacitors: Technologies, performance and applications. Journal of Energy Storage, 2021, 35, 102310.	3.9	24
612	A Terpyridine-Fe2+-Based Coordination Polymer Film for On-Chip Micro-Supercapacitor with AC Line-Filtering Performance. Polymers, 2021, 13, 1002.	2.0	16
613	Nanostructured Polymer Composite Electrolytes with Self-Assembled Polyoxometalate Networks for Proton Conduction. CCS Chemistry, 2022, 4, 151-161.	4.6	35
614	2D MXenes: Tunable Mechanical and Tribological Properties. Advanced Materials, 2021, 33, e2007973.	11.1	278
615	Recent Progress and Application Challenges of Wearable Supercapacitors. Batteries and Supercaps, 2021, 4, 1279-1290.	2.4	33
616	Electrochemical performance study of polyaniline and polypyrrole based flexible electrodes. International Journal of Polymer Analysis and Characterization, 2021, 26, 354-363.	0.9	12
617	A new environmentally friendly gel polymer electrolyte based on cotton-PVA composited membrane for alkaline supercapacitors with increased operating voltage. Journal of Materials Science, 2021, 56, 11027-11043.	1.7	13

		CITATION REPORT		
#	Article		IF	CITATIONS
618	Substituent-Adjusted Electrochromic Behavior of Symmetric Viologens. Materials, 202	1, 14, 1702.	1.3	2
619	Natural Clayâ€Based Materials for Energy Storage and Conversion Applications. Advan 8, e2004036.	ced Science, 2021,	5.6	56
620	MXene materials based printed flexible devices for healthcare, biomedical and energy s applications. Materials Today, 2021, 43, 99-131.	torage	8.3	107
621	Mass Transport Behaviors in Graphene and Polyaniline Heterostructure–Based Micro Advanced Energy and Sustainability Research, 2021, 2, 2100006.	supercapacitors.	2.8	1
622	Self-sacrificial template synthesis of heteroatom doped porous biochar for enhanced electrochemical energy storage. Journal of Power Sources, 2021, 488, 229455.		4.0	61
623	Ionic Liquids for Supercapacitive Energy Storage: A Mini-Review. Energy & Fuels, 2	021, 35, 8443-8455.	2.5	115
624	Grand Challenges in Wearable Electronics. Frontiers in Electronics, 2021, 2, .		2.0	6
625	Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors. ACS Nano, 2021, 15, 7799-7810.		7.3	27
626	Metalâ€Organic Frameworks Nanocomposites with Different Dimensionalities for Ener and Storage. Advanced Energy Materials, 2022, 12, 2100346.	gy Conversion	10.2	86
627	Microfluidics for flexible electronics. Materials Today, 2021, 44, 105-135.		8.3	65
628	In situ hybridization of polyaniline on Mn oxide for high-performance supercapacitor. Jc Energy Storage, 2021, 36, 102330.	ournal of	3.9	13
629	Recent advances in the synthesis of non-carbon two-dimensional electrode materials for electrolyte-based supercapacitors. Chinese Chemical Letters, 2021, 32, 3733-3752.	or the aqueous	4.8	14
630	Electrical and Capacitive Response of Hydrogel Solid-Like Electrolytes for Supercapacito 2021, 13, 1337.	ors. Polymers,	2.0	17
631	Functional Ion Gels: Versatile Electrolyte Platforms for Electrochemical Applications. Ch Materials, 2021, 33, 2683-2705.	iemistry of	3.2	51
632	Dimethyl sulfoxide additive to Na2SO4-based polymer electrolytes for low temperature devices. Electrochimica Acta, 2021, 376, 137984.	? capacitive	2.6	6
633	Polypyrrole/Organic Sulfonic Acid Coated Activated Carbon Fiber Felt as Flexible Superc High-performance. Fibers and Polymers, 2021, 22, 2119-2126.	capacitor with	1.1	7
634	Performance of asymmetric supercapacitor fabricated with perovskiteâ€type Sr ^{2 â€incorporated <scp> LaMnO ₃ </scp> (La _{0.} <scp> ₇</scp>}	2+ Sr) Tj ETQq0 0 0 rg	gBT /Overlc 2.2	ock 10 Tf 50
635	Directivity-reconfigurable antenna actuated by liquid-gas phase transition. Mechanics of Materials and Structures, 2022, 29, 3903-3910.	of Advanced	1.5	1

#	Article	IF	CITATIONS
636	2D and Layered Ti-based Materials for Supercapacitors and Rechargeable Batteries: Synthesis, Properties, and Applications. Current Applied Materials, 2022, 1, .	0.4	4
637	All-polymer free-standing electrodes for flexible electrochemical sensors. Sensors and Actuators B: Chemical, 2021, 334, 129675.	4.0	23
638	Tuning growth of MoS2 nanowires over NiTiCu nanostructured array for flexible supercapacitive electrodes with enhanced Li-ion storage. Applied Physics Letters, 2021, 118, .	1.5	29
639	High energy storage performance of Sr-doped lanthanum titanate flexible self-supporting film for all-solid-state supercapacitor application. Journal of Materials Science, 2021, 56, 13243-13258.	1.7	4
640	A Stretchable and Highly Conductive Sulfonic Pendent Single-Ion Polymer Electrolyte Derived from Multifunctional Tri-Block Polyether. ACS Applied Polymer Materials, 2021, 3, 3254-3263.	2.0	11
641	Portland cement electrolyte for structural supercapacitor in building application. Construction and Building Materials, 2021, 285, 122897.	3.2	18
642	Sustainable wearable energy storage devices selfâ€charged by humanâ€body bioenergy. SusMat, 2021, 1, 285-302.	7.8	60
644	Emergence of Niâ€Based Chalcogenides (S and Se) for Clean Energy Conversion and Storage. Small, 2021, 17, e2100361.	5.2	32
645	Two-dimensional Conducting Metal-Organic Frameworks Enabled Energy Storage Devices. Energy Storage Materials, 2021, 37, 396-416.	9.5	44
646	Toughâ€Hydrogel Reinforced Lowâ€Tortuosity Conductive Networks for Stretchable and Highâ€Performance Supercapacitors. Advanced Materials, 2021, 33, e2100983.	11.1	63
647	Magneticâ€Sensitive Crack Sensor with Ultrahigh Sensitivity at Room Temperature by Depositing Graphene Nanosheets upon a Flexible Magnetic Film. Advanced Electronic Materials, 2021, 7, 2100335.	2.6	7
649	Bimetallic Phosphides for Hybrid Supercapacitors. Journal of Physical Chemistry Letters, 2021, 12, 5138-5149.	2.1	42
650	Conductive polypyrrole incorporated nanocellulose/MoS2 film for preparing flexible supercapacitor electrodes. Frontiers of Materials Science, 2021, 15, 227-240.	1.1	15
651	Facile and Scalable Fabrication of High-Performance Microsupercapacitors Based on Laser-Scribed <i>In Situ</i> Heteroatom-Doped Porous Graphene. ACS Applied Materials & Interfaces, 2021, 13, 22426-22437.	4.0	35
652	Two-dimensional black phosphorus: Properties, fabrication and application for flexible supercapacitors. Chemical Engineering Journal, 2021, 412, 128744.	6.6	37
653	Metal-organic frameworks as highly efficient electrodes for long cycling stability supercapacitors. International Journal of Hydrogen Energy, 2021, 46, 18179-18206.	3.8	55
654	Cyanogel and its derived-materials: properties, preparation methods, and electrochemical applications. Materials Today Energy, 2021, 20, 100701.	2.5	7
655	Surface modified zinc ferrite as a carbon-alternative negative electrode for high-energy hybrid supercapacitor. Ceramics International, 2021, 47, 16333-16341.	2.3	7

#	Article	IF	CITATIONS
656	Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2021, 13, 28433-28441.	4.0	30
657	Boosting Areal Capacitance and Energy Density of a Flexible Supercapacitor Based on High-Mass-Loading Layered Double Hydroxides. ACS Applied Energy Materials, 2021, 4, 6302-6309.	2.5	7
658	High-performance adjustable manganese oxides hybrid nanostructure for supercapacitors. Electrochimica Acta, 2021, 381, 138213.	2.6	17
659	Printed flexible supercapacitor: Ink formulation, printable electrode materials and applications. Applied Physics Reviews, 2021, 8, .	5.5	67
660	Enhanced specific energy of silver-doped MnO2/graphene oxide electrodes as facile fabrication symmetric supercapacitor device. Materials Today Chemistry, 2021, 20, 100473.	1.7	24
661	Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Scientific Reports, 2021, 11, 11747.	1.6	34
662	Biomimetic strategies for 4.0ÂV all-solid-state flexible supercapacitor: Moving toward eco-friendly, safe, aesthetic, and high-performance devices. Chemical Engineering Journal, 2021, 414, 128842.	6.6	10
663	Advances in bio-waste derived activated carbon for supercapacitors: Trends, challenges and prospective. Resources, Conservation and Recycling, 2021, 169, 105548.	5.3	95
664	Electrochemical behavior of CuO/rGO nanopellets for flexible supercapacitor, non-enzymatic glucose, and H2O2 sensing application. Ceramics International, 2021, 47, 16674-16687.	2.3	51
665	Transition metal nitride electrodes as future energy storage devices: A review. Materials Today Communications, 2021, 27, 102363.	0.9	25
666	Effective Combination of rGO and CuO Nanomaterials through Poly(<i>p</i> -phenylenediamine) Texture: Utilizing It as an Excellent Supercapacitor. Energy & Fuels, 2021, 35, 10869-10877.	2.5	49
667	Solid-State Double-Network Hydrogel Redox Electrolytes for High-Performance Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 34168-34177.	4.0	16
669	Performance and future directions of transition metal sulfideâ€based electrode materials towards supercapacitor/supercapattery. Wiley Interdisciplinary Reviews: Energy and Environment, 2022, 11, e414.	1.9	32
670	Selfâ€Healing Functional Electronic Devices. Small, 2021, 17, e2101383.	5.2	55
671	Humidity-modulated properties of hydrogel polymer electrolytes for flexible supercapacitors. Journal of Power Sources, 2021, 499, 229962.	4.0	27
672	Zn2+ intercalation/de-intercalation-based aqueous electrochromic titanium dioxide electrode with Zn-ion storage. Ionics, 2021, 27, 4429-4437.	1.2	9
673	Future directions of material chemistry and energy chemistry. Pure and Applied Chemistry, 2021, 93, 1435-1451.	0.9	0
674	Recent progress for silver nanowires conducting film for flexible electronics. Journal of Nanostructure in Chemistry, 2021, 11, 323-341.	5.3	88

#	Article	IF	CITATIONS
675	Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material. Renewable and Sustainable Energy Reviews, 2021, 145, 110854.	8.2	53
676	3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics. Energy, 2021, 227, 120419.	4.5	26
677	Porous 3D Honeycomb Structure Biomass Carbon as a Supercapacitor Electrode Material to Achieve Efficient Energy Storage. Industrial & Engineering Chemistry Research, 2021, 60, 11079-11085.	1.8	22
678	Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. JPhys Energy, 2021, 3, 032017.	2.3	18
679	Recent Development of Flexible and Stretchable Supercapacitors Using Transition Metal Compounds as Electrode Materials. Small, 2021, 17, e2101974.	5.2	19
680	Insights in the Ionic Conduction inside Nanoporous Metal-Organic Frameworks by Using an Appropriate Equivalent Circuit. Materials, 2021, 14, 4352.	1.3	2
681	Self-healing Ionic Liquid-based Electronics and Beyond. Chinese Journal of Polymer Science (English) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
682	Modelling of GO/PPy/CB and rGO/PPy/CB nanocomposite supercapacitors using an electrical equivalent circuit. Ionics, 2021, 27, 4531-4547.	1.2	2
683	Lignin-Derived Carbon-Coated Functional Paper for Printed Electronics. ACS Applied Electronic Materials, 2021, 3, 3904-3914.	2.0	25
684	Heterostructural conductive polymer with multi-dimensional carbon materials for capacitive energy storage. Applied Surface Science, 2021, 558, 149910.	3.1	16
685	Biomass derived activated carbon based hybrid supercapacitors. Journal of Energy Storage, 2021, 40, 102751.	3.9	27
686	Solution-free self-assembled growth of ordered tricopper phosphide for efficient and stable hybrid supercapacitor. Energy Storage Materials, 2021, 39, 194-202.	9.5	30
687	Flexible NH3 gas sensor based on TiO2/cellulose nanocrystals composite film at room temperature. Journal of Materials Science: Materials in Electronics, 2021, 32, 23566-23577.	1.1	8
688	A review on selection criteria of aqueous electrolytes performance evaluation for advanced asymmetric supercapacitors. Journal of Energy Storage, 2021, 40, 102729.	3.9	80
689	Partially nitrogenized mesoporous Co3O4 nanoflakes as a binder-free positive electrode for high-performance flexible solid-state asymmetric supercapacitors. Journal of Alloys and Compounds, 2021, 873, 159725.	2.8	9
690	Electrospun FeCo nanoparticles encapsulated in N-doped carbon nanofibers as self-supporting flexible anodes for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 873, 159703.	2.8	16
691	Silver nanoparticles prepared by solid-state redox route from HEC for conductive, long-term durable and recycling artificial soft electronics. Polymer, 2021, 229, 123974.	1.8	4
692	One-step synthesis of amino acid-derived HTC/NiO/Ni(OH)2@Ni cathode for high performance supercapacitors. Applied Surface Science, 2021, 558, 149853.	3.1	4

#	Article	IF	CITATIONS
693	Recent advances in materials and device technologies for aqueous hybrid supercapacitors. Science China Materials, 2022, 65, 10-31.	3.5	25
694	Tracing evolutions in electro-activated shape memory polymer composites with 4D printing strategies: A systematic review. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106444.	3.8	55
695	Fully integrated design of intrinsically stretchable electrodes for stretchable supercapacitors. Energy Storage Materials, 2021, 39, 130-138.	9.5	19
696	Flexible free-standing polyaniline/poly(vinyl alcohol) composite electrode with good capacitance performance and shape memory behavior. Progress in Natural Science: Materials International, 2021, 31, 557-566.	1.8	5
697	Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites. Polymers, 2021, 13, 3005.	2.0	12
698	Low power energy harvesting systems: State of the art and future challenges. Renewable and Sustainable Energy Reviews, 2021, 147, 111230.	8.2	42
699	Hierarchical CoNi-LDH nanosheet array with hydrogen vacancy for high-performance aqueous battery cathode. Journal of Energy Chemistry, 2022, 69, 9-15.	7.1	23
700	One-step synthesis of 2D vertically-aligned hybrid CuSe@NiSe nanosheets for high performance flexible supercapacitors. Journal of Alloys and Compounds, 2022, 892, 162159.	2.8	10
701	Covalent organic frameworks: Advances in synthesis and applications. Materials Today Communications, 2021, 28, 102612.	0.9	18
702	All-solid-state asymmetric supercapacitors based on VS4 nano-bundles and MXene nanosheets. Journal of Materials Science, 2021, 56, 20008-20025.	1.7	16
703	CF4 plasma-treated porous silicon nanowire arrays laminated with MnO2 nanoflakes for asymmetric pseudocapacitors. Chemical Engineering Journal, 2021, 419, 129515.	6.6	8
704	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie, 2021, 133, 24710-24714.	1.6	7
705	Recent Advancements in Energy Storage Based on Sodium Ion and Zinc Ion Hybrid Supercapacitors. Energy & Fuels, 2021, 35, 14241-14264.	2.5	17
706	Vertical Graphene Arrays as Electrodes for Ultraâ€High Energy Density AC Lineâ€Filtering Capacitors. Angewandte Chemie - International Edition, 2021, 60, 24505-24509.	7.2	15
707	Microstructure control for high-capacitance polyaniline. Electrochimica Acta, 2021, 391, 138977.	2.6	21
708	Preparation of a PB@SiO ₂ Photonic Crystal Composite with Enhanced Electrochromic Performance. ACS Applied Electronic Materials, 2021, 3, 4441-4447.	2.0	13
709	3D-printed solid-state electrolytes for electrochemical energy storage devices. Journal of Materials Research, 2021, 36, 4547-4564.	1.2	11
710	Synchronously manipulating Zn2+ transfer and hydrogen/oxygen evolution kinetics in MXene host electrodes toward symmetric Zn-ions micro-supercapacitor with enhanced areal energy density. Energy Storage Materials, 2021, 40, 10-21.	9.5	88

#	Article	IF	CITATIONS
711	Photovoltaic Energy Conversion and Storage of Micro-Supercapacitors Based on Emulsion Self-Assembly of Upconverting Nanoparticles. ACS Central Science, 2021, 7, 1611-1621.	5.3	9
712	NiCo-mixed hydroxide nanosheets as a new electrochromic material with fast optical response. Chemical Physics Letters, 2021, 783, 139024.	1.2	3
713	Application of layered nanoclay in electrochemical energy: Current status and future. EnergyChem, 2021, 3, 100062.	10.1	29
714	Advances in lateral copper electroplated metallic tracks—production and applications by using hydrogen evolution-assisted electroplating. MRS Advances, 2021, 6, 654-658.	0.5	2
715	Magnetic-field induced sustainable electrochemical energy harvesting and storage devices: Recent progress, opportunities, and future perspectives. Nano Energy, 2021, 87, 106119.	8.2	29
716	V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Metals, 2022, 41, 775-797.	3.6	64
717	Photopatternable hydroxide ion electrolyte for solid-state micro-supercapacitors. Joule, 2021, 5, 2466-2478.	11.7	30
718	Twoâ€dimensional MOFs: Design & Synthesis and Applications. Chemistry - an Asian Journal, 2021, 16, 3281-3298.	1.7	23
719	Design principles of high-voltage aqueous supercapacitors. Materials Today Energy, 2021, 21, 100739.	2.5	17
720	Preparation and application of cellulose gel in flexible supercapacitors. Journal of Energy Storage, 2021, 42, 103058.	3.9	28
721	Flexible supercapacitor: Overview and outlooks. Journal of Energy Storage, 2021, 42, 103053.	3.9	171
722	Evolution and application of all-in-one electrochemical energy storage system. Energy Storage Materials, 2021, 41, 677-696.	9.5	25
723	State-of-charge estimation and remaining useful life prediction of supercapacitors. Renewable and Sustainable Energy Reviews, 2021, 150, 111408.	8.2	113
724	Binary nanosheet frameworks of graphene/polyaniline composite for high-areal flexible supercapacitors. Materials Chemistry and Physics, 2021, 273, 125128.	2.0	15
725	Conducting polymer ink for flexible and printable micro-supercapacitors with greatly-enhanced rate capability. Journal of Power Sources, 2021, 513, 230555.	4.0	25
726	Improving energy storage ability of acid-treated carbon fibers via simple sonication and heat treatments for flexible supercapacitors. Energy Reports, 2021, 7, 4205-4213.	2.5	5
727	Synthesis of 3D nanoflower-like mesoporous NiCo2O4 N-doped CNTs nanocomposite for solid-state hybrid supercapacitor; efficient material for the positive electrode. Ceramics International, 2021, 47, 31650-31665.	2.3	19
728	Regulating monomer assembly to enhance PEDOT capacitance performance via different oxidants. Journal of Colloid and Interface Science, 2021, 601, 265-271.	5.0	12

#	Article	IF	CITATIONS
729	Self-assembly of colloidal MOFs derived yolk-shelled microcages as flexible air cathode for rechargeable Zn-air batteries. Nano Energy, 2021, 89, 106314.	8.2	34
730	Dynamically evolving 2D supramolecular polyaniline nanosheets for long-stability flexible supercapacitors. Chemical Engineering Journal, 2021, 423, 130203.	6.6	60
731	Flexible porous Graphene/Nickel hydroxide composite films with 3D ion transport channels for high volumetric performance asymmetric supercapacitor. Applied Surface Science, 2021, 569, 151036.	3.1	17
732	Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84.	9.5	25
733	Smart dual-functional energy storage/fluorescent textile device based on a new redox-active Mn-doped ZnS solid-gel electrolyte. Chemical Engineering Journal, 2021, 426, 131274.	6.6	2
734	All solution processed flexible p-NiO/n-CdS rectifying junction: Applications towards broadband photodetector and human breath monitoring. Applied Surface Science, 2021, 568, 150944.	3.1	12
735	Research progress on double-network hydrogels. Materials Today Communications, 2021, 29, 102757.	0.9	51
736	Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chemical Engineering Journal, 2022, 428, 131994.	6.6	130
737	Nacre-inspired surface-engineered MXene/nanocellulose composite film for high-performance supercapacitors and zinc-ion capacitors. Chemical Engineering Journal, 2022, 428, 131380.	6.6	76
738	The Ni/Ni3S2 nanocomposite derived from Ni-ZIF with superior energy storage performance as cathodes for asymmetric supercapacitor and rechargeable aqueous zinc ion battery. Journal of Alloys and Compounds, 2022, 891, 161935.	2.8	20
739	Rational design of A-CNTs/KxMnO2 and Ti3C2Tx/MoO3 free-standing hybrid films for flexible asymmetric supercapacitor. Chemical Engineering Journal, 2022, 428, 131138.	6.6	31
740	An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chemical Engineering Journal, 2022, 427, 131854.	6.6	45
741	<i>In situ</i> recycling of particulate matter for a high-performance supercapacitor and oxygen evolution reaction. Materials Chemistry Frontiers, 2021, 5, 2742-2748.	3.2	1
742	Rationally designed hierarchical C/TiO ₂ /Ti multilayer core–sheath wires for high-performance energy storage devices. Nanoscale, 2021, 13, 8658-8664.	2.8	4
743	Fabrication and evaluation of symmetric flexible solid state supercapacitor device based on $\hat{l}\pm$ -Fe2O3 thin films by LPD. AIP Conference Proceedings, 2021, , .	0.3	2
744	A large-scale study of ionic liquids employed in chemistry and energy research to reveal cytotoxicity mechanisms and to develop a safe design guide. Green Chemistry, 2021, 23, 6414-6430.	4.6	22
745	High specific capacitance of a 3D-metal–organic framework-confined growth in CoMn ₂ O ₄ nanostars as advanced supercapacitor electrode materials. Journal of Materials Chemistry A, 2021, 9, 11001-11012.	5.2	80
746	Effect of physiochemical properties in biomass-derived materials caused by different synthesis methods and their electrochemical properties in supercapacitors. Journal of Materials Chemistry A, 2021, 9, 12521-12552.	5.2	43

#	Article	IF	CITATIONS
747	Recent developments in the synthesis of chemically modified nanomaterials for use in dielectric and electric and electronics applications. Nanotechnology, 2021, 32, 142004.	1.3	30
748	Interfaceâ€Engineered Dendriteâ€Free Anode and Ultraconductive Cathode for Durable and Highâ€Rate Fiber Zn Dualâ€Ion Microbattery. Advanced Functional Materials, 2021, 31, 2008894.	7.8	35
749	Flexible Free‣tanding MoO ₃ /Ti ₃ C ₂ T <i>_z</i> MXene Composite Films with High Gravimetric and Volumetric Capacities. Advanced Science, 2021, 8, 2003656.	5.6	59
750	Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Advanced Energy Materials, 2020, 10, 1903977.	10.2	309
751	Highâ€performance allâ€solidâ€state supercapacitor with binderâ€free binary transition metal sulfide array as cathode. International Journal of Energy Research, 2021, 45, 5517-5526.	2.2	18
752	Applications of Supercapacitors. Springer Series in Materials Science, 2020, , 341-350.	0.4	59
753	Introduction to Supercapacitors. Springer Series in Materials Science, 2020, , 1-28.	0.4	14
754	Applications of Supercapacitors. Springer Series in Materials Science, 2020, , 463-481.	0.4	15
755	Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. , 2020, , 611-714.		11
756	Design and fabrication of high performance supercapacitor with cellulosic paper electrode and plant-derived redox active molecules. Carbohydrate Polymers, 2020, 244, 116442.	5.1	20
757	A self-healing hydrogel electrolyte for flexible solid-state supercapacitors. Chemical Engineering Journal, 2020, 401, 125456.	6.6	85
758	Bio-inspired multicomponent carbon nanotube microfibers from microfluidics for supercapacitor. Chemical Engineering Journal, 2020, 397, 125517.	6.6	28
759	Laminate composite-based highly durable and flexible supercapacitors for wearable energy storage. Journal of Energy Storage, 2020, 29, 101460.	3.9	12
760	The influence of pulse magnetic field intensity on the morphology and electrochemical properties of NiCoS alloys. Surface and Coatings Technology, 2020, 403, 126406.	2.2	8
761	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	2.8	23
762	Carbon Nanofibers Cross-Linked and Decorated with Graphene Quantum Dots as Binder-Free Electrodes for Flexible Supercapacitors. Journal of Physical Chemistry C, 2021, 125, 143-151.	1.5	10
763	Microscopic dynamics in room-temperature ionic liquids confined in materials for supercapacitor applications. Sustainable Energy and Fuels, 2020, 4, 1554-1576.	2.5	21
764	A Comparative Study of Sulfate-Based Neutral pH Polymer Electrolytes: Effects of Temperature on Ionic Conductivity. Journal of the Electrochemical Society, 2020, 167, 126508.	1.3	2

#	ARTICLE	IF	CITATIONS
765	High-Performance Polypyrrole Coated Filter Paper Electrode for Flexible All-Solid-State Supercapacitor. Journal of the Electrochemical Society, 2020, 167, 140533.	1.3	10
766	High-performance and ultraflexible PEDOT/silver nanowires/graphene films for electrochromic applications. Optics Letters, 2020, 45, 2443.	1.7	7
767	Laser fabrication of graphene-based supercapacitors. Photonics Research, 2020, 8, 577.	3.4	35
768	Microfluidic Generation of Microsprings with Ionic Liquid Encapsulation for Flexible Electronics. Research, 2019, 2019, 6906275.	2.8	60
769	PVP-Assisted Synthesis of Self-Supported Ni ₂ P@Carbon for High-Performance Supercapacitor. Research, 2019, 2019, 8013285.	2.8	11
770	Flexible and Wearable Hybrid RF and Solar Energy Harvesting System. IEEE Transactions on Antennas and Propagation, 2022, 70, 2223-2233.	3.1	30
771	Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers. Chemical Society Reviews, 2021, 50, 12702-12743.	18.7	227
772	A mechanically robust all-solid-state supercapacitor based on a highly conductive double-network hydrogel electrolyte and Ti ₃ C ₂ T _{<i>x</i>} MXene electrode with anti-freezing property. Journal of Materials Chemistry A, 2021, 9, 25073-25085.	5.2	25
773	Facile Preparation of Cobalt Hydroxide Based Supercapacitor with High Volumetric Energy Density at High Volumetric Power Density. , 2021, , .		0
774	The preparations of nanoporous carbon with multi-heteroatoms co-doping from black liquor powders for supercapacitors. Nordic Pulp and Paper Research Journal, 2022, 37, 149-158.	0.3	1
775	Design and preparation of NiCoS nanostructures on Ni foam for high-performance asymmetric supercapacitor application. Journal of Materials Science: Materials in Electronics, 2022, 33, 9256-9268.	1.1	6
776	Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors. ChemSusChem, 2021, 14, 5384-5398.	3.6	17
777	Bioresponsive, Electroactive, and Inkjetâ€Printable Grapheneâ€Based Inks. Advanced Functional Materials, 2022, 32, 2105028.	7.8	14
778	2D materials inks toward smart flexible electronics. Materials Today, 2021, 50, 116-148.	8.3	57
779	Programmable coating of polyaniline on hemispherical nitrogen-doped mesoporous hollow carbon as high performance material for supercapacitor. Materials Today Communications, 2021, 29, 102915.	0.9	6
780	Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications. Membranes, 2021, 11, 788.	1.4	12
781	Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors. Nanotechnology, 2022, 33, 065407.	1.3	7
782	Effect of Fe Doping on the Surface Morphology and Supercapacitor Properties of Sr(OH) ₂ Thin Films: A Fractal Approach. Journal of Physical Chemistry C, 2021, 125, 22827-22836.	1.5	10

#	Article	IF	CITATIONS
784	Piezo-supercapacitors: A new paradigm of self-powered wellbeing and biomedical devices. Nano Energy, 2021, 90, 106607.	8.2	16
785	Electroless nickel-phosphorus coated expanded graphite paper: Binder-free, ultra-thin, and low-cost electrodes for high-performance supercapacitors. Journal of Energy Storage, 2021, 44, 103364.	3.9	11
786	Nanocellulose composite gel with high ionic conductivity and long service life for flexible zinc-air battery. Polymer Testing, 2021, 104, 107380.	2.3	12
787	Template strategy to synthesize porous Mn-Co-S nanospheres electrode for high-performance supercapacitors. Journal of Energy Storage, 2021, 44, 103267.	3.9	22
788	Effect of polyaniline on the performance of zinc phosphate as a battery-grade material for supercapattery. Journal of Energy Storage, 2021, 44, 103329.	3.9	39
789	Construction of asymmetric flexible-solid state supercapacitors based on Mo-MnO2 nanoflowers and MoO3-x nanobelts. Surfaces and Interfaces, 2021, 27, 101502.	1.5	5
790	Stable low-bandgap isoindigo-bisEDOT copolymer with superior electrochromic performance in NIR window. Electrochimica Acta, 2021, 399, 139418.	2.6	17
791	Nanopolysaccharides in Energy Storage Applications. Springer Series in Biomaterials Science and Engineering, 2019, , 137-169.	0.7	2
792	Pteridine derivatives: novel low-molecular-weight organogelators and their piezofluorochromism. New Journal of Chemistry, 2020, 44, 3382-3391.	1.4	2
793	On the operation mechanism of the flexible diodes under mechanical bending conditions. Journal Physics D: Applied Physics, 2020, 53, 45LT01.	1.3	2
794	Preparation of high-performance flexible microsupercapacitors based on papermaking and laser-induced graphene techniques. Electrochimica Acta, 2022, 401, 139490.	2.6	12
795	Electrodeposition synthesis of high performance MoO3-x@Ni-Co layered double hydroxide hierarchical nanorod arrays for flexible solid-state supercapacitors. Chemical Engineering Journal, 2022, 431, 133233.	6.6	14
796	Construction of hierarchical nickel cobalt sulfide@manganese oxide nanoarrays@nanosheets <scp>coreâ€shell</scp> electrodes for highâ€performance electrochemical asymmetric supercapacitor. International Journal of Energy Research, 2022, 46, 5250-5259.	2.2	14
797	The role and the necessary features of electrolytes for microsupercapacitors. , 2022, , 47-116.		3
798	Chemically coupled 0D-3D hetero-structure of Co9S8-Ni3S4 hollow spheres for Zn-based supercapacitors. Chemical Engineering Journal, 2022, 430, 132836.	6.6	23
799	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	9.5	92
800	Recent advances in silk-based wearable sensors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 178703.	0.2	6
801	High ionic conduction, toughness and self-healing poly(ionic liquid)-based electrolytes enabled by synergy between flexible units and counteranions. RSC Advances, 2021, 11, 35687- <u>35694.</u>	1.7	5

#	Article	IF	CITATIONS
802	Highly efficient self-healable and robust fluorinated polyurethane elastomer for wearable electronics. Chemical Engineering Journal, 2022, 430, 133081.	6.6	46
803	Metal-organic framework materials for supercapacitors. Journal of Physics: Conference Series, 2021, 2021, 012008.	0.3	5
804	Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor. Journal of Energy Storage, 2022, 47, 103547.	3.9	23
805	Self-templating synthesis of nitrogen-rich porous carbons using pyridyl functionalized conjugated microporous polytriphenylamine for electrochemical energy storage. Electrochimica Acta, 2022, 402, 139531.	2.6	16
806	The Quest for High-Efficiency Thermoelectric Generators for Extracting Electricity from Waste Heat. Jom, 2021, 73, 4070-4084.	0.9	2
807	In-situ electrochemical polymerization of aniline on flexible conductive substrates for supercapacitors and non-enzymatic ascorbic acid sensors. Nanotechnology, 2022, 33, 045405.	1.3	2
808	Three-Dimensional Finite Element Numerical Simulation and Analysis of Solid-State Processing of Metal Material. Complexity, 2020, 2020, 1-12.	0.9	3
809	Metal-organic framework-based materials for flexible supercapacitor application. Coordination Chemistry Reviews, 2022, 452, 214300.	9.5	112
810	Synthesis of Hierarchically Porous Carbon with Tailored Porosity and Electrical Conductivity Derived from Hard–Soft Carbon Precursors for Enhanced Capacitive Performance. ACS Sustainable Chemistry and Engineering, 2021, 9, 15925-15934.	3.2	26
811	Unveiling the role of oxidative treatments on the electrochemical performance of carbon nanotube-based cotton textile supercapacitors. Carbon Trends, 2021, 5, 100137.	1.4	7
812	Carbon Nanotube Based Robust and Flexible Solid-State Supercapacitor. ACS Applied Materials & Interfaces, 2021, 13, 56004-56013.	4.0	27
813	One-dimensional covalent organic framework—Carbon nanotube heterostructures for efficient capacitive energy storage. Applied Physics Letters, 2021, 119, .	1.5	9
814	Impregnation of Cellulose Fibers with Copper Colloids and Their Processing into Electrically Conductive Paper. Chemistry of Materials, 2022, 34, 43-52.	3.2	5
815	A Review of Supercapacitors: Materials Design, Modification, and Applications. Energies, 2021, 14, 7779.	1.6	94
816	Polydimethylsiloxane-Assisted Catalytic Printing for Highly Conductive, Adhesive, and Precise Metal Patterns Enabled on Paper and Textiles. ACS Applied Materials & Interfaces, 2021, 13, 56597-56606.	4.0	9
817	A Passive, Skin-Attachable Multi-Sensing Patch Based on Semi-Liquid Alloy Ni-GaIn for Wireless Epidermal Signal Monitoring and Body Motion Capturing. Electronics (Switzerland), 2021, 10, 2778.	1.8	1
818	Novel combination of nickel-cobalt sulfide and oxide derived from Ni2CoS4@ZIF-67 for high performance supercapacitor. Journal of Alloys and Compounds, 2022, 898, 162861.	2.8	18
819	Flowerâ€like NiCo arbonate Hydroxides for Highâ€performance Solidâ€state Hybrid Supercapacitor. Electroanalysis, 2022, 34, 1121-1130.	1.5	6

#	Article	IF	CITATIONS
820	Material Nanoarchitectonics of Functional Polymers and Inorganic Nanomaterials for Smart Supercapacitors. Small, 2022, 18, e2102397.	5.2	22
821	Polyaniline Nanowire Array-Assisted Surface Oxidation of Carbon Cloth for Superior Flexible Solid-State Supercapacitors. ACS Applied Energy Materials, 0, , .	2.5	2
822	2D-on-2D core–shell Co ₃ (PO ₄) ₂ stacked micropetals@Co ₂ Mo ₃ O ₈ nanosheets and binder-free 2D CNT–Ti ₃ C ₂ T _{<i>X</i>} –MXene electrodes for high-energy solid-state flexible supercapacitors. Journal of Materials Chemistry A, 2021, 9, 26135-26148.	5.2	22
823	Supercapacitors operated at extremely low environmental temperatures. Journal of Materials Chemistry A, 2021, 9, 26603-26627.	5.2	25
824	Enhancing the energy storage capacity of graphene supercapacitors <i>via</i> solar heating. Journal of Materials Chemistry A, 2022, 10, 3382-3392.	5.2	18
825	Towards flexible fuel cells: development, challenge and prospect. Applied Thermal Engineering, 2022, 203, 117937.	3.0	13
826	Arbitrary-shape-adaptable strain sensor array with optimized circuit layout via direct-ink-writing: Scalable design and hierarchical printing. Materials and Design, 2022, 214, 110388.	3.3	13
827	The remarkable role of hydrogen bond, halogen, and solvent effect on self-healing supramolecular gel. Materials Today Chemistry, 2022, 23, 100719.	1.7	11
828	Recent advances on energy storage microdevices: From materials to configurations. Energy Storage Materials, 2022, 45, 741-767.	9.5	15
829	Sodium tungsten oxide nanowires-based all-solid-state flexible transparent supercapacitors with solar thermal enhanced performance. Chemical Engineering Journal, 2022, 431, 134086.	6.6	7
830	Constructing nickel cobaltate @nickel-manganese layered double hydroxide hybrid composite on carbon cloth for high-performance flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 611, 149-160.	5.0	26
831	Synthesis of Porous Pr-Fe@MnO ₂ as an Electroactive Material for Symmetric Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
832	Self-charging supercapacitors for smart electronic devices: a concise review on the recent trends and future sustainability. Journal of Materials Science, 2022, 57, 4399-4440.	1.7	29
833	Preparation and Characterization of PANI/MWCNT/RGO Ternary Composites as Electrode Materials for Supercapacitors. Journal of Electronic Materials, 2022, 51, 1409-1420.	1.0	16
834	Ultrathin Paper Microsupercapacitors for Electronic Skin Applications. Advanced Materials Technologies, 2022, 7, .	3.0	15
835	Flower-like composites of black phosphorus and reduced graphene oxide: Its synergistic energy storage performance. Diamond and Related Materials, 2022, 121, 108794.	1.8	6
836	Electrodeposition of CQDs/P-Fe2O3 on carbon cloth for flexible asymmetric supercapacitors. Inorganic Chemistry Communication, 2022, 138, 109226.	1.8	3
837	A durable high-energy implantable energy storage system with binder-free electrodes useable in body fluids. Journal of Materials Chemistry A, 2022, 10, 4611-4620.	5.2	5

#	Article	IF	CITATIONS
838	N-Doped celery-based biomass carbon with tunable Co ₃ O ₄ loading for enhanced-performance of solid-state supercapacitors. New Journal of Chemistry, 2022, 46, 6921-6931.	1.4	3
839	Oxides free materials for flexible and paper-based supercapacitors. , 2022, , 115-148.		0
840	Electrospun metal–organic framework based nanofibers for energy storage and environmental applications: current approaches and challenges. Journal of Materials Chemistry A, 2022, 10, 1642-1681.	5.2	33
841	Al doped Ni-Co layered double hydroxides with surface-sulphuration for highly stable flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 615, 173-183.	5.0	19
842	A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 2022, 10, 2637-2671.	5.2	23
843	Coupling graphene microribbons with carbon nanofibers: New carbon hybrids for high-performing lithium and potassium-ion batteries. Sustainable Materials and Technologies, 2022, 32, e00393.	1.7	9
844	Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review. Polymers, 2022, 14, 169.	2.0	13
845	Preparation of Porous Carbons Using NaOH, K ₂ CO ₃ , Na ₂ CO ₃ and Na ₂ S ₂ O ₃ Activating Agents and Their Supercapacitor Application: A Comparative Study. ChemistrySelect, 2022, 7, .	0.7	37
846	Flexible and Self-Healable Supercapacitor with High Capacitance Restoration. ACS Applied Energy Materials, 2022, 5, 2211-2220.	2.5	18
847	Three-Dimensional ZnCo-MOF Modified Graphene Sponge: Flexible Electrode Material for Symmetric Supercapacitor. Energy & Fuels, 2022, 36, 1735-1745.	2.5	24
848	Coherent Integration of Organic Gel Polymer Electrolyte and Ambipolar Polyoxometalate Hybrid Nanocomposite Electrode in a Compact High-Performance Supercapacitor. Nanomaterials, 2022, 12, 514.	1.9	9
849	High-performance cotton fabric-based supercapacitors consisting of polypyrrole/Ag/graphene oxide nanocomposite prepared via UV-induced polymerization. Cellulose, 2022, 29, 2525-2537.	2.4	18
850	Low temperature graphitization and electrochemical properties of porous carbon catalyzed with bimetal Ni-Mo. Diamond and Related Materials, 2022, 123, 108862.	1.8	7
851	Detergent-free micelle-assisted synthesis of carbon-containing hexagonal CuS nanostructures for efficient supercapacitor electrode materials. Electrochimica Acta, 2022, 407, 139918.	2.6	24
852	TiO2 nanoflowers@Au@MnO2 core-shell composite based on modified Ti foil for flexible supercapacitor electrode. Electrochimica Acta, 2022, 407, 139866.	2.6	14
853	Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources, 2022, 523, 231029.	4.0	45
854	Synthesis, characterization and supercapacitive application of nanocauliflower-like cobalt tungstate thin films by successive ionic layer adsorption and reaction (SILAR) method. Electrochimica Acta, 2022, 408, 139933.	2.6	17
856	Facile Synthesis of Metal Oxide and Conductive Polymers around Silicon Nanowire Arrays for a High-Performance Aqueous Supercapacitor. ACS Applied Energy Materials, 2022, 5, 2596-2605.	2.5	13

	CITATION R	EPORT	
#	Article	IF	CITATIONS
857	NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 49, 104176.	3.9	12
858	Hollow nano- and microstructures: Mechanism, composition, applications, and factors affecting morphology and performance. Coordination Chemistry Reviews, 2022, 458, 214429.	9.5	52
859	3D porous H-Ti3C2T films as free-standing electrodes for zinc ion hybrid capacitors. Chemical Engineering Journal, 2022, 435, 135052.	6.6	31
860	Sensitive Micro-Breathing Sensing and Highly-Effective Photothermal Antibacterial <i>Cinnamomum camphora</i> Bark Micro-Structural Cotton Fabric via Electrostatic Self-Assembly of MXene/HACC. ACS Applied Materials & amp; Interfaces, 2022, 14, 2132-2145.	4.0	24
861	Thermoelectric ionogel for low-grade heat harvesting. , 2022, , 63-86.		3
862	Hydroxylate Black-Phosphorus Promote the Supercapacitive Performances of Polyaniline by 200%: From Theoretical Prediction to Prototype Device. SSRN Electronic Journal, 0, , .	0.4	0
863	Sponge-Like 3d Flower-Like Core-Shell Heterostructure Cuco2o4@Cuco2s4 as Advanced Electrodes for High-Performance Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
864	Obtaining Three Aspects of the Technological Landscape: Science, Technology, and Research Policy; a Case Study of Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
865	Gel Electrolytes and Aerogel Electrodes from Oil-in-Water Emulsions for Supercapacitor Applications. SSRN Electronic Journal, 0, , .	0.4	0
866	Mno2 Films Deposited on Cuo Nanomaterials as Electrode Materials for Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
867	Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy and Environmental Science, 2022, 15, 2233-2258.	15.6	76
868	Metal Organic Framework Derived Α, Γ–Mns-S@Co3s4, S–N Co–Doped Carbon Structure with Lattice Distortion and Layer–By–Layer Deposited Multi-Walled Carbon Nanotube/Ti3c2tx–Mxene Electrodes for High–Energy Quasi–Solid–State Supercapacitor. SSRN Electronic Journal, 0, , .	0.4	0
869	Redox and conductive underwater adhesive: an innovative electrode material for convenient construction of flexible and stretchable supercapacitors. Journal of Materials Chemistry A, 2022, 10, 7207-7217.	5.2	4
870	Three-Dimensional Ordered and Porous Ti3c2tx@Chitosan Film Enabled by Self-Assembly Strategy for High-Rate Pseudocapacitive Energy Storage. SSRN Electronic Journal, 0, , .	0.4	0
871	A Flexible and Highly Conductive Quasi-Solid Single-Ion Polymer Electrolyte for High Performance Li-Metal Batteries. SSRN Electronic Journal, 0, , .	0.4	0
872	Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chemistry, 2022, 24, 3864-3894.	4.6	97
873	Refurbished Carbon Materials from Waste Supercapacitors as Industrial-Grade Electrodes: Empowering Electronic Waste. SSRN Electronic Journal, 0, , .	0.4	0
874	Designing of two dimensional lanthanum cobalt hydroxide engineered high performance supercapacitor for longer stability under redox active electrolyte. Scientific Reports, 2022, 12, 3084.	1.6	21

ARTICLE IF CITATIONS # Oxygen-Vacancy-Rich NiMnZn-Layered Double Hydroxide Nanosheets Married with Mo₂CT<sub><i>x</i>/sub> MXené for High-Efficiency All-Solid-State Hybrid 875 2.5 17 Supercapacitors. ACS Applied Energy Materials, 2022, 5, 3346-3358. Perspective on gallium-based room temperature liquid metal batteries. Frontiers in Energy, 2022, 16, 876 1.2 23-48. Nanoarchitectonics of hierarchical PbS material for all-solid-state asymmetric supercapacitor. 877 9 1.1 Journal of Materials Science: Materials in Electronics, 2022, 33, 10368-10378. A robust approach for designing Nâ€doped reduced graphene oxide/polyaniline nanocompositeâ€based electrodes for efficient flexible supercapacitors. Polymers for Advanced Technologies, 2022, 33, 878 2184-2199. Microphase Separation Engineering toward 3D Porous Carbon Assembled from Nanosheets for 880 4.0 31 Flexible All-Solid-State Supercapacitors. ACS Applied Materials & amp; Interfaces, 2022, 14, 13250-13260. Preparation and application of dielectric polymers with high permittivity and low energy loss: A mini 1.3 review. Journal of Applied Polymer Science, 2022, 139, . 4D printed TPU/PLA/CNT wave structural composite with intelligent thermal-induced shape memory 884 effect and synergistically enhanced mechanical properties. Composites Part A: Applied Science and 3.8 35 Manufacturing, 2022, 158, 106946. Ionogelâ€Based Membranes for Safe Lithium/Sodium Batteries. Advanced Materials, 2022, 34, e2200945. 11.1 Roadmap for flexible solid-state aqueous batteries: From materials engineering and architectures 886 14.8 30 design to mechanical characterizations. Materials Science and Engineering Reports, 2022, 148, 100671. A Narrow Bandgap, Isocyanideâ€Based Coordination Polymer Framework for Microâ€Supercapacitors with 1.1 AC Line $\hat{a}\in Filtering$ Performance. Macromolecular Chemistry and Physics, 2022, 223, . Electrochemically co-deposited WO3-V2O5 composites for electrochromic energy storage 889 2.6 27 applications. Electrochimica Acta, 2022, 422, 140340. Enhancement of polypyrrole nanotubes stability by gold nanoparticles for the construction of 890 flexible solid-state supercapacitors. Journal of Electroanalytical Chemistry, 2022, 911, 116212. Highly stable binary composite of nickel silver sulfide (<scp> NiAg ₂ S </scp>) synthesized using the hydrothermal approach for highâ€performance supercapattery applications. International 891 2.2 37 Journal of Energy Research, 2022, 46, 11346-11358. Ultrafast Electrochemical Capacitors with Carbon Related Materials as Electrodes for AC Line 892 1.7 Filtering. Chemistry - A European Journal, 2022, 28, . Construction of doped-rare earth (Ce, Eu, Sm, Gd) WO3 porous nanofilm for superior electrochromic 893 2.6 16 and energy storage windows. Electrochimica Acta, 2022, 412, 140099. Three-dimensional ordered and porous Ti3C2Tx@Chitosan film enabled by self-assembly strategy for 894 high-rate pseudocapacitive energy storage. Chemical Engineering Journal, 2022, 442, 136255. Lattice engineering exfoliation-restacking route for 2D layered double hydroxide hybridized with 0D 895 polyoxotungstate anions: Cathode for hybrid asymmetric supercapacitors. Energy Storage Materials, 9.5 24 2022, 48, 101-113. An overview of recent progress in nanostructured carbon-based supercapacitor electrodes: From 896 5.4 168 zero to bi-dimensional materials. Carbon, 2022, 193, 298-338.

#	Article	IF	CITATIONS
897	A wearable All-Solid-State supercapacitor with extremely high stability based on 2D Co-HCF/GO. Applied Surface Science, 2022, 586, 152739.	3.1	12
898	Recent trends in electrolytes for supercapacitors. Journal of Energy Storage, 2022, 50, 104222.	3.9	90
899	Waste cigarette butt-derived B, N doped bifunctional hierarchical mesoporous carbon for supercapacitor and oxygen reduction reaction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643, 128775.	2.3	7
900	Co9S8@MnO2 core–shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor. Chemical Engineering Journal, 2022, 437, 135494.	6.6	75
901	A promising Ni-Fe double hydroxide fiber electrode for application of flexible woven-supercapacitor and wastewater decolorization. Journal of Alloys and Compounds, 2022, 908, 164616.	2.8	3
902	SILAR synthesized dysprosium selenide (Dy2Se3) thin films for hybrid electrochemical capacitors. Synthetic Metals, 2022, 287, 117075.	2.1	10
903	Sandwich-like high-load MXene/polyaniline film electrodes with ultrahigh volumetric capacitance for flexible supercapacitors. Journal of Colloid and Interface Science, 2022, 620, 35-46.	5.0	27
904	Recent Advances in Sustainable Wearable Energy Devices with Nanoscale Materials and Macroscale Structures. Advanced Functional Materials, 2022, 32, .	7.8	43
905	Ions Transport in Electrochemical Energy Storage Devices at Low Temperatures. Advanced Functional Materials, 2022, 32, .	7.8	24
906	Triboelectric Nanogenerator Tattoos Enabled by Epidermal Electronic Technologies. Advanced Functional Materials, 2022, 32, .	7.8	25
907	Facile Synthesis and Characterization of the Mn-MOF Electrode Material for Flexible Supercapacitors. Journal of Electrochemical Energy Conversion and Storage, 2022, 19, .	1.1	4
908	Origins of strain localization in a silver-based flexible ink under tensile load. Flexible and Printed Electronics, 2021, 6, 045017.	1.5	0
909	Iron Tungsten Nanorods Electrode with High Capacitance: An Extraordinary Cycling Stability for Durable Aqueous Supercapacitors. Energy & Fuels, 2022, 36, 618-625.	2.5	5
910	Recent Advances on Polyoxometalateâ€Based Ionâ€Conducting Electrolytes for Energyâ€Related Devices. Energy and Environmental Materials, 2023, 6, .	7.3	20
911	Continuously Reinforced Carbon Nanotube Film Sea-Cucumber-like Polyaniline Nanocomposites for Flexible Self-Supporting Energy-Storage Electrode Materials. Nanomaterials, 2022, 12, 8.	1.9	5
912	Nanocomposite Polymer Electrolytes for Zinc and Magnesium Batteries: From Synthetic to Biopolymers. Polymers, 2021, 13, 4284.	2.0	7
913	Stretchable Thermoelectric-Based Self-Powered Dual-Parameter Sensors with Decoupled Temperature and Strain Sensing. ACS Applied Materials & amp; Interfaces, 2021, 13, 60498-60507.	4.0	59
914	Compressible Zn–Air Batteries Based on Metal–Organic Frameworks Nanoflakeâ€Assembled Carbon Frameworks for Portable Motion and Temperature Monitors. Advanced Energy and Sustainability Research, 0, , 2200014.	2.8	10

#	Article	IF	CITATIONS
915	Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes. Advanced Materials, 2022, 34, e2202380.	11.1	33
916	Recent progress in the allâ€solidâ€state flexible supercapacitors. SmartMat, 2022, 3, 349-383.	6.4	21
917	Recent advances in solidâ€ s tate supercapacitors: From emerging materials to advanced applications. International Journal of Energy Research, 2022, 46, 10389-10452.	2.2	16
918	Performance Enhancement of SnS/ <i>h</i> -BN Heterostructure p-Type FET via the Thermodynamically Predicted Surface Oxide Conversion Method. ACS Applied Materials & Interfaces, 2022, 14, 19928-19937.	4.0	4
919	Recent Advances in Carbon and Metal Based Supramolecular Technology for Supercapacitor Applications. Chemical Record, 2022, 22, e202200041.	2.9	26
920	Semiâ€Crystalline Polypyrrole with Enhanced Electrochemical Properties Enabled by Air–Water Interface Confined Polymerization. Macromolecular Chemistry and Physics, 2022, 223, .	1.1	1
921	Recent trend of CeO2-based nanocomposites electrode in supercapacitor: A review on energy storage applications. Journal of Energy Storage, 2022, 50, 104643.	3.9	69
922	MnO2 Films deposited on CuO nanomaterials as electrode materials for supercapacitors. Journal of Alloys and Compounds, 2022, 911, 165003.	2.8	8
923	An Assessment of MXenes through Scanning Probe Microscopy. Small Methods, 2022, 6, e2101599.	4.6	3
924	Flexible, Wearable and Fully-printed Smart Patch for pH and Hydration Sensing in Wounds. International Journal of Bioprinting, 2021, 8, 447.	1.7	10
925	N, P Dual Doped Foamy-Like Carbons with Abundant Defect Sites for Zinc Ion Hybrid Capacitors. SSRN Electronic Journal, 0, , .	0.4	0
926	Lignin-Inspired Hydrogel Matrixes with Adhesion and Toughness for All-Hydrogel Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
927	Subâ€1 nm MoC Quantum Dots Decorating Nâ€Doped Graphene as Advanced Electrocatalysts of Flexible Hybrid Alkali–Acid Znâ€Quinone Battery. Small, 2022, , 2201144.	5.2	2
928	Ionic liquid gel polymer electrolytes for flexible supercapacitors: Challenges and prospects. Current Opinion in Electrochemistry, 2022, 35, 101046.	2.5	22
929	MXene-based film electrode and all-round hydrogel electrolyte for flexible all-solid supercapacitor with extremely low working temperature. Cell Reports Physical Science, 2022, 3, 100893.	2.8	32
930	Multiterpyridyl Ligand/Cadmium(II) Coordination Polymer Nanosheets for Recoverable Luminescent Sensors. ACS Applied Nano Materials, 2022, 5, 7113-7122.	2.4	2
931	Supramolecular Gelâ€Derived Highly Efficient Bifunctional Catalysts for Omnidirectionally Stretchable Zn–Air Batteries with Extreme Environmental Adaptability. Advanced Science, 2022, 9, e2200753.	5.6	11
932	Biopolymer-based gel electrolytes with an ionic liquid for high-voltage electrochemical capacitors. Electrochemistry Communications, 2022, 138, 107282.	2.3	13

#	Article	IF	CITATIONS
933	Multifunctional Textile Electronic with Sensing, Energy Storing, and Electrothermal Heating Capabilities. ACS Applied Materials & Interfaces, 2022, 14, 22497-22509.	4.0	11
934	Porosity Tunable Poly(Lactic Acid)-Based Composite Gel Polymer Electrolyte with High Electrolyte Uptake for Quasi-Solid-State Supercapacitors. Polymers, 2022, 14, 1881.	2.0	5
935	A self-healing nanocomposite hydrogel electrolyte for rechargeable aqueous Zn-MnO2 battery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647, 129195.	2.3	7
936	A flexible and highly conductive quasi-solid single-ion polymer electrolyte for high performance Li-metal batteries. Journal of Power Sources, 2022, 537, 231478.	4.0	11
937	Refurbished carbon materials from waste supercapacitors as industrial-grade electrodes: Empowering electronic waste. Energy Storage Materials, 2022, 49, 564-574.	9.5	15
938	One-step electropolymerized thieno[3,2-b]thiophene-based bifunctional electrode with controlled color conversion for electrochromic energy storage application. Chemical Engineering Journal, 2022, 445, 136731.	6.6	13
939	Ultrasimple air-annealed pure graphene oxide film for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 622, 960-970.	5.0	7
940	Hierarchical nickel–cobalt sulfide/niobium pentoxide decorated green carbon spheres toward efficient energy storage. Sustainable Energy and Fuels, 2022, 6, 3042-3055.	2.5	9
941	Ultrasonically dispersed multi-composite strategy of NiCo2S4/Halloysite nanotubes/carbon: An efficient solid-state hybrid supercapacitor and hydrogen evolution reaction material. Ceramics International, 2022, 48, 25020-25033.	2.3	4
942	Bio-nanomaterial for Renewable Energy Storage Applications. ACS Symposium Series, 0, , 91-127.	0.5	9
943	Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. Journal of Bioresources and Bioproducts, 2022, 7, 245-269.	11.8	120
944	2D-2D nanohybrids of Ni–Cr-layered double hydroxide and graphene oxide nanosheets: Electrode for hybrid asymmetric supercapacitors. Electrochimica Acta, 2022, 424, 140615.	2.6	17
945	Hydroxylate Black-Phosphorus Promote the Supercapacitive Performances of Polyaniline by 200%: From Theoretical Prediction to Prototype Device. SSRN Electronic Journal, 0, , .	0.4	0
946	Design and Analysis of Core–Shell Structure of Ni@Ni(Oh)2 and Co-Doped Ni@Ni(Oh)2 for Supercapacitor Application. SSRN Electronic Journal, 0, , .	0.4	1
947	Self-Supporting Covalent Conjugation Electrodes with in Situ Building Aniline on Carbon Fibers and Reduced Graphene Oxide for Stable Flexible Supercapacitors. SSRN Electronic Journal, 0, , .	0.4	0
948	Sophora-like Nickel–Cobalt Sulfide and Carbon Nanotube Composites in Carbonized Wood Slice Electrodes for All-Solid-State Supercapacitors. ACS Applied Energy Materials, 2022, 5, 7400-7407.	2.5	25
949	Oneâ€step hydrothermal method produced all graphene fiber electrode for highâ€performance supercapacitor. International Journal of Energy Research, 2022, 46, 14105-14115.	2.2	3
950	<scp>Energyâ€Dissipative</scp> and Soften Resistant Hydrogels Based on Chitosan Physical Network: From Construction to Application. Chinese Journal of Chemistry, 2022, 40, 2118-2134.	2.6	11

ARTICLE IF CITATIONS # Stretchable supercapacitor based on a hierarchical PPy/CNT electrode and hybrid hydrogel 951 25 electrolyte with a wide operating temperature., 2022, 4, 527-538. Bismuth, a Previously Lessâ€studied Element, Is Bursting into New Hotspots. ChemistrySelect, 2022, 7, . Gel electrolytes and aerogel electrodes from ILs-based emulsions for supercapacitor applications. 953 6.6 14 Chemical Engineering Journal, 2022, 446, 137328. High energy density lithium-ion capacitor enabled by nitrogen-doped amorphous carbon linked hierarchically porous Co3O4 nanofibers anode and porous carbon polyhedron cathode. Journal of Alloys and Compounds, 2022, 918, 165726. 954 2.8 Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors. 955 2.2 32 APL Materials, 2022, 10, . Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting 8.2 39 hydrogel for energy harvesting and tactile sensing. Nano Energy, 2022, 99, 107442. Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes 957 3.1 20 for high-performance solid-state supercapacitors. Applied Surface Science, 2022, 598, 153765. Syntheses and electronic structure engineering of transition metal nitrides for supercapacitor 958 5.2 40 applications. Journal of Materials Chemistry A, 2022, 10, 14655-14673. 959 Graphene/polymer composite application on supercapacitors., 2022, 583-610. 0 Ionic liquid-based quasi-solid-state electrolyte for supercapacitor application. Journal of Materials 1.1 Science: Materials in Electronics, 0, , . Cellulose Nanomaterials Based Flexible Electrodes for All-Solid-State Supercapacitors. Current 961 0.2 2 Chinese Science, 2022, 2, 460-471. Grapeâ€clustered polyaniline grafted with carbon nanotube woven film as a flexible electrode material for supercapacitors. Journal of Applied Polymer Science, 0, , . 1.3 Autonomous Self-Healing of Highly Stretchable Supercapacitors at All Climates. Nano Letters, 2022, 963 4.5 15 22, 6444-6453. Self-Healing Materials-Based Electronic Skin: Mechanism, Development and Applications. Gels, 2022, 8, 964 2.1 356. Programmable assembly of multiple donor-acceptor systems in metal-organic framework for 965 5.010 heterogeneity manipulation and functions integration. Matter, 2022, 5, 2918-2932. Enhanced Electrochemical Matching between NiCo₂O₄/Reduced Graphene Oxide and Polymer Cement Electrolyte for Structural Supercapacitor. Journal of the Electrochemical Society, 2022, 169, 060528. Construction of threeâ€dimensional marigold flowerâ€shaped 967 Ni₃V₂O₈ for efficient solidâ \in state supercapacitor applications. 2.310 Energy Storage, 2022, 4, . Janus nanoribbon-in-ribbon embedded structure microbelts and array with luminescent-conductive-magnetic polyfunction. European Polymer Journal, 2022, 175, 111361.

#	Article	IF	CITATIONS
969	Recent development and prospective of carbonaceous material, conducting polymer and their composite electrode materials for supercapacitor — A review. Journal of Energy Storage, 2022, 52, 104937.	3.9	61
970	Polypyrrole/SnCl2 modified bacterial cellulose electrodes with high areal capacitance for flexible supercapacitors. Carbohydrate Polymers, 2022, 292, 119679.	5.1	19
971	Weavable and wearable strip-shaped supercapacitors from bamboo cellulose nanofibers. Industrial Crops and Products, 2022, 186, 115174.	2.5	2
972	In situ fabrication of dry/gel bilayer Ti3C2Tx film for high-rate microsupercapacitors. Chemical Communications, 0, , .	2.2	0
973	Ultra-thin flexible paper of BNNT–CNF/ZnO ternary nanostructure for enhanced solid-state supercapacitor and piezoelectric response. Journal of Materials Chemistry A, 2022, 10, 15580-15594.	5.2	19
974	Batteries and charge storage devices based on π-conjugated polymeric materials. , 2022, , 1-53.		0
975	Conjugated polymer-based electrodes for flexible all-solid-state supercapacitors. , 2022, , 243-281.		0
976	Selfâ€Healing and Shapeâ€Editable Wearable Supercapacitors Based on Highly Stretchable Hydrogel Electrolytes. Advanced Science, 2022, 9, .	5.6	41
977	Binderâ€free ternary transition metal sulfides for energy storage applications. International Journal of Energy Research, 2022, 46, 15696-15708.	2.2	1
978	High voltage and self-healing zwitterionic double-network hydrogels as electrolyte for zinc-ion hybrid supercapacitor/battery. International Journal of Hydrogen Energy, 2022, 47, 23909-23918.	3.8	15
979	Ordered Interface Engineering Enabled High-Performance Ti ₃ C ₂ T _{<i>x</i>} MXene Fiber-Based Supercapacitors. Energy & Fuels, 2022, 36, 7898-7907.	2.5	11
980	Facile hydrothermal synthesis of zinc sulfide nanowires for high-performance asymmetric supercapacitor. Journal of Saudi Chemical Society, 2022, 26, 101514.	2.4	29
981	Effect of Hydrothermal Method Temperature on the Spherical Flowerlike Nanostructures NiCo(OH)4-NiO. Nanomaterials, 2022, 12, 2276.	1.9	3
982	3D printed solid-state composite electrodes and electrolytes for high-energy-density flexible microsupercapacitors. Journal of Energy Storage, 2022, 53, 105206.	3.9	3
983	A novel flexible dual-functional energy storage device with switchability based on NiCo2S4-x. Journal of Power Sources, 2022, 543, 231826.	4.0	4
984	A Highly integrated flexible photo-rechargeable system based on stable ultrahigh-rate quasi-solid-state zinc-ion micro-batteries and perovskite solar cells. Energy Storage Materials, 2022, 51, 239-248.	9.5	29
985	Lignin-containing hydrogel matrices with enhanced adhesion and toughness for all-hydrogel supercapacitors. Chemical Engineering Journal, 2022, 450, 138025.	6.6	22
986	"Integrated Interlocking―architecture improving cycle stability of supercapacitors based on Self-Supporting electrodes. Chemical Engineering Journal, 2022, 450, 137918.	6.6	4

#	Article	IF	CITATIONS
987	N, P dual doped foamy-like carbons with abundant defect sites for zinc ion hybrid capacitors. Chemical Engineering Journal, 2022, 450, 137919.	6.6	53
988	Metal–Organic Framework-Assisted Synthesis of Three-Dimensional ZnCoS Effloresced Nanopillars@CNT Paper for High-Performance Flexible All-Solid-State Battery-Type Supercapacitors with Ultrahigh Specific Capacitance. ACS Applied Energy Materials, 2022, 5, 8262-8272.	2.5	6
989	Effects of Pore Structure and Carbon Loading on Solid Capacitive Devices at Low Temperatures. Journal of the Electrochemical Society, 2022, 169, 070522.	1.3	1
990	Bifunctional nanoparticles decorated <scp> Ni _{1â€x} Mn _x Co ₂ O ₄ anoflakesâ€ike electrodes for supercapacitor and overall water splitting. International Journal of Energy Research, 2022, 46, 16693-16715.</scp>	2.2	3
991	Char of Tagetes erecta (African marigold) flower as a potential electrode material for supercapacitors. Journal of Electrochemical Science and Engineering, 0, , .	1.6	0
993	Facile fabrication of high performance zwitterionic P(<scp> NVP <i> o</i> â€6PE </scp>)/polyvinyl alcohol hydrogel polyelectrolyte for capacitor. Journal of Applied Polymer Science, 0, , .	1.3	0
994	3D-Printed Ultralight, Superelastic Reduced Graphene Oxide/Manganese Dioxide Foam for High-Performance Compressible Supercapacitors. Industrial & Engineering Chemistry Research, 2022, 61, 10922-10930.	1.8	1
995	Graphene-Based Fiber Supercapacitors. Accounts of Materials Research, 2022, 3, 922-934.	5.9	6
996	Functional Fiber Materials to Smart Fiber Devices. Chemical Reviews, 2023, 123, 613-662.	23.0	69
997	Three-Dimensional Printed Carbon Black/PDMS Composite Flexible Strain Sensor for Human Motion Monitoring. Micromachines, 2022, 13, 1247.	1.4	8
998	Chemoselective Synthesis of Tyrosineâ€Based Polymers and Comparison of Their Thermal, Kinetic, and Dielectric Properties. ChemistrySelect, 2022, 7, .	0.7	5
999	A Multifunctional Organogel Polyelectrolyte for Flexible Supercapacitors. ACS Applied Energy Materials, 2022, 5, 9303-9308.	2.5	5
1000	Flexible thermoelectrics based on ductile semiconductors. Science, 2022, 377, 854-858.	6.0	134
1001	Redox-active conjugated microporous polymers as electron-accepting organic pseudocapacitor electrode materials for flexible energy storage. Science China Chemistry, 2022, 65, 1767-1774.	4.2	13
1002	Tough, anti-freezing and conductive ionic hydrogels. NPG Asia Materials, 2022, 14, .	3.8	22
1003	All-Solid-State Supercapacitor Based on Advanced 2D Vanadium Disulfide/Black Phosphorus Hybrids for Wearable Electronics. ACS Applied Energy Materials, 2022, 5, 10315-10327.	2.5	16
1004	Electrode Material of PVA/PANI/GOâ€PANI Hybrid Hydrogels through Secondary Induced Assembly In Situ Polymerization Method for Flexible Supercapacitors. Macromolecular Materials and Engineering, 2022, 307, .	1.7	6
1005	Spatial-Interleaving Graphene Supercapacitor with High Area Energy Density and Mechanical Flexibility. ACS Nano, 2022, 16, 12813-12821.	7.3	31

		CITATION F	Report	
#	Article		IF	CITATIONS
1006	Synthesis of porous biocarbon supported Ni3S4/CeO2 nanocomposite as high-efficient materials for asymmetric supercapacitors. Journal of Saudi Chemical Society, 2022, 26, 2	electrode 101530.	2.4	9
1007	Three-dimensional core-shell niobium-metal organic framework@carbon nanofiber mat a binder-free positive electrode for asymmetric supercapacitor. Journal of Energy Storage, 105484.	s a 2022, 55,	3.9	14
1008	Molten-salt directed mesopore engineering of carbon nanotubes for energetic quasi-soli supercapacitors. Carbon, 2022, 200, 75-83.	d-state	5.4	19
1009	Electrode based on porous MXene nanosheets for high-performance supercapacitor. Jou and Compounds, 2022, 924, 166647.	rnal of Alloys	2.8	8
1010	Temperature-tolerant flexible supercapacitor integrated with a strain sensor using an organohydrogel for wearable electronics. Chemical Engineering Journal, 2022, 450, 138	379.	6.6	36
1011	3D printable conductive polymer hydrogels with ultra-high conductivity and superior str for free-standing elastic all-gel supercapacitors. Chemical Engineering Journal, 2022, 450	etchability), 138311.	6.6	37
1012	Engineering oxygen functional groups in reduced graphene oxide for use in <scp>highâ€performance</scp> flexible supercapacitors. International Journal of Energy 46, 21884-21893.	rResearch, 2022,	2.2	4
1013	Matrix dominated positive/negative piezoresistance in conducting polymer nanocomposition reinforced by CNT foam. Polymer, 2022, 257, 125288.	sites	1.8	11
1014	Carboxymethyl cellulose assisted PEDOT in polyacrylamide hydrogel for high performand supercapacitors and self-powered sensing system. European Polymer Journal, 2022, 179	ce , 111563.	2.6	13
1015	High areal capacitance and long cycling stability in asymmetric supercapacitors using bin hierarchical nanostructured Ni3S2/MnO2 hybrid electrodes. Journal of Energy Storage, 2 105723.	nder-free, 022, 55,	3.9	16
1016	Zirconia-decorated V2CT MXene electrodes for supercapacitors. Journal of Energy Stora 105721.	ge, 2022, 55,	3.9	17
1017	Carboxymethyl cellulose assisted polyaniline in conductive hydrogels for high-performar self-powered strain sensors. Carbohydrate Polymers, 2022, 298, 120060.	ce	5.1	32
1018	The surface functional modification of Ti3C2Tx MXene by phosphorus doping and its ap quasi-solid state flexible supercapacitor. Applied Surface Science, 2022, 606, 154817.	plication in	3.1	20
1019	3D printable conductive ionic hydrogels with self-adhesion performance for strain sensir of Materials Chemistry C, 2022, 10, 14288-14295.	ıg. Journal	2.7	7
1020	Vertical Integration of Multi-Electrodes Inside a Single Sheet of Paper and the Control of Equivalent Circuit for High-Density Flexible Supercapacitors. SSRN Electronic Journal, 0,	the	0.4	0
1021	Wearable Supercapacitors. Engergy Systems in Electrical Engineering, 2022, , 285-325.		0.5	0
1022	Printed Electronics Applications: Energy Conversion and Storage Devices. , 2022, , 445-5	515.		0
1023	Assembly mechanism and antistatic properties of wool fabrics with superfine graphene of Engineered Fibers and Fabrics, 2022, 17, 155892502211254.	oxide. Journal	0.5	0

#	Article	IF	CITATIONS
1024	Chitin as a Universal and Sustainable Electrode Binder for Electrochemical Capacitors. SSRN Electronic Journal, 0, , .	0.4	1
1025	The High-Performance Electrochromic Energy Storage Device System Based on Polyoxometalates and Mno2 Films. SSRN Electronic Journal, 0, , .	0.4	0
1026	Flexible Strain Sensor Based on 3D Electrospun Carbonized Sponge. Computers, Materials and Continua, 2022, 73, 4971-4980.	1.5	0
1027	Flash Nitrogen-Doped Graphene for High-Rate Supercapacitors. , 2022, 4, 1863-1871.		23
1028	Enhancing the interfacial binding strength between modular stretchable electronic components. National Science Review, 2023, 10, .	4.6	12
1029	Paper-Derived Millimeter-Thick Yarn Supercapacitors Enabling High Volumetric Energy Density. ACS Applied Materials & Interfaces, 2022, 14, 42671-42682.	4.0	11
1030	Flexible Reflective Electrochromic Devices Based on V ₂ O ₅ -Methyl Cellulose Composite Films. ACS Applied Electronic Materials, 2022, 4, 4724-4732.	2.0	8
1031	Black Phosphorus/Carbon Nanoframes for Efficient Flexible All-Solid-State Supercapacitor. Nanomaterials, 2022, 12, 3311.	1.9	1
1032	Stable Three-Dimensional PEDOT Network Construction for Electrochromic-Supercapacitor Dual Functional Application. ACS Applied Energy Materials, 2022, 5, 12315-12323.	2.5	11
1033	Recent advances in flexible supercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 2627-2658.	1.2	11
1034	An overview of recent progress in the development of flexible electrochromic devices. Nano Materials Science, 2023, 5, 369-391.	3.9	6
1035	Flexible and Conductive Polymer Threads for Efficient Fiber-Shaped Supercapacitors <i>via</i> Vapor Copolymerization. ACS Omega, 2022, 7, 31628-31637.	1.6	4
1036	Obtaining interactions among science, technology, and research policy for developing an innovation strategy: A case study of supercapacitors. Heliyon, 2022, 8, e10721.	1.4	1
1037	Reliability test of fully printed and flexible organic electrolyte-based supercapacitor. Flexible and Printed Electronics, 2022, 7, 035023.	1.5	0
1038	Hybrid Ionogel Electrolytes for Advanced Lithium Secondary Batteries: Developments and Challenges. Chemistry - an Asian Journal, 2022, 17, .	1.7	5
1040	Electrochemical performance of transition metal sulfide by employing different synthesis techniques for hybrid batteries. International Journal of Energy Research, 2022, 46, 22883-22893.	2.2	7
1041	Flexible solid-state supercapacitor integrated by methanesulfonic acid/polyvinyl acetate hydrogel and Ti3C2T. Energy Storage Materials, 2023, 54, 164-171.	9.5	22
1042	Nâ€doped oxygen vacancyâ€rich <scp> NiCo ₂ O ₄ </scp> nanoarrays for supercapacitor and nonâ€enzymatic glucose sensing. International Journal of Energy Research, 2022, 46, 24501-24515.	2.2	3

#	Article	IF	CITATIONS
1043	Nitrogen-doped carbon layer on cellulose derived free-standing carbon paper for high-rate supercapacitors. Applied Surface Science, 2023, 608, 155144.	3.1	56
1044	Soaking-free and self-healing hydrogel for wearable zinc-ion batteries. Chemical Engineering Journal, 2023, 452, 139605.	6.6	36
1045	Self-healing of reversibly cross-linked thermoplastic vulcanizates. Materials Chemistry and Physics, 2022, 292, 126804.	2.0	3
1046	Sponge-like 3D flower-like core-shell heterostructure CuCo2O4@CuCo2S4 as advanced electrodes for high-performance supercapacitor. Journal of Power Sources, 2022, 551, 232186.	4.0	20
1047	Hierarchical porous metal–organic gels and derived materials: from fundamentals to potential applications. Chemical Society Reviews, 2022, 51, 9068-9126.	18.7	30
1048	Status review of nickel phosphides for hybrid supercapacitors. Nanoscale, 2022, 14, 16731-16748.	2.8	13
1049	Application of Bio-Profiles of Chemical Reactions for Analysis of Solvent Impact on Overall Toxicity of C–C Cross-Coupling Process. Doklady Chemistry, 2022, 504, 106-117.	0.2	3
1050	Violet Phosphorus Nanosheet: A Biocompatible and Stable Platform for Stimuliâ€Responsive Multimodal Cancer Phototherapy. Advanced Healthcare Materials, 2023, 12, .	3.9	5
1051	Flexible Solid Supercapacitors of Novel Nanostructured Electrodes Outperform Most Supercapacitors. ACS Omega, 2022, 7, 37825-37833.	1.6	11
1052	Comparative Study of Carbon Nanotube Composites as Capacitive and Piezoresistive Pressure Sensors under Varying Conditions. Materials, 2022, 15, 7637.	1.3	10
1053	Recent developments of hybrid metal chalcogenides for high performance supercapacitors. Materials Today: Proceedings, 2023, 73, 274-285.	0.9	11
1054	Enhanced the performance of zinc strontium sulfide-based supercapattery device with the polyaniline doped activated carbon. Journal of Solid State Electrochemistry, 2023, 27, 125-137.	1.2	25
1055	Graphene-Based Metal–Organic Framework Hybrids for Applications in Catalysis, Environmental, and Energy Technologies. Chemical Reviews, 2022, 122, 17241-17338.	23.0	81
1056	Vertical integration of multi-electrodes inside a single sheet of paper and the control of the equivalent circuit for high-density flexible supercapacitors. Chemical Engineering Journal, 2023, 454, 140117.	6.6	4
1057	3D Printed Supercapacitor: Techniques, Materials, Designs, and Applications. Advanced Functional Materials, 2023, 33, .	7.8	32
1058	Flexible and wearable fuel cells: A review of configurations and applications. Journal of Power Sources, 2022, 551, 232190.	4.0	19
1059	Hydroxylate black-phosphorus promote the supercapacitive performances of polyaniline by 200%: From theoretical prediction to prototype device. Electrochimica Acta, 2022, 434, 141327.	2.6	0
1060	Interconnected plate-like NiCo2O4 microstructures for supercapacitor application. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2023, 287, 116072.	1.7	18

		CITATION REPO	ORT	
#	Article	I	IF	CITATIONS
1061	Smart current collector for high-energy-density and high-contrast electrochromic supercapac toward intelligent and wearable power application. Energy Storage Materials, 2023, 54, 254-2	tors 265.	9.5	24
1062	A binder-free facile synthetic approach for amorphous, hydrous nickel copper phosphate thin electrode preparation and its application as a highly stable cathode for hybrid asymmetric supercapacitors. Sustainable Energy and Fuels, 2022, 6, 5608-5620.	film	2.5	3
1063	Flexible and stretchable transparent conductive graphene-based electrodes for emerging wea electronics. Carbon, 2023, 202, 495-527.	rable	5.4	54
1064	A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. Journ Colloid and Interface Science, 2023, 631, 239-248.	nal of	5.0	19
1065	Ti _{<i>n</i>} O _{2<i>n</i>–1} /MXene Hierarchical Bifunctional Catalys on Graphene Aerogel toward Flexible and High-Energy Li–S Batteries. ACS Nano, 2022, 16,	t Anchored 19133-19144.	7.3	22
1066	Bioinspired and Bioderived Aqueous Electrocatalysis. Chemical Reviews, 2023, 123, 2311-234	⊦8.	23.0	22
1067	Polyoxometalate-MnO2 film structure with bifunctional electrochromic and energy storage properties. Journal of Materiomics, 2023, 9, 269-278.	:	2.8	5
1068	Investigation of Mechanical Properties of Woven Hybrid Metallic Fabric. Proceedings in Engin Mechanics, 2023, , 115-133.	eering	0.3	0
1069	Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supercapac Chemical Engineering Journal, 2023, 454, 140386.	tors.	6.6	3
1070	Fabrication, properties, and performance of graphene-based textile fabrics for supercapacitor applications: A review. Journal of Energy Storage, 2022, 56, 105988.		3.9	12
1071	In-situ grown of FeCo2O4 @ 2D-Carbyne coated nickel foam - A newer nanohybrid electrode performance asymmetric supercapacitors. Journal of Energy Storage, 2022, 56, 105943.	for high	3.9	9
1072	Direct mask-free fabrication of patterned hierarchical graphene electrode for on-chip micro-supercapacitors. Journal of Materials Science and Technology, 2023, 143, 12-19.		5.6	6
1073	Construction of CoMoO4 nanosheets arrays modified by Ti3C2Tx MXene and their enhanced storage performance for hybrid supercapacitor. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 658, 130637.	charge	2.3	5
1074	Synergistic effect of two-dimensional additives on carbon nanotube film electrodes towards high-performance all-solid-state flexible supercapacitors. Journal of Energy Storage, 2023, 57,	106257.	3.9	6
1075	In-situ polymerization of PANI on hydrogel electrolyte enabling all-in-one supercapacitors mechanically stable at low temperatures. Chemical Engineering Journal, 2023, 455, 140949.		6.6	11
1076	Recent advances in polyaniline-based micro-supercapacitors. Materials Horizons, 2023, 10, 62	70-697.	6.4	13
1077	Recent advances in conductive hydrogels: classifications, properties, and applications. Chemi Society Reviews, 2023, 52, 473-509.	cal	18.7	125
1078	Frontiers and recent developments on supercapacitor's materials, design, and applications: To and power system applications. Journal of Energy Storage, 2023, 58, 106104.	ansport	3.9	32

#	Article	IF	CITATIONS
1079	Regulating the flower-like NiCo2S4/Zn0.76Co0.24S heterojunction through microwave heating for supercapacitors with superior cycling performance. Journal of Energy Storage, 2023, 58, 106439.	3.9	6
1080	Rapid preparation of nickel fluoride motif via solution-free plasma route for high-energy aqueous hybrid supercapacitor. Chemical Engineering Journal, 2023, 455, 140764.	6.6	5
1081	Transition metal pyrophosphate (MxP2O7): A new arrival in hybrid supercapacitors. Chemical Engineering Journal, 2023, 455, 140639.	6.6	5
1082	Advanced Formulations Based on Poly(ionic liquid) Materials for Additive Manufacturing. Polymers, 2022, 14, 5121.	2.0	8
1083	A Novel Synthesized 1D Nanobelt-like Cobalt Phosphate Electrode Material for Excellent Supercapacitor Applications. Materials, 2022, 15, 8235.	1.3	6
1084	Flexible piezoelectric coatings on textiles for energy harvesting and autonomous sensing applications: a review. Journal of Coatings Technology Research, 2023, 20, 141-172.	1.2	4
1085	Rational Design of Solid Polymer Electrolyte Based on Ionic Liquid Monomer for Supercapacitor Applications via Molecular Dynamics Study. Polymers, 2022, 14, 5106.	2.0	0
1086	Nonâ€Monotonic Capacitance Change of Layered Ti ₃ C ₂ T _x MXene Film Structures under Increasing Compressive Stress. Advanced Functional Materials, 2023, 33, .	7.8	1
1087	Research in Electrochromic Supercapacitor $\hat{a} \in \mathcal{C}$ A Focused Review. Batteries and Supercaps, 2023, 6, .	2.4	12
1088	Incorporation of carbon nanotubes in sulfide-based binary composite to enhance the storage performance of supercapattery devices. Journal of Applied Electrochemistry, 2023, 53, 949-962.	1.5	21
1089	Incorporating Conducting PEDOT between Graphene Films for Stable Capacitive Energy Storage. ACS Applied Nano Materials, 2022, 5, 19006-19016.	2.4	3
1090	Application and Progress of Confinement Synthesis Strategy in Electrochemical Energy Storage. Transactions of Tianjin University, 2023, 29, 151-187.	3.3	4
1091	Redox-active graphene/polypyrrole composite aerogel with high-performance capacitive behavior for flexible supercapacitor. Diamond and Related Materials, 2023, 132, 109646.	1.8	4
1092	Carbon Nanomaterialsâ€Enabled Highâ€Performance Supercapacitors: A Review. Advanced Energy and Sustainability Research, 2023, 4, .	2.8	2
1093	Understanding resistance increase in composite inks under monotonic and cyclic stretching. Flexible and Printed Electronics, 2022, 7, 045010.	1.5	1
1094	Synergistic Electric and Thermal Effects of Electrochromic Devices. Micromachines, 2022, 13, 2187.	1.4	3
1095	Polyoxovanadate-Based Cyclomatrix Polyphosphazene Microspheres as Efficient Heterogeneous Catalysts for the Selective Oxidation and Desulfurization of Sulfides. Molecules, 2022, 27, 8560.	1.7	0
1096	Perspective—Supercapacitor-Powered Flexible Wearable Strain Sensors. , 2023, 2, 017002.		16

			_
#	ARTICLE	IF	CITATIONS
1097	Stretchable, transparent, self-adhesive, anti-freezing and ionic conductive nanocomposite hydrogels for flexible strain sensors. European Polymer Journal, 2023, 186, 111824.	2.6	7
1098	A high-strength, environmentally stable, and recyclable starch/PVA organohydrogel electrolyte for flexible all-solid-state supercapacitor. Carbohydrate Polymers, 2023, 306, 120587.	5.1	20
1099	Strengths, weaknesses, opportunities, and threats (SWOT) analysis of supercapacitors: A review. Journal of Energy Chemistry, 2023, 79, 611-638.	7.1	33
1100	Use of an [EMIM][OAc]/GVL-based organic electrolyte solvent to engineer chitosan into a nanocomposite organic ionogel electrolyte for flexible supercapacitors. Green Chemistry, 2023, 25, 3046-3056.	4.6	13
1101	Wearable and Flexible All‣olid‣tate Supercapacitor Based on MXene and Chitin. Energy Technology, 2023, 11, .	1.8	7
1102	Recent developments in MoS2-based flexible supercapacitors. Materials Today Chemistry, 2023, 27, 101333.	1.7	8
1103	A novel COF/MXene film electrode with fast redox kinetics for high-performance flexible supercapacitor. Chemical Engineering Journal, 2023, 458, 141434.	6.6	39
1104	Advances of Electroactive Metal–Organic Frameworks. Small, 2023, 19, .	5.2	13
1105	Recent progress on development of electrolyte and aerogel electrodes applied in supercapacitors. Journal of Power Sources, 2023, 560, 232698.	4.0	31
1106	A flexible Zn-ion capacitor based on wood derived porous carbon and polyacrylamide/cellulose nanofiber hydrogel. Industrial Crops and Products, 2023, 193, 116216.	2.5	10
1107	RuO2-decorated CsxWO3 composite nanorods as transparent photothermal negative electrode material for enhancing supercapacitor performance in acid electrolyte. Composites Part B: Engineering, 2023, 252, 110497.	5.9	3
1108	Smart multifunctional polymeric inks for supercapacitor applications. , 2023, , 429-449.		1
1109	Design strategies of covalent organic framework-based electrodes for supercapacitor application. Chemical Communications, 2023, 59, 3175-3192.	2.2	9
1110	Isoindigo–Thiophene D–A–D–Type Conjugated Polymers: Electrosynthesis and Electrochromic Performances. International Journal of Molecular Sciences, 2023, 24, 2219.	1.8	3
1111	Configurationâ€dependent stretchable allâ€solidâ€state supercapacitors and hybrid supercapacitors. , 2023, 5, .		36
1112	Multifunctional Antifreezing Organogel Polyelectrolyte for a Flexible Supercapacitor. ACS Applied Energy Materials, 2023, 6, 1501-1510.	2.5	5
1113	Shape-memory responses compared between random and aligned electrospun fibrous mats. Frontiers in Bioengineering and Biotechnology, 0, 11, .	2.0	1
1114	Starch-g-Acrylic Acid/Magnetic Nanochitin Self-Healing Ferrogels as Flexible Soft Strain Sensors. Sensors, 2023, 23, 1138.	2.1	4

#	Article	IF	Citations
1115	Research and technology on smart supercapacitors. , 2023, , 101-136.		0
1116	Activity of N–H in phenothiazine derivatives: synthesis and applications in fluoride ions sensing and electrochromism. Journal of Materials Chemistry C, 2023, 11, 2949-2956.	2.7	6
1117	Future of smart supercapacitors. , 2023, , 851-866.		1
1118	All-in-one integration of polyaniline-polyvinyl alcohol electrode/electrolyte interface for tailorable solid-state supercapacitors. Journal of Energy Storage, 2023, 61, 106701.	3.9	9
1119	Metal–organic framework and MXene-based flexible supercapacitors. , 2023, , 299-324.		0
1120	3D Printed Supercapacitors. Springer Series in Materials Science, 2023, , 143-166.	0.4	0
1121	Organic materials as polymer electrolytes for supercapacitor application. , 2023, , 365-394.		0
1122	Supercapacitor and electrochemical techniques: A brief review. Results in Chemistry, 2023, 5, 100885.	0.9	30
1123	Chemically Deposited Iron Chalcogenide-Based Carbon Composites for Supercapacitor Applications. , 2023, , 83-121.		0
1124	In-situ forming dynamic covalently crosslinked nanofibers with one-pot closed-loop recyclability. Nature Communications, 2023, 14, .	5.8	10
1125	Hybrid heterostructured Langmuir-Blodgett films based on graphene and triruthenium clusters as electrode for energy storage devices. Jcis Open, 2023, 9, 100080.	1.5	0
1126	All-in-One Configured Flexible Supercapacitor for Wide-Temperature Operation and Integrated Application. ACS Applied Energy Materials, 2023, 6, 4157-4167.	2.5	3
1127	A 2.6 V Flexible Supercapacitor Based on Al-MnO ₂ -Na ₂ SO ₄ //AC-KOH with High Specific Energy. ACS Energy Letters, 2023, 8, 2033-2041.	8.8	14
1128	Rational design of flower-like MnO ₂ /Ti ₃ C ₂ T _x composite electrode for high performance supercapacitors. Nanotechnology, 2023, 34, 255602.	1.3	1
1129	Mechanically flexible reduced graphene oxide/carbon composite films for high-performance quasi-solid-state lithium-ion capacitors. Journal of Energy Chemistry, 2023, 80, 68-76.	7.1	23
1130	3D Bode analysis of nickel pyrophosphate electrode: A key to understanding the charge storage dynamics. Electrochimica Acta, 2023, 451, 142278.	2.6	7
1131	Snake ecdysis: A potential e-material for advanced electronic technology. Nano Energy, 2023, 111, 108399.	8.2	3
1132	ZnCo-layered double hydroxides coupled polyaniline-derived porous carbon: An efficient electro-catalyst towards supercapacitor and fuel cells application. Journal of Energy Storage, 2023, 62–106862	3.9	4

#	Article	IF	Citations
1133	Two-dimensional transition metal carbide (Ti0.5V0.5)3C2Tx MXene as high performance electrode for flexible supercapacitor. Journal of Colloid and Interface Science, 2023, 639, 233-240.	5.0	11
1134	MnS-La2S3/GO composite electrodes for high-performance flexible symmetric supercapacitor. Applied Surface Science Advances, 2023, 15, 100399.	2.9	4
1135	An ensemble of progress and future status of piezo-supercapacitors. Journal of Energy Storage, 2023, 65, 107362.	3.9	8
1136	Self-supporting electrodes with in situ built aniline on carbon fibers and reduced graphene oxide covalently for stable flexible supercapacitors. Journal of Energy Storage, 2023, 64, 106898.	3.9	2
1137	Biologically inspired anthraquinone redox centers and biomass graphene for renewable colloidal gels toward ultrahigh-performance flexible micro-supercapacitors. Journal of Materials Science and Technology, 2023, 151, 178-189.	5.6	6
1138	Experimental and theoretical insights into colossal supercapacitive performance of graphene quantum dots incorporated Ni3S2/CoS2/MoS2 electrode. Journal of Energy Storage, 2023, 65, 107274.	3.9	3
1139	Binder-free hybrid cobalt-based sulfide/oxide nanoarrays toward enhanced energy storage performance for hybrid supercapacitors. Journal of Energy Storage, 2023, 63, 106979.	3.9	6
1140	Facile synthesis of porous CuO/Cu2O/Cu composite powders for hybrid supercapacitors. Journal of Energy Storage, 2023, 63, 106989.	3.9	5
1141	Synthesis of organic hybrid ruthenium oxide nanoparticles for high-performance supercapacitors. Electrochimica Acta, 2023, 443, 141938.	2.6	4
1142	Physicochemical Modeling of Electrochemical Impedance in Solid-State Supercapacitors. Materials, 2023, 16, 1232.	1.3	1
1143	In Situ Growth of Ni-MOF Nanorods Array on Ti3C2Tx Nanosheets for Supercapacitive Electrodes. Nanomaterials, 2023, 13, 610.	1.9	7
1144	ZIF-67-derived CoMoO4@Co3O4 composite materials for high-performance asymmetric supercapacitors with efficient energy storage. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	2
1145	Facile Synthesis of Polyacrylic Acid/Graphene Oxide Composite Hydrogel Electrolyte for High-Performance Flexible Supercapacitors. Coatings, 2023, 13, 382.	1.2	1
1146	Modeling resistance increase in a composite ink under cyclic loading. Flexible and Printed Electronics, 2023, 8, 015014.	1.5	0
1147	Flexible electroactive membranes for the electrochemical detection of dopamine. European Polymer Journal, 2023, 187, 111915.	2.6	4
1148	Temperature-dependent pseudocapacitive behaviors of polyaniline-based all-solid-state fiber supercapacitors. Electrochemistry Communications, 2023, 148, 107456.	2.3	1
1149	Comparative Study of Morphological Variation in Bi-functional ZnCo2O4 Nanostructures for Supercapacitor and OER Applications. Journal of Electronic Materials, 2023, 52, 3188-3204.	1.0	1
1150	Hybrid polymer gels for energy applications. Journal of Materials Chemistry A, 2023, 11, 12593-12642.	5.2	10

#	Article	IF	CITATIONS
1151	PET/Graphene Nanocomposite Fibers Obtained by Dry-Jet Wet-Spinning for Conductive Textiles. Polymers, 2023, 15, 1245.	2.0	5
1152	Electrothermal properties of short carbon fiber/ <scp>PLA</scp> composite structure and its fast response behavior. Journal of Applied Polymer Science, 2023, 140, .	1.3	2
1153	Wideâ€Temperature Flexible Supercapacitor from an Organohydrogel Electrolyte and Its Combined Electrode. Chemistry - A European Journal, 2023, 29, .	1.7	3
1154	Porous polyoxotungstate/MXene hybrid films allowing for visualization of the energy storage status in high-performance electrochromic supercapacitors. Dalton Transactions, 2023, 52, 5870-5881.	1.6	3
1155	Perovskiteâ€Solarâ€Cellâ€Powered Integrated Fuel Conversion and Energyâ€Storage Devices. Advanced Materials, 2023, 35, .	11.1	6
1156	Laser Cutting Coupled with Electro-Exfoliation to Prepare Versatile Planar Graphene Electrodes for Energy Storage. International Journal of Molecular Sciences, 2023, 24, 5599.	1.8	1
1157	Shape Memory Supercapacitors. Springer Series in Materials Science, 2023, , 331-355.	0.4	0
1158	Additive Engineering Enables Ionic-Liquid Electrolyte-Based Supercapacitors To Deliver Simultaneously High Energy and Power Density. ACS Sustainable Chemistry and Engineering, 2023, 11, 5685-5695.	3.2	11
1159	Piezoelectric Enhancement of Piezoceramic Nanoparticle-Doped PVDF/PCL Core-Sheath Fibers. Nanomaterials, 2023, 13, 1243.	1.9	8
1160	Energy storage properties of nanomaterials. , 2023, , 337-350.		2
1161	Structural engineering of electrodes for flexible energy storage devices. Materials Horizons, 2023, 10, 2373-2397.	6.4	6
1162	Introduction to advances in electronic materials for clean energy conversion and storageÂapplications. , 2023, , 299-314.		1
1163	Recent research progress of conductive polymer-based supercapacitor electrode materials. Textile Reseach Journal, 2023, 93, 3884-3925.	1.1	3
1164	High–Mass–Loading CoNi–Layered Double Hydroxide Directly Grown on Brush–Like Cu/Carbon Cloth as High–Areal–Capacitance Supercapacitor Electrode. Batteries and Supercaps, 0, , .	2.4	1
1165	Pseudocapacitive performance of amorphous ruthenium oxide deposited by successive ionic layer adsorption and reaction (SILAR): Effect of thickness. Journal of Physics and Chemistry of Solids, 2023, 179, 111386.	1.9	5
1166	Biodegradable polymer nanocomposites as electrode materials for electrochemical double-layer capacitors and hybrid supercapacitor applications. , 2023, , 311-352.		0
1180	New development in carbon-based electrodes and electrolytes for enhancement of supercapacitor performance and safety. , 2023, , 353-408.		1
1187	Progress of Photocapacitors. Chemical Reviews, 2023, 123, 9327-9355.	23.0	11

\mathbf{C}	TAT	ON	DEE	ODT
	IAL		IKEP	UKI

#	Article	IF	CITATIONS
1202	Wearable electrochromic materials and devices: from visible to infrared modulation. Journal of Materials Chemistry C, 2023, 11, 7183-7210.	2.7	19
1207	Investigations on Recent Advancements in the Fabrication of In-Plane Micro-Supercapacitors as Portable Energy Storage Devices. , 2023, , .		0
1214	Polymeric Materials for Flexible Supercapacitors. Green Energy and Technology, 2023, , 263-281.	0.4	0
1216	Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chemical Society Reviews, 2023, 52, 5388-5484.	18.7	9
1217	The new focus of energy storage: flexible wearable supercapacitors. Carbon Letters, 2023, 33, 1461-1483.	3.3	2
1232	Self-healable gels in electrochemical energy storage devices. Nano Research, 0, , .	5.8	1
1233	FunctionalÂPolymer Nanocomposites as Supercapacitors for Health Care. Materials Horizons, 2024, , 505-529.	0.3	0
1234	FNM-Based Supercapacitor in Futuristic Application. Materials Horizons, 2024, , 679-705.	0.3	0
1238	Current trends in the detection and removal of heavy metal ions using functional materials. Chemical Society Reviews, 2023, 52, 5827-5860.	18.7	15
1251	Mechanochemical synthesis of metal–organic frameworks. , 2024, , 93-120.		0
1323	Recent advances in cellulose nanocrystals-based sensors: a review. Materials Advances, 2024, 5, 2622-2654.	2.6	0
1333	Ionic liquid-based electrolyte in supercapacitors. AIP Conference Proceedings, 2024, , .	0.3	0